
Fairly Stable Two-Sided Matching with Indifferences

Benjamin Cookson , Nisarg Shah
University of Toronto

{bcookson,nisarg}@cs.toronto.edu

Abstract
Stability has been a foundational criterion for two-1

sided matching. When agents on one side have2

weak preferences involving indifferences, the sem-3

inal work of Kesten and Ünver [2015] proposes4

the Fractional Deferred Acceptance (FDA) algo-5

rithm for computing a fractional matching that sat-6

isfies (ex ante) stability along with a fairness crite-7

rion that ensures no discrimination among (equally-8

preferred) agents on one side.9

We show that their algorithm can actually fail to ter-10

minate, refuting their claim of (polynomial-time)11

termination. Using substantially new algorithmic12

ideas, we develop an algorithm, Doubly-Fractional13

Deferred Acceptance Via Strongly Connected Com-14

ponents (DFDA-SCC), which can handle agents15

on both sides exhibiting indifferences and, in poly-16

nomial time, compute a fractional matching satisfy-17

ing ex ante stability and no ex ante discrimination18

among agents on both sides.19

1 Introduction20

Ever since the seminal work of Gale and Shapley [1962],21

the problem of two-sided matching has influenced not only22

a vast sea of academic research at the intersection of eco-23

nomics and computer science [Roth, 2008; Chiappori and24

Salanié, 2016], but also a wide range of real-world appli-25

cations ranging from school admissions and placement of26

hospital residents to course allocation and centralized kidney27

markets [Biró, 2017].28

The simplest formulation involves two sets of agents, N29

(“proposers”) and M (“acceptors”), with |N | = |M | and each30

agent i ∈ N ∪M having preferences ≽i over agents on the31

other side. The goal is to find a desirable one-to-one matching32

x between agents on the two sides based on their preferences.33

Much of the prior work assumes strict preferences, where34

each agent i has a total order≻i over agents on the other side,35

and seeks integral matchings, where each agent is matched to36

a unique agent on the other side, i.e., x ∈ {0, 1}N×M with37 ∑
j′∈M xij′ =

∑
i′∈N xi′j = 1 for all i ∈ N and j ∈ M .38

A celebrated example is the polynomial-time Deferred Ac-39

ceptance (DA) algorithm by Gale and Shapley [1962], which40

satisfies stability: no pair of proposer and acceptor who are 41

not matched to each other should prefer each other over the 42

agents they are respectively matched to. Many extensions of 43

DA have been proposed to handle real-world nuances such as 44

agent capacities [Roth, 1985], “couples constraints” [Roth, 45

1984], and decentralized implementations [Roth and Vate, 46

1990]. 47

One such practical consideration is agents having weak 48

preferences that exhibit indifferences (ties). Such indiffer- 49

ences are commonplace in real-world applications. For ex- 50

ample, in a school choice program, schools prioritize students 51

based on only a few criteria, such as the walk zone and sibling 52

criteria [Abdulkadiroğlu et al., 2005], inducing ties among 53

many students. When indifferences are allowed, one thread 54

of the literature still continues to focus on integral matchings. 55

Erdil and Ergin [2017] show that, while stability already im- 56

plies Pareto optimality under strict preferences, finding a sta- 57

ble and Pareto optimal matching is a much more involved 58

task in the presence of indifferences. Manlove et al. [2002] 59

show that maximizing the number of agents matched in a sta- 60

ble matching is NP-hard in the presence of indifferences; this 61

can be approximated up to a factor of 3/2 [McDermid, 2009] 62

(1+1/e if indifferences exist only on one side [Lam and Plax- 63

ton, 2019]). 64

However, when one adds fairness considerations to the 65

mix, it becomes evident that one must allow a fractional 66

matching, where x ∈ [0, 1]N×M and xij denotes the degree 67

to which the pair of agents i and j are matched (consider the 68

case of agents i, i′ on one side who both strongly prefer some 69

agent j of the other side, and while j prefers both i and i′ to 70

all other agents, it is indifferent between the two. Clearly, the 71

fairest way to assign this matching is to match each of i and 72

i′ with half of j). 73

This simple observation has inspired a fostering literature 74

on seeking fractional matchings that are both stable and fair 75

in the presence of indifferences (For a more detailed look at 76

the state of the art for current matching algorithms, we in- 77

clude an extended discussion in Appendix A). The seminal 78

work of Kesten and Ünver [2015] studies a model in which 79

only acceptors can have indifferences (while proposers have 80

strict preferences), and seeks two criteria (see Section 2 for 81

formal definitions): 82

• ex ante stability, a suitable adaptation of stability for 83

fractional matchings demanding that no pair of agents 84

i and j be able to even increase their degree of match85

by decreasing their degrees of matches to less-preferred86

agents; and87

• no ex ante discrimination (among proposers), a fairness88

criterion which informally requires that there should be89

no discrimination between two proposers being matched90

to an acceptor when the acceptor is indifferent between91

them.92

Kesten and Ünver define Fractional Deferred Acceptance93

(FDA), a generalization of DA that achieves both these guar-94

antees simultaneously. While this work has been able to95

cleanly answer the question of what happens when there96

are indifferences on one sides, it is much more unclear how97

these definitions can be met with respect to both sides simul-98

tanously when all agents can be indifferent. This causes us to99

raise the following question.100

When agents on both sides exhibit indifferences,101

does there always exist a matching that is simul-102

taneously stable (in the sense of ex ante stability)103

and fair (in the sense of no ex ante discrimination)104

to agents on both sides? If so, can it be computed105

in polynomial time?106

1.1 Our Contributions107

Our main contribution is to answer both questions affirma-108

tively, but our story actually begins with a closer examination109

of the seminal work of Kesten and Ünver [2015]. In more de-110

tail, they define Fractional Deferred Acceptance (FDA) as a111

natural iterative procedure of proposals and rejections to find112

a matching satisfying both ex ante stability and no ex ante113

discrimination among proposers; they term this combination114

of axioms strong ex ante stability. While FDA may not ter-115

minate, a result of Alkan and Gale [2003] can be used to show116

that it converges to the proposer-optimal strongly ex ante sta-117

ble matching,1 although Kesten and Ünver give a direct proof118

of this. Let us refer to this matching as the FDA matching.119

The reason that FDA may not terminate is that it can120

get stuck in an infinite loop wherein agents in a cycle keep121

proposing/rejecting to the next agent in the cycle, but the de-122

gree of match being proposed/rejected diminishes over time,123

leading to convergence. Kesten and Ünver design an algo-124

rithm that detects such a cycle when it forms and immedi-125

ately “jumps” to the matching that infinitely many propos-126

als/rejections along the cycle would lead to. They claim that127

this algorithm, which we refer to as FDA-CYCLE, finds the128

FDA matching in polynomial time.129

Our first significant contribution is to show that this is in-130

correct. We present an example where even the FDA-CYCLE131

ends up in an infinite loop, despite “resolving cycles” imme-132

diately as they arise. This makes polynomial-time computa-133

tion of a strongly ex ante stable matching an open question134

once again. We resolve this positively, while extending the135

model of Kesten and Ünver [2015] to allow indifferences and136

achieve no ex ante discrimination on both sides.137

1This means a strongly ex ante stable matching that is weakly
ordinally preferred to every other strongly ex ante stable matching
by every proposer simultaneously.

First, we define Doubly-Fractional Deferred Acceptance 138

(DFDA), a natural iterative procedure similar to FDA, but 139

which incorporates indifferences on both sides. We show that 140

DFDA satisfies ex ante stability, no ex ante discrimination 141

among both proposers and acceptors, and a fourth axiom we 142

term ex ante indifference neutrality; we term the combination 143

of all four axioms doubly-strong ex ante stability. By invok- 144

ing the framework of Alkan and Gale [2003], we show that, 145

while DFDA may not terminate, it converges to a proposer- 146

optimal doubly-strong ex ante stable matching. 147

Next, we design our polynomial-time algorithm. The in- 148

sight we obtain from our counterexample to FDA-CYCLE is 149

that it is not sufficient to resolve one cycle at a time. Instead, 150

our algorithm detects entire strongly connected components 151

as they arise (or even before they arise), and resolves them 152

by jumping to their resultant matching. We show that this al- 153

gorithm, which we term DFDA-SCC, in fact terminates in 154

polynomial time and returns a doubly-strong ex ante stable 155

matching; this is our main contribution with a highly intri- 156

cate proof. There is one key difference between our work 157

and that of Kesten and Ünver [2015]. While FDA-CYCLE 158

exactly mimics (a serialization of) FDA and thus converges 159

to the same matching (despite failing to terminate), DFDA- 160

SCC does not exactly mimic DFDA. Despite significant ef- 161

fort, we are unable to prove that it returns the same match- 162

ing that DFDA converges to (or at least a proposer-optimal 163

matching), but conjecture this to be the case. We discuss this 164

issue at length in Section 6. 165

2 Preliminaries 166

For k ∈ N, define [k] ≜ {1, . . . , k}. There are two sets of 167

agents, N and M , with |N | = |M |. We use i, i′, i′′ to re- 168

fer to agents in N , called proposers, and j, j′, j′′ to refer to 169

agents in M , called acceptors. Each proposer i ∈ N has 170

weak preferences over acceptors in M given by a strict weak 171

ordering ≽i, which partitions M into equivalence classes 172

Ei = {Ei1, . . . , Eiki
}, for some ki ∈ N, such that: (i) for 173

all t ∈ [ki], proposer i is indifferent between all acceptors 174

j, j′ ∈ Eit, denoted by j ∼i j′, and (ii) for all t, t′ ∈ [ki] 175

with t > t′, proposer i strictly prefers any acceptor j ∈ Eit to 176

every acceptor j′ ∈ Eit′ , denoted by j ≻i j
′. Similarly, each 177

acceptor j ∈ M has a strict weak ordering ≽j , which parti- 178

tions N into equivalence classes Ej =
{
Ej1, . . . , Ejkj

}
, for 179

some kj ∈ N, such that i ∼j i
′ for all t ∈ [kj] and i, i′ ∈ Ejt 180

and i ≻j i′ for all t, t′ ∈ [kj] with t > t′, i ∈ Ejt, and 181

i′ ∈ Ejt′ . An ordinal two-sided matching problem is given 182

by the four-tuple (N,M,≽N= (≽i)i∈N ,≽M= (≽j)j∈M). 183

When ki = |M | for each i ∈ N (i.e., there are no indif- 184

ferences), we say that the proposers have strict preferences; 185

when kj = |N | for each j ∈ M , we say that the acceptors 186

have strict preferences; and when both are true, we say that 187

both sides have strict preferences. 188

A (fractional) matching x ∈ [0, 1]N×M is a doubly 189

stochastic matrix satisfying
∑

j′∈M xij′ =
∑

i′∈N xi′j = 1 190

for all i ∈ N and j ∈ M . We refer to row xi = (xij)j∈M as 191

the matching of proposer i ∈ N and column xj = (xij)i∈N 192

as the matching of acceptor j ∈ M . We also denote |xi| ≜ 193∑
j∈M xij and |xj | ≜

∑
i∈N xij . When xij ∈ {0, 1} for all 194

i ∈ N and j ∈M , we refer to the matching as integral.195

2.1 Stability and Fairness Criteria196

Our starting point is stability and fairness criteria for frac-197

tional matching introduced by Kesten and Ünver [2015].198

Definition 1 (Ex ante stability). A matching x is ex ante sta-199

ble if there are no i, i′ ∈ N and j, j′ ∈ M such that j ≻i j
′,200

i ≻j i
′, xij′ > 0, and xi′j > 0. In words, no pair of proposer201

i and acceptor j should both be positively matched to agents202

they prefer less than each other.203

For integral matchings, ex ante stability coincides with the204

popular stability criterion of Gale and Shapley [1962]; all sta-205

ble integral matchings are ex ante stable, but there are often206

additional fractional matchings that are ex ante stable as well.207

For fractional matchings under strict preferences, ex ante sta-208

bility coincides with strong stability defined and studied by209

Roth et al. [1993]. Ex ante stability is also same as the frac-210

tional stability criterion of Caragiannis et al. [2019a] for car-211

dinal utilities, but with cardinal comparisons replaced by SD-212

preference relations defined above.2213

While ex ante stability focuses on the strict portion of the214

preferences, the following fairness criterion focuses on indif-215

ferences.216

Definition 2 (No ex ante discrimination among proposers). A217

matching x has no ex ante discrimination among proposers if218

there are no i, i′ ∈ N and j, j′ ∈M such that i ∼j i
′, j ≻i j

′,219

xij′ > 0, and xij < xi′j . In words, no proposer i should220

receive less of acceptor j than another proposer i′ while still221

being positively matched to an acceptor j′ she prefers strictly222

less than j, if j is indifferent between i and i′.223

Kesten and Ünver [2015] also give a name to the combina-224

tion of the above two criteria.225

Definition 3 (Strong ex ante stability). A matching x is226

strongly ex ante stable if it is ex ante stable and has no ex227

ante discrimination among proposers.228

Kesten and Ünver [2015] assume that only acceptors in M229

can have indifferences while proposers in N have strict pref-230

erences. When both proposers and acceptors have weak pref-231

erences, as is the case in our general model, it is natural to232

symmetrically apply the no-discrimination criterion to accep-233

tors based on indifferences in proposers’ preferences. To the234

best of our knowledge, we are the first to consider this crite-235

rion of fairness.236

Definition 4 (No ex ante discrimination among acceptors). A237

matching x has no ex ante discrimination among acceptors if238

there are no i, i′ ∈ N and j, j′ ∈M such that j ∼i j
′, i ≻j i

′,239

xi′j > 0, and xij < xij′ . In words, no acceptor j should240

receive less of proposer i than another acceptor j′ while still241

being positively matched to a proposer i′ she prefers strictly242

less than i, if i is indifferent between j and j′.243

The two no-discrimination criteria stipulate desired behav-244

ior when indifferences on one side interact with strict prefer-245

ences on the other side. While the no-discrimination criterion246

2Based on common nomenclature, this would be called SD-
fractional-stability.

addresses conditions where indifferences on one side interact 247

with strict preferences on the other side, the following crite- 248

rion that we introduce addresses conditions where indiffer- 249

ences on the two sides interact with each other. See Section 6 250

for additional discussion about this criterion. 251

Definition 5 (Ex ante indifference neutrality). A matching x 252

is ex ante indifference neutral if there are no i, i′ ∈ N and 253

j, j′ ∈ M such that j ∼i j
′, i ∼j i′, xij < min {xij′ , xi′j}. 254

In words, if proposer i and acceptor j prefer each other as 255

much as they prefer acceptor j′ and proposer i′, respectively, 256

then they should be matched to a degree at least as much as 257

the degree of match between either i and j′ or i′ and j. When 258

agents have an innate preference to balance their degrees of 259

matches to equally-preferred agents,3 this makes sense: in 260

case of the above violation, proposer i and j would “deviate” 261

to increase xij to at least min {xij′ , xi′j} as this would leave 262

them both happier by increasing their balance. 263

When a matching meets all four criteria above, we call it 264

doubly-strong ex ante stable. 265

Definition 6 (Doubly-strong ex ante stability). A matching x 266

is doubly-strong ex ante stable if it is ex ante stable, has no ex 267

ante discrimination among proposers and among acceptors, 268

and is ex ante indifference neutral. 269

2.2 Proposer-Optimal Matchings 270

Deferred-acceptance style algorithms often find a matching 271

that not only satisfies desirable stability and fairness crite- 272

ria but is in fact “proposer-optimal” among such matchings. 273

This is formalized using ordinal dominance. First, we ex- 274

tend agents’ preferences over individual agents to preferences 275

over fractional matches using the (first-order) stochastic dom- 276

inance (SD) relation. 277

Definition 7 (SD-preferences). For proposer i ∈ N and two 278

fractional matches xi, yi ∈ [0, 1]M , we say that i weakly SD- 279

prefers xi to yi, denoted xi ≽SD
i yi, if, for each j ∈ M , we 280

have that
∑

j′∈M :j′≽ij
xij′ ⩾

∑
j′∈M :j′≽ij

yij′ . We say that 281

i strictly SD-prefers xi to yi, denoted xi ≻SD
i yi, if xi ≽SD

i yi 282

holds and at least one of its defining inequalities is strict. SD- 283

preferences of each acceptor j ∈ M are defined symmetri- 284

cally. 285

Next, we use the SD-preference relation to define ordinal 286

dominance. 287

Definition 8 (Ordinal dominance for the proposers). Given 288

two matchings x, y ∈ [0, 1]N×M , we say that x ordinarily 289

dominates y for the proposers, denoted x ≽SD
N y, if xi ≽SD

i yi 290

for each i ∈ N . 291

Ordinal dominance can then be used to define a “best 292

matching” for proposers within a set of matchings. 293

Definition 9 (Proposer-optimality). Given a set X of match- 294

ings, a matching x ∈ X is proposer-optimal within X if, for 295

every y ∈ X , we have that x ≽SD
N y. 296

3This is in fact formalized when we make a connection to the
result of Alkan and Gale [2003] and impose a preference for bal-
ancedness to turn the weak preferences strict.

In general, it is possible that there is no proposer-optimal297

matching within X . Interestingly, though, the sets of strongly298

ex ante stable matchings and doubly-strong ex ante stable299

matchings always admit a proposer-optimal matching; Kesten300

and Ünver [2015] establish the former and Theorem 1 estab-301

lishes the latter.302

3 The Fault in Our Stars: Strong Ex Ante303

Stability in Finite Time?304

Our story begins with the seminal work of Kesten and Ünver305

[2015], who study fractional matchings in the presence of in-306

differences in acceptors’ preferences, define strong ex ante307

stability (the combination of ex ante stability and no ex308

ante discrimination among proposers), and identify Frac-309

tional Deferred Acceptance (FDA), a natural adaptation of310

(integral) Deferred Acceptance (DA) of Gale and Shapley311

[1962], which produces a fractional matching provably sat-312

isfying strong ex ante stability. While we will not present313

all the formal details of their work, we must present enough314

for the reader to understand our first significant contribution,315

which is to identify (and, in later sections, fix) a major flaw316

in the main contribution of Kesten and Ünver [2015].317

Algorithm FDA. A formal description of the FDA algo-318

rithm is presented as Algorithm 2 in Appendix B. Informally,319

it is an iterative process, which starts with an empty matching320

and every proposer having a free weight of 1. In each itera-321

tion, all proposers simultaneously propose their free weight322

to their respective most-preferred acceptors who have not yet323

rejected any of their proposals (even fractionally).4 Then,324

each acceptor whose sum of matched weight and total pro-325

posed weights exceeds 1 rejects enough proposed weight such326

that this sum reduces to 1. The rejections happen in a water-327

filling manner—from the least preferred equivalence class to328

the most preferred, and within each equivalence class, at an329

equal rejection pace to all the highest-matched proposers at330

any given time. At the end, all unrejected proposed weights331

get added to the current fractional matching and all rejected332

proposed weights return to those proposers as free weights,333

which they propose in subsequent iterations.334

The procedure is quite natural, but Kesten and Ünver ob-335

serve that it has a critical flaw: there may be a cycle of agents336

i1 → j1 → i2 → . . . ik → jk → i1 such that in some337

iteration, i1 proposes some weight to j1, who rejects some338

matched weight with i2; so in the next iteration, i2 proposes339

some weight to j2, who rejects some matched weight with i3;340

at some point, jk rejects some matched weight with i1, who341

then proposes to j1 again; and this can continue indefinitely.342

Due to such cycles, which they term rejection cycles, FDA343

may never terminate.344

Nonetheless, they observe that by viewing FDA as a spe-345

cific instantiation of a more general two-sided “schedule346

matching” process studied by Alkan and Gale [2003], one347

can easily conclude that FDA converges to a matching—348

henceforth, the FDA matching—that is strongly ex ante sta-349

ble, and, in fact, proposer-optimal within the set of such350

4Recall that in their model, proposers have strict preferences, so
such an acceptor is unique for each proposer.

matchings.5 This still leaves the issue of finite-time compu- 351

tation of a strongly ex ante stable matching, leading to their 352

main contribution. 353

Algorithm FDA-CYCLE. They propose an algorithm, 354

which we refer to as FDA-CYCLE (presented formally as 355

Algorithm 4 in Appendix B), which allegedly computes the 356

FDA matching in polynomial time. First, they notice that 357

the proposals can be serialized as the resulting matching is 358

still unique and independent of the order of proposals (see 359

their Corollary 1). In this serialized process, the infinitely 360

many proposals and rejections along any rejection cycle can 361

be viewed as consecutive iterations. However, instead of exe- 362

cuting these infinitely many iterations, FDA-CYCLE detects 363

a rejection cycle as soon as it forms and directly computes 364

the matching that these infinitely many iterations would have 365

converged to in finite time. 366

Formally, FDA-CYCLE keeps track of a rejection graph, 367

which is a directed graph with the agents as nodes and edges 368

i → j → i′ exist (for all i, i′ ∈ N and j ∈ M) whenever 369

xij > 0, xi′j > 0, i has never been rejected by j, and i′ has 370

been rejected by j.6 Intuitively, this tells us that whenever i 371

proposes to j, j will reject some fraction of i′.7 FDA-CYCLE 372

monitors this graph, and as soon as a directed cycle forms, 373

it solves a linear program to compute the matching that in- 374

finitely many proposals and rejections across the cycle would 375

converge to, “resolving” the cycle (temporarily). 376

Erroneous claim. Kesten and Ünver [2015] claim in their 377

Proposition 3 that FDA-CYCLE terminates after a finite num- 378

ber of steps. Our first significant contribution is to show that 379

this is incorrect. The issue lies in the last paragraph of their 380

proof, presented in their Appendix B, which makes the fol- 381

lowing (rephrased) claim: “after all proposers make propos- 382

als, at least one proposer is rejected by one acceptor and has 383

an outstanding fraction, or the algorithm converges, whether 384

or not a [rejection] cycle occurs. Since there are |N | pro- 385

posers and |M | acceptors, the algorithm converges after at 386

most |N ||M | steps”. It is not clear what they mean by a pro- 387

poser being rejected by an acceptor, but the latter conclusion 388

would hold if they mean a proposer is rejected by an acceptor 389

either for the first time or fully (i.e., making their degree of 390

match 0). It turns out that the former statement does not hold 391

under either interpretation. 392

Our counterexample. Our first significant contribution is 393

a counterexample in which FDA-CYCLE in fact fails to ter- 394

minate, thus precluding the possibility of an alternative proof 395

of its finite-time convergence. We emphasize that significant 396

effort and careful analysis went into designing this counterex- 397

5They provide an independent proof for this too.
6Actually, in the rejection graph of Kesten and Ünver [2015],

only the proposers are nodes, and instead of edges i → j → i′, they
add an edge i

j→ i′ labeled with the acceptor j; these are equivalent
representations.

7This is because j having rejected i′ previously implies that j
must be fully matched at the moment, so accepting any proposed
weight requires it to reject some existing weight, and once it rejects
agent i′, it continues to do so until xi′j = 0.

ample. Due to the length of the argument, we defer the exact398

counterexample instance to Appendix C.399

In short, at one point during the execution of FDA-CYCLE,400

a rejection cycle forms, which the algorithm resolves. Cru-401

cially, after the resolution, the cycle remains in the graph,402

albeit with no free weights left on the proposers. In the sub-403

sequent iterations, new edges get added to the rejection graph,404

causing another rejection cycle to form. Again, after the algo-405

rithm resolves this cycle, it remains in the graph. Later in the406

algorithm, a proposal occurs that requires re-resolving one407

of these cycle, which leads to another proposal that requires408

re-resolving the other cycle. Re-resolving the second cycle409

directly leads to re-resolving the first cycle again, essentially410

creating a cycle of cycles. FDA-CYCLE then continues for411

infinitely many steps.412

This reopens the question of finite-time computation of a413

strongly ex ante stable matching. The main contribution of414

the next two sections is to uncover a novel insight that lets us415

overcome the limitation of FDA-CYCLE and design a novel416

polynomial-time algorithm, DFDA-SCC, which in fact com-417

putes a doubly-strong ex ante stable matching in the presence418

of indifferences on both sides.419

Our counterexample highlights the key issue: when multi-420

ple cycles have paths to each other (i.e., they are part of the421

same strongly connected component), they can keep “reac-422

tivating” each other. This suggests that the right approach423

is to not resolve one cycle at a time, but rather resolve en-424

tire strongly connected components in one shot, which is pre-425

cisely what we do later in Section 5.426

4 Doubly-Fractional Deferred Acceptance427

Before we present a polynomial-time algorithm, we take a428

slight detour and extend the model of Kesten and Ünver429

[2015] to allow indifferences on both sides, not only in ac-430

ceptors’ preferences. The first step is to extend their infinite431

iterative procedure, Fractional Deferred Acceptance (FDA).432

We term our procedure Doubly-Fractional Deferred Accep-433

tance (DFDA), and show that it produces a proposer-optimal434

doubly-strong ex ante stable matching via a reduction to the435

framework of Alkan and Gale [2003]. Then, in the next sec-436

tion, we design our DFDA-SCC algorithm, which somewhat437

mimics DFDA, resolves one strongly connected component438

(SCC) in each iteration, and provably terminates at a doubly-439

strong ex ante stable matching in polynomial time.440

DFDA, (which is formally presented in Appendix B as Al-441

gorithm 3), is almost identical to FDA, with a simple and442

natural change to account for possible indifferences in the443

proposers’ preferences. Recall that in FDA, each proposer444

proposes all her free weight to the most-preferred acceptor445

who has not rejected any fraction of her, and this acceptor446

is unique due to strict preferences. In DFDA, each pro-447

poser considers the set of all (equally) most-preferred ac-448

ceptors who have not rejected any fraction of her—note that449

they must all be part of the same equivalence class—and pro-450

poses to all of them simultaneously, evenly splitting her free451

weight between them. Thus, each iteration of DFDA wit-452

nesses both proposers proposing to multiple acceptors simul-453

taneously and acceptors rejecting multiple proposers simulta-454

neously, which explains the name of the algorithm. DFDA is 455

a strict generalization of FDA, reducing to FDA when pro- 456

posers have strict preferences. 457

We establish the desired properties of DFDA by invoking 458

the general framework of Alkan and Gale [2003]. They study 459

two-sided fractional matching under a broad class of pref- 460

erences, given by the so-called (strict) “choice functions”. 461

They prove that (1) the set of stable matchings—with a spe- 462

cific stability definition that we refer to as AG-stability—form 463

a lattice structure, which admits a unique proposer-optimal 464

matching under the strict choice-functions-based preferences; 465

and (2) a natural iterative procedure converges to this unique 466

proposer-optimal AG-stable matching. We take the weak 467

preferences of proposers and acceptors and impose a sec- 468

ondary preference for “balancedness” to induce strict choice 469

functions under which (1) AG-stability becomes equivalent to 470

doubly-strong ex ante stability, thus establishing the existence 471

of a proposer-optimal doubly-strong ex ante stable matching 472

under the strict choice functions (which remains proposer- 473

optimal under the original weak preferences), and (2) the it- 474

erative procedure of Alkan and Gale [2003] becomes equiv- 475

alent to DFDA, which finds the aforementioned matching. 476

This yields the following result; a formal proof, along with 477

an introduction to the framework of Alkan and Gale [2003], 478

is given in Appendix E. 479

Theorem 1. DFDA converges to a proposer-optimal doubly- 480

strong ex ante stable matching. 481

5 A Polynomial-Time Algorithm for 482

Doubly-Strong Ex Ante Stable Matching 483

Because DFDA coincides with FDA when proposers happen 484

to have strict preferences, clearly we cannot resolve rejec- 485

tion cycles one at a time, otherwise we would have the same 486

non-termination issue as FDA-CYCLE on our counterexam- 487

ple from Section 3. Based on the insight obtained from our 488

counterexample, we propose a new algorithm, DFDA-SCC 489

(Algorithm 1), which circumvents this issue by resolving an 490

entire strongly connected component (SCC) in each iteration. 491

Our contribution lies not only in the design of this algo- 492

rithm, but also in its analysis. For Kesten and Ünver [2015], 493

it is easy to establish equivalence between FDA-CYCLE and 494

FDA because FDA-CYCLE exactly follows a serialization 495

of FDA, simply skipping-forward intermediate blocks of in- 496

finitely many iterations across individual rejection cycles. 497

Unfortunately, this is not the case for DFDA-SCC: it is pos- 498

sible that one of its intermediate matchings may never be 499

produced during any serialization of DFDA. It is still pos- 500

sible that DFDA-SCC is equivalent to DFDA by eventu- 501

ally producing the same matching (which would establish 502

its proposer-optimality), but, sadly, we are unable to prove 503

so and leave this as an open question. This is discussed at 504

length in Section 6. Nonetheless, we are able to establish 505

doubly-strong ex ante stability of DFDA-SCC, in addition 506

to polynomial-time convergence. This is our main result with 507

an intricate proof. 508

Theorem 2. DFDA-SCC (Algorithm 1) terminates in poly- 509

nomial time and returns a doubly-strong ex ante stable match- 510

ing. 511

Description of DFDA-SCC. Let us describe what DFDA-512

SCC (Algorithm 1) intuitively does.513

The basis of our algorithm is the proposal graph, a di-514

rected bipartite graph in which there is a node for each pro-515

poser and acceptor. Each proposer i has directed edges to her516

most-preferred acceptors who have not yet rejected her; these517

are the acceptors she will propose to next. Each acceptor j518

has directed edges to her least-preferred proposers that she is519

matched to (and among this set, the ones who currently have520

the highest degree of match to j); if j wishes to fraction-521

ally reject existing matches to accept proposals from more-522

preferred proposers, these are the proposers she will start re-523

jecting.524

In each iteration, the algorithm partitions the proposers into525

groups based on whether they are part of the same strongly526

connected component (SCC) of the current proposal graph527

and sorts these groups according to the topological order of528

the proposal graph. Then, it “resolves” each group (and its529

corresponding SCC) via a linear program (LP). For any pro-530

poser i, the SCC of the proposer graph that contains i is guar-531

anteed to include all cycles containing i, as well as some532

“higher-order cycles” that cause infinite loops like in Sec-533

tion 3.534

For space reasons, the linear program which the algorithm535

resolves for each SCC is fully described in Appendix D. At536

a high level, it simulates a series of fractional proposals and537

rejections in a continuous manner. Its goal is to maximize the538

total “flow” of weight through proposal edges of the proposal539

graph, subject to various constraints that force it to adhere540

to the rules of the DFDA algorithm, and force it to stop a541

sequence of proposals if some key event happens that would542

cause the proposal graph to change. The output of this LP are543

y, z. For any i ∈ N, j ∈ M , yij represents the amount of544

weight i proposes to j in this iteration, and zji represents the545

amount of weight j rejects of i. We will also use yi to refer546

to the total amount of weight proposed by i in this iteration.547

The algorithm terminates when all proposers have no free548

weight remaining, which we will prove must occur after a549

polynomial number of iterations.550

5.1 Analysis of DFDA-SCC551

We are now ready to begin proving polynomial-time termina-552

tion and doubly-strong ex ante stability of DFDA-SCC (The-553

orem 2).554

Proof of polynomial-time termination555

The main technical lemmas we use to prove this fact revolves556

around a structural observation relating the last three con-557

straints of LP-SCC to key events in the algorithm, which558

cause progress to be made. Specifically, all these events re-559

volve around changes to the proposal graph, which corre-560

spond to proposers being either rejected for the first time561

by an acceptor, or fully rejected from an acceptor. As we562

will show, keeping track of such changes is crucial for argu-563

ing polynomial-time termination. We give the full proof of564

Lemma 1 in Appendix F565

Lemma 1. In any solution to the LP, one of the following will566

be true:567

• (A) ∀i ∈ Ct, yi =
∑

j∈M zji + wi568

• (B) ∃j ∈M, |xj | < 1,
∑

i∈N yij = 1− xj 569

• (C) ∃i ∈ N, j ∈M,xij > 0, zji = xij . 570

• (D) ∃j ∈ M,∃i ∈ A∗
j ,∃i′ ∈ Aj \ A∗

j , xij − zji = 571

xi′j + yi′j . 572

Lemma 1 intuitively states the following: After any itera- 573

tion of the algorithm, one of these conditions will be true: 574

• (A) All proposers in Ct have no free weight. 575

• (B) Some acceptor that was not full at the beginning of 576

the iteration becomes full. 577

• (C) Some proposer is fully rejected from some acceptor. 578

• (D) For some acceptor j, there is some proposer that j 579

likes weakly less than all of j’s current matching. 580

(A) is a special condition as the proposers not having any 581

free weight is what we want to happen to ensure termination 582

with a perfect matching. The other three conditions, (B), (C), 583

and (D), all correspond to the previously mentioned changes 584

in the proposal graph. We show this formally in Lemma 2. 585

Lemma 2. Let y∗, z∗ be the variables after resolving some 586

LP in Algorithm 1. The process of updating the current 587

matching using y∗, z∗ will change the proposer graph only 588

if at least one of the conditions (B), (C) or (D) are true. 589

With this, we can next prove Lemma 3, which shows how 590

the algorithm will come to terminate. 591

Lemma 3. In some iteration of the main while loop in Algo- 592

rithm 1, if for every component Ct of proposers, the LP run 593

on Ct terminates with only condition (A) being true, then the 594

matching produced by the last component being solved will 595

be a perfect matching. 596

Finally, leveraging all these technical lemmas, we can 597

show that at each step of DFDA-SCC, progress will be made, 598

changing the proposal graph, and allowing the algorithm to 599

terminate after a polynomial number of iterations. 600

Theorem 3. Algorithm 1 terminates in polynomial time, and 601

will output a perfect matching. 602

The proof of these lemmas, as well as the final theorem, 603

appear in Appendix F. 604

Proof of doubly-strong ex ante stability 605

Finally, we will show that the perfect matching that Algo- 606

rithm 1 returns in polynomial time will be doubly-strong ex- 607

ante stable, the proof of which appears in Appendix F. 608

Theorem 4. The matching produced by Algorithm 1 is 609

doubly-strong ex-ante stable. 610

Together, Theorems 3 and 4 yield the two claims made in 611

Theorem 2, concluding its proof. 612

6 Discussion 613

While we have established polynomial-time computation of 614

a doubly-strong ex ante stable matching, many exciting ques- 615

tions remain open. 616

The lingering issue of equivalence to DFDA and proposer- 617

optimality. Recall that both our infinite procedure DFDA 618

and polynomial-time algorithm DFDA-SCC produce a 619

Algorithm 1: DFDA-SCC
1 ∀i ∈ N,wi ← 1 and Pi ← Ei1 // Free weight of i and acceptors i will propose to next
2 ∀i ∈ N, j ∈M,xij ← 0 // Current matching
3 G← {(i, j) : j ∈ Pi} // Proposal graph with only proposing edges, no rejections yet
4 while ∃i ∈ N,wi > 0 do

// Key step: SCC decomposition of the rejection graph
5 C1, . . . , Ck ← Partition N into strongly connected components based on G, sorted topologically
6 for t ∈ [k] do
7 if ∃i ∈ Ct such that wi > 0 then

// Resolve the SCC via an LP and update the matching
8 y∗, z∗ ← An optimal solution to the linear program LP-SCC (given in Figure 2) for Ct

9 for i ∈ N do
10 for j ∈M do
11 xij ← xij + y∗ij − z∗ji // Update matching
12 end
13 wi ←

∑
j∈M z∗ji + wi − y∗i // Update free weights

14 end
// Collect information for updating acceptors’ edges

15 for j ∈M do
16 if |xj | = 1 then
17 Xj ← {i ∈ N : xij > 0} // Proposers matched to j
18 ℓ← max {k : Xj ∩ Ej,k ̸= ∅}
19 Aj ← Ej,ℓ // Least-preferred proposers
20 A∗

j ← argmaxi∈Aj
xij // Proposers from Aj with max matched weight

21 Rj ← A∗
j ∪ {i ∈ N : i ∈ Ej,ℓ′ , ℓ

′ > ℓ} // Updated set of rejected proposers
22 end
23 end

// Collect information for updating proposers’ edges
24 for i ∈ N do
25 Ri ← {j ∈M : i ∈ Rj} // Acceptors who have rejected i
26 ℓ← min {k : Ei,k ̸⊆ Ri}
27 Pi ← Ei,ℓ \Ri // Most-preferred acceptors who haven’t rejected i
28 end

// Update the proposal graph
29 G′ ← {(i, j) : j ∈ Pi} ∪

{
(j, i) : i ∈ A∗

j

}
// New proposal graph

30 if G′ ̸= G then // Proposal graph changed, restart the outer loop
31 G← G′

32 Go to the start of the While loop (Line 4)
33 end
34 end
35 end
36 end
37 return x

doubly-strong ex ante stable matching, but DFDA has the620

additional guarantee that its matching is proposer-optimal.621

Sadly, we are unable to prove proposer-optimality of DFDA-622

SCC or its equivalence to DFDA.623

Ex ante indifference neutrality and Pareto optimality. In624

Section 2, we remarked that it is not clear if our ex ante in-625

difference neutrality criterion is intuitively desirable. The626

following example shows one formal reason why it may be627

undesirable: it is incompatible with Pareto optimality (or,628

rather, ordinal Pareto undomination). A concrete example629

is given in Appendix H. Kesten and Ünver [2015] show that630

one can cyclically shift matched weights in the FDA match- 631

ing to find ordinal improvements for the proposers that retain 632

ex ante stability but introduce ex ante discrimination among 633

proposers; this yields an ex ante stable matching that is ordi- 634

nally Pareto undominated by any other ex ante stable match- 635

ing. But whether true ordinal Pareto undomination (by any 636

other matching) can be achieved, possibly while also retain- 637

ing no ex ante discrimination among proposers and acceptors, 638

remains to be seen. 639

References640

Atila Abdulkadiroğlu, Parag A Pathak, Alvin E Roth, and641

Tayfun Sönmez. The boston public school match. Ameri-642

can Economic Review, 95(2):368–371, 2005.643

Ahmet Alkan and David Gale. Stable schedule matching644

under revealed preference. Journal of Economic Theory,645

112(2):289–306, 2003.646

Haris Aziz, Rupert Freeman, Nisarg Shah, and Rohit Vaish.647

Best of both worlds: Ex ante and ex post fairness in re-648

source allocation. Operations Research, 72(4):1674–1688,649

2023.650

Haris Aziz, Aditya Ganguly, and Evi Micha. Best of both651

worlds fairness under entitlements. In Proceedings of the652

2023 International Conference on Autonomous Agents and653

Multiagent Systems, pages 941–948, 2023.654

G. Birkhoff. Three observations on linear algebra. Universi-655

dad Nacional de Tucumán, Revista A, 5:147–151, 1946.656

Péter Biró. Applications of matching models under prefer-657

ences. In Ulle Endriss, editor, Trends in Computational So-658

cial Choice, chapter 18, pages 345–373. AI Access, 2017.659

A. Bogomolnaia and H. Moulin. A new solution to the ran-660

dom assignment problem. Journal of Economic Theory,661

100:295–328, 2001.662

Eric Budish, Yeon-Koo Che, Fuhito Kojima, and Paul663

Milgrom. Designing random allocation mechanisms:664

Theory and applications. American Economic Review,665

103(2):585–623, 2013.666

Ioannis Caragiannis, Aris Filos-Ratsikas, Panagiotis Kanel-667

lopoulos, and Rohit Vaish. Stable fractional matchings. In668

Proceedings of the 2019 ACM Conference on Economics669

and Computation, pages 21–39, 2019.670

Ioannis Caragiannis, David Kurokawa, Hervé Moulin,671

Ariel D. Procaccia, Nisarg Shah, and Junxing Wang. The672

unreasonable fairness of maximum Nash welfare. ACM673

Transactions on Economics and Computation, 7(3): Arti-674

cle 12, 2019.675

Pierre-André Chiappori and Bernard Salanié. The economet-676

rics of matching models. Journal of Economic Literature,677

54(3):832–861, 2016.678

Benjamin Cookson, Soroush Ebadian, and Nisarg Shah. Con-679

strained fair and efficient allocations. In 39th, 2025. Forth-680

coming.681

Soroush Ebadian, Rupert Freeman, and Nisarg Shah. Harm682

ratio: A novel and versatile fairness criterion. In 4th, pages683

1–14, 2024.684

Aytek Erdil and Haluk Ergin. Two-sided matching with in-685

differences. Journal of Economic Theory, 171:268–292,686

2017.687

Michal Feldman, Simon Mauras, Vishnu V Narayan, and688

Tomasz Ponitka. Breaking the envy cycle: Best-of-both-689

worlds guarantees for subadditive valuations. In Proceed-690

ings of the 25th ACM Conference on Economics and Com-691

putation, pages 1236–1266, 2024.692

Rupert Freeman, Evi Micha, and Nisarg Shah. Two-sided 693

matching meets fair division. In 30th, pages 203–209, 694

2021. 695

D. Gale and L. S. Shapley. College admissions and the stabil- 696

ity of marriage. Americal Mathematical Monthly, 69(1):9– 697

15, 1962. 698

Peter Gärdenfors. Match making: assignments based on bi- 699

lateral preferences. Behavioral Science, 20(3):166–173, 700

1975. 701

Xiang Han. A theory of fair random allocation under priori- 702

ties. Theoretical Economics, 19(3):1185–1221, 2024. 703

Tadashi Hashimoto, Daisuke Hirata, Onur Kesten, Morimitsu 704

Kurino, and M Utku Ünver. Two axiomatic approaches 705

to the probabilistic serial mechanism. Theoretical Eco- 706

nomics, 9(1):253–277, 2014. 707

Martin Hoefer, Marco Schmalhofer, and Giovanna Varric- 708

chio. Best of both worlds: Agents with entitlements. Jour- 709

nal of Artificial Intelligence Research, 80:559–591, 2024. 710

Chien-Chung Huang and Telikepalli Kavitha. Popularity, 711

mixed matchings, and self-duality. Mathematics of Opera- 712

tions Research, 46(2):405–427, 2021. 713

Aanund Hylland and Richard Zeckhauser. The efficient al- 714

location of individuals to positions. Journal of Political 715

economy, 87(2):293–314, 1979. 716

A. Katta and J. Sethuraman. A solution to the random assign- 717

ment problem on the full preference domain. Journal of 718

Economic Theory, 131:231–250, 2006. 719

Onur Kesten and M. Utku Ünver. A theory of school-choice 720

lotteries. Theoretical Economics, 10(2):543–595, 2015. 721

Onur Kesten, Morimitsu Kurino, and M Utku Ünver. Fair and 722

efficient assignment via the probabilistic serial mechanism. 723

Mimeographed, Boston University, 2011. 724

Chi-Kit Lam and C Gregory Plaxton. A (1+ 1/e)- 725

approximation algorithm for maximum stable matching 726

with one-sided ties and incomplete lists. In Proceedings of 727

the Thirtieth Annual ACM-SIAM Symposium on Discrete 728

Algorithms, pages 2823–2840, 2019. 729

David F Manlove, Robert W Irving, Kazuo Iwama, Shuichi 730

Miyazaki, and Yasufumi Morita. Hard variants of stable 731

marriage. Theoretical Computer Science, 276(1-2):261– 732

279, 2002. 733

Eric McDermid. A 3/2-approximation algorithm for general 734

stable marriage. In International Colloquium on Automata, 735

Languages, and Programming, pages 689–700, 2009. 736

Ioannis Panageas, Thorben Tröbst, and Vijay Vazirani. Time- 737

efficient algorithms for Nash-bargaining-based matching 738

market models. In 20th, 2024. Forthcoming. 739

Alvin E Roth and John H Vande Vate. Random paths to sta- 740

bility in two-sided matching. Econometrica, pages 1475– 741

1480, 1990. 742

Alvin E Roth, Uriel G Rothblum, and John H Vande Vate. 743

Stable matchings, optimal assignments, and linear 744

programming. Mathematics of operations research, 745

18(4):803–828, 1993. 746

Alvin E Roth. The evolution of the labor market for medical747

interns and residents: a case study in game theory. Journal748

of political Economy, 92(6):991–1016, 1984.749

Alvin E Roth. The college admissions problem is not equiva-750

lent to the marriage problem. Journal of economic Theory,751

36(2):277–288, 1985.752

Alvin E Roth. Deferred acceptance algorithms: History, the-753

ory, practice, and open questions. international Journal of754

game Theory, 36:537–569, 2008.755

Éva Tardos. A strongly polynomial algorithm to solve combi-756

natorial linear programs. Operations Research, 34(2):250–757

256, 1986.758

Thorben Tröbst and Vijay V. Vazirani. Cardinal-utility759

matching markets: The quest for envy-freeness, pareto-760

optimality, and efficient computability. In 25th, page 42,761

2024.762

Dietrich Weller. Fair division of a measurable space. Journal763

of Mathematical Economics, 14(1):5–17, 1985.764

Xiaowei Wu, Bo Li, and Jiarui Gan. Budget-feasible max-765

imum nash social welfare is almost envy-free. In 30th,766

pages 465–471, 2021.767

Appendix768

A Extended Related Work769

Apart from the work already cited in the introduction, there are a few threads of related work that our DFDA should be770

contrasted against.771

Matching under weak preferences. Han [2024] extends the celebrated Probabilistic Serial (PS) algorithm for one-sided772

matching (of agents to objects) to two-sided matching, assuming agents (proposers) to have strict preferences but allowing773

objects (acceptors) to have weak preferences. This unifies PS with FDA, retaining ex ante stability but sacrificing no ex ante774

discrimination for ordinal fairness, a criterion that plays a key role in characterizations of PS [Kesten et al., 2011; Hashimoto775

et al., 2014]. This complements the work of Katta and Sethuraman [2006] which extend PS by allowing agents to have weak776

preferences but still assuming objects to have no preferences (equivalently, assuming every object to be indifferent between777

all the agents). To the best of our knowledge, there is no known extension of PS to two-sided matching in the full domain778

where both agents and objects have weak preferences. Huang and Kavitha [2021] study popular matchings, which are weakly779

preferred to any other matching by at least half of the agents. It is known that popularity is a weaker notion than fractional780

stability [Gärdenfors, 1975], which is in turn weaker than ex ante stability. Assuming strict preferences on both sides, they781

prove that the popular matching maximizing any linear objective can be computed efficiently due to elegant half-integral and782

self-duality properties of such matchings. Popular matchings remain well-defined with weak preferences, but we are not aware783

of any work investigating this.784

Cardinal preferences. The model of cardinal utilities is even more expressive than that of weak preferences. Any algorithms785

designed for weak preferences (including ours) can be applied to an instance with cardinal utilities as they induce unique786

weak preferences; however, applying an algorithm designed for strict preferences requires breaking ties and the result can be787

dependent on tie-breaking. Caragiannis et al. [2019a] use cardinal utilities to also justify fractional matchings: they show788

that stable fractional matchings can have arbitrarily larger utilitarian social welfare compared to stable integral matchings,789

and design approximation algorithms for the NP-hard problem of maximizing welfare subject to stability. Panageas et al.790

[2024] give an algorithm that computes a fractional matching maximizing the Nash social welfare within an error of ε in791

O(1/ε) time. But the Nash-optimal solution, while celebrated in fair division for satisfying envy-freeness under additive/linear792

preferences [Caragiannis et al., 2019b; Weller, 1985; Ebadian et al., 2024], even under constraints [Cookson et al., 2025; Wu793

et al., 2021], Tröbst and Vazirani [2024] show that it provides no approximation to envy-freeness for two-sided matching, and794

use other means to show the existence of fractional matchings satisfying two sets of axioms: envy-freeness (EF) and Pareto795

optimality, and justified envy-freeness (JEF) and weak Pareto optimality.796

B Algorithms FDA, DFDA, and FDA-CYCLE797

Algorithm 2: Fractional Deferred Acceptance (FDA) Kesten and Ünver [2015]
1 ∀i ∈ N,wi = 1
2 ∀i ∈ N, j ∈M,xij = 0
3 while ∃i ∈ N,wi > 0 do
4 All proposers i with wi > 0 propose their weight simultaneously to their most preferred acceptor j who has not yet

rejected any fraction of them.
5 All acceptors j whose tentative matching + proposals are greater than their capacity reject some proposers based on

the following process:
6 Starting with j’s highest equivalency class, if j can accept all proposals from that class without exceeding its

capacity, then it does so. Otherwise j accepts proposers from this equivalency class as equally as possible, i.e., j
increases the amount accepted of each proposer by an equal amount, only stopping the increase for a given
proposer for j has accepted all of that proposers weight, or j runs out of capacity. This process is repeated until j
reaches capacity.

7 end
8 return x

C Failure of FDA-CYCLE on Our Counterexample798

In this section, we will show all the steps of the instance of Figure 1 where FDA-CYCLE does not terminate in a finite number799

of steps. The first several steps of FDA-CYCLE on this instance act as expected. We will highlight when we reach the key800

steps where cycles begin to occur. For each step, we will show both the tentative matching produced, and the current state of801

the rejection graph that the algorithm uses to resolve cycles.802

Algorithm 3: Doubly-Fractional Deferred Acceptance (DFDA)
1 ∀i ∈ N,wi = 1 // Free weights
2 ∀i ∈ N, j ∈M,xij = 0 // Current matching
3 while ∃i ∈ N,wi > 0 do

// Simultaneous fractional proposals
4 All proposers i with wi > 0 propose simultaneously. Let Pi be the set of (equally) most-preferred acceptors of

proposer i who have not rejected i yet. Each proposer i evenly splits her proposal across acceptors in Pi, proposing
a weight of wi/|Pi| to each of them.
// Simultaneous fractional rejections

5 All acceptors j whose sum of current matched weight and total proposed weight exceeds their capacity of 1 reject
some proposers as follows. Each j goes through her equivalence classes from the highest to the lowest. In a given
equivalence class, if j can accept all the proposed weight from that class without exceeding her capacity, she does
so. Otherwise, j starts continuously accepting proposed weight from the set of currently least-matched proposers
in that class at an equal rate, stopping any proposer whose entire proposed weight has been accepted and starting a
new proposer whenever she joins the set of least-matched proposers, until her capacity is exhausted.

6 end
7 return x

Algorithm 4: FDA-CYCLE Kesten and Ünver [2015]
1 ∀i ∈ N,wi = 1
2 ∀i ∈ N, j ∈M,xij = 0
3 while ∃i ∈ N,wi > 0 do
4 i1 ← arbitrary agent with wi1 > 0
5 if ∃ a cycle C = (i1, j1, i2, j2, i3, j3 . . . , iℓ, jℓ, i1) in the proposal graph then
6 Ms = {i ∼js is+1 : xijs > 0}
7 for s ∈ {2, . . . , ℓ} do
8 Define equation ys =

∑
i∈Ms

max{xijs − (xis+1,js − ys+1)}
9 end

10 Define equation y1 + w1 =
∑

i∈M1
max{xij1 − (xi2,j1 − y2)}

11 Solve the above system for y1, y2, . . . , yℓ, let ys denote the amount of is that gets rejected from js−1, and update
x accordingly.

12 else
13 i1 proposes their free weight to their top acceptor, that acceptor rejects any proposers if necessary using the

same criteria as they do in FDA.
14 end
15 end
16 return x

Proposers

i1: j3 ≻ j4 ≻ {j1, j2, j5}
i2: j3 ≻ j5 ≻ {j1, j2, j4}
i3: j3 ≻ j2 ≻ j1 ≻ {j4, j5}
i4: j1 ≻ j2 ≻ {j3, j4, j5}
i5: j1 ≻ j3 ≻ {j2, j4, j5}

Acceptors

j1: i3 ≻ i4 ∼ i5 ≻ {i1, i2}
j2: i4 ≻ i3 ≻ {i1, i2, i5}
j3: i5 ≻ i1 ∼ i2 ∼ i3 ≻ i4
j4: i1 ≻ {i2, i3, i4, i5}
j5: i2 ≻ {i1, i3, i4, i5}

Figure 1: Counterexample on which FDA-CYCLE fails to terminate. In each ordering, the relation between the agents listed in the set at the
end can be arbitrary.

Consider the instance shown in Figure 1. For the agents listed as a set in the end, we can have arbitrary relationship as long 803

as they are all strictly less preferred than the agents listed previously (e.g., they may form the lowest equivalence class). The 804

infinite looping of FDA-CYCLE happens regardless of these relations. 805

We assume that Algorithm FDA-CYCLE breaks any ties lexicographically. That is, when there are multiple proposers in N 806

with free weight, the one with the smallest index among them proposes in the next iteration. 807

In the first two steps of FDA-CYCLE, i1 and i2 will both propose to j3. j3 will reject half of each of these proposers, and 808

keep the other half.809

i1 i2 i3 i4 i5

Free Weight 1/2 1/2 1 1 1
j1 0 0 0 0 0
j2 0 0 0 0 0
j3 1/2 1/2 0 0 0
j4 0 0 0 0 0
j5 0 0 0 0 0

i1 i3 i2

i4 i5

810

811

In the next two steps, i1, now rejected from their top choice j3, proposes their 1/2 free weight to j4. Similarly, j2 proposes812

their 1/2 free weight to j5.813

i1 i2 i3 i4 i5

Free Weight 0 0 1 1 1
j1 0 0 0 0 0
j2 0 0 0 0 0
j3 1/2 1/2 0 0 0
j4 1/2 0 0 0 0
j5 0 1/2 0 0 0

i1 i3 i2

i4 i5

814

815

Next, i3 proposes to j3. j3 is indifferent between i1, i2, and i3, so it keeps 1/3 of each of them, and rejects the rest. In the816

next two subsequent steps, i1 and i2 both take their newly rejected free weight of 1/6 and propose it to j4 and j5 respectively.817

Note that by Kesten and Ünver [2015], this does not cause any edges to appear on the rejection graph, since while there are818

proposers who are rejected from acceptors while having outstanding weight matched to that acceptor, there are no corresponding819

proposers who have weight matched to that acceptor and are not yet rejected.820

i1 i2 i3 i4 i5

Free Weight 0 0 2/3 1 1
j1 0 0 0 0 0
j2 0 0 0 0 0
j3 1/3 1/3 1/3 0 0
j4 2/3 0 0 0 0
j5 0 2/3 0 0 0

i1 i3 i2

i4 i5

821

822

Next, i3, now rejected by their top choice j3, proposes their 2/3 free weight to j2823

i1 i2 i3 i4 i5

Free Weight 0 0 0 1 1
j1 0 0 0 0 0
j2 0 0 2/3 0 0
j3 1/3 1/3 1/3 0 0
j4 2/3 0 0 0 0
j5 0 2/3 0 0 0

i1 i3 i2

i4 i5

824

825

Next, i4 proposes all their weight to their top choice j1. Similarly, in the next step, i5 also proposes all their weight to j1.826

j1 is indifferent between i4 and i5, so it keeps 1/2 of each of them and rejects the rest. Again, this does not cause any rejection827

edges to appear.828

i1 i2 i3 i4 i5

Free Weight 0 0 0 1/2 1/2
j1 0 0 0 1/2 1/2
j2 0 0 2/3 0 0
j3 1/3 1/3 1/3 0 0
j4 2/3 0 0 0 0
j5 0 2/3 0 0 0

i1 i3 i2

i4 i5

829

830

Next, i4 proposes their 1/2 free weight to j2. j2 prefers i4 to i3, so it keeps the 1/2 weight from i4 and partially rejects 1/6 of831

i3. This adds an edge between i4 and i3 in the rejection graph. 832

i1 i2 i3 i4 i5

Free Weight 0 0 1/6 0 1/2
j1 0 0 0 1/2 1/2
j2 0 0 1/2 1/2 0
j3 1/3 1/3 1/3 0 0
j4 2/3 0 0 0 0
j5 0 2/3 0 0 0

i1 i3 i2

i4 i5

j2
833

834

Next, i3, now rejected from their second choice j2, proposes their 1/6 weight to j1. j1 prefers j3 to i4 and i5. so it accepts 835

the 1/6 weight, and rejects 1/12 from each of the others. This causes edges in the rejection graph between i3 and i4, and i3 and 836

i5. Notably, this proposal forms a rejection cycle between i3 and i4, which the algorithm must solve. Using the FDA-CYCLE 837

technique of reduction to linear equation, we are given the following: 838

y4 + 1/12 = y3 (1)
y3 = 2y4 (2)

Solving this linear system gives us the values y4 = 1/12, y3 = 2/12, updating the matching with these values give us: 839

i1 i2 i3 i4 i5

Free Weight 0 0 0 0 2/3
j1 0 0 1/3 1/3 1/3
j2 0 0 1/3 2/3 0
j3 1/3 1/3 1/3 0 0
j4 2/3 0 0 0 0
j5 0 2/3 0 0 0

i1 i3 i2

i4 i5

j2
j1

j1
840

841

The key thing to note here is that after solving the linear equation, the same cyclic relationship between i3 and i4 still remains. 842

xi3j2 > 0 and xi4j1 > 0 still are both true, i3 has not not yet been rejected from j1, so it will still propose there the next chance 843

it gets, and the same can be said for i4 and j2. Thus, the next time either it is either i3 or i4’s turn to propose, the same cycle 844

will have to be dealt with again. 845

Consider the next step of the FDA-CYCLE algorithm in this instance. It is now i5’s turn to propose. i5 proposes their 2/3 846

free weight to j3. j3 prefers i5 to the other 3 agents it is currently accepting fractions of, so it accepts all 2/3 of i5, and rejects 847

2/9 of i1, i2, and i3. However, this causes edges in the rejection graph between i5, and {i1, i2, i3}. Noticeably, this will cause 848

a rejection cycle between i5 and i3, which we can resolve by the following linear system: 849

y3 + 2/9 = 2y5 (3)
y5 = 3y3 (4)

Solving this linear system gives us y3 = 2/45, y5 = 6/45. Updating the matching with these values (and running through the 850

non-cyclic proposal steps of i1 and i2) gives us: 851

i1 i2 i3 i4 i5

Free Weight 0 0 0 6/45 0
j1 0 0 27/45 9/45 9/45
j2 0 0 1/3 2/3 0
j3 3/45 3/45 3/45 0 36/45
j4 42/45 0 0 0 0
j5 0 42/45 0 0 0

i1 i3 i2

i4 i5

j2
j1

j1 j3
852

853

Note that again, the solving of this cycle does not lead to the cyclic relation going away from the tentative matching, the next 854

time i5 proposes, the cycle will need to be resolved again. We also note that there are technically edges between i5 and i1 and 855

i5 and i2 in the rejection graph, but they will never become relevant to the algorithm’s execution, so we do not include them in 856

our diagram for simplicity. 857

Next, it is i4’s turn to propose, again, to do this, the cycle between i3 and i4 will have to be resolved. This will require solving 858

the following linear system: 859

y4 + 6/45 = y3 (5)
y3 = 2y4 (6)

This will give us the values of y4 = 6/45, y3 = 12/45, updating the matching gives us:860

i1 i2 i3 i4 i5

Free Weight 0 0 0 0 6/45
j1 0 0 39/45 3/45 3/45
j2 0 0 3/45 42/45 0
j3 3/45 3/45 3/45 0 36/45
j4 42/45 0 0 0 0
j5 0 42/45 0 0 0

i1 i3 i2

i4 i5

j2
j1

j1 j3
861

862

Now, it is i5’s turn to propose again, and it is still part of the same rejection cycle as previously. One can see that whatever863

values we get from solving this rejection cycle, will cause i4 to have free weight in the next step, this will force us to solve864

i4’s cycle again, which will in turn cause i5 to have free weight in the next step, with each step along the way, the free weight865

getting smaller and smaller. It is easy to see how this process continues ad infinium.866

To illustrate this, we will solve the i5 and i4 cycles with generic values for the free weight.867

First the i5 cycle:868

y5 + w5 = 3y3 (7)
y3 = 2y5 (8)

The solution to this system will be y5 = w5/5, y3 = 2w5/5.869

Similarly for the i4 cycle:870

y4 + w4 = y3 (9)
y3 = 2y4 (10)

The solution to this cycle will be y4 = w4, y3 = 2w4.871

Therefore, we know that the cycle between i3 and i4 will only go away if one of the following happens:872

• i3 gets partially rejected from j1873

• i4 gets fully rejected from j1874

• i4 gets partially rejected from j2875

• i3 gets fully rejected from j2876

Similarly, the cycle between i3 and i5 will only go away when:877

• i3 gets partially rejected from j1878

• i5 gets fully rejected from j1879

• i5 gets partially rejected from j3880

• i3 gets fully rejected from j3881

Until one of these events happen, the algorithm will continue to alternate between resolving these two cycles (while also882

letting i1 and i2 propose their unpropsed weight between each step, which will not effect the rest of the process). Clearly,883

resolving either of these cycles will never cause any of the partial reject conditions to arise, so the algorithm will only exit this884

cycle resolving loop when one of the following occurs:885

• i3 gets fully rejected from j2 or from j3886

• i4 gets fully rejected from j1887

• i5 gets fully rejected from j1888

Note that due to the way the cycles are resolved, as long as none of these conditions are met, then the amount of i4 and i5889

matched to j1 will always be equal. Similarly, the amount of i1, i2, and i3 matched to j3 will always be equal, so the linear890

system we have to solve at each cycle removal step will remain the same.891

Thus, when we resolve the i5 cycle next with w5 = 6/45, we will reject 6/255 of i5 and i4 from j1, and 12/255 of i3, i1, and i2892

from j3.893

Next, i4 will have free weight from 6/255, so resolving its cycle with w4 = 6/255 will mean that 6/255 of i4 and i5 will get 894

rejected from j1, and 12/255 of j3 will get rejected from j2. We will then have to resolve i5’s cycle with w5 = 6/255. 895

Putting this together, we have that after k times resolving i5’s cycle from this point, the total amount of i5 kicked out of j1 is 896∑k
t=1

12/(45∗5t), which one can verify approaches 3/45 in the limit as k approaches infinity, the exact amount that i5 is matched 897

to j1 at the beginning of this process. 898

One can verify that the infinite summations for the other key matrix cells that form the cycles resolve the same way, showing 899

that this sequence will continue forever. 900

D Detailed Description of DFDA-SCC Linear Program 901

maximize
∑
i∈N

yi

subject to // Constraints on proposals
(1) ∀i ∈ Ct : yi ⩽

∑
j∈M zji + wi

(2) ∀i ̸∈ Ct : yi = 0

(3) ∀i ∈ N, ∀j ∈ Pi : yij = yi/|Pi|

(4) ∀i ∈ N, ∀j ̸∈ Pi : yij = 0

// Constraints on rejections
(5) ∀j ∈M, |xj | = 1 : zj =

∑
i∈N yij

(6) ∀j ∈M, |xj | < 1 : zj = 0

(7) ∀j ∈M,∀i ∈ A∗
j : zji = zj/|A∗

j |

(8) ∀j ∈M,∀i ̸∈ A∗
j : zji = 0

// Constraints that stop the flow at discrete structural changes
(9) ∀j ∈M, |xj | < 1 :

∑
i∈N yij ⩽ 1− |xj |

(10) ∀j ∈M,∀i ∈ A∗
j ,∀i′ ∈ Aj \A∗

j : xij − zji ⩾ xi′j + yi′j

(11) ∀i ∈ N, ∀j ∈M : zji ⩽ xij

Figure 2: Linear program LP-SCC used to resolve a strongly connected component in DFDA-SCC (Algorithm 1).

Description of LP-SCC. The linear program at the heart of each step of the algorithm is shown in Figure 2. At a high level, 902

this LP works by maximizing the amount of total weight proposed for a given connected component, while being constrained 903

by the expected rules that dictate how proposals and rejection work in DFDA as well as additional conditions to ensure that the 904

LP simulates proposal/rejection only up to the point where the proposal graph would change. 905

In more detail, the main variables in the LP are y-s and z-s. For each i ∈ N , yi denotes the total weight that i proposes in 906

the current iteration, of which yij denotes the weight proposed to j ∈ M . Similarly, for each acceptor j ∈ M , zj denotes the 907

total weight rejected by j in the current iteration, of which zji denotes the weight that j rejects from i. 908

The first four constraints dictate how proposers can propose. 909

• Constraints (1) and (2)—∀i ∈ Ct, yi ⩽
∑

j∈M zji +wi and ∀i /∈ Ct, yi = 0—ensure that only proposers from the current 910

SCC Ct being resolved propose, and they propose weight that is at most the sum of their free weight and their total rejected 911

weight from the current iteration (that is, they cannot propose more weight than they have). The inequality rather than a 912

strict equality in Constraint (1) allows proposers to retain some free weight in the end, which is key to solving the problem 913

as a series of continuous flow problems rather than a series of discrete proposal-rejection sequences. 914

• Constraint (3) and (4)—∀i ∈ N, yij = yi/|Pi|,∀j ∈ Pi and yij = 0,∀j /∈ Pi—ensures that proposers propose only to their 915

most-preferred acceptors who have not rejected them and propose an equal amount to them. 916

The next four constraints dictate how acceptors handle the weight proposed to them. 917

• Constraints (5) and (6)—∀j ∈ M, zj =
∑

i∈N yij when |xj | = 1 and zj = 0 when |xj | < 1—stipulate that a saturated 918

(fully matched) acceptor must reject exactly as much weight as she accepts, while a non-saturated acceptor must not reject. 919

Constraint (9) later ensures that such an acceptor does not accept more weight than her remaining match capacity. This 920

ensures that once an acceptor becomes saturated, they remain saturated for the rest of the algorithm. 921

• Constraints (7) and (8)—∀j ∈ M, zji = zj/|A∗
j | for all i ∈ A∗

j and zji = 0 for all i /∈ A∗
j—ensure fair rejections. Only922

the least-preferred matched acceptors with the highest matched weight (those in A∗
j) are rejected, and they are rejected923

equally. Constraint (10) stops the LP once this highest matched weight reduces to the next-highest level, at which point a924

new acceptor from Aj must be added to A∗
j by the algorithm.925

This leaves constraint (11)—∀i ∈ N, ∀j ∈ M, zji ⩽ xij . This states that an acceptor cannot reject more weight from a926

proposer than it has available to reject. We do not have to consider any incoming proposed weight from i to j because, due to927

constraint (8), zji can only be positive if i ∈ A∗
j , in which case i will not be proposing any weight to j in this iteration, or for928

the remainder of the algorithm.929

The LP maximizes
∑

i∈N yi, i.e., the total amount of weight proposed by the proposers. The optimal solution (y∗, z∗) is930

used by DFDA-SCC to update the matching and the proposal graph.931

E Alkan-Gale Stability932

E.1 Alkan-Gale Matching Model933

In Alkan and Gale [2003], the authors defined agent preferences using choice functions. They define these choice function in934

a very broad way such that they generalize a huge range of common matching scenarios, including both integral and fractional935

matching. For our purposes, we will assume the following simplified definition of a choice function that handles fractional936

matching scenarios.937

Definition 10 (Fractional matching choice function). Given a set of agents A and a quota q, a choice function C : RA → RA938

is a mapping from one real vector to another (where each entry of this vector corresponds to an amount of some i ∈ A), such939

that for every x ∈ RA, we have that for every i ∈ A, C(x)i ⩽ xi (you can only choose at most what is available), and940 ∑
i∈A C(x)i ⩽ q (your total choice cannot be more than your quota).941

Given our specific definition of choice functions, we also define the join (∨) and meet (∧) operations as the natural join and942

meet on the real numbers, i.e., given a set of agents A, and two vectors x, y ∈ RA, we say that x ∨ y is the vector such that for943

every i ∈ A, (x ∨ y)i = max {xi, yi}, and x ∧ y is the vector such that for every i ∈ A, (x ∧ y)i = min {xi, yi}.944

A given vector x ∈ RA represents all the available ways some agent i can be matched with the agents in A, and when C is945

i’s choice function over A, C(x) represents i’s most preferred matching among all these possibilities.946

For any two vectors x, y ∈ RA, Alkan and Gale [2003] gives the following way to determine whether an agent prefers one947

of these possibilities over the other.948

Definition 11 (AG-preference). For any agent i with choice function Ci over some set of agents A, and for any two vectors949

x, y ∈ RA, we say that x ≽AG
i y if Ci(x ∨ y) = x.950

A full matching problem in the model of Alkan and Gale [2003] gives two sets of agents N and M where each agent i ∈ N951

and j ∈ M has a choice function and a quota. A perfect matching x ∈ R[N×M] in this problem will be such that for all i ∈ N952

(resp. j ∈ M) with quota q, we have
∑

j∈M xij = q (resp.
∑

i∈N xij = q). In each matching, note that each vector xi and953

xj will be in RM and RN respectively, so we can use the agents’ choice functions to reason about their preferences over their954

matchings.955

Under this model, the notion of a stable matching is defined as follows:956

Definition 12 (Saturation). For some agent i ∈ N , and matching x, i is not j-saturated at x for some j ∈ M if increasing the957

amount of j available in xi would cause i’s choice function to choose more of j than xi has available. i.e., if for any ε > 0,958

define the vector y as yj′ = xij′ for all j′ ∈ A \ {j}, and yj = xij + ε. If Ci(y)j > xij is true, the i is not j-saturated.959

A symmetric definition can be given for when some j ∈M is not i-saturated for some i ∈ N .960

Definition 13 (AG-stability). For any matching problem in the Alkan-Gale matching model, a matching x is AG-stable for that961

problem if for every pair of agents i ∈ N and j ∈M , either i is j-saturated or j is i-saturated.962

The goal of Alkan and Gale [2003] is to show a broad class of choice functions such that when all agents in a matching963

problem have such choice functions, the set of stable matchings for the given problem will form a lattice with respect to each964

side’s AG-preferences, and for a given side, the optimal matching in that lattice can be found through a deferred-acceptance965

procedure.966

To characterize such choice functions, the authors give two properties.967

Definition 14 (Consistency). A choice function C is consistent if for all x, y ∈ RA such that C(x) ⩽ y ⩽ x, then C(y) = C(x)968

is true.969

Definition 15 (Persistence). A choice function X is persistent if for all x, y ∈ RA such that x ⩾ y, then C(y) ⩾ C(x) ∧ y.970

With these properties, they are able to state the following:971

Theorem 5 (Theorem 2 of Alkan and Gale [2003]). For any matching problem where all agents have persistent and consistent972

choice functions, there exists a stable matching x∗ that dominates all other stable matchings in terms of the AG-preferences of973

the agents in N , i.e., for any stable matching y, and all i ∈ N , x∗
i ≽AG

i yi. This N -optimal matching can be found by running974

the procedure of Algorithm 6 with N as the “proposers”.975

E.2 Doubly-Strong Ex-Ante Stability Through Choice Functions 976

We will use a reduction to the model of Alkan and Gale [2003] to show that under our preference model, the set of double-strong 977

ex-ante stable matching is equivalent to the lattice of matchings for a given AG matching problems, and the proposer-optimal 978

matching in that lattice can be found through the DFDA procedure. 979

To do this, we will first define the DFDA choice function in Algorithm 6. For any ordinal matching problem (N,M,≽N 980

,≽M), we will assume that each agent has an induced DFDA choice function that is based on their preference ordering. 981

Algorithm 5: Choice functions in the framework of Alkan and Gale [2003] that yield DFDA

1 INPUT: i’s indifference classes Ei; Vector x ∈ RA

2 c← 0A

3 for Eik ∈ Ei do
4 if

∑
j∈Eik

xj ⩽ q −
∑

j∈A cj then
5 ∀j ∈ Eik, cj ← xj

6 end
7 else
8 while

∑
j∈A cj < q and c ̸= x do

9 Continuously increase cj for all j ∈ Eik at the same rate. Only stop increasing cj for some j if cj = xj

becomes true.
10 end
11 return c
12 end
13 end
14 return c

We will first prove that the DFDA choice function has necessary properties to admit a lattice of stable matching in the 982

Alkan-Gale model. 983

Lemma 4. The DFDA choice function is consistent. 984

Proof. For contradiction, assume this is false. For some agent i with a preference ordering over a set of agents A, and agent 985

i’s induced choice function Ci over those agents with a quota of q, there exists x, y ∈ RA such that Ci(x) ⩽ y ⩽ x but 986

Ci(y) ̸= Ci(x). 987

Let Eik be the lowest equivalency class that Ci(x) chooses agents from before terminating. First consider all the agents from 988

A who are chosen by Ci who are in an equivalency class that is strictly preferred to Eik. From the definition of the DFDA 989

choice function, for each of these agents i ∈ A, Ci would have selected the full amount of j in x. Thus, for each such j, since 990

we have that Ci(x)j ⩽ yj ⩽ xj and Ci(x)j = xj , it must be the case that yj = xj . Since Ci starts at the highest equivalency 991

class for i and works its way down, this means that selecting all of each agent strictly preferred to Eik will not exceed Ci’s 992

quota q, and thus we must have that Ci(y)j = Ci(x)j = xj = yj for all j ∈ Eik′ , k′ < k. 993

Now consider the agents in Eik. Note that for every j ∈ Eik, we must have that Ci(x)j ⩽ yj ⩽ xj . From the definition 994

of the DFDA choice function, we know that the choice function will select agents from this class by continuously increasing 995

the matched amount of all agents in this class at an equal rate, only stopping the increase of an agent if that agent becomes full 996

chosen, quota becomes full, or the vector becomes fully chosen. 997

By the above arguments, we must have that Ci(x)j ̸= Ci(y)j for some j ∈ Eik. If Ci(x)j > Ci(y)j , then consider the exact 998

time in the equivalent increasing process where Ci(y) finishes choosing j. At this point, note that we cannot have that the quota 999

of Ci is full, as by the definition of the DFDA choice function, at the same time in the increasing process for Ci(x), x ⩾ y 1000

implies that Ci(x) and Ci(y) will have chosen the same amount of all agents in Eik up to that point, while Ci(x)j > Ci(y)j 1001

continues increasing after this point. Therefore, it must be the case that Ci(y)j has been fully chosen by j at this point, and 1002

thus Ci(y)j = yj . However, this fact along with Ci(x)j > Ci(y)j would contradict the fact that Ci(x) ⩽ y. 1003

If instead we had Ci(x)j < Ci(y)j , then consider the exact time in the equivalent increasing process where Ci(x) finishes 1004

choosing j. At the same point during the process of Ci(y), we know that Ci(y) must have chosen the exact same amount of 1005

every agent in Eik. This is due to the fact that Ci(x) ⩽ y. Thus, it cannot be the case that Ci(x)j stops because its quota is full, 1006

so it must be the case that it consumed the full amount of xj . But Ci(x)j = xj and Ci(x)j < Ci(y)j ⩽ yj would contradict 1007

y ⩽ x. 1008

This contradicts the fact that such a j exists, and proves that the DFDA choice function is consistent. 1009

Lemma 5. The DFDA choice function is persistent. 1010

Proof. For contradiction, assume this is false. For some agent i with a preference ordering of a set of agents A, and agent i’s1011

induced choice function Ci over those agents with a quota of q, there exists x, y ∈ RA with x ⩾ y, and some j ∈ A such that1012

Ci(y)j < min
{
Ci(x)j , yj

}
.1013

Let Eik be i’s lowest equivalency class containing some proposer that is positively chosen by Ci(x). First note that for all1014

k′ < k, and all j′ ∈ Eik′ it must be the case that Ci(y)j′ = yj′ . This follows from the fact that since x ⩾ y, we must have1015 ∑
k′<k

∑
j′∈Eik′ xij′ ⩾

∑
k′<k

∑
j′∈Eik′ yij′ , meaning that by the definition of DFDA choice functions, since Ci(x) was able1016

to fully choose every j′ strictly preferred to Eik, then Ci(y) will be able to as well.1017

Therefore, it must be that j is in an equivalency class for i at least as bad Eik, and since Ci(y)j < min
{
Ci(x)j , yj

}
implies1018

that Ci(x)j > 0, then we know that j ∈ Eik must be true.1019

Since we must have that Ci(y)j < yj , it must be the case that Eik is also i’s lowest equivalency class containing some1020

proposer that is positively chosen by Ci(y). With this in mind, we can see that if Ci(x)j ⩾ yj were true, then by definition of1021

the DFDA choice function, we should have that Ci(y)j = yj . This is due to the fact that since x ⩾ y, when Ci(y) reaches the1022

class Eik, it will have at least as much free weight to keep choosing as Ci(x)j did when it reached Eik, and since yj′ ⩽ xj′ for1023

all j′ ∈ Eik, if the process that increases chosen weight in equal amounts for each agent in Eik managed to consume Ci(x)j1024

of j, then that process should certainly be able to consume at least yi ⩽ Ci(x)j of j when choosing from y.1025

At the same time, if yj ⩾ Ci(x)j were true, then we would again reach a contradiction, since by the definition of the1026

DFDA choice function, we would have to have that Ci(y)j ⩾ Ci(x)j must be true. To see this, again notice that once Ci(y)1027

reaches equivalency class Eik, it will have at least as much free weight left to choose as Ci(x) did at that same point. Since1028

Ci(y)j < Ci(x)j , observe the point of the continuous increase in weight where Ci(y)j first stops increasing. This cannot be1029

because the quota of Ci(y) was reached, or that would contradict the fact that y ⩽ x, but it can also not be the case that yj has1030

been fully chosen, since we have Ci(y)j < Ci(x)j ⩽ yj . These contradictions prove that Ci will be persistent.1031

Next, we can show that due to the way that we defined DFDA choice function, being AG-Stable with respect to the agents’1032

induced choice functions is exactly equivalent to doubly-strong ex-ante stability.1033

Theorem 6. A matching is AG-stable with respect to the agents DFDA choice functions if and only if it is doubly-strong ex-ante1034

stable with respect to the agents’ ordinal preferences.1035

Proof. First, we will prove the forward direction.1036

For contradiction, assume this is false, some matching x is AG-Stable with respect to agents’ induced choice functions, but1037

not doubly-strong ex-ante stable.1038

First, we will assume it is not ex-ante stable, thus there exists i, i′ ∈ N , j, j′ ∈ M such that j ≻i j′, i ≻j i′, xij′ > 0,1039

and xi′j > 0. However, it is easy to see that this would violate the definition of AG-Stability with respect to i and j. Since1040

xij′ > 0 implies that Ci(xi) must still have some free space left after choosing j’s entire equivalency class. This means that1041

if we increased j by some small amount in xi, the choice function would choose more, so i is not j-satiated. Similarly, a1042

symmetric argument shows that j is not i-satiated.1043

Next, we will assume there is ex-ante discrimination on the proposers side, thus there exists i, i′ ∈ N , j, j′ ∈ M such that1044

j ≻i j′, i ∼j i′, xij′ > 0, and xi′j > xij . Again, in this case we can see that i is not j-satiated in the vector xi due to the1045

fact that xij′ > 0. We can also observe that j will not be i-satiated due to xi′j > xij . If i and i′ are not members of the1046

lowest equivalency class matched to j in xj , then increasing i in xj will cause Cj(xj) to select more of it in favor of the lesser1047

preferred proposer it is currently matched to. If i and i′ are in the lowest equivalency class for j, then note that since x is a1048

perfect matching, at the point of j’s DFDA choice function where the continuous increasing process has chosen xij of i, it will1049

have not have chosen its entire quota yet, since it still continues on to choose more of xi′j . Thus, if xij were to be increase, this1050

continuous process would choose at least some of that increase, and reach its quota slightly before choosing the full amount1051

of xi′j . Note that deriving a contradiction when the matching has ex-ante discrimination on the acceptors side would be a1052

symmetrical argument to above.1053

Lastly, we will assume that the matching is not ex-ante indifference neutrality, thus there exists i, i′ ∈ N , j, j′ ∈ M such1054

that j ∼i j
′, i ∼j i′, xij < xij′ , and xij < xi′j . In this case, we can show that i is not j-satiated, and the fact that j is not1055

i-satiated follows from a symmetrical argument. If j and j′ are not in i’s lowest equivalency class, then increasing j will cause1056

i to accept it in favor of the less preferred acceptor it is currently matched to. If j and j′ are in i’s lowest equivalency class, then1057

in a identical argument to the previous paragraph, xij < xij′ implies that increasing xij will cause i’s choice function to select1058

more of j as part of the equivalent increasing process.1059

This concludes the proof of the forward direction. We will next show the backwards direction. For contradiction, assume that1060

some matching x is doubly-strong ex-ante stable, but is not AG-Stable with respect to the agents’ induced choice functions.1061

Let i ∈ N , j ∈M , be the pair of agents that violates AG-Stability, i.e., we have that i is not j-satiated, and j is not i-satiated.1062

Since i is not j-satiated, this means that there exists some vector yi with yij′ = xij′∀j′ ∈ M \ {j} and yij = xij + ε for1063

some ε > 0, such that Ci(yi)j > Ci(xi)j . Similarly, we since j is not i-satiated, there must exist a symmetrically defined1064

vector yj such that Cj(yj)i > Cj(xj)i.1065

Since x is a perfect matching, we must have that
∑

j∈M xij = 1, and thus since the quota of each agents’ choice function 1066

will be 1, and we have Ci(yi)j > Ci(xi)j , there must be some j′ ∈ M such that Ci(yi)j′ < Ci(xi)j′ . Similarly, there must 1067

be some i′ ∈ N such that Cj(yj)i′ < Cj(xj)i′ . We will now consider each possible case for i’s preference ordering over j and 1068

j′, and j’s preference ordering over i and i′. 1069

First, note that it cannot be the case that j′ ≻i j. By the definition of the DFDA choice function, if j′ ≻i j is true, then 1070

since we have Ci(yi)j > Ci(xi)j ⩾ 0 we must also have that Ci(yi)j′ = yij′ . This follows since the only way Ci(yi)j′ < yij′ 1071

would be true is if j′ is in the lowest equivalency class chosen by i in Ci(yi). But, Ci(yi)j′ < Ci(xi)j′ ⩽ xij′ = yij′ 1072

contradicts this. Meaning that j ≽i j
′ must be true. By a symmetric argument, we can also say that i ≽j i

′ must be true. 1073

Case 1: j ≻i j
′, i ≻j i

′. In this case, note that 0 ⩽ Ci(yi)j′ < Ci(xi)j′ implies that Ci(xi)j′ > 0 and thus xij′ > 0. 1074

Symmetrically, we also have that xi′j > 0. This implies that x violates ex-ante stability with respect to i and j, giving a 1075

contradiction. 1076

Case 2: j ≻i j
′, i ∼j i

′. In this case, we again have that xij′ > 0, this means that xij ⩾ xi′j , otherwise this would mean that 1077

x violates no ex-ante discrimination for the proposers. Note that this means we have yji > xij ⩾ xi′j = yji′ . But if this were 1078

true, we could not also have that Cj(yj)i′ < Cj(xj)i′ ⩽ xi′j = yji′ and Cj(yj)i > Cj(xj)i. This follows from the definition 1079

of the DFDA choice function. Since Cj(yj)i′ < yji′ , it must be the case that i′, and thus i, are in the lowest equivalency class 1080

among accepted proposers in Cj(yj). Since the only difference between xj and yj is that yji > xij , this means that the choice 1081

process will be identical up until the point where xij of i is chosen. Note at that point, due to i ∼j i′, and the DFDA choice 1082

function choosing all agents in the lowest equivalency class at equal proportions, we must have that at that point in the choice 1083

process, Cj will have chosen at least min {xij , yji′ = xi′j} = yji′ of i′, contradicting that fact that Cj(yj)i′ < yi′j . 1084

Case 3: j ∼i j
′, i ≻j i

′. This follows from a symmetric argument to that of Case 2. Since we have xi′j > 0, we must have 1085

xij ⩾ xij′ , but this produces a contradiction. 1086

Case 4: j ∼i j
′, i ∼j i

′. By the argument presented in Case 2, we know that xij ⩾ xij′ and i ∼j i
′ leads us to a contradiction 1087

of the fact that Cj(yj)i′ < Cj(xj)i′ . So it must be true that xij < xij′ . However, we also know that using a symmetrical 1088

argument to case 3, xij ⩾ xij′ and j ∼i j′ leads to a contradiction of the fact that Ci(yi)j′ < Ci(xi)j′ , so it must also be 1089

true that xij < xi′j is true as well. However, this would mean that x violates ex-ante indifference neutrality, again causing a 1090

contradiction. 1091

This shows that a contradiction occurs for every possible ordinal preference ordering of i and j, thus proving the statement. 1092

1093

In the case of our matching problems, we can relate this proposer optimal matching under AG-preferences back to our 1094

traditional notion of preferences through the following lemma: 1095

Lemma 6. For any two doubly-strong ex-ante stable matchings x, y, if xi ≽AG
i yi for some i, then xi ≽SD

i yi. 1096

Proof. For contradiction, assume this is false. For some matchings x, y, we have xi ≽AG
i yi, and thus Ci(xi ∨ yi) = xi, but 1097

not xi ≽SD
i yi. 1098

This means that there is some equivalency class fo i, Eik, such that
∑

k′<k

∑
j∈Eik′ yij >

∑
k′<k

∑
j∈Eik′ xij . By the fact 1099

that x and y are both perfect matchings, this implies that there exists some other equivalency class Eik′ with k′ > k such that 1100∑
k′′<k′

∑
j∈Eik′′ xij >

∑
k′′<k′

∑
j∈Eik′′ xij . 1101

From this, we are able to conclude that there exists some j that i places in at least class Eik or higher, such that yij > xij , 1102

and there is some j′ that i places in at least class Eik′ or lower such that xij′ > yij′ . Since yij > xij , we must also have 1103

that (xi ∨ yi)j = yij > xij . Thus, if Ci(xi ∨ yi) = xi, then we must have that Ci(xi ∨ yi)j < (xi ∨ yi)j . By the way the 1104

DFDA choice functions are defined, this would imply that the equivalency class of j is i’s lowest equivalency class that has 1105

any matchings in Ci(xi ∨ yi), but this would contradict the fact that Ci(xi ∨ yi)j′ = xij′ > 0. 1106

As the final step of this process, in Theorem 1 of Alkan and Gale [2003], the authors provide an algorithm (Algorithm 6) that 1107

produces the proposer-optimal matching among AG-preferences. We can show that when agents have DFDA choice functions, 1108

this algorithm will be equivalent to the DFDA algorithm. 1109

Theorem 7. Algorithm 6 is equivalent to Algorithm 3. 1110

Proof. We can show this equivalence explicitly, by walking through the execution of the DFDA algorithm, while also keeping 1111

track of a new matrix b. After each step k of Algorithm 3, we say that for all i ∈ N , j ∈ M , bkij = xk
ij if any fraction of i 1112

has been rejected by j by that point of the algorithm, and otherwise bkij = 1. Intuitively, bk represents the total fraction of each 1113

proposer that has not yet been rejected from each acceptor. 1114

For any i ∈ N and j ∈M , we can show that i’s tentative matching to j at step k − 1, xk−1
ij , plus his tentative proposals to j 1115

in round k will equal Ci(bki)j . 1116

To see this, let Pi be the set of agents that i is proposing to in this step. Assume the acceptors in Pi belong to the equivalency 1117

class Eik. By definition of DFDA, i must be rejected from all acceptors in the class Eik′ for every k′ < k. This means that for 1118

Algorithm 6: The deferred-acceptance procedure of Alkan and Gale [2003] with the choice functions in Algorithm 5.

1 B0 ← 1N×M

2 X0 ← 1N×M

3 Y 0 ← 0N×M

4 k ← 0

5 while Xk ̸= Y k do
6 for i ∈ N do
7 Xk+1

i ← Ci(Bk)
8 end
9 for j ∈M do

10 Y k+1
j ← Cj(Xk+1)

11 end
12 for i ∈ N, j ∈M do
13 if Y k+1

ij = Xk+1
ij then

14 Bk+1
ij = Bk

ij

15 end
16 else
17 Bk+1

ij = Y k+1
ij

18 end
19 end
20 k ← k + 1
21 end
22 return Xk

all such acceptors j′ ∈ ∪k′<kEik′ , we have that bk−1
ij′ = xk−1

ij′ . Since xk−1 is a valid matching, Ci(bk−1
i) must choose the full1119

amount of xk−1
ij′ for each such j′. After the DFDA choice function has selected these matchings from all preferred equivalency1120

classes, it will select matchings from Eik. Note that it must be the case for every j′ ∈ Eik \ Pi, i must have been rejected from1121

j′, thus will have bk−1
ij′ = xk−1

ij′ . For all j′ ∈ Pi, we will have bk−1
ij′ = 1. Now we can simply observe how the DFDA choice1122

function will choose matchings from this class.1123

Due to the properties of the DFDA algorithm, at each step of the algorithm, if j ∼i j
′, j′ has rejected i before step k and j1124

has not yet been rejected, then we must have xk−1
ij ⩾ xk−1

ij′ . This means that every j ∈ Pi is matched to i with at least as much1125

weight as all the acceptors in Eik \ Pi.1126

We can note note that Ci(bk−1
i) will choose the full available amount of every j′ ∈ Eij \ Pi. This follows from the fact that1127

xk−1 is a valid matching, and xk−1
i must not exceed i’s quota of 1. Thus, if Ci(bk−1

i) was not able to choose full amount of1128

some acceptor in j′ ∈ Eij \ Pi this would contradict that fact or the fact that all acceptors in Pi must have a higher matching1129

that j′ in xk−1
i .1130

Finally, note that in xk−1, it must be true that for all j, j′ ∈ Pi, we have that xk−1
ij = xk−1

ij′ , this follows from the fact1131

that neither of j and j′ have been rejected yet, and thus by the definition of the DFDA, every time i proposed to one of them1132

previously, it proposed to both of them the same amount. Since it must be the case that the matching formed by xk−1
i and i’s1133

proposals in step k is perfect matching that exactly meets i’s quota, and we know that all agents other that those in Pi from1134

equivalency classes at least as good as Eik will be chosen at exactly their xk−1 matching in Ci(bk−1
i), it follows that the final1135

part of the Ci(bk−1
i) will be for Ci to continue choosing the acceptors from Pi at an equal rate until it has chosen an amount of1136

each of them exactly equal to the amount at which they are matched to i in xk−1 plus i’s proposals, at which the quota of i will1137

be filled, and it will stop.1138

One can also note that in each step of the DFDA algorithm, when each acceptor looks at the tentative proposals it received in1139

that step and makes it’s rejections, the matching it selects will be identical to the vector selected by the DFDA choice function1140

when run against the vector formed by that acceptor’s tentative matching at step k − 1 plus the proposals it received in step1141

k. Unlike the previous statement, this does not require a nuanced proof, it follows trivially from the definition of the DFDA1142

choice function, and by the described way that the acceptors make their rejections in the DFDA algorithm. It is easy to see that1143

these are the exact same process.1144

With this in mind, it is easy to see that the Algorithm 6 is performing the exact same steps as the DFDA algorithm. At every1145

step, Bk−1 is defined equivalently to how we defined b, Xk represents the proposers tentative matchings plus their proposals at1146

this step, and Y k represents the acceptors rejection choices. The final step of each iteration updates Bk to reflect any rejections 1147

that happened this step. From this, we can see that the tentative matching xk produced after step k of the DFDA algorithm will 1148

be equivalent to Y k in Algorithm 6. 1149

From Lemma 6, we can conclude that the optimal matching that is guaranteed to exist for AG-preferences is also optimal 1150

under our traditional notion of preferences, and through Theorem 7, we can conclude that the process that is known to find 1151

this matching is equivalent to DFDA. This completes the proof of Theorem 1, as it shows that DFDA will converge to a 1152

proposer-optimal doubly-strong ex-ante stable matching. 1153

F Missing Proofs from Section 5 1154

Lemma 7. For any acceptor j ∈ M , if at any point during the execution of Algorithm 1 we have |xj | = 1, then |xj | = 1 will 1155

remain true for the rest of the algorithm. 1156

Proof. To see this, it is sufficient to note constraint (5) of the LP, ∀j ∈M, |xj | = 1→ zj =
∑

i∈N yij . 1157

Since |xj | =
∑

i∈N xij , and after each execution of the LP, each xij will be updated using the formula xt+1
ij ← xt

ij+y∗ij−z∗ji, 1158

we have that the value of |xj | gets updated by the formula
∣∣xt+1

j

∣∣ ← ∣∣xt
j

∣∣ + ∑
i∈N (y∗ij − z∗ji) =

∣∣xt
j

∣∣ + ∑
i∈N y∗ij − z∗j = 1159∣∣xt

j

∣∣ = 1. With the first equality being directly implied by constraints (7) and (8) of the LP. 1160

Lemma 8. For any i ∈ N and j ∈M , if at any point in Algorithm 1, i ∈ Rj \A∗
j is true, then it will remain true for the rest 1161

of the algorithm. 1162

Proof. From the logic of Algorithm 1, we can see that the only proposers in Rj who are matched with positive weight to j are 1163

those in A∗
j . Thus, it must be the case that i is not matched to j with any positive weight in this step, and thus, we must have 1164

that j strictly prefers all the proposers it is currently matched with to i. 1165

Since i ∈ Rj is true in this step, it follows from the definition of Pi that j ̸∈ Pi must be true. Thus, from condition (4) of the 1166

LP, we know that the matching between i and j cannot increase while i ∈ Rj is true. 1167

Note that this same argument holds for any proposer i′ such that i ≽j i′. Thus, in the next step of the algorithm, no such 1168

agent i′ will become positively matched with j. Thus, after the next step, j will still strictly prefer everyone in its matching to 1169

all such i′, thus i′ ∈ Rj will still be true. 1170

We can continue this argument inductively, and conclude that after every step, j will still prefer everyone in its matching to i 1171

and i will never be positively matched to j, thus i will remain in Rj \A∗
j for the rest of the algorithm 1172

Lemma 9. For any i ∈ N and j ∈ M , if at any point in Algorithm 1, i ∈ A∗
j is true, then i will only leave A∗

j if it is fully 1173

rejected from j, and enters Rj \A∗
j . 1174

Proof. A∗
j is defined as the set of proposers who are among the lowest equivalency class matched to j, and among those, the 1175

proposers with the highest weight matched to j. 1176

From Lemma 8, we know that this cannot happen because some other proposer from a lower equivalency class becomes 1177

positively matched to j. So, it must be the case that some proposer in the same equivalency class to j becomes matched to j 1178

with a higher weight than i. 1179

For contradiction, assume that this happens, at some step of the algorithm i ∈ A∗
j is true, but in the next iteration, after 1180

running an instance of the LP and updating the matching, i is no longer in A∗
j , and thus there is some i′ with i′ ∼j i who is 1181

matched to j at a strictly higher amount than i is. 1182

By condition (7) of the LP, we can see that if i′ ∈ A∗
j were also true, this would lead to a contradiction. Condition (7) ensures 1183

that i and i′ would be rejected from j the exact same amount during this iteration of the LP, and from the fact that they are in 1184

A∗
j , we can conclude that j ̸∈ Pi and j ̸∈ Pi′ are also true, and thus yij = yi′j = 0 in the LP solution. Therefore, updating the 1185

matching with such a solution could not cause i′’s matching with j to exceed i. 1186

In the case where i′ ̸∈ A∗
j , then by the fact that i′ ∼j i, we can conclude that i′ ∈ Aj \ A∗

j must be true, and we can easily 1187

see that this leads to a contradiction by observing condition (10) of the LP. By condition (10) xij − zji ⩾ xi′j + yi′j must be 1188

true. Again we can conclude that yij = 0 from the fact that i ∈ A∗
j , and we can also conclude that zji′ = 0 from the fact that 1189

i′ ̸∈ A∗
j , following from condition (8) of the LP. 1190

This also shows that in this case, updating the matching with the LP solution will never cause i′’s matching with j to exceed 1191

i’s. 1192

Lemma 10. For any i ∈ N and j ∈ M , at any point of Algorithm 1, if i ∈ Rj is true, then for all i′ ∈ N such that i ∼j i′, 1193

xij ⩾ xi′j will remain true for the rest of the algorithm. 1194

Proof. First note that if i ∈ Rj \ A∗
j is true, then it must be matched to j with 0 weight, and j must strictly prefer everyone in1195

its current matching to i. This implies that all i′ would have to be matched to j with 0 weight as well, and by Lemma 8, this1196

would continue to hold for the remainder of the algorithm.1197

Next, from Lemma 9, we know that after the first step where i ∈ A∗
j is true, it will not leave A∗

j until it is fully rejected by j.1198

Thus, at any point after it gets added to A∗
j , but before it gets it gets fully rejected, we will have that xij ⩾ xi′j must be true for1199

all i′ such that i ∼j i
′.1200

Next, observe that on the step where i gets fully rejected from j, it must be the case that this step, all i′ will also be matched1201

to j with weight 0. If this were not true, then it is clear to see that i′ would have had to violate condition (7) of the LP (if it were1202

in A∗
j), or condition (10) of the LP (if it were in Aj \A∗

j) to be positively matched to j at this step.1203

From the fact that i ∈ A∗
j was true in the previous step, we know that all proposers who j strictly prefers i to must in Rj \A∗

j ,1204

and thus by Lemma 8 will remain there for the rest of the algorithm. By the above analysis, we can also conclude that on the1205

step where i gets fully rejected by j, all proposers in i’s equivalency class will be matched to j with weight 0 as well, and thus1206

is must be the case that j strictly prefers everyone in its matching to i at this point. Thus, for all i′ such that i′ ∼j i, we must1207

have i′ ∈ Ri \A∗
j , and by Lemma 8, they will all remain matched with j at 0 forever.1208

Lemma 11. For any i ∈ N and j ∈ M , at any point of Algorithm 1, if i ∈ Rj becomes true, then i ∈ Rj will remain true for1209

the rest of the algorithm.1210

Proof. If at this point, i ∈ Rj \A∗
j is true, then this immediately follows from Lemma 8.1211

If on the other hand, i ∈ A∗
j is true at this point, then we know from Lemma 9, that it will remain in A∗

j until it is fully1212

rejected, and it is implied by Lemma 10 that once i is fully rejected, it will enter Rj \A∗
j , and thus remain there forever.1213

Lemma 1. In any solution to the LP, one of the following will be true:1214

• (A) ∀i ∈ Ct, yi =
∑

j∈M zji + wi1215

• (B) ∃j ∈M, |xj | < 1,
∑

i∈N yij = 1− xj1216

• (C) ∃i ∈ N, j ∈M,xij > 0, zji = xij .1217

• (D) ∃j ∈M,∃i ∈ A∗
j ,∃i′ ∈ Aj \A∗

j , xij − zji = xi′j + yi′j .1218

Proof. For contradiction, assume that for some proposal graph G, component Ct, and existing (x,w), the corresponding LP1219

outputs a solution where none of these conditions are true.1220

First, because condition (A) is false, that means there exists some agent i∗ ∈ Ct such that yi∗ <
∑

j∈M zji∗+wi∗ . Intuitively,1221

this means that after the LP has been resolved and the current matching has been updated with the values of y∗, z∗, i∗ will have1222

free weight remaining.1223

We can show that, since conditions (B), (C), and (D) are also all false, i∗ should be able to propose more of their weight1224

without violating the constraints of the LP, leading to a contradiction of the fact that the LP returns a solution maximizing the1225

sum of proposed weights over all the proposers.1226

Consider what happens if the value of yi∗ increases by some very small ε. For each j ∈ Pi∗ , the value of yi∗j will increase1227

by ε/|Pi∗ |. For each of these j’s, if |xj | < 1, then by the fact that condition (B) is false, we know that
∑

i∈N yij < 1 − |xj |1228

must be true. As long as epsilon is sufficiently small, it will be the case that
∑

i∈N yij + ε/|Pi∗ | ⩽ 1− |xj | as well.1229

Additionally, for all the j ∈ Pi∗ such that |xj | = 1, then increasing the proposals to j means that it will have to reject more1230

of the agents in A∗
j . Specifically, since proposals to j are increasing by ε/|Pi∗ |, j will increase its rejection of each proposer in1231

A∗
j by a factor of ε/(|Pi∗ ||A∗

j |). Due to condition (C) and (D), such a change will always be possible. We must have that for1232

all i ∈ A∗
j , zji < xij , and for all i′ ∈ Aj \ A∗

j , we have that xij − zji > xi′j + yi′j . Thus, given ε is sufficiently small, the1233

inequalities zji + ε/(|Pi∗ ||A∗
j |) < xij and xij − zji − ε/(|Pi∗ ||A∗

j |) > xi′j + yi′j will still hold.1234

One can easily verify that the rest of the constraints of the LP will trivially hold after this ε increase as well, as they are all1235

equality constraints that we already implicitly handled above, or have no relation to the variables that we changed.1236

The above procedure will increase yi∗ by a factor of ε, while maintaining all the necessary inequalities of the LP provided1237

that ε is sufficiently small, giving the desired contradiction.1238

Lemma 2. Let y∗, z∗ be the variables after resolving some LP in Algorithm 1. The process of updating the current matching1239

using y∗, z∗ will change the proposer graph only if at least one of the conditions (B), (C) or (D) are true.1240

Proof. For contradiction, assume this is false and that in an LP solution y∗, z∗ where conditions (B), (C), and (D) are all false,1241

but the corresponding updating of the matching changes the proposal graph. Consider the different ways that the proposal graph1242

can change.1243

First, observe the fact that for any j ∈ M, i ∈ N , an edge from j to i can only change (either appear or disappear) in the1244

proposal graph if A∗
j changed in this iteration. This follows immediately from the fact that by definition, the edge (j, i) exists1245

in the proposal graph if and only if i ∈ A∗
j .1246

Slightly less trivially, we can observe that for any i ∈ N, j ∈ M , an edge from i to j can only also change in the proposal 1247

graph if A∗
j′ changed for some j′ ∈M in this iteration. For any fixed i, the set of j such that (i, j) is an edge in G will be the set 1248

of j among i’s highest equivalency class such that j ̸∈ Ri. Since we know from Lemma 11 that once some acceptor is placed 1249

into Ri, it will never be removed for the remainder of the algorithm, it must be the case that if some edge (i, j) is removed from 1250

the graph, then j was added to Ri, and similarly, if some edge (i, j) is added to the graph, then some j′ must have been added 1251

to Ri that lowered the i’s highest unrejected equivalency class. Clearly, an acceptor j′ can only be added to Ri if they are either 1252

directly added to A∗
j′ , or if the lowest equivalency class matched to j changed, which would also cause A∗

j to change. 1253

Thus, it is sufficient to show that if conditions (B), (C), and (D) are all false after some iteration of the LP, then A∗
j will 1254

remain the same for all j ∈M . 1255

In our assumption for contradiction, let j be the acceptor such that A∗
j changes. First consider the case that there is some i 1256

that was A∗
j in the previous step, but is not anymore. It cannot be the case that i was fully rejected from j, otherwise that would 1257

violate condition condition (C). But from Lemma 9, we know that once some i is in A∗
j , the only way it can leave A∗

j is by 1258

being fully rejected. So this cannot be the case. 1259

Therefore, there must some i that was not in A∗
j previously, but is there now. It cannot be the case that i is part of a brand new 1260

equivalency class that was not in A∗
j previously, as that could only happen if j just became full for the first time, which would 1261

violate condition (B), or the proposers from some higher equivalency class were fully rejected in the previous step, violating 1262

the argument from the last paragraph. Therefore, it must be the case that there are other proposers from the same equivalency 1263

class in A∗
j , and i, previously being in Aj \ A∗

j has become matched to j at the same weight as them. But clearly this could 1264

only happen if a violation of condition (D) occurred. 1265

Lemma 3. In some iteration of the main while loop in Algorithm 1, if for every component Ct of proposers, the LP run on Ct 1266

terminates with only condition (A) being true, then the matching produced by the last component being solved will be a perfect 1267

matching. 1268

Proof. First note that due Lemma 2, since conditions (B), (C), and (D) are never true during such an iteration of the while loop, 1269

the proposal graph will never change, and thus the LP will run on every strongly connected component of proposers. 1270

By definition of condition (A), if an LP for component Ct terminates with (A) being true, then each proposer in Ct will have 1271

no free weight after the matching is updated with the LP values. Further, from the fact that the components are solved in a 1272

topological ordering, if an agent i ∈ Ct does not have any free weight after Ct is solved, then there is no component Ct′ with 1273

t′ > t whose solution will result in new free weight being pushed back to i. 1274

To formalize this, we can say that for every Ct′ ordered after Ct, and for all i′ ∈ Ct′ , i is not reachable from i′ in the proposal 1275

graph. This means that if there is an edge (i′, j) for some j ∈ M in the proposal graph, then there cannot be an edge (j, i) in 1276

the graph as well. 1277

It can easily be seen from conditions (5) and (6) of the LP that for any j ∈ M , zj > 0 only if yi′j > 0 for some i′ ∈ N . 1278

Since for an execution of the LP on Ct′ , the only proposers that propose their weight are proposers in Ct′ , we have that for any 1279

j ∈M , yi′j > 0 only if i′ ∈ Ct′ and (i′, j) is an edge in the proposal graph. Therefore, for any Ct′ ordered after Ct, there will 1280

never be a j ∈ M in the LP solving Ct′ such that zji > 0. Thus, for all i ∈ Ct, we will have
∑

j∈M zji = 0, meaning that 1281

wi = 0 after updating the matching with the new values from the LP. 1282

Theorem 3. Algorithm 1 terminates in polynomial time, and will output a perfect matching. 1283

Proof. Each iteration of the main for loop simply runs an LP with the number variables and constraints being polynomial in 1284

the number of agents, then updates the proposal graph. Clearly a single iteration of this loop terminates in polynomial time,8 1285

and since it runs once for each strongly connected component in the proposal graph, each instance of this for loop will have at 1286

most |N | iterations. Therefore, we just need to show that the algorithm terminates after a polynomial number of iterations of 1287

the main while loop. 1288

From Lemma 1, we know when we run the LP on a component Ct, one of four listed conditions—(A), (B), (C), or (D)—must 1289

be true. 1290

Condition (A) represents that the LP was able to resolve all the free weight from the proposers in Ct. From Lemma 3, we 1291

know that if this happens for every component in a given iteration of the while loop, the the algorithm will terminate with a 1292

perfect matching after that iteration. 1293

The other three conditions all correspond to events that cause the proposer graph to change, and thus move the algorithm 1294

forward. We will show that each of these conditions can only occur polynomial number of times. 1295

If condition (B), ∃j ∈M, |xj | < 1,
∑

i∈N yij = 1− |xj |, is true, that means that there existed some acceptor j that was not 1296

full at the beginning of the LP, but is full afterwards. From Lemma 7, we know that this can only happen at most |M | times 1297

during the algorithm, since once an acceptor become full, its weight cannot go down again. 1298

8Crucially, note that the optimal solution (y∗, z∗) of each LP affects the updated matching x, which is involved in the right hand side of
the subsequent LP. If one uses an arbitrary polynomial-time solver for LPs, this may cause an exponential blow-up in the bit-complexity of
the successive LPs and, hence, the time it takes to solve them. This can be prevented by using a polynomial-time algorithm for solving LPs
whose running time is independent of the bit-complexity of the right hand side, such as that of Tardos [1986].

If condition (C), ∃i ∈ N, j ∈ M,xij > 0, zji = xij , is true, this means that some proposer i did have weight matched with1299

some acceptor j at the beginning of the LP, but was fully rejected from j by the results of the LP. By condition (8) of the LP,1300

we can see that zji can only be positive if i ∈ A∗
j is true. i ∈ A∗

j implies that i ∈ Rj is true, and by Lemma 11, this means that1301

i ∈ Rj will remain true for every future step of the algorithm. i ∈ Rj also implies that j ∈ Pi cannot be true. Finally, following1302

from condition (4) of the LP, in any future iteration of the algorithm, yij can only be true if j ∈ Pi is true. This means that1303

once i is fully rejected from j, it can never increase again. Thus, this can only happen once for every i and j, meaning it only1304

happens |N ||M | times total.1305

Finally, if condition (D), ∃j ∈ M,∃i ∈ A∗
j ,∃i′ ∈ Aj \ A∗

j , xij − zji = xi′j + yi′j is true, this means that there is some1306

acceptor j, and some proposer i that is in Aj (among the lowest equivalency class proposers matched to j), but not in A∗
j (does1307

not have the most weight matched to j among proposers in Aj) who becomes tied for having the most weight matched to j1308

among proposers in Aj , either by xij increasing and/or xi′j decreasing for all i′ ∈ A∗
j . We note that an LP can only terminate1309

with this condition being true once for every i, i′j pair, meaning that it can only happen at most |N |2|M | times throughout the1310

course of the algorithm.1311

To see this, first note that condition (D) being true implies that i and i′ will be matched to j in the same amount after updating1312

the matching with the LP results. This is because we have xij − zji = xi′j + yi′j , and we also know from the fact that i ∈ A∗
j1313

that yij = 0, and from the fact that i′ ̸∈ A∗
j that zji′ = 0.1314

Next, note that i ∈ A∗
j before the LP execution implies that either i ∈ A∗

j or i ∈ Rj \ A∗
j must be true after updating the1315

matching. This follows from Lemma 11. If i ∈ A∗
j is true, then by the fact that i and i′ are now matched to j with the same1316

amount, then i′ ∈ A∗
j is also true. If i ∈ Rj \ A∗

j is true, then i, and thus, i′ must be matched to j at weight 0, and therefore1317

i′ ∈ Rj \A∗
j must also be true. Either way, we have that i′ ∈ Rj is true. By Lemma 11, we know that i′ will never leave Rj for1318

the remainder of the algorithm, so therefore, it can never be in Aj \ A∗
j again, and thus condition (D) cannot repeat with these1319

agents.1320

This means that after at most (|N ||M |) + (|N |2|M |) + |M | iterations of the main while loop, either conditions (B), (C), and1321

(D) will have have occurred their maximum number of times, or the algorithm has terminated.1322

Thus, if the algorithm has not terminated at this point, then in the next iteration of the while loop, condition (A) and none1323

of the other conditions are true after each LP is solved. Following from Lemma 3, the algorithm will terminate after this1324

iteration.1325

Theorem 4. The matching produced by Algorithm 1 is doubly-strong ex-ante stable.1326

Proof. First, we will show that Algorithm 1 returns an allocation that is ex-ante stable. For contradiction, assume this is false.1327

This means that there are some i, i′ ∈ N and j, j′ ∈M such that j ≻i j
′, i ≻j i

′, xij′ > 0, and xi′j > 0 are all true.1328

Note that if xij′ > 0, that means that at some point of Algorithm 1, j′ ∈ Pi must have been true. This means that i ∈ Rj1329

must have been true at that point, or else, j ∈ Pi would have been the case instead. i ∈ Rj implies that j can only be currently1330

matched to agents that are weakly preferred to i, and therefore strictly preferred to i′. Thus, we must have that xi′j = 0 and1331

i′ ∈ Rj at this point. By Lemma 11, i′ will remain in Rj for the rest of the algorithm, and therefore cannot be positively1332

matched to j in the final output, causing a contradiction.1333

Next we will prove that Algorithm 1 has no ex-ante discrimination for the proposers. For contradiction, assume this is false.1334

Then there are i, i′ ∈ N , j, j′ ∈M such that i ∼j i
′, j ≻i j

′, xij′ > 0, and xi′j > xij are all true.1335

As in the argument for ex-ante stability, xij′ > 0 means that at some step of the algorithm, j′ ∈ Pi, thus i ∈ Rj . Thus,1336

immediately from Lemma 10, we can conclude that xij ⩾ xi′j , giving a contradiction.1337

Next, we will prove that the matching produced by Algorithm 1 has no ex-ante discrimination for the acceptors. For contra-1338

diction, assume this is false. Then there are j, j′ ∈M , i, i′ ∈ N such that j ∼i j
′, i ≻j i

′, xi′j > 0, and xij′ > xij .1339

Since, xi′j > 0 we know that i ̸∈ Rj was true at every point of the algorithm. Note that by the condition (3) of the LP,1340

whenever i proposes any of its weight to j′, since i ∈ Rj was never true, it must be the case that i will always propose an equal1341

amount of weight to j. Thus, the only way that xij′ > xij could be true is if j ever rejected some weight from i, which is not1342

possible due to i ̸∈ Rj .1343

Finally, we will prove that x is ex-ante indifference neutral. For contradiction, assume this is false, and there exists agents1344

i, i′ ∈ N , j, j′ ∈M , such that j ∼i j
′, i ∼j i

′, xij < xij′ and xij < xi′j .1345

Note that xij < xij′ implies that at some step in the algorithm, we had i ∈ Rj . This follows from the fact that if i ∈ Rj was1346

never true, then in an identical argument to the previous paragraph, we know that every time i proposed to j′ it must have also1347

proposed the same amount to j. Thus, if i ∈ Rj were never true, it would have to be the case that xij ⩾ xij′ .1348

However, xij < xi′j implies that i ∈ Rj was never true at any point in the algorithm. This follows from Lemma 10, as1349

i ∈ Rj would imply xij ⩾ xi′j . This along with the paragraph above clearly cannot be true at the same time, giving us the1350

desired contradiction.1351

G Why We Demand Proposers With Free Weights 1352

Suppose there are proposers i, i′ and acceptors j, j′ with preferences shown on the right, and suppose
that at some point of the algorithm, we have xij′ > 0 and xi′j > 0. Also, suppose that i is rejected
from j′ and one of the acceptors she will propose to next is j, and i′ is rejected by j and one of the
acceptors she will propose to next is j′. Finally, suppose i and i′ both have no free weight. This would
form the following cycle in our proposal graph: i→ j → i′ → j′ → i.

Preferences

i: j′ ≻ j
i′: j ≻ j′

j: i ≻ i′

j′: i′ ≻ i

1353

1354

If we did not have the wi > 0 condition, then the LP would maximize flow through this cycle, swapping matched weight on 1355

(i, j′) and (i′, j) for equal weight on (i, j) and (i′, j′). However, this leads to the proposers worsening. Also, it does not reflect 1356

any actual proposals and rejections that would have happened in DFDA because i and i′ had no free weights to kick them off. 1357

Adding the condition to Line 7 that some proposer in Ct must have free weight prevents such extra proposals and rejections, 1358

thus bringing DFDA-SCC closer to mimicking DFDA. 1359

H Incompatibility With Pareto Optimality 1360

Consider the instance in Figure 3(a), where proposers i and i′ are indifferent between acceptors j and j′, and j is also indifferent 1361

between i and i′, but j′ strictly prefers i to i′. The only Pareto optimal matching is given in Figure 3(c), which makes j′—the 1362

only agent who is not completely indifferent—maximally happy. However, this violates the requirement of ex ante indifference 1363

neutrality that xij ⩾ min {xij′ , xi′j}. Note that DFDA and DFDA-SCC produce the matching shown in Figure 3(b) because 1364

both proposers initially propose a weight of 1/2 to both acceptors, which accept them, and the algorithms immediately terminate. 1365

Preferences

i, i′: j ∼ j′

j: i ∼ i′

j′: i ≻ i′

(a) Preferences.

j j′

i 1/2 1/2
i′ 1/2 1/2

(b) DFDA matching.

j j′

i 0 1
i′ 1 0

(c) Ordinally Pareto dominant.

Figure 3: DFDA can be Pareto sub-optimal.
DFDA can be Pareto sub-optimal.

I Extended Discussion 1366

Due to space constraints, the following discussion points are deferred here from Section 6. 1367

One-sided matching with weak agent priorities. Two-sided matching includes one-sided matching, also known as the 1368

house allocation problem Hylland and Zeckhauser [1979], as a special case, where agents are matched to objects, agents 1369

have preferences over the objects, and we can treat every object as being indifferent between all the agents. In this case, 1370

DFDA does not seem to coincide with any known algorithm. It cannot ordinally dominate its competitor, probabilistic serial 1371

(PS) Bogomolnaia and Moulin [2001], because PS is ordinally efficient, but we are able to produce instances where PS ordinally 1372

dominates DFDA. That said, DFDA yields a natural extension to the case where both sides have weak preferences, whereas for 1373

PS, extensions are known only when either agents have weak preferences Katta and Sethuraman [2006] or objects have weak 1374

priorities Han [2024], but not both. 1375

Tradeoffs with other criteria. As mentioned in Section 1, there are various other criteria for fractional two-sided matchings 1376

studied in the literature, such as ordinal fairness Han [2024], envy-freeness and justified envy-freeness Tröbst and Vazirani 1377

[2024],9 and popular matching Huang and Kavitha [2021]. It is worth exploring the tradeoff between our criteria (particularly, 1378

ex ante stability) and these other criteria as well as with utilitarian welfare Caragiannis et al. [2019a] in two-sided matching. 1379

Best-of-both-worlds guarantees. As mentioned in Section 1, fractional matchings can be implemented as lotteries over 1380

integral matchings due to the Birkhoff-von Neumann theorem Birkhoff [1946]. This simply finds an arbitrary lottery under 1381

which the marginal probability of agents i and j being matched is precisely xij for all i ∈ N and j ∈ M . Recently, there 1382

is a growing literature on implementing fractional solutions as lotteries while providing “best-of-both-worlds” guarantees: ex 1383

ante guarantees on the fractional solution and ex post guarantees on every integral solution in the support Aziz et al. [2023a,b]; 1384

Feldman et al. [2024]; Hoefer et al. [2024]. These often use strengthened versions of the Birkhoff-von Neumann theorem such 1385

as the bihierarchy extension due to Budish et al. [2013]. Whether the fractional matchings returned by DFDA or DFDA-SCC 1386

9It should be noted that the justified envy-freeness criterion of Tröbst and Vazirani [2024] is different from the no justified envy criterion
common in the deferred acceptance literature that coincides with stability for one-to-one matching.

can be implemented while obtaining some ex post guarantees (such as stability of the integral matchings in the support) is an1387

exciting question for the future.1388

Many-to-many integral matchings. Following the discussion on multi-unit capacities from Section 6, when agents on both1389

sides have multi-unit capacities it is also interesting to investigate integral matchings with approximate fairness guarantees:1390

Freeman et al. [2021] do so for a relaxation of envy-freeness called EF1, leaving open the question of whether a matching1391

satisfying EF1 for both sides always exists under additive cardinal utilities, but we are not aware of any work doing so for1392

relaxations of stability-inspired criteria.1393

	Introduction
	Our Contributions

	Preliminaries
	Stability and Fairness Criteria
	Proposer-Optimal Matchings

	The Fault in Our Stars: Strong Ex Ante Stability in Finite Time?
	Doubly-Fractional Deferred Acceptance
	A Polynomial-Time Algorithm for Doubly-Strong Ex Ante Stable Matching
	Analysis of DFDA-SCC
	Proof of polynomial-time termination
	Proof of doubly-strong ex ante stability

	Discussion
	Extended Related Work
	Algorithms FDA, DFDA, and FDA-Cycle
	Failure of FDA-Cycle on Our Counterexample
	Detailed Description of DFDA-SCC Linear Program
	Alkan-Gale Stability
	Alkan-Gale Matching Model
	Doubly-Strong Ex-Ante Stability Through Choice Functions

	Missing Proofs from Section 5
	Why We Demand Proposers With Free Weights
	Incompatibility With Pareto Optimality
	Extended Discussion

