© O N o o B~ W N =

20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Fairly Stable Two-Sided Matching with Indifferences

Benjamin Cookson, Nisarg Shah
University of Toronto

{bcookson,nisarg } @cs.toronto.edu

Abstract

Stability has been a foundational criterion for two-
sided matching. When agents on one side have
weak preferences involving indifferences, the sem-
inal work of Kesten and Unver [2015] proposes
the Fractional Deferred Acceptance (FDA) algo-
rithm for computing a fractional matching that sat-
isfies (ex ante) stability along with a fairness crite-
rion that ensures no discrimination among (equally-
preferred) agents on one side.

We show that their algorithm can actually fail to ter-
minate, refuting their claim of (polynomial-time)
termination. Using substantially new algorithmic
ideas, we develop an algorithm, Doubly-Fractional
Deferred Acceptance Via Strongly Connected Com-
ponents (DFDA-SCC), which can handle agents
on both sides exhibiting indifferences and, in poly-
nomial time, compute a fractional matching satisfy-
ing ex ante stability and no ex ante discrimination
among agents on both sides.

1 Introduction

Ever since the seminal work of Gale and Shapley [1962],
the problem of two-sided matching has influenced not only
a vast sea of academic research at the intersection of eco-
nomics and computer science [Roth, 2008; Chiappori and
Salanié, 2016], but also a wide range of real-world appli-
cations ranging from school admissions and placement of
hospital residents to course allocation and centralized kidney
markets [Bir6, 2017].

The simplest formulation involves two sets of agents, N
(“proposers”) and M (“acceptors”), with |[N| = | M| and each
agent ¢ € N U M having preferences »=; over agents on the
other side. The goal is to find a desirable one-to-one matching
z between agents on the two sides based on their preferences.
Much of the prior work assumes strict preferences, where
each agent 7 has a total order >; over agents on the other side,
and seeks integral matchings, where each agent is matched to
a unique agent on the other side, i.e., z € {0, 1}V ** with
direm Tij) = Dyen Ty = Lforalli € Nandj € M.
A celebrated example is the polynomial-time Deferred Ac-
ceptance (DA) algorithm by Gale and Shapley [1962], which

satisfies stability: no pair of proposer and acceptor who are
not matched to each other should prefer each other over the
agents they are respectively matched to. Many extensions of
DA have been proposed to handle real-world nuances such as
agent capacities [Roth, 1985], “couples constraints” [Roth,
1984], and decentralized implementations [Roth and Vate,
1990].

One such practical consideration is agents having weak
preferences that exhibit indifferences (ties). Such indiffer-
ences are commonplace in real-world applications. For ex-
ample, in a school choice program, schools prioritize students
based on only a few criteria, such as the walk zone and sibling
criteria [Abdulkadiroglu et al., 2005], inducing ties among
many students. When indifferences are allowed, one thread
of the literature still continues to focus on integral matchings.
Erdil and Ergin [2017] show that, while stability already im-
plies Pareto optimality under strict preferences, finding a sta-
ble and Pareto optimal matching is a much more involved
task in the presence of indifferences. Manlove et al. [2002]
show that maximizing the number of agents matched in a sta-
ble matching is NP-hard in the presence of indifferences; this
can be approximated up to a factor of 3/2 [McDermid, 2009]
(14 /e if indifferences exist only on one side [Lam and Plax-
ton, 2019]).

However, when one adds fairness considerations to the
mix, it becomes evident that one must allow a fractional
matching, where z € [0,1]V*M and z;; denotes the degree
to which the pair of agents ¢ and j are matched (consider the
case of agents , 4’ on one side who both strongly prefer some
agent j of the other side, and while j prefers both 4 and i’ to
all other agents, it is indifferent between the two. Clearly, the
fairest way to assign this matching is to match each of ¢ and
i’ with half of 7).

This simple observation has inspired a fostering literature
on seeking fractional matchings that are both stable and fair
in the presence of indifferences (For a more detailed look at
the state of the art for current matching algorithms, we in-
clude an extended discussion in Appendix A). The seminal
work of Kesten and Unver [2015] studies a model in which
only acceptors can have indifferences (while proposers have
strict preferences), and seeks two criteria (see Section 2 for
formal definitions):

* ex ante stability, a suitable adaptation of stability for
fractional matchings demanding that no pair of agents

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

83
84

85
86
87

88
89
90
91
92

94
95
96
97
98
99
100

101
102
103
104
105
106

107

108
109
110
11
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

i and j be able to even increase their degree of match
by decreasing their degrees of matches to less-preferred
agents; and

* no ex ante discrimination (among proposers), a fairness
criterion which informally requires that there should be
no discrimination between two proposers being matched
to an acceptor when the acceptor is indifferent between
them.

Kesten and Unver define Fractional Deferred Acceptance
(FDA), a generalization of DA that achieves both these guar-
antees simultaneously. While this work has been able to
cleanly answer the question of what happens when there
are indifferences on one sides, it is much more unclear how
these definitions can be met with respect to both sides simul-
tanously when all agents can be indifferent. This causes us to
raise the following question.

When agents on both sides exhibit indifferences,
does there always exist a matching that is simul-
taneously stable (in the sense of ex ante stability)
and fair (in the sense of no ex ante discrimination)
to agents on both sides? If so, can it be computed
in polynomial time?

1.1 Our Contributions

Our main contribution is to answer both questions affirma-
tively, but our story actually begins with a closer examination
of the seminal work of Kesten and Unver [2015]. In more de-
tail, they define Fractional Deferred Acceptance (FDA) as a
natural iterative procedure of proposals and rejections to find
a matching satisfying both ex ante stability and no ex ante
discrimination among proposers; they term this combination
of axioms strong ex ante stability. While FDA may not ter-
minate, a result of Alkan and Gale [2003] can be used to show
that it converges to the proposer-optimal strongly ex ante sta-
ble matching,' although Kesten and Unver give a direct proof
of this. Let us refer to this matching as the FDA matching.

The reason that FDA may not terminate is that it can
get stuck in an infinite loop wherein agents in a cycle keep
proposing/rejecting to the next agent in the cycle, but the de-
gree of match being proposed/rejected diminishes over time,
leading to convergence. Kesten and Unver design an algo-
rithm that detects such a cycle when it forms and immedi-
ately “jumps” to the matching that infinitely many propos-
als/rejections along the cycle would lead to. They claim that
this algorithm, which we refer to as FDA-CYCLE, finds the
FDA matching in polynomial time.

Our first significant contribution is to show that this is in-
correct. We present an example where even the FDA-CYCLE
ends up in an infinite loop, despite “resolving cycles” imme-
diately as they arise. This makes polynomial-time computa-
tion of a strongly ex ante stable matching an open question
once again. We resolve this positively, while extending the
model of Kesten and Unver [2015] to allow indifferences and
achieve no ex ante discrimination on both sides.

!This means a strongly ex ante stable matching that is weakly
ordinally preferred to every other strongly ex ante stable matching
by every proposer simultaneously.

First, we define Doubly-Fractional Deferred Acceptance
(DFDA), a natural iterative procedure similar to FDA, but
which incorporates indifferences on both sides. We show that
DFDA satisfies ex ante stability, no ex ante discrimination
among both proposers and acceptors, and a fourth axiom we
term ex ante indifference neutrality, we term the combination
of all four axioms doubly-strong ex ante stability. By invok-
ing the framework of Alkan and Gale [2003], we show that,
while DFDA may not terminate, it converges to a proposer-
optimal doubly-strong ex ante stable matching.

Next, we design our polynomial-time algorithm. The in-
sight we obtain from our counterexample to FDA-CYCLE is
that it is not sufficient to resolve one cycle at a time. Instead,
our algorithm detects entire strongly connected components
as they arise (or even before they arise), and resolves them
by jumping to their resultant matching. We show that this al-
gorithm, which we term DFDA-SCC, in fact terminates in
polynomial time and returns a doubly-strong ex ante stable
matching; this is our main contribution with a highly intri-
cate proof. There is one key difference between our work
and that of Kesten and Unver [2015]. While FDA-CYCLE
exactly mimics (a serialization of) FDA and thus converges
to the same matching (despite failing to terminate), DFDA-
SCC does not exactly mimic DFDA. Despite significant ef-
fort, we are unable to prove that it returns the same match-
ing that DFDA converges to (or at least a proposer-optimal
matching), but conjecture this to be the case. We discuss this
issue at length in Section 6.

2 Preliminaries

For k € N, define [k] £ {1,...,k}. There are two sets of
agents, N and M, with |[N| = |M|. We use ,i',i" to re-
fer to agents in N, called proposers, and 73, 5, j"' to refer to
agents in M, called acceptors. Each proposer ¢ € N has
weak preferences over acceptors in M given by a strict weak
ordering =;, which partitions M into equivalence classes
E; = {Eq,...,Ey,}, for some k; € N, such that: (i) for
all t € [k;], proposer i is indifferent between all acceptors
J,j' € Ej, denoted by j ~; j’, and (ii) for all ¢,¢ € [k;]
with ¢ > t/, proposer i strictly prefers any acceptor j € E;; to
every acceptor j' € E;s, denoted by j >; 7'. Similarly, each
acceptor j € M has a strict weak ordering ’=;, which parti-
tions IV into equivalence classes F; = {Ejl, ooy B, } for
some k; € N, such thati ~; i’ forall ¢t € [k;] and i,7’ € Ej;
and ¢ >; 4 for all t,¢' € [k;] witht > ¢/, ¢ € Ej;, and
i € Ejp. An ordinal two-sided matching problem is given
by the four-tuple (N, M, =n= (=:)ien, =m= (=;)jem)-

When k; = |M| for each ¢ € N (i.e., there are no indif-
ferences), we say that the proposers have strict preferences;
when k; = |N| for each j € M, we say that the acceptors
have strict preferences; and when both are true, we say that
both sides have strict preferences.

A (fractional) matching © € [0,1]V*M is a doubly
stochastic matrix satisfying >y @iy = D yen T = 1
foralli € N and j € M. We refer to row x; = (x;;)jen as
the matching of proposer i € N and column z; = (z;;)ien

as the matching of acceptor j € M. We also denote |x;| =
> jear Tij and |z £ Y ien @ij- When z;; € {0,1} for all

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

157
158
159
160
161
162
163
164

166

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

191
192

193
194

195

197
198

199
200
201
202
203

204
205
206
207

209
210
211
212
213
214
215
216

217
218
219
220
221
222
223

224
225

226
227
228

229
230
231
232
233
234

236

237

239
240
241
242
243

244
245
246

1 € N and j € M, we refer to the matching as integral.

2.1 Stability and Fairness Criteria

Our starting point is stability and fairness criteria for frac-
tional matching introduced by Kesten and Unver [2015].

Definition 1 (Ex ante stability). A matching x is ex ante sta-
ble if there are no 4,7’ € N and j,j’ € M such that j »; 7/,
(R i, 245 > 0, and 4,5 > 0. In words, no pair of proposer
1 and acceptor j should both be positively matched to agents
they prefer less than each other.

For integral matchings, ex ante stability coincides with the
popular stability criterion of Gale and Shapley [1962]; all sta-
ble integral matchings are ex ante stable, but there are often
additional fractional matchings that are ex ante stable as well.
For fractional matchings under strict preferences, ex ante sta-
bility coincides with strong stability defined and studied by
Roth er al. [1993]. Ex ante stability is also same as the frac-
tional stability criterion of Caragiannis et al. [2019a] for car-
dinal utilities, but with cardinal comparisons replaced by SD-
preference relations defined above.?

While ex ante stability focuses on the strict portion of the
preferences, the following fairness criterion focuses on indif-
ferences.

Definition 2 (No ex ante discrimination among proposers). A
matching x has no ex ante discrimination among proposers if
there areno ¢,¢" € N and j, j' € M suchthati ~; ', j >; j/,
xz;j > 0, and x;; < xy;. In words, no proposer 4 should
receive less of acceptor j than another proposer i’ while still
being positively matched to an acceptor j' she prefers strictly
less than 7, if j is indifferent between ¢ and 7’.

Kesten and Unver [2015] also give a name to the combina-
tion of the above two criteria.

Definition 3 (Strong ex ante stability). A matching x is
strongly ex ante stable if it is ex ante stable and has no ex
ante discrimination among proposers.

Kesten and Unver [2015] assume that only acceptors in M
can have indifferences while proposers in /N have strict pref-
erences. When both proposers and acceptors have weak pref-
erences, as is the case in our general model, it is natural to
symmetrically apply the no-discrimination criterion to accep-
tors based on indifferences in proposers’ preferences. To the
best of our knowledge, we are the first to consider this crite-
rion of fairness.

Definition 4 (No ex ante discrimination among acceptors). A
matching x has no ex ante discrimination among acceptors if
there areno ¢,7 € N and j,j' € M suchthatj ~; j',i >; ¢/,
xzy5 > 0, and x;; < x4;. In words, no acceptor j should
receive less of proposer ¢ than another acceptor j' while still
being positively matched to a proposer ¢’ she prefers strictly
less than 4, if 7 is indifferent between j and j'.

The two no-discrimination criteria stipulate desired behav-
ior when indifferences on one side interact with strict prefer-
ences on the other side. While the no-discrimination criterion

?Based on common nomenclature, this would be called SD-
fractional-stability.

addresses conditions where indifferences on one side interact
with strict preferences on the other side, the following crite-
rion that we introduce addresses conditions where indiffer-
ences on the two sides interact with each other. See Section 6
for additional discussion about this criterion.

Definition 5 (Ex ante indifference neutrality). A matching z
is ex ante indifference neutral if there are no 7,7’ € N and
J,J' € M such that j ~; j', i ~; i, ;5 < min{x;;, x;}.
In words, if proposer ¢ and acceptor j prefer each other as
much as they prefer acceptor j' and proposer ¢’, respectively,
then they should be matched to a degree at least as much as
the degree of match between either and j’ or i’ and 7. When
agents have an innate preference to balance their degrees of
matches to equally-preferred agents,® this makes sense: in
case of the above violation, proposer ¢ and j would “deviate”
to increase x;; to at least min {mij/, X j} as this would leave
them both happier by increasing their balance.

When a matching meets all four criteria above, we call it
doubly-strong ex ante stable.

Definition 6 (Doubly-strong ex ante stability). A matching
is doubly-strong ex ante stable if it is ex ante stable, has no ex
ante discrimination among proposers and among acceptors,
and is ex ante indifference neutral.

2.2 Proposer-Optimal Matchings

Deferred-acceptance style algorithms often find a matching
that not only satisfies desirable stability and fairness crite-
ria but is in fact “proposer-optimal” among such matchings.
This is formalized using ordinal dominance. First, we ex-
tend agents’ preferences over individual agents to preferences
over fractional matches using the (first-order) stochastic dom-
inance (SD) relation.

Definition 7 (SD-preferences). For proposer ¢+ € N and two
fractional matches x;,y; € [0, 1], we say that i weakly SD-
prefers z; to y;, denoted x; %ZSD y;, if, for each j € M, we
have that Zj/EMij/?ij X! = Zj’EM:j’>ij Yij!- We say that
1 strictly SD-prefers x; to y;, denoted x; >ZSD yi, if x; >;§D Yi
holds and at least one of its defining inequalities is strict. SD-
preferences of each acceptor j € M are defined symmetri-
cally.

Next, we use the SD-preference relation to define ordinal
dominance.

Definition 8 (Ordinal dominance for the proposers). Given
two matchings z,y € [0, 1]V*M, we say that = ordinarily
dominates y for the proposers, denoted x >;§\],3 y, if x; >;1SD Yi
foreach: € N.

Ordinal dominance can then be used to define a “best
matching” for proposers within a set of matchings.

Definition 9 (Proposer-optimality). Given a set X of match-
ings, a matching x € X is proposer-optimal within X if, for
every y € X, we have that = =3P y.

3This is in fact formalized when we make a connection to the
result of Alkan and Gale [2003] and impose a preference for bal-
ancedness to turn the weak preferences strict.

247
248
249
250
251

252
253
254
255
256
257
258
259
260
261
262
263

264
265

266
267
268
269

270

271
272
273
274
275
276
277

278
279
280
281

282
283
284
285

286
287

289
290
291

292
293

294
295

297
298
299
300

302

303

304

305
306
307
308
309
310
311
312
313
314
315
316
317

318
319
320
321
322
323
324
325
326
327

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

350

In general, it is possible that there is no proposer-optimal
matching within X . Interestingly, though, the sets of strongly
ex ante stable matchings and doubly-strong ex ante stable
matchings always admit a proposer-optimal matching; Kesten
and Unver [2015] establish the former and Theorem 1 estab-
lishes the latter.

3 The Fault in Our Stars: Strong Ex Ante
Stability in Finite Time?

Our story begins with the seminal work of Kesten and Unver
[2015], who study fractional matchings in the presence of in-
differences in acceptors’ preferences, define strong ex ante
stability (the combination of ex ante stability and no ex
ante discrimination among proposers), and identify Frac-
tional Deferred Acceptance (FDA), a natural adaptation of
(integral) Deferred Acceptance (DA) of Gale and Shapley
[1962], which produces a fractional matching provably sat-
isfying strong ex ante stability. While we will not present
all the formal details of their work, we must present enough
for the reader to understand our first significant contribution,
which is to identify (and, in later sections, fix) a major flaw
in the main contribution of Kesten and Unver [2015].

Algorithm FDA. A formal description of the FDA algo-
rithm is presented as Algorithm 2 in Appendix B. Informally,
it is an iterative process, which starts with an empty matching
and every proposer having a free weight of 1. In each itera-
tion, all proposers simultaneously propose their free weight
to their respective most-preferred acceptors who have not yet
rejected any of their proposals (even fractionally).* Then,
each acceptor whose sum of matched weight and total pro-
posed weights exceeds 1 rejects enough proposed weight such
that this sum reduces to 1. The rejections happen in a water-
filling manner—from the least preferred equivalence class to
the most preferred, and within each equivalence class, at an
equal rejection pace to all the highest-matched proposers at
any given time. At the end, all unrejected proposed weights
get added to the current fractional matching and all rejected
proposed weights return to those proposers as free weights,
which they propose in subsequent iterations.

The procedure is quite natural, but Kesten and Unver ob-
serve that it has a critical flaw: there may be a cycle of agents
i1 = Jj1 — i — ...%x — Jr — %1 such that in some
iteration, 7, proposes some weight to j;, who rejects some
matched weight with 75; so in the next iteration, ¢ proposes
some weight to jo, who rejects some matched weight with i3;
at some point, jj rejects some matched weight with i1, who
then proposes to j; again; and this can continue indefinitely.
Due to such cycles, which they term rejection cycles, FDA
may never terminate.

Nonetheless, they observe that by viewing FDA as a spe-
cific instantiation of a more general two-sided ‘“schedule
matching” process studied by Alkan and Gale [2003], one
can easily conclude that FDA converges to a matching—
henceforth, the FDA matching—that is strongly ex ante sta-
ble, and, in fact, proposer-optimal within the set of such

“Recall that in their model, proposers have strict preferences, so
such an acceptor is unique for each proposer.

matchings.’ This still leaves the issue of finite-time compu-
tation of a strongly ex ante stable matching, leading to their
main contribution.

Algorithm FDA-CYCLE. They propose an algorithm,
which we refer to as FDA-CYCLE (presented formally as
Algorithm 4 in Appendix B), which allegedly computes the
FDA matching in polynomial time. First, they notice that
the proposals can be serialized as the resulting matching is
still unique and independent of the order of proposals (see
their Corollary 1). In this serialized process, the infinitely
many proposals and rejections along any rejection cycle can
be viewed as consecutive iterations. However, instead of exe-
cuting these infinitely many iterations, FDA-CYCLE detects
a rejection cycle as soon as it forms and directly computes
the matching that these infinitely many iterations would have
converged to in finite time.

Formally, FDA-CYCLE keeps track of a rejection graph,
which is a directed graph with the agents as nodes and edges
1 — 7 — ¢ exist (for all 3,4’ € N and j € M) whenever
x35 > 0, 245 > 0, ¢ has never been rejected by j, and 1’ has
been rejected by 5.° Intuitively, this tells us that whenever i
proposes to 7, j will reject some fraction of i’.” FDA-CYCLE
monitors this graph, and as soon as a directed cycle forms,
it solves a linear program to compute the matching that in-
finitely many proposals and rejections across the cycle would
converge to, “resolving” the cycle (temporarily).

Erroneous claim. Kesten and Unver [2015] claim in their
Proposition 3 that FDA-CYCLE terminates after a finite num-
ber of steps. Our first significant contribution is to show that
this is incorrect. The issue lies in the last paragraph of their
proof, presented in their Appendix B, which makes the fol-
lowing (rephrased) claim: “after all proposers make propos-
als, at least one proposer is rejected by one acceptor and has
an outstanding fraction, or the algorithm converges, whether
or not a [rejection] cycle occurs. Since there are |N| pro-
posers and |M| acceptors, the algorithm converges after at
most | N|| M| steps”. It is not clear what they mean by a pro-
poser being rejected by an acceptor, but the latter conclusion
would hold if they mean a proposer is rejected by an acceptor
either for the first time or fully (i.e., making their degree of
match 0). It turns out that the former statement does not hold
under either interpretation.

Our counterexample. Our first significant contribution is
a counterexample in which FDA-CYCLE in fact fails to ter-
minate, thus precluding the possibility of an alternative proof
of its finite-time convergence. We emphasize that significant
effort and careful analysis went into designing this counterex-

>They provide an independent proof for this too.
®Actually, in the rejection graph of Kesten and Unver [2015],
only the proposers are nodes, and instead of edges i — j — 4/, they

add an edge ¢ 25 ' labeled with the acceptor j; these are equivalent
representations.

"This is because j having rejected i’ previously implies that j
must be fully matched at the moment, so accepting any proposed
weight requires it to reject some existing weight, and once it rejects
agent ¢, it continues to do so until z;/; = 0.

351
352
353

354
355
356

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

377
378
379
380
381
382
383
384
385
386

388
389
390
391
392

393
394
395
396
397

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

427

428
429

431
432
433
434
435
436
437
438

440
441
442
443
444
445
446
447
448
449
450
451
452

454

ample. Due to the length of the argument, we defer the exact
counterexample instance to Appendix C.

In short, at one point during the execution of FDA-CYCLE,
a rejection cycle forms, which the algorithm resolves. Cru-
cially, after the resolution, the cycle remains in the graph,
albeit with no free weights left on the proposers. In the sub-
sequent iterations, new edges get added to the rejection graph,
causing another rejection cycle to form. Again, after the algo-
rithm resolves this cycle, it remains in the graph. Later in the
algorithm, a proposal occurs that requires re-resolving one
of these cycle, which leads to another proposal that requires
re-resolving the other cycle. Re-resolving the second cycle
directly leads to re-resolving the first cycle again, essentially
creating a cycle of cycles. FDA-CYCLE then continues for
infinitely many steps.

This reopens the question of finite-time computation of a
strongly ex ante stable matching. The main contribution of
the next two sections is to uncover a novel insight that lets us
overcome the limitation of FDA-CYCLE and design a novel
polynomial-time algorithm, DFDA-SCC, which in fact com-
putes a doubly-strong ex ante stable matching in the presence
of indifferences on both sides.

Our counterexample highlights the key issue: when multi-
ple cycles have paths to each other (i.e., they are part of the
same strongly connected component), they can keep “reac-
tivating” each other. This suggests that the right approach
is to not resolve one cycle at a time, but rather resolve en-
tire strongly connected components in one shot, which is pre-
cisely what we do later in Section 5.

4 Doubly-Fractional Deferred Acceptance

Before we present a polynomial-time algorithm, we take a
slight detour and extend the model of Kesten and Unver
[2015] to allow indifferences on both sides, not only in ac-
ceptors’ preferences. The first step is to extend their infinite
iterative procedure, Fractional Deferred Acceptance (FDA).
We term our procedure Doubly-Fractional Deferred Accep-
tance (DFDA), and show that it produces a proposer-optimal
doubly-strong ex ante stable matching via a reduction to the
framework of Alkan and Gale [2003]. Then, in the next sec-
tion, we design our DFDA-SCC algorithm, which somewhat
mimics DFDA, resolves one strongly connected component
(SCC) in each iteration, and provably terminates at a doubly-
strong ex ante stable matching in polynomial time.

DFDA, (which is formally presented in Appendix B as Al-
gorithm 3), is almost identical to FDA, with a simple and
natural change to account for possible indifferences in the
proposers’ preferences. Recall that in FDA, each proposer
proposes all her free weight to the most-preferred acceptor
who has not rejected any fraction of her, and this acceptor
is unique due to strict preferences. In DFDA, each pro-
poser considers the set of all (equally) most-preferred ac-
ceptors who have not rejected any fraction of her—note that
they must all be part of the same equivalence class—and pro-
poses to all of them simultaneously, evenly splitting her free
weight between them. Thus, each iteration of DFDA wit-
nesses both proposers proposing to multiple acceptors simul-
taneously and acceptors rejecting multiple proposers simulta-

neously, which explains the name of the algorithm. DFDA is
a strict generalization of FDA, reducing to FDA when pro-
posers have strict preferences.

We establish the desired properties of DFDA by invoking
the general framework of Alkan and Gale [2003]. They study
two-sided fractional matching under a broad class of pref-
erences, given by the so-called (strict) “choice functions”.
They prove that (1) the set of stable matchings—with a spe-
cific stability definition that we refer to as AG-stability—form
a lattice structure, which admits a unique proposer-optimal
matching under the strict choice-functions-based preferences;
and (2) a natural iterative procedure converges to this unique
proposer-optimal AG-stable matching. We take the weak
preferences of proposers and acceptors and impose a sec-
ondary preference for “balancedness” to induce strict choice
functions under which (1) AG-stability becomes equivalent to
doubly-strong ex ante stability, thus establishing the existence
of a proposer-optimal doubly-strong ex ante stable matching
under the strict choice functions (which remains proposer-
optimal under the original weak preferences), and (2) the it-
erative procedure of Alkan and Gale [2003] becomes equiv-
alent to DFDA, which finds the aforementioned matching.
This yields the following result; a formal proof, along with
an introduction to the framework of Alkan and Gale [2003],
is given in Appendix E.

Theorem 1. DFDA converges to a proposer-optimal doubly-
strong ex ante stable matching.

S A Polynomial-Time Algorithm for
Doubly-Strong Ex Ante Stable Matching

Because DFDA coincides with FDA when proposers happen
to have strict preferences, clearly we cannot resolve rejec-
tion cycles one at a time, otherwise we would have the same
non-termination issue as FDA-CYCLE on our counterexam-
ple from Section 3. Based on the insight obtained from our
counterexample, we propose a new algorithm, DFDA-SCC
(Algorithm 1), which circumvents this issue by resolving an
entire strongly connected component (SCC) in each iteration.

Our contribution lies not only in the design of this algo-
rithm, but also in its analysis. For Kesten and Unver [2015],
it is easy to establish equivalence between FDA-CYCLE and
FDA because FDA-CYCLE exactly follows a serialization
of FDA, simply skipping-forward intermediate blocks of in-
finitely many iterations across individual rejection cycles.
Unfortunately, this is not the case for DFDA-SCC: it is pos-
sible that one of its intermediate matchings may never be
produced during any serialization of DFDA. It is still pos-
sible that DFDA-SCC is equivalent to DFDA by eventu-
ally producing the same matching (which would establish
its proposer-optimality), but, sadly, we are unable to prove
so and leave this as an open question. This is discussed at
length in Section 6. Nonetheless, we are able to establish
doubly-strong ex ante stability of DFDA-SCC, in addition
to polynomial-time convergence. This is our main result with
an intricate proof.

Theorem 2. DFDA-SCC (Algorithm 1) terminates in poly-
nomial time and returns a doubly-strong ex ante stable match-
ing.

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

480
481

482

483

484
485
486
487

489
490
491
492
493
494
495
496
497
498
499
500

502
503
504
505
506
507
508

509
510
511

512
513
514
515

517
518
519
520
521
522
523
524

526
527
528
529
530
531
532
533

535
536
537
538
539
540
541
542

544
545
546
547
548
549
550

551

552
553
554

555
556
557
558
559
560
561
562
563
564
565

566
567

568

Description of DFDA-SCC. Let us describe what DFDA -
SCC (Algorithm 1) intuitively does.

The basis of our algorithm is the proposal graph, a di-
rected bipartite graph in which there is a node for each pro-
poser and acceptor. Each proposer ¢ has directed edges to her
most-preferred acceptors who have not yet rejected her; these
are the acceptors she will propose to next. Each acceptor j
has directed edges to her least-preferred proposers that she is
matched to (and among this set, the ones who currently have
the highest degree of match to j); if j wishes to fraction-
ally reject existing matches to accept proposals from more-
preferred proposers, these are the proposers she will start re-
jecting.

In each iteration, the algorithm partitions the proposers into
groups based on whether they are part of the same strongly
connected component (SCC) of the current proposal graph
and sorts these groups according to the topological order of
the proposal graph. Then, it “resolves” each group (and its
corresponding SCC) via a linear program (LP). For any pro-
poser ¢, the SCC of the proposer graph that contains ¢ is guar-
anteed to include all cycles containing ¢, as well as some
“higher-order cycles” that cause infinite loops like in Sec-
tion 3.

For space reasons, the linear program which the algorithm
resolves for each SCC is fully described in Appendix D. At
a high level, it simulates a series of fractional proposals and
rejections in a continuous manner. Its goal is to maximize the
total “flow” of weight through proposal edges of the proposal
graph, subject to various constraints that force it to adhere
to the rules of the DFDA algorithm, and force it to stop a
sequence of proposals if some key event happens that would
cause the proposal graph to change. The output of this LP are
y,z. Forany ¢ € N,j € M, y;; represents the amount of
weight ¢ proposes to j in this iteration, and z;; represents the
amount of weight j rejects of 7. We will also use y; to refer
to the total amount of weight proposed by ¢ in this iteration.

The algorithm terminates when all proposers have no free
weight remaining, which we will prove must occur after a
polynomial number of iterations.

5.1 Analysis of DFDA-SCC

We are now ready to begin proving polynomial-time termina-
tion and doubly-strong ex ante stability of DFDA-SCC (The-
orem 2).

Proof of polynomial-time termination

The main technical lemmas we use to prove this fact revolves
around a structural observation relating the last three con-
straints of LP-SCC to key events in the algorithm, which
cause progress to be made. Specifically, all these events re-
volve around changes to the proposal graph, which corre-
spond to proposers being either rejected for the first time
by an acceptor, or fully rejected from an acceptor. As we
will show, keeping track of such changes is crucial for argu-
ing polynomial-time termination. We give the full proof of
Lemma 1 in Appendix F

Lemma 1. In any solution to the LP, one of the following will
be true:

* (A)Vi€ Cryi =D jen 2ji + Wi

L (B) 3] S ,2\47 |{L‘j| < 17Zi€Nyij =1 —Z;
e (C)die N,je M,a:ij > O,Zji = Tjj.
*(D)3dj € M, € A;,HZ./ S Aj \A;,JJ,‘]‘ — Zj =
Tyrj + Yirje
Lemma 1 intuitively states the following: After any itera-
tion of the algorithm, one of these conditions will be true:

* (A) All proposers in C'; have no free weight.

* (B) Some acceptor that was not full at the beginning of
the iteration becomes full.

* (C) Some proposer is fully rejected from some acceptor.

* (D) For some acceptor j, there is some proposer that j
likes weakly less than all of j’s current matching.

(A) is a special condition as the proposers not having any
free weight is what we want to happen to ensure termination
with a perfect matching. The other three conditions, (B), (C),
and (D), all correspond to the previously mentioned changes
in the proposal graph. We show this formally in Lemma 2.

Lemma 2. Let y*, z* be the variables after resolving some
LP in Algorithm 1. The process of updating the current
matching using y*, z* will change the proposer graph only
if at least one of the conditions (B), (C) or (D) are true.

With this, we can next prove Lemma 3, which shows how
the algorithm will come to terminate.

Lemma 3. In some iteration of the main while loop in Algo-
rithm 1, if for every component Cy of proposers, the LP run
on C; terminates with only condition (A) being true, then the
matching produced by the last component being solved will
be a perfect matching.

Finally, leveraging all these technical lemmas, we can
show that at each step of DFDA-SCC, progress will be made,
changing the proposal graph, and allowing the algorithm to
terminate after a polynomial number of iterations.

Theorem 3. Algorithm I terminates in polynomial time, and
will output a perfect matching.

The proof of these lemmas, as well as the final theorem,
appear in Appendix F.

Proof of doubly-strong ex ante stability

Finally, we will show that the perfect matching that Algo-
rithm 1 returns in polynomial time will be doubly-strong ex-
ante stable, the proof of which appears in Appendix F.

Theorem 4. The matching produced by Algorithm 1 is
doubly-strong ex-ante stable.

Together, Theorems 3 and 4 yield the two claims made in
Theorem 2, concluding its proof.

6 Discussion

While we have established polynomial-time computation of
a doubly-strong ex ante stable matching, many exciting ques-
tions remain open.

The lingering issue of equivalence to DFDA and proposer-
optimality. Recall that both our infinite procedure DFDA
and polynomial-time algorithm DFDA-SCC produce a

569

570

571
572

573
574

575

576
577

578

579
580

581
582
583
584
585

586

588
589

591

592
593
594
595
596

598
599
600

601
602

603

605
606
607
608

609
610

611
612

613

614
615
616

617
618
619

620
621
622
623

624
625
626
627
628
629
630

Algorithm 1: DFDA-SCC

1 Vie Nyw; < land P; + Fj
2 ViGN,jGM,$ij<—0
3 G {(4,4) :j € P}

4 while 3 € N, w; > 0do

// Proposal graph with only proposing edges,

// Free weight of ¢ and acceptors i will propose to next

// Current matching
no rejections yet

// Key step: SCC decomposition of the rejection graph
5 C1,...,Ck < Partition N into strongly connected components based on G, sorted topologically
¢ | fort e [k]do
7 if 37 € C; such that w; > 0 then
// Resolve the SCC via an LP and update the matching
8 y*, 2" <= An optimal solution to the linear program LP-SCC (given in Figure 2) for C}
9 fori € N do
10 for j € M do
it | wi e wig Yl - 2 // Update matching
12 end
3 Wi 4= D e 7 Wi — Y] // Update free weights
14 end
// Collect information for updating acceptors’ edges
15 for j € M do
16 if|$j\::1then
17 X;«{ieN:z; >0} // Proposers matched to j
18 {—max{k: X; NE; #0}
19 Aj < Ejy // Least-preferred proposers
20 Aj < argmax;e 4, Tij // Proposers from A; with max matched weight
21 R; «+ A7 U {ieN:ie€E;pt'>1} // Updated set of rejected proposers
2 end
23 end
// Collect information for updating proposers’ edges
24 fori € N do
25 R« {jeM:ieR;} // Acceptors who have rejected 1
26 { mm{k : Ei,k g Rz}
27 P, + EM\RZ» // Most-preferred acceptors who haven’t rejected 1@
28 end
// Update the proposal graph
29 G+ {(i,j):je P} U {(],z) NS A;‘} // New proposal graph
30 if G’ # G then // Proposal graph changed, restart the outer loop
31 G+ G
32 Go to the start of the While loop (Line 4)
33 end
34 end
35 end
36 end
37 return x

doubly-strong ex ante stable matching, but DFDA has the
additional guarantee that its matching is proposer-optimal.
Sadly, we are unable to prove proposer-optimality of DFDA-
SCC or its equivalence to DFDA.

Ex ante indifference neutrality and Pareto optimality. In
Section 2, we remarked that it is not clear if our ex ante in-
difference neutrality criterion is intuitively desirable. The
following example shows one formal reason why it may be
undesirable: it is incompatible with Pareto optimality (or,
rather, ordinal Pareto undomination). A concrete example
is given in Appendix H. Kesten and Unver [2015] show that

one can cyclically shift matched weights in the FDA match-
ing to find ordinal improvements for the proposers that retain
ex ante stability but introduce ex ante discrimination among
proposers; this yields an ex ante stable matching that is ordi-
nally Pareto undominated by any other ex ante stable match-
ing. But whether true ordinal Pareto undomination (by any
other matching) can be achieved, possibly while also retain-
ing no ex ante discrimination among proposers and acceptors,
remains to be seen.

631
632
633
634
635
636
637
638
639

640

641
642
643

644
645
646

647
648
649
650

651
652
653
654

655
656

657
658
659

660

662

663
664
665
666

667
668
669
670

671
672
673
674

676
677

679
680
681

682
683
684

685
686
687

688
689
690
691
692

References

Atila Abdulkadiroglu, Parag A Pathak, Alvin E Roth, and
Tayfun Sonmez. The boston public school match. Ameri-
can Economic Review, 95(2):368-371, 2005.

Ahmet Alkan and David Gale. Stable schedule matching
under revealed preference. Journal of Economic Theory,
112(2):289-306, 2003.

Haris Aziz, Rupert Freeman, Nisarg Shah, and Rohit Vaish.
Best of both worlds: Ex ante and ex post fairness in re-
source allocation. Operations Research, 72(4):1674—1688,
2023.

Haris Aziz, Aditya Ganguly, and Evi Micha. Best of both
worlds fairness under entitlements. In Proceedings of the
2023 International Conference on Autonomous Agents and

Multiagent Systems, pages 941-948, 2023.

G. Birkhoff. Three observations on linear algebra. Universi-
dad Nacional de Tucumdn, Revista A, 5:147-151, 1946.

Péter Bir6. Applications of matching models under prefer-
ences. In Ulle Endriss, editor, Trends in Computational So-
cial Choice, chapter 18, pages 345-373. Al Access, 2017.

A. Bogomolnaia and H. Moulin. A new solution to the ran-

dom assignment problem. Journal of Economic Theory,
100:295-328, 2001.

Eric Budish, Yeon-Koo Che, Fuhito Kojima, and Paul
Milgrom. Designing random allocation mechanisms:
Theory and applications. American Economic Review,
103(2):585-623, 2013.

Ioannis Caragiannis, Aris Filos-Ratsikas, Panagiotis Kanel-
lopoulos, and Rohit Vaish. Stable fractional matchings. In
Proceedings of the 2019 ACM Conference on Economics
and Computation, pages 21-39, 2019.

Toannis Caragiannis, David Kurokawa, Hervé Moulin,
Ariel D. Procaccia, Nisarg Shah, and Junxing Wang. The
unreasonable fairness of maximum Nash welfare. ACM
Transactions on Economics and Computation, 7(3): Arti-
cle 12, 2019.

Pierre-André Chiappori and Bernard Salanié. The economet-
rics of matching models. Journal of Economic Literature,
54(3):832-861, 2016.

Benjamin Cookson, Soroush Ebadian, and Nisarg Shah. Con-
strained fair and efficient allocations. In 39¢h, 2025. Forth-
coming.

Soroush Ebadian, Rupert Freeman, and Nisarg Shah. Harm
ratio: A novel and versatile fairness criterion. In 4th, pages
1-14, 2024.

Aytek Erdil and Haluk Ergin. Two-sided matching with in-
differences. Journal of Economic Theory, 171:268-292,
2017.

Michal Feldman, Simon Mauras, Vishnu V Narayan, and
Tomasz Ponitka. Breaking the envy cycle: Best-of-both-
worlds guarantees for subadditive valuations. In Proceed-
ings of the 25th ACM Conference on Economics and Com-
putation, pages 1236-1266, 2024.

Rupert Freeman, Evi Micha, and Nisarg Shah. Two-sided
matching meets fair division. In 30th, pages 203-209,
2021.

D. Gale and L. S. Shapley. College admissions and the stabil-
ity of marriage. Americal Mathematical Monthly, 69(1):9—
15, 1962.

Peter Girdenfors. Match making: assignments based on bi-
lateral preferences. Behavioral Science, 20(3):166—173,
1975.

Xiang Han. A theory of fair random allocation under priori-
ties. Theoretical Economics, 19(3):1185-1221, 2024.

Tadashi Hashimoto, Daisuke Hirata, Onur Kesten, Morimitsu
Kurino, and M Utku Unver. Two axiomatic approaches
to the probabilistic serial mechanism. Theoretical Eco-
nomics, 9(1):253-277, 2014.

Martin Hoefer, Marco Schmalhofer, and Giovanna Varric-
chio. Best of both worlds: Agents with entitlements. Jour-
nal of Artificial Intelligence Research, 80:559-591, 2024.

Chien-Chung Huang and Telikepalli Kavitha. Popularity,
mixed matchings, and self-duality. Mathematics of Opera-
tions Research, 46(2):405-427, 2021.

Aanund Hylland and Richard Zeckhauser. The efficient al-
location of individuals to positions. Journal of Political
economy, 87(2):293-314, 1979.

A. Katta and J. Sethuraman. A solution to the random assign-
ment problem on the full preference domain. Journal of
Economic Theory, 131:231-250, 2006.

Onur Kesten and M. Utku Unver. A theory of school-choice
lotteries. Theoretical Economics, 10(2):543-595, 2015.

Onur Kesten, Morimitsu Kurino, and M Utku Unver. Fair and
efficient assignment via the probabilistic serial mechanism.
Mimeographed, Boston University, 2011.

Chi-Kit Lam and C Gregory Plaxton. A (1+ 1/e)-
approximation algorithm for maximum stable matching
with one-sided ties and incomplete lists. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2823-2840, 2019.

David F Manlove, Robert W Irving, Kazuo Iwama, Shuichi
Miyazaki, and Yasufumi Morita. Hard variants of stable
marriage. Theoretical Computer Science, 276(1-2):261-
279, 2002.

Eric McDermid. A 3/2-approximation algorithm for general
stable marriage. In International Colloquium on Automata,
Languages, and Programming, pages 689-700, 2009.

Ioannis Panageas, Thorben Trobst, and Vijay Vazirani. Time-
efficient algorithms for Nash-bargaining-based matching
market models. In 20th, 2024. Forthcoming.

Alvin E Roth and John H Vande Vate. Random paths to sta-
bility in two-sided matching. Econometrica, pages 1475—
1480, 1990.

Alvin E Roth, Uriel G Rothblum, and John H Vande Vate.
Stable matchings, optimal assignments, and linear
programming. Mathematics of operations research,
18(4):803-828, 1993.

693
694
695

696

698

699
700
701

702
703

704
705
706
707

708
709
710

71
712
713

714
715
716

717

719

720
721

722
723
724

725
726

728
729

730
731
732
733

734
735
736

737
738
739

740
741
742

743
744
745
746

747
748
749

750
751
752

753
754

756
757
758

759
760
761
762

763
764

765
766
767

Alvin E Roth. The evolution of the labor market for medical
interns and residents: a case study in game theory. Journal
of political Economy, 92(6):991-1016, 1984.

Alvin E Roth. The college admissions problem is not equiva-
lent to the marriage problem. Journal of economic Theory,
36(2):277-288, 1985.

Alvin E Roth. Deferred acceptance algorithms: History, the-
ory, practice, and open questions. international Journal of
game Theory, 36:537-569, 2008.

Eva Tardos. A strongly polynomial algorithm to solve combi-
natorial linear programs. Operations Research, 34(2):250—
256, 1986.

Thorben Trobst and Vijay V. Vazirani. Cardinal-utility
matching markets: The quest for envy-freeness, pareto-
optimality, and efficient computability. In 25¢h, page 42,
2024.

Dietrich Weller. Fair division of a measurable space. Journal
of Mathematical Economics, 14(1):5-17, 1985.

Xiaowei Wu, Bo Li, and Jiarui Gan. Budget-feasible max-
imum nash social welfare is almost envy-free. In 30th,
pages 465471, 2021.

768

769

770
771

772
773
774
775
776
777
778
779
780
781
782

784

785
786
787

789
790
791
792
793
794
795
796

797

798

799
800
801
802

Appendix
A Extended Related Work

Apart from the work already cited in the introduction, there are a few threads of related work that our DFDA should be
contrasted against.

Matching under weak preferences. Han [2024] extends the celebrated Probabilistic Serial (PS) algorithm for one-sided
matching (of agents to objects) to two-sided matching, assuming agents (proposers) to have strict preferences but allowing
objects (acceptors) to have weak preferences. This unifies PS with FDA, retaining ex ante stability but sacrificing no ex ante
discrimination for ordinal fairness, a criterion that plays a key role in characterizations of PS [Kesten et al., 2011; Hashimoto
et al., 2014]. This complements the work of Katta and Sethuraman [2006] which extend PS by allowing agents to have weak
preferences but still assuming objects to have no preferences (equivalently, assuming every object to be indifferent between
all the agents). To the best of our knowledge, there is no known extension of PS to two-sided matching in the full domain
where both agents and objects have weak preferences. Huang and Kavitha [2021] study popular matchings, which are weakly
preferred to any other matching by at least half of the agents. It is known that popularity is a weaker notion than fractional
stability [Gédrdenfors, 1975], which is in turn weaker than ex ante stability. Assuming strict preferences on both sides, they
prove that the popular matching maximizing any linear objective can be computed efficiently due to elegant half-integral and
self-duality properties of such matchings. Popular matchings remain well-defined with weak preferences, but we are not aware
of any work investigating this.

Cardinal preferences. The model of cardinal utilities is even more expressive than that of weak preferences. Any algorithms
designed for weak preferences (including ours) can be applied to an instance with cardinal utilities as they induce unique
weak preferences; however, applying an algorithm designed for strict preferences requires breaking ties and the result can be
dependent on tie-breaking. Caragiannis e al. [2019a] use cardinal utilities to also justify fractional matchings: they show
that stable fractional matchings can have arbitrarily larger utilitarian social welfare compared to stable integral matchings,
and design approximation algorithms for the NP-hard problem of maximizing welfare subject to stability. Panageas et al.
[2024] give an algorithm that computes a fractional matching maximizing the Nash social welfare within an error of ¢ in
O(1/¢) time. But the Nash-optimal solution, while celebrated in fair division for satisfying envy-freeness under additive/linear
preferences [Caragiannis ef al., 2019b; Weller, 1985; Ebadian et al., 2024], even under constraints [Cookson et al., 2025; Wu
et al., 2021], Trobst and Vazirani [2024] show that it provides no approximation to envy-freeness for two-sided matching, and
use other means to show the existence of fractional matchings satisfying two sets of axioms: envy-freeness (EF) and Pareto
optimality, and justified envy-freeness (JEF) and weak Pareto optimality.

B Algorithms FDA, DFDA, and FDA-CYCLE

Algorithm 2: Fractional Deferred Acceptance (FDA) Kesten and Unver [2015]

1 Vie Nyw; =1

2 ViGN,jGM,ZEij =0

3 while 3i € N, w; > 0do

4 All proposers ¢ with w; > 0 propose their weight simultaneously to their most preferred acceptor 5 who has not yet
rejected any fraction of them.

5 All acceptors j whose tentative matching + proposals are greater than their capacity reject some proposers based on
the following process:
6 Starting with j’s highest equivalency class, if j can accept all proposals from that class without exceeding its

capacity, then it does so. Otherwise j accepts proposers from this equivalency class as equally as possible, i.e., j
increases the amount accepted of each proposer by an equal amount, only stopping the increase for a given
proposer for j has accepted all of that proposers weight, or j runs out of capacity. This process is repeated until j
reaches capacity.

7 end
s return x

C Failure of FDA-CYCLE on Our Counterexample

In this section, we will show all the steps of the instance of Figure 1 where FDA-CYCLE does not terminate in a finite number
of steps. The first several steps of FDA-CYCLE on this instance act as expected. We will highlight when we reach the key
steps where cycles begin to occur. For each step, we will show both the tentative matching produced, and the current state of
the rejection graph that the algorithm uses to resolve cycles.

Algorithm 3: Doubly-Fractional Deferred Acceptance (DFDA)

1Vie Nyw; =1 // Free weights

2 Vie Nyje M,z;; =0 // Current matching

3 while 3 € N, w; > 0do

// Simultaneous fractional proposals

4 All proposers ¢ with w; > 0 propose simultaneously. Let P; be the set of (equally) most-preferred acceptors of
proposer ¢ who have not rejected ¢ yet. Each proposer ¢ evenly splits her proposal across acceptors in P;, proposing
a weight of wi/|p,| to each of them.

// Simultaneous fractional rejections

5 All acceptors j whose sum of current matched weight and total proposed weight exceeds their capacity of 1 reject

some proposers as follows. Each j goes through her equivalence classes from the highest to the lowest. In a given

equivalence class, if j can accept all the proposed weight from that class without exceeding her capacity, she does

so. Otherwise, j starts continuously accepting proposed weight from the set of currently least-matched proposers

in that class at an equal rate, stopping any proposer whose entire proposed weight has been accepted and starting a

new proposer whenever she joins the set of least-matched proposers, until her capacity is exhausted.

¢ end
7 return x

Algorithm 4: FDA-CYCLE Kesten and Unver [2015]
1 Vie Nyw; =1

2 ViEN,jEM,l’ij =0

3 while di € N, w; > 0do

4 11 < arbitrary agent with w;1 > 0

5 if 3acycle C = (i1, j1,92, 2,13, 73 - - - , b¢, Je, 1) in the proposal graph then

6 MS = {Z ~i i3+1 D Tig, > 0}

7 forse {2,...,¢} do

8 ‘ Define equation y; = 2161\45 max{z;;, — (Ti ., j, — Ys+1)}

9 end

10 Define equation y1 + w1 = D ;¢ py, max{wij, — (Tiy 5, — y2)}

1 Solve the above system for y1, y2, . . . , Y¢, let ys denote the amount of ¢4 that gets rejected from j5_1, and update
x accordingly.

12 else

13 11 proposes their free weight to their top acceptor, that acceptor rejects any proposers if necessary using the
same criteria as they do in FDA.

14 end

15 end

16 return x

Proposers Acceptors

i g3 = ja = {J1,J2,Js} Jit iz > dg ~ s > {i1,99}
ot js > js = {J1, 72, ja} Joi ta > i3 > {i1, 12,05}
13: j3>-j2>-j1 >—{j4,j5} j3: i5 = 11 ~ 19 ~ 13 > 14
ig: J1 > J2 = {J3,Ja, J5) Jar iy = {da,13,14,75}

i j1 > js > {J2, 4, Js } Jsi o > {i1,13, 14,15}

Figure 1: Counterexample on which FDA-CYCLE fails to terminate. In each ordering, the relation between the agents listed in the set at the
end can be arbitrary.

Consider the instance shown in Figure 1. For the agents listed as a set in the end, we can have arbitrary relationship as long
as they are all strictly less preferred than the agents listed previously (e.g., they may form the lowest equivalence class). The
infinite looping of FDA-CYCLE happens regardless of these relations.

We assume that Algorithm FDA-CYCLE breaks any ties lexicographically. That is, when there are multiple proposers in N
with free weight, the one with the smallest index among them proposes in the next iteration.

In the first two steps of FDA-CYCLE, 7; and i will both propose to j3. js will reject half of each of these proposers, and

803
804
805
806
807
808

809

keep the other half.

K

.
t

i1 i3 i2
Free Weight | 1/2 1/2 1 1 1
» i 0 0 0 0 0
o 0O 0 0 0 0
J3 Y2 1/ 0 0 0
s 0O 0 0 0 0 is is
s 0O 0 0 0 0

811
812
813

In the next two steps, i1, now rejected from their top choice js, proposes their 1/2 free weight to j,. Similarly, jo proposes
their 1/2 free weight to js.

| i g

15 il

i3 19
Free Weight | 0 0 1 1 1
Ji 0O 0 0 0 O
o o 0O 0 0 0 0
Ja Y2 1/ 0 0 0
in Y20 0 0 O i is
Js 0 12 0 0 0
815
816 Next, i3 proposes to js. js is indifferent between iy, io, and i3, so it keeps 1/3 of each of them, and rejects the rest. In the

817
818
819

next two subsequent steps, 4; and i both take their newly rejected free weight of 1/6 and propose it to j, and j5 respectively.
Note that by Kesten and Unver [2015], this does not cause any edges to appear on the rejection graph, since while there are
proposers who are rejected from acceptors while having outstanding weight matched to that acceptor, there are no corresponding

820 proposers who have weight matched to that acceptor and are not yet rejected.

‘ 11 1o 13 i4 15 i is is
Free Weight | 0 0 2/3 1 1
J1 0O 0 0 0 O
- s 0O 0 0 0 0
E: Yz s 13 0 0
Ja 23 0 0 0 O iq is
Js 0 23 0 0 0
822
823 Next, i3, now rejected by their top choice j3, proposes their 2/3 free weight to jo
| i1 iy i3 iy s i i3 19
FreeWeight | 0 0 0 1 1
J1 0 0 0 0 O
o o 0 0 23 0 0
J3 s /3 1/3 0 0
j4 2/3 0 0 0 0 i4 i5
Js 0 253 0 0 O
825
826 Next, ¢4 proposes all their weight to their top choice j;. Similarly, in the next step, i5 also proposes all their weight to 7.

827 ji is indifferent between i4 and i5, so it keeps 1/2 of each of them and rejects the rest. Again, this does not cause any rejection

828

edges to appear.

11

19

13 14 s

i1 i3 i2
Free Weight | 0 0 0 12 1/2
829 71 0 0 0 12 1)
7 0 0 23 0 0
Js Y3 s 1z 00
j4 2/3 0 0 0 0 i4 i5
s 0 25 0 0 0

830
831

Next, i4 proposes their 1/2 free weight to jo. jo prefers iy to i3, so it keeps the 1/2 weight from i4 and partially rejects /6 of

13. This adds an edge between i4 and ¢3 in the rejection graph.

| i1 d2 i3 da G5 i is i
Free Weight | 0 0 16 0 12)
J1 0 0 0 12 1)2 J
7 0 0 12 1 0
E: Y3 Yz 1z 00
j4 2/3 0 0 0 0 i4 i5
s 0 25 0 0 0

Next, i3, now rejected from their second choice j,, proposes their 1/6 weight to j;. j; prefers js to i4 and i5. so it accepts
the 1/6 weight, and rejects 1/12 from each of the others. This causes edges in the rejection graph between i3 and i4, and i3 and
i5. Notably, this proposal forms a rejection cycle between i3 and ¢4, which the algorithm must solve. Using the FDA-CYCLE
technique of reduction to linear equation, we are given the following:

ys +1/12 = y3 (D
Y3 = 2y)

Solving this linear system gives us the values y4, = 1/12,y3 = 2/12, updating the matching with these values give us:

K i

22
Free Weight | 0 0 0 0 2/3
Ji 0 0 Y3 13 1/3
o 0 0 13 23 0
E Y3 s 3 00
s 2 0 0 0 0 is
s 0 25 0 0 0

The key thing to note here is that after solving the linear equation, the same cyclic relationship between 73 and 7,4 still remains.
Zigj, > 0and x5, > O still are both true, 73 has not not yet been rejected from j1, so it will still propose there the next chance
it gets, and the same can be said for i4 and j5. Thus, the next time either it is either i3 or ¢4’s turn to propose, the same cycle
will have to be dealt with again.

Consider the next step of the FDA-CYCLE algorithm in this instance. It is now i5’s turn to propose. i proposes their 2/3
free weight to js. js prefers i5 to the other 3 agents it is currently accepting fractions of, so it accepts all 2/3 of i5, and rejects
2/9 of i1, i2, and i5. However, this causes edges in the rejection graph between is, and {i1, i2, i3 }. Noticeably, this will cause
a rejection cycle between i5 and 73, which we can resolve by the following linear system:

Y3 +2/9 = 2ys (3)
Ys = 3y3 4

Solving this linear system gives us y3 = 2/45,y5 = 6/45. Updating the matching with these values (and running through the
non-cyclic proposal steps of i1 and i3) gives us:

| i i2 i3 g s i1 i3 io
Free Weight | 0 0 0 64 0 .
Ji 0 0 27/a5 945 9as . i
jo 0 0 s 23 0 !
J3 3/a5 345 3fas 0 36/45
Ja 2/45 0 0 0 0 iq i5
Js 0 415 0 0 0

Note that again, the solving of this cycle does not lead to the cyclic relation going away from the tentative matching, the next
time i5 proposes, the cycle will need to be resolved again. We also note that there are technically edges between ¢5 and ¢; and
i5 and 49 in the rejection graph, but they will never become relevant to the algorithm’s execution, so we do not include them in
our diagram for simplicity.

Next, it is ¢4’s turn to propose, again, to do this, the cycle between ¢3 and ¢4 will have to be resolved. This will require solving
the following linear system:

832

833

834
835
836
837
838

839

840

841
842
843
844
845
846
847
848
849

850
851

852

853
854
855
856
857
858
859

860

861

862
863

865
866
867
868

869
870

871
872

873

874

875

876

877

878

879

880

881

882
883
884
885

886

887

888

889
890
891
892
893

Ya + 6/45 = y3
Y3 = 2y

This will give us the values of y4 = 6/45, y3 = 12/45, updating the matching gives us:

| i io i3 iq i5 i
Free Weight | 0 0 0 0 65
Ji 0 0 3915 3/a5 3/as
Jo 0 0 345 4215 0
J3 3/as 345 3fas 0 36/45
j4 42/45 0 0 0 0 i5
75 0 42/45 0 0 0

19

(&)
(6)

Now, it is i5’s turn to propose again, and it is still part of the same rejection cycle as previously. One can see that whatever

To illustrate this, we will solve the i5 and ¢4 cycles with generic values for the free weight.
First the 75 cycle:

Y5 + ws = 3Y3
Y3 = 2ys

The solution to this system will be y5 = ws/s5, y3 = 2ws/s.
Similarly for the 4 cycle:

Yst+wy =yYs
Y3 = 2y,

The solution to this cycle will be y4 = wy, ys = 2wy.

Therefore, we know that the cycle between i3 and ¢4 will only go away if one of the following happens:

* i3 gets partially rejected from j;

* i4 gets fully rejected from j;

* 44 gets partially rejected from jo

* i3 gets fully rejected from js

Similarly, the cycle between i3 and ¢5 will only go away when:
* i3 gets partially rejected from j;

* i5 gets fully rejected from j;

* i5 gets partially rejected from js

* i3 gets fully rejected from j3

values we get from solving this rejection cycle, will cause i4 to have free weight in the next step, this will force us to solve
i4’s cycle again, which will in turn cause i5 to have free weight in the next step, with each step along the way, the free weight
getting smaller and smaller. It is easy to see how this process continues ad infinium.

(7
®)

€))
(10)

Until one of these events happen, the algorithm will continue to alternate between resolving these two cycles (while also

* 43 gets fully rejected from jo or from js
* iy gets fully rejected from j;
* 45 gets fully rejected from j;

letting 71 and i propose their unpropsed weight between each step, which will not effect the rest of the process). Clearly,
resolving either of these cycles will never cause any of the partial reject conditions to arise, so the algorithm will only exit this
cycle resolving loop when one of the following occurs:

Note that due to the way the cycles are resolved, as long as none of these conditions are met, then the amount of 74 and 75

matched to 7; will always be equal. Similarly, the amount of ¢;, 72, and ¢35 matched to j3 will always be equal, so the linear
system we have to solve at each cycle removal step will remain the same.

Thus, when we resolve the i5 cycle next with ws = 6/45, we will reject 6/255 of i5 and i4 from 51, and 12/255 of i3, 41, and iy

from js.

Next, i4 will have free weight from 6/255, so resolving its cycle with wy = 6/255 will mean that 6/255 of 74 and 5 will get
rejected from jy, and 12/255 of j3 will get rejected from jo. We will then have to resolve i5’s cycle with ws = 6/255.

Putting this together, we have that after &k times resolving ¢5’s cycle from this point, the total amount of i5 kicked out of j; is
Zle 12/(45+5"), which one can verify approaches 3/45 in the limit as k approaches infinity, the exact amount that i5 is matched
to j; at the beginning of this process.

One can verify that the infinite summations for the other key matrix cells that form the cycles resolve the same way, showing
that this sequence will continue forever.

D Detailed Description of DFDA-SCC Linear Program

maximize Z Yi
iEN

subject to // Constraints on proposals
HVieCy:y; < ZjEM Zji + W
@QVigCr:y; =0
(3) Vi € N,Vj € P; : y;; = ¥i/|Pi|
MHVie NNVjgP;:y; =0

/I Constraints on rejections

G)Vj €M, |zl =1:2 =3 icn Y
©)VjeM,|z;|<1l:2;=0

(M Vje M,Vie A’; t 25 = #f|AL
®)VVjeMVigAj:2;=0

/I Constraints that stop the flow at discrete structural changes
(9)Vj S M, |{,Cj‘ <1: ZiGNyij <1-— ‘l']|

(10)Vj € M,Vi € A;,Vi/ S Aj \A;k DX — Zji 2 Xyt + Yirg
(1) Vi€ N,Vj e M : zj; < x4

Figure 2: Linear program LP-SCC used to resolve a strongly connected component in DFDA-SCC (Algorithm 1).

Description of LP-SCC. The linear program at the heart of each step of the algorithm is shown in Figure 2. At a high level,
this LP works by maximizing the amount of total weight proposed for a given connected component, while being constrained
by the expected rules that dictate how proposals and rejection work in DFDA as well as additional conditions to ensure that the
LP simulates proposal/rejection only up to the point where the proposal graph would change.

In more detail, the main variables in the LP are y-s and z-s. For each 7 € N, y; denotes the total weight that 7 proposes in
the current iteration, of which y;; denotes the weight proposed to j € M. Similarly, for each acceptor j € M, z; denotes the
total weight rejected by j in the current iteration, of which z;; denotes the weight that j rejects from ¢.

The first four constraints dictate how proposers can propose.

* Constraints (1) and 2)—Vi € Cy,y; < > jem Zji T Wi and Vi ¢ Cy,y; = O—ensure that only proposers from the current
SCC () being resolved propose, and they propose weight that is at most the sum of their free weight and their total rejected
weight from the current iteration (that is, they cannot propose more weight than they have). The inequality rather than a
strict equality in Constraint (1) allows proposers to retain some free weight in the end, which is key to solving the problem
as a series of continuous flow problems rather than a series of discrete proposal-rejection sequences.

* Constraint (3) and (4)—Vi € N, y;; = vi/|p:|,Vj € P, and y;; = 0,V ¢ P,—ensures that proposers propose only to their
most-preferred acceptors who have not rejected them and propose an equal amount to them.

The next four constraints dictate how acceptors handle the weight proposed to them.

* Constraints (5) and (6)—Vj € M, z; = >, ¥ij When |z;] = 1 and z; = 0 when |z;| < 1—stipulate that a saturated
(fully matched) acceptor must reject exactly as much weight as she accepts, while a non-saturated acceptor must not reject.

Constraint (9) later ensures that such an acceptor does not accept more weight than her remaining match capacity. This
ensures that once an acceptor becomes saturated, they remain saturated for the rest of the algorithm.

894
895
896

897
898
899
900

901

902
903
904
905
906
907
908
909

910
911
912
913
914

915
916

917

918
919
920
921

922
923
924
925

926
927
928
929
930
931

932

933

934
935
936
937

938
939
940
941

942
943
944
945
946
947
948

949
950

951
952
953

954
955
956

957
958
959
960

961
962

963
964
965
966
967

968
969

970

971

972
973
974
975

* Constraints (7) and (8)—Vj € M, z;; = #i/|a;| forall i € A;f and z;; = 0 for all i ¢ A;—ensure fair rejections. Only
the least-preferred matched acceptors with the highest matched weight (those in A;) are rejected, and they are rejected
equally. Constraint (10) stops the LP once this highest matched weight reduces to the next-highest level, at which point a
new acceptor from A; must be added to A} by the algorithm.

This leaves constraint (11)—V: € N,Vj € M, z;; < x;;. This states that an acceptor cannot reject more weight from a
proposer than it has available to reject. We do not have to consider any incoming proposed weight from ¢ to j because, due to
constraint (8), z;; can only be positive if ¢ € A7, in which case 7 will not be proposing any weight to j in this iteration, or for
the remainder of the algorithm.

The LP maximizes), ¥i, i.e., the total amount of weight proposed by the proposers. The optimal solution (y*, 2*) is
used by DFDA-SCC to update the matching and the proposal graph.

E Alkan-Gale Stability

E.1 Alkan-Gale Matching Model

In Alkan and Gale [2003], the authors defined agent preferences using choice functions. They define these choice function in
a very broad way such that they generalize a huge range of common matching scenarios, including both integral and fractional
matching. For our purposes, we will assume the following simplified definition of a choice function that handles fractional
matching scenarios.

Definition 10 (Fractional matching choice function). Given a set of agents A and a quota ¢, a choice function C' : R4 — R4
is a mapping from one real vector to another (where each entry of this vector corresponds to an amount of some ¢ € A), such
that for every z € R4, we have that for every i € A, C(z); < x; (you can only choose at most what is available), and
> ica C(x)i < g (your total choice cannot be more than your quota).

Given our specific definition of choice functions, we also define the join (V) and meet (/) operations as the natural join and
meet on the real numbers, i.e., given a set of agents A, and two vectors x,y € R4, we say that x V y is the vector such that for
every i € A, (x V y); = max {x;,y; }, and = A y is the vector such that for every i € A, (x A y); = min {x;, y; }.

A given vector € R represents all the available ways some agent i can be matched with the agents in A, and when C is
1’s choice function over A, C(z) represents i’s most preferred matching among all these possibilities.

For any two vectors x,y € R#, Alkan and Gale [2003] gives the following way to determine whether an agent prefers one
of these possibilities over the other.

Definition 11 (AG-preference). For any agent 4 with choice function C' over some set of agents A, and for any two vectors
z,y € R4, we say that z =12¢ y if C'(z V y) = =.

A full matching problem in the model of Alkan and Gale [2003] gives two sets of agents NV and M where each agent 1 € N
and j € M has a choice function and a quota. A perfect matching zz € RV >*M] in this problem will be such that for all i € N
(resp. j € M) with quota ¢, we have ZjeM x5 = q (resp.),y Zij = ¢)- In each matching, note that each vector x; and

x; will be in RM and RY respectively, so we can use the agents’ choice functions to reason about their preferences over their
matchings.
Under this model, the notion of a stable matching is defined as follows:

Definition 12 (Saturation). For some agent ¢ € N, and matching x, % is not j-saturated at = for some j € M if increasing the
amount of j available in x; would cause ¢’s choice function to choose more of j than x; has available. i.e., if for any € > 0,
define the vector y as y;» = x;; forall j/ € A\ {j}, and y; = z;; +e. If C*(y); > m;; is true, the i is not j-saturated.

A symmetric definition can be given for when some j € M is not ¢-saturated for some ¢ € N.

Definition 13 (AG-stability). For any matching problem in the Alkan-Gale matching model, a matching x is AG-stable for that
problem if for every pair of agents ¢ € NV and j € M, either ¢ is j-saturated or j is ¢-saturated.

The goal of Alkan and Gale [2003] is to show a broad class of choice functions such that when all agents in a matching
problem have such choice functions, the set of stable matchings for the given problem will form a lattice with respect to each
side’s AG-preferences, and for a given side, the optimal matching in that lattice can be found through a deferred-acceptance
procedure.

To characterize such choice functions, the authors give two properties.

Definition 14 (Consistency). A choice function C is consistent if for all #, 3y € R“ such that C(z) < y < =, then C(y) = C(z)

is true.

Definition 15 (Persistence). A choice function X is persistent if for all x, y € R such that z > y, then C(y) = C(z) A y.
With these properties, they are able to state the following:

Theorem 5 (Theorem 2 of Alkan and Gale [2003]). For any matching problem where all agents have persistent and consistent

choice functions, there exists a stable matching x* that dominates all other stable matchings in terms of the AG-preferences of

the agents in N, i.e., for any stable matching y, and all i € N, z} =4 y,. This N-optimal matching can be found by running
the procedure of Algorithm 6 with N as the “proposers”.

E.2 Doubly-Strong Ex-Ante Stability Through Choice Functions

We will use a reduction to the model of Alkan and Gale [2003] to show that under our preference model, the set of double-strong
ex-ante stable matching is equivalent to the lattice of matchings for a given AG matching problems, and the proposer-optimal
matching in that lattice can be found through the DFDA procedure.

To do this, we will first define the DFDA choice function in Algorithm 6. For any ordinal matching problem (N, M, = n
, =), we will assume that each agent has an induced DFDA choice function that is based on their preference ordering.

Algorithm 5: Choice functions in the framework of Alkan and Gale [2003] that yield DFDA

1 INPUT: #’s indifference classes F;; Vector x € R4

2 ¢+ 04
3 for £, € E; do

4 iijeEm z; <q—2jech then

5 ‘ VjGEik,Cj(—l'j

6 end

7 else

8 while >, , ¢; < gandc# xzdo

9 Continuously increase c; for all j € E;;, at the same rate. Only stop increasing c; for some j if ¢; = x;
becomes true.

10 end

1 return c

12 end

13 end

14 return c

We will first prove that the DFDA choice function has necessary properties to admit a lattice of stable matching in the
Alkan-Gale model.

Lemma 4. The DFDA choice function is consistent.

Proof. For contradiction, assume this is false. For some agent ¢ with a preference ordering over a set of agents A, and agent
i’s inducedlchoice function C* over those agents with a quota of g, there exists z,y € R4 such that C”(a;) <y < xbut
Cily) # C'(x). |

Let E;;, be the lowest equivalency class that C*(z) chooses agents from before terminating. First consider all the agents from
A who are chosen by C? who are in an equivalency class that is strictly preferred to ;. From the definition of the DFDA
choice function, for each of these agents i € A, C? would have selected the full amount of 5 in x. Thus, for each such j, since
we have that C*(z); < y; < zj and C*(z); = x;, it must be the case that y; = z;. Since C" starts at the highest equivalency
class for i and works its way down, this means that selecting all of each agent strictly preferred to E;;, will not exceed C?’s
quota ¢, and thus we must have that C*(y),; = C*(z); = z; = y; forall j € E;s, k' < k.

Now consider the agents in F;j,. Note that for every j € E;x, we must have that C*(z); < y; < ;. From the definition
of the DFDA choice function, we know that the choice function will select agents from this class by continuously increasing
the matched amount of all agents in this class at an equal rate, only stopping the increase of an agent if that agent becomes full
chosen, quota becomes full, or the vector becomes fully chosen.

By the above arguments, we must have that C?(z); # C'(y), for some j € Ey,. If C*(x); > C*(y);, then consider the exact
time in the equivalent increasing process where C(y) finishes choosing j. At this point, note that we cannot have that the quota
of C7 is full, as by the definition of the DFDA choice function, at the same time in the increasing process for ! (), z >y
implies that C?(x) and C*(y) will have chosen the same amount of all agents in E;, up to that point, while C*(z); > C(y);
continues increasing after this point. Therefore, it must be the case that C(y), has been fully chosen by j at this point, and
thus C*(y); = y;. However, this fact along with C*(z); > C"(y); would contradict the fact that C*(z) < y.

If instead we had C?(z); < C%(y);, then consider the exact time in the equivalent increasing process where C*(z) finishes
choosing j. At the same point during the process of C(y), we know that C*(y) must have chosen the exact same amount of
every agent in E;. This is due to the fact that C*(x) < y. Thus, it cannot be the case that C*(z); stops because its quota is full,
s0 it must be the case that it consumed the full amount of z;. But C*(z); = z; and C*(z); < C*(y); < y; would contradict
Yy < T

This contradicts the fact that such a j exists, and proves that the DFDA choice function is consistent. O

Lemma 5. The DFDA choice function is persistent.

976

977
978
979
980
981

983

984

985
986
987
988
989
990
991
992
993

995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

1010

1011
1012
1013
1014
1015
1016

1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031

1032
1033

1034
1035

1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065

Proof. For contradiction, assume this is false. For some agent ¢ with a preference ordering of a set of agents A, and agent 4’s
induced choice function C" over those agents with a quota of g, there exists =,y € R? with z > y, and some j € A such that
Ci(y); < min {C*(2);,y; }.

Let E;; be i’s lowest equivalency class containing some proposer that is positively chosen by C(z). First note that for all
k' < k, and all j' € E;; it must be the case that C*(y);» = y;-. This follows from the fact that since z > y, we must have
Dok 2ajreB,, Tijt 2 D <k 2ojieE,,, Yij'» meaning that by the definition of DFDA choice functions, since C'(z) was able

to fully choose every j’ strictly preferred to E;, then C(y) will be able to as well.

Therefore, it must be that j is in an equivalency class for i at least as bad E;,, and since C*(y); < min {C%(z);,y; } implies
that C*(x); > 0, then we know that j € FE;;, must be true.

Since we must have that C?(y); < yj;, it must be the case that Ejj, is also i’s lowest equivalency class containing some
proposer that is positively chosen by C*(y). With this in mind, we can see that if C*(x); > y; were true, then by definition of
the DFDA choice function, we should have that C*(y); = y;. This is due to the fact that since z > y, when C*(y) reaches the
class Ei, it will have at least as much free weight to keep choosing as C? (x); did when it reached E;j, and since y;» < z; for
all j' € Ey, if the process that increases chosen weight in equal amounts for each agent in E;;, managed to consume C*(z);
of 7, then that process should certainly be able to consume at least y; < C?(x); of j when choosing from y.

At the same time, if y; > C? (z) j were true, then we would again reach a contradiction, since by the definition of the
DFDA choice function, we would have to have that C?(y); > C*(z),; must be true. To see this, again notice that once C*(y)
reaches equivalency class Ey, it will have at least as much free weight left to choose as C*(x) did at that same point. Since
C"(y); < C"(z);, observe the point of the continuous increase in weight where C"*(y); first stops increasing. This cannot be
because the quota of ok (y) was reached, or that would contradict the fact that y < x, but it can also not be the case that y; has
been fully chosen, since we have C*(y); < C*(x); < y;. These contradictions prove that C* will be persistent. O

Next, we can show that due to the way that we defined DFDA choice function, being AG-Stable with respect to the agents’
induced choice functions is exactly equivalent to doubly-strong ex-ante stability.

Theorem 6. A matching is AG-stable with respect to the agents DFDA choice functions if and only if it is doubly-strong ex-ante
stable with respect to the agents’ ordinal preferences.

Proof. First, we will prove the forward direction.

For contradiction, assume this is false, some matching x is AG-Stable with respect to agents’ induced choice functions, but
not doubly-strong ex-ante stable.

First, we will assume it is not ex-ante stable, thus there exists ¢,7" € N, 7,5/ € M such that j >; j', 7 >; i, z;;7 > 0,
and x;/; > 0. However, it is easy to see that this would violate the definition of AG-Stability with respect to ¢ and j. Since
x;; > 0 implies that C"(z;) must still have some free space left after choosing j’s entire equivalency class. This means that
if we increased j by some small amount in z;, the choice function would choose more, so ¢ is not j-satiated. Similarly, a
symmetric argument shows that j is not ¢-satiated.

Next, we will assume there is ex-ante discrimination on the proposers side, thus there exists 4,7 € N, 7,5’ € M such that
Jj=ijg i~ i, x5 >0, and zy; > x;;. Again, in this case we can see that ¢ is not j-satiated in the vector x; due to the
fact that z;; > 0. We can also observe that j will not be i-satiated due to z;; > x;;. If i and 1’ are not members of the
lowest equivalency class matched to j in x;, then increasing i in x; will cause C7(z;) to select more of it in favor of the lesser
preferred proposer it is currently matched to. If ¢ and ¢’ are in the lowest equivalency class for j, then note that since z is a
perfect matching, at the point of j’s DFDA choice function where the continuous increasing process has chosen x;; of ¢, it will
have not have chosen its entire quota yet, since it still continues on to choose more of x;/ ;. Thus, if ;; were to be increase, this
continuous process would choose at least some of that increase, and reach its quota slightly before choosing the full amount
of x4;. Note that deriving a contradiction when the matching has ex-ante discrimination on the acceptors side would be a
symmetrical argument to above.

Lastly, we will assume that the matching is not ex-ante indifference neutrality, thus there exists 7,7’ € N, 7,7 € M such
that j ~; 7', 1 ~j 1, Zi5 < Ty, and x;; < x4;. In this case, we can show that ¢ is not j-satiated, and the fact that j is not
i-satiated follows from a symmetrical argument. If j and j’ are not in 7’s lowest equivalency class, then increasing j will cause
1 to accept it in favor of the less preferred acceptor it is currently matched to. If 7 and 5 are in 7’s lowest equivalency class, then
in a identical argument to the previous paragraph, z;; < x;; implies that increasing x;; will cause 7’s choice function to select
more of j as part of the equivalent increasing process.

This concludes the proof of the forward direction. We will next show the backwards direction. For contradiction, assume that
some matching x is doubly-strong ex-ante stable, but is not AG-Stable with respect to the agents’ induced choice functions.

Leti € N, j € M, be the pair of agents that violates AG-Stability, i.e., we have that ¢ is not j-satiated, and j is not ¢-satiated.

Since i is not j-satiated, this means that there exists some vector y; with y;;; = x,;;/Vj’" € M \ {j} and y;; = x;; + ¢ for
some € > 0, such that C%(y;); > C%(z;);. Similarly, we since j is not i-satiated, there must exist a symmetrically defined
vector y; such that C7(y;); > C7(x;);.

Since « is a perfect matching, we must have that jem Tij = 1, and thus since the quota of each agents’ choice function
will be 1, and we have C*(y;); > C*(x;);, there must be some j' € M such that C*(y;);» < C*(z;); . Similarly, there must
be some i’ € N such that C7(y;); < C?(z;);. We will now consider each possible case for i’s preference ordering over j and
j', and j’s preference ordering over ¢ and ¢’.

First, note that it cannot be the case that 7/ =; j. By the definition of the DFDA choice function, if j =; j is true, then
since we have C*(y;); > C"(x;); > 0 we must also have that C*(y;);» = v;; . This follows since the only way C*(y;);» < yij-
would be true is if j” is in the lowest equivalency class chosen by i in C*(y;). But, C*(y;);» < C' () < Ty = yijr
contradicts this. Meaning that j =, j/ must be true. By a symmetric argument, we can also say that ¢ =; ¢’ must be true.

Case 1: j =; j',i>;i’. In this case, note that 0 < C*(y;); < C'(z;); implies that C*(z;);» > 0 and thus x;;; > 0.
Symmetrically, we also have that z;;; > 0. This implies that = violates ex-ante stability with respect to 4 and j, giving a
contradiction.

Case2: j~;j,i ~j i’. In this case, we again have that 245+ > 0, this means that 2;; > x5, otherwise this would mean that
2 violates no ex-ante discrimination for the proposers. Note that this means we have y;; > ;; = xy; = y;. Butif this were
true, we could not also have that C7 (y;) < C¥(x;); < xirj = y;i and CI(y;); > C¥(z;),. This follows from the definition
of the DFDA choice function. Since C7 (yj)y < y;y, it must be the case that i/, and thus 1, are in the lowest equivalency class
among accepted proposers in C7(y;). Since the only difference between z; and y; is that y;; > x;;, this means that the choice
process will be identical up until the point where x;; of i is chosen. Note at that point, due to ¢ ~; ¢, and the DFDA choice
function choosing all agents in the lowest equivalency class at equal proportions, we must have that at that point in the choice
process, CV will have chosen at least min {z;;, y;i = 7} = y;i» of i/, contradicting that fact that C? (y;)i < ys/;.

Case 3: j ~; j’,i = 1'. This follows from a symmetric argument to that of Case 2. Since we have z;/; > 0, we must have
x;; = T;;, but this produces a contradiction.

Case 4: j ~; j',i ~; i’. By the argument presented in Case 2, we know that ;; > x;;- and ¢ ~; ¢’ leads us to a contradiction
of the fact that C7(y;);» < CY(z;)i. So it must be true that z;; < ;. However, we also know that using a symmetrical
argument to case 3, x;; > x;;» and j ~; j' leads to a contradiction of the fact that C?(y;);» < C%(x;);/, so it must also be
true that x;; < x5 is true as well. However, this would mean that 2 violates ex-ante indifference neutrality, again causing a
contradiction.

This shows that a contradiction occurs for every possible ordinal preference ordering of ¢ and j, thus proving the statement.
O

In the case of our matching problems, we can relate this proposer optimal matching under AG-preferences back to our
traditional notion of preferences through the following lemma:

Lemma 6. For any two doubly-strong ex-ante stable matchings x,y, if x; =4 y; for some i, then z; =" y;.

Proof. For contradiction, assume this is false. For some matchings z, y, we have x; %\G Yi, and thus C’i(xi Vy;) = x;, but
. .SD .
not x; =7 Y.

This means that there is some equivalency class fo i, E;;, such that 7, . ZjGEik/ Yij > D ek ZjeEW x;;. By the fact
that = and y are both perfect matchings, this implies that there exists some other equivalency class F;x with k' > k such that
Dok <kt Doje By Tid > 2okr<k 2aje B Vi

From this, we are able to conclude that there exists some j that 7 places in at least class E;;, or higher, such that y;; > 5,
and there is some j' that 7 places in at least class E;/ or lower such that Ty > Yiyr. Since y;; > x5, we must also have
that (z; V yl)j = Yij > Tij. Thus, if Cz(:cl Vv yl) = x;, then we must have that C’l(x.i Vi) < (x; v ¥;);. By the way the
DFDA choice functions are defined, this would imply that the equivalency class of j is i’s lowest equivalency class that has
any matchings in C"(z; V y;), but this would contradict the fact that C*(z; V y;),;» = x5+ > 0. L]

As the final step of this process, in Theorem 1 of Alkan and Gale [2003], the authors provide an algorithm (Algorithm 6) that
produces the proposer-optimal matching among AG-preferences. We can show that when agents have DFDA choice functions,
this algorithm will be equivalent to the DFDA algorithm.

Theorem 7. Algorithm 6 is equivalent to Algorithm 3.

Proof. We can show this equivalence explicitly, by walking through the execution of the DFDA algorithm, while also keeping
track of a new matrix b. After each step k of Algorithm 3, we say that forall i € N, j € M, bfj = mfj if any fraction of ¢
has been rejected by j by that point of the algorithm, and otherwise bfj = 1. Intuitively, b* represents the total fraction of each
proposer that has not yet been rejected from each acceptor.

For any ¢« € N and j € M, we can show that ¢’s tentative matching to j at step k — 1, :cfjfl, plus his tentative proposals to j
in round k will equal C(bF);.

To see this, let P; be the set of agents that ¢ is proposing to in this step. Assume the acceptors in P; belong to the equivalency
class E;j. By definition of DFDA, ¢ must be rejected from all acceptors in the class E;y/ for every k' < k. This means that for

1066

1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

1094
1095

1096

1097
1098
1099
1100
1101
1102
1103
1104
1105
1106

1107
1108
1109

1110

1111
1112
1113
1114
1115
1116
117
1118

1119

1120
1121
1122
1123
1124
1125
1126
1127
1128
1129

1130

1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146

Algorithm 6: The deferred-acceptance procedure of Alkan and Gale [2003] with the choice functions in Algorithm 5.

1 BO « 1NxM
2 X0 1NxM
3 }IO «— 01V><AJ

4 k<0

s while X* £ Y* do

6 fori € N do

7 | X Ci(BY)

8 end

9 for j € M do

10 ‘ ij+1 « CI(XM
11 end

12 forie N,j € M do
1 if Vi = X+ then
14 ‘ ij""l = ij

15 end

16 else

o | || B
18 end

19 end

20 k+—k+1

21 end

2 return X

all such acceptors j' € Uy < E;xs, we have that beTl = xfj?l. Since ¢! is a valid matching, C’i(bf_l) must choose the full
amount of :UZTI for each such j’. After the DFDA choice function has selected these matchings from all preferred equivalency
classes, it will select matchings from F;;. Note that it must be the case for every j' € E;;, \ P;, ¢ must have been rejected from
4, thus will have bijl = xfj71. For all j/ € P;, we will have bZTl = 1. Now we can simply observe how the DFDA choice
function will choose matchings from this class.

Due to the properties of the DFDA algorithm, at each step of the algorithm, if j ~; j’, 7/ has rejected i before step k and j
has not yet been rejected, then we must have zfj_l > mfj71. This means that every j € P; is matched to ¢ with at least as much
weight as all the acceptors in Fyy, \ P;.

We can note note that C’i(béC ~1) will choose the full available amount of every j/ € E;; \ P;. This follows from the fact that

281 is a valid matching, and xf ~! must not exceed 3’s quota of 1. Thus, if Ci(bffl) was not able to choose full amount of
some acceptor in j° € Ej;; \ P; this would contradict that fact or the fact that all acceptors in P; must have a higher matching
that 5/ in 2" 71,
Finally, note that in =1, it must be true that for all j,j" € P;, we have that xfj_l = xf;l, this follows from the fact
that neither of 7 and j’ have been rejected yet, and thus by the definition of the DFDA, every time 4 proposed to one of them
previously, it proposed to both of them the same amount. Since it must be the case that the matching formed by J]?il and ¢’s
proposals in step k is perfect matching that exactly meets ¢’s quota, and we know that all agents other that those in P; from
equivalency classes at least as good as FE;j, will be chosen at exactly their z*~! matching in Ci(bf_l), it follows that the final
part of the C! (biC ~1) will be for C* to continue choosing the acceptors from P; at an equal rate until it has chosen an amount of
each of them exactly equal to the amount at which they are matched to 7 in z*~! plus i’s proposals, at which the quota of i will
be filled, and it will stop.

One can also note that in each step of the DFDA algorithm, when each acceptor looks at the tentative proposals it received in
that step and makes it’s rejections, the matching it selects will be identical to the vector selected by the DFDA choice function
when run against the vector formed by that acceptor’s tentative matching at step k£ — 1 plus the proposals it received in step
k. Unlike the previous statement, this does not require a nuanced proof, it follows trivially from the definition of the DFDA
choice function, and by the described way that the acceptors make their rejections in the DFDA algorithm. It is easy to see that
these are the exact same process.

With this in mind, it is easy to see that the Algorithm 6 is performing the exact same steps as the DFDA algorithm. At every
step, B*~1 is defined equivalently to how we defined b, X* represents the proposers tentative matchings plus their proposals at

this step, and Y'* represents the acceptors rejection choices. The final step of each iteration updates B to reflect any rejections
that happened this step. From this, we can see that the tentative matching x* produced after step & of the DFDA algorithm will
be equivalent to Y* in Algorithm 6. O

From Lemma 6, we can conclude that the optimal matching that is guaranteed to exist for AG-preferences is also optimal
under our traditional notion of preferences, and through Theorem 7, we can conclude that the process that is known to find
this matching is equivalent to DFDA. This completes the proof of Theorem 1, as it shows that DFDA will converge to a
proposer-optimal doubly-strong ex-ante stable matching.

F Missing Proofs from Section 5

Lemma 7. For any acceptor j € M, if at any point during the execution of Algorithm 1 we have |x;| = 1, then |z;| = 1 will
remain true for the rest of the algorithm.

Proof. To see this, it is sufficient to note constraint (5) of the LP, Vj € M, |x;| =1 — z; = >,y ¥ij-

Since || = 37, «i;» and after each execution of the LP, each x;; will be updated using the formula z} ' « 2, +y;;— 2},
we have that the value of |z;| gets updated by the formula [2/*!] « |ot| + S,y (u5; — 250) = |af| + Yien iy — 25 =
|x§ | = 1. With the first equality being directly implied by constraints (7) and (8) of the LP. O

Lemma 8. Foranyi € N and j € M, if at any point in Algorithm 1, i € R; \ A;‘f is true, then it will remain true for the rest
of the algorithm.

Proof. From the logic of Algorithm 1, we can see that the only proposers in I2; who are matched with positive weight to j are
those in A%. Thus, it must be the case that ¢ is not matched to j with any positive weight in this step, and thus, we must have
that j strictly prefers all the proposers it is currently matched with to <.

Since 7 € R; is true in this step, it follows from the definition of P; that j ¢ F; must be true. Thus, from condition (4) of the
LP, we know that the matching between i and j cannot increase while ¢ € R; is true.

Note that this same argument holds for any proposer ¢’ such that ¢ >=; i’. Thus, in the next step of the algorithm, no such
agent ¢/ will become positively matched with j. Thus, after the next step, 7 will still strictly prefer everyone in its matching to
all such ¢/, thus ¢’ € R; will still be true.

We can continue this argument inductively, and conclude that after every step, j will still prefer everyone in its matching to ¢
and ¢ will never be positively matched to j, thus ¢ will remain in R; \ A7 for the rest of the algorithm O

Lemma 9. Foranyi € N and j € M, if at any point in Algorithm I, i € A% is true, then i will only leave A; if it is fully
rejected from j, and enters R; \ A;f.

Proof. A;f is defined as the set of proposers who are among the lowest equivalency class matched to j, and among those, the
proposers with the highest weight matched to j.

From Lemma 8, we know that this cannot happen because some other proposer from a lower equivalency class becomes
positively matched to j. So, it must be the case that some proposer in the same equivalency class to j becomes matched to j
with a higher weight than i.

For contradiction, assume that this happens, at some step of the algorithm ¢ € A7 is true, but in the next iteration, after
running an instance of the LP and updating the matching, 7 is no longer in A, and thus there is some ¢’ with ¢’ ~; ¢ who is
matched to 5 at a strictly higher amount than ¢ is.

By condition (7) of the LP, we can see that if i’ € A;f were also true, this would lead to a contradiction. Condition (7) ensures
that 7 and " would be rejected from j the exact same amount during this iteration of the LP, and from the fact that they are in
A3, we can conclude that j ¢ P; and j ¢ Py are also true, and thus y;; = y;7; = 0 in the LP solution. Therefore, updating the
niatching with such a solution could not cause ¢’’s matching with j to exceed .

In the case where i’ ¢ AY, then by the fact that 7’ ~; 7, we can conclude that i’ € A; \ A% must be true, and we can easily
see that this leads to a contradiction by observing condition (10) of the LP. By condition (10) x;; — z;; > x4; + y;; must be
true. Again we can conclude that y;; = 0 from the fact that i € A7, and we can also conclude that z;;» = 0 from the fact that
i/ & A*, following from condition (8) of the LP.

This also shows that in this case, updating the matching with the LP solution will never cause ¢"’s matching with j to exceed
i’s. O

Lemma 10. Foranyi € N and j € M, at any point of Algorithm 1, if i € R; is true, then for all i' € N such that i ~; 7',
T45 = i will remain true for the rest of the algorithm.

1147
1148
1149

1150
1151
1152
1153

1154

1155
1156

1157

1158

1159

1160

1161
1162

1163
1164
1165
1166
1167
1168
1169
1170
171
1172

1173
1174

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192

1193
1194

1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208

1209
1210

1211
1212

1213

1214

1215

1216

1217

1218

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238

1239
1240

1241
1242
1243
1244
1245
1246

Proof. First note that if i € R; \ A7 is true, then it must be matched to j with 0 weight, and j must strictly prefer everyone in
its current matching to ¢. This implies that all 7’ would have to be matched to j with 0 weight as well, and by Lemma 8, this
would continue to hold for the remainder of the algorithm.

Next, from Lemma 9, we know that after the first step where ¢ € A7 is true, it will not leave A7 until it is fully rejected by j.
Thus, at any point after it gets added to A7, but before it gets it gets fully rejected, we will have that z;; > x;/; must be true for
all ¢’ such that ¢ ~; 7’.

Next, observe that on the step where ¢ gets fully rejected from 7, it must be the case that this step, all ¢’ will also be matched
to j with weight 0. If this were not true, then it is clear to see that i’ would have had to violate condition (7) of the LP (if it were
in A7), or condition (10) of the LP (if it were in A; \ A¥) to be positively matched to j at this step.

From the fact that € A; was true in the previous step, we know that all proposers who j strictly prefers ¢ to must in 12; \A;,
and thus by Lemma 8 will remain there for the rest of the algorithm. By the above analysis, we can also conclude that on the
step where i gets fully rejected by j, all proposers in 7’s equivalency class will be matched to j with weight 0 as well, and thus
is must be the case that j strictly prefers everyone in its matching to ¢ at this point. Thus, for all ¢’ such that ¢ ~; 4, we must
have i’ € R; \ Aj, and by Lemma 8, they will all remain matched with j at O forever. O

Lemma 11. Forany i € N and j € M, at any point of Algorithm 1, if i € R; becomes true, then i € R; will remain true for
the rest of the algorithm.

Proof. 1f at this point, i € R; \ A}’f is true, then this immediately follows from Lemma 8.

If on the other hand, 7 € A; is true at this point, then we know from Lemma 9, that it will remain in A}‘ until it is fully
rejected, and it is implied by Lemma 10 that once 7 is fully rejected, it will enter R; \ A%, and thus remain there forever. O
Lemma 1. In any solution to the LP, one of the following will be true:

*(B)Jje M, x| <1,3 envij=1—w;

Proof. For contradiction, assume that for some proposal graph G, component C, and existing (z, w), the corresponding LP
outputs a solution where none of these conditions are true.

First, because condition (A) is false, that means there exists some agent i* € C} such that y;« < > jeM Zjit T Wi Intuitively,
this means that after the LP has been resolved and the current matching has been updated with the values of y*, z*, ¢* will have
free weight remaining.

We can show that, since conditions (B), (C), and (D) are also all false, ¢* should be able to propose more of their weight
without violating the constraints of the LP, leading to a contradiction of the fact that the LP returns a solution maximizing the
sum of proposed weights over all the proposers.

Consider what happens if the value of y;~ increases by some very small €. For each j € P;«, the value of y;-; will increase
by /| P;«|. For each of these j’s, if |x;| < 1, then by the fact that condition (B) is false, we know that >\ vi; < 1 — ||
must be true. As long as epsilon is sufficiently small, it will be the case that), _\ yi; +€/|Pi-| < 1 — |z;] as well.

Additionally, for all the j € P;« such that |x;| = 1, then increasing the proposals to j means that it will have to reject more
of the agents in A;f. Specifically, since proposals to j are increasing by /| P;«|, j will increase its rejection of each proposer in
Aj by a factor of £/(|P;«[|A}]). Due to condition (C) and (D), such a change will always be possible. We must have that for
all 7 € A;f, zj; < x;j, and for all " € A; '\ A;f, we have that x;; — z;; > xy; + yi7;. Thus, given ¢ is sufficiently small, the
inequalities z;; + /(| P+ ||A}|) < w45 and ;5 — zj; — /(| Pi+||A}]) > @irj + yir; will still hold.

One can easily verify that the rest of the constraints of the LP will trivially hold after this € increase as well, as they are all
equality constraints that we already implicitly handled above, or have no relation to the variables that we changed.

The above procedure will increase y;- by a factor of ¢, while maintaining all the necessary inequalities of the LP provided
that ¢ is sufficiently small, giving the desired contradiction. [

Lemma 2. Let y*, 2* be the variables after resolving some LP in Algorithm 1. The process of updating the current matching
using y*, 2* will change the proposer graph only if at least one of the conditions (B), (C) or (D) are true.

Proof. For contradiction, assume this is false and that in an LP solution y*, 2* where conditions (B), (C), and (D) are all false,
but the corresponding updating of the matching changes the proposal graph. Consider the different ways that the proposal graph
can change.

First, observe the fact that for any 7 € M,7 € N, an edge from j to ¢ can only change (either appear or disappear) in the
proposal graph if A% changed in this iteration. This follows immediately from the fact that by definition, the edge (j,14) exists
in the proposal graph if and only if ¢ € A;f.

Slightly less trivially, we can observe that for any i € N, j € M, an edge from ¢ to j can only also change in the proposal
graph if A%, changed for some j' € M in this iteration. For any fixed 4, the set of j such that (7, j) is an edge in G will be the set
of j among ¢’s highest equivalency class such that j ¢ R;. Since we know from Lemma 11 that once some acceptor is placed
into R;, it will never be removed for the remainder of the algorithm, it must be the case that if some edge (¢, j) is removed from
the graph, then j was added to R;, and similarly, if some edge (4,) is added to the graph, then some j’ must have been added
to R; that lowered the ¢’s highest unrejected equivalency class. Clearly, an acceptor j' can only be added to R; if they are either
directly added to A%, or if the lowest equivalency class matched to j changed, which would also cause A* to change.

Thus, it is sufficient to show that if conditions (B), (C), and (D) are all false after some iteration of the LP, then A}‘ will
remain the same for all j € M.

In our assumption for contradiction, let j be the acceptor such that A% changes. First consider the case that there is some ¢
that was A* in the previous step, but is not anymore. It cannot be the case that ¢ was fully rejected from j, otherwise that would
violate condition condition (C). But from Lemma 9, we know that once some ¢ is in A}, the only way it can leave A; is by
being fully rejected. So this cannot be the case.

Therefore, there must some i that was not in A} previously, but is there now. It cannot be the case that 4 is part of a brand new
equivalency class that was not in A} previously, as that could only happen if j just became full for the first time, which would
violate condition (B), or the proposers from some higher equivalency class were fully rejected in the previous step, violating
the argument from the last paragraph. Therefore, it must be the case that there are other proposers from the same equivalency
class in A7, and 4, previously being in A; \ A% has become matched to j at the same weight as them. But clearly this could
only happen if a violation of condition (D) occurred. O

Lemma 3. In some iteration of the main while loop in Algorithm 1, if for every component Cy of proposers, the LP run on C
terminates with only condition (A) being true, then the matching produced by the last component being solved will be a perfect
matching.

Proof. First note that due Lemma 2, since conditions (B), (C), and (D) are never true during such an iteration of the while loop,
the proposal graph will never change, and thus the LP will run on every strongly connected component of proposers.

By definition of condition (A), if an LP for component C'; terminates with (A) being true, then each proposer in C; will have
no free weight after the matching is updated with the LP values. Further, from the fact that the components are solved in a
topological ordering, if an agent ¢ € C; does not have any free weight after C; is solved, then there is no component Cy with
t' > t whose solution will result in new free weight being pushed back to i.

To formalize this, we can say that for every Cy ordered after Cy, and for all i' € C, 4 is not reachable from ¢’ in the proposal
graph. This means that if there is an edge (¢’, j) for some j € M in the proposal graph, then there cannot be an edge (j,4) in
the graph as well.

It can easily be seen from conditions (5) and (6) of the LP that for any j € M, z; > 0 only if y;;; > 0 for some i’ € N.
Since for an execution of the LP on C}/, the only proposers that propose their weight are proposers in Cy/, we have that for any
j€M,yy; >0onlyifi € Cp and (7', 7) is an edge in the proposal graph. Therefore, for any Cy ordered after C, there will
never be a j € M in the LP solving Cy such that z;; > 0. Thus, for all i € Cy, we will have ZjGM zj; = 0, meaning that
w; = 0 after updating the matching with the new values from the LP. [

Theorem 3. Algorithm I terminates in polynomial time, and will output a perfect matching.

Proof. Each iteration of the main for loop simply runs an LP with the number variables and constraints being polynomial in
the number of agents, then updates the proposal graph. Clearly a single iteration of this loop terminates in polynomial time,?
and since it runs once for each strongly connected component in the proposal graph, each instance of this for loop will have at
most | N| iterations. Therefore, we just need to show that the algorithm terminates after a polynomial number of iterations of
the main while loop.

From Lemma 1, we know when we run the LP on a component C}, one of four listed conditions—(A), (B), (C), or (D)—must
be true.

Condition (A) represents that the LP was able to resolve all the free weight from the proposers in C;. From Lemma 3, we
know that if this happens for every component in a given iteration of the while loop, the the algorithm will terminate with a
perfect matching after that iteration.

The other three conditions all correspond to events that cause the proposer graph to change, and thus move the algorithm
forward. We will show that each of these conditions can only occur polynomial number of times.

If condition (B), 3j € M, |x;| < 1,),c 5 ¥ij = 1 — |z, is true, that means that there existed some acceptor j that was not
full at the beginning of the LP, but is full afterwards. From Lemma 7, we know that this can only happen at most | M| times
during the algorithm, since once an acceptor become full, its weight cannot go down again.

8Crucially, note that the optimal solution (y*, z*) of each LP affects the updated matching x, which is involved in the right hand side of
the subsequent LP. If one uses an arbitrary polynomial-time solver for LPs, this may cause an exponential blow-up in the bit-complexity of
the successive LPs and, hence, the time it takes to solve them. This can be prevented by using a polynomial-time algorithm for solving LPs
whose running time is independent of the bit-complexity of the right hand side, such as that of Tardos [1986].

1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

1266
1267
1268

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282

1283

1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298

1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309

1310
1311
1312
1313
1314

1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325

1326

1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

If condition (C), 3i € N,j € M, x;; > 0, z;; = x4, is true, this means that some proposer ¢ did have weight matched with
some acceptor j at the beginning of the LP, but was fully rejected from j by the results of the LP. By condition (8) of the LP,
we can see that z;; can only be positive if ¢ € A7 is true. ¢ € A% implies that ¢ € R; is true, and by Lemma 11, this means that
1 € R; will remain true for every future step of the algorithm. 7 € I; also implies that j € P; cannot be true. Finally, following
from condition (4) of the LP, in any future iteration of the algorithm, y;; can only be true if j € P; is true. This means that
once 1 is fully rejected from j, it can never increase again. Thus, this can only happen once for every ¢ and j, meaning it only
happens |N|| M| times total.

Finally, if condition (D), 35 € M,3i € A%, 3’ € A, \A Tij — Zji = Tyj + Yij is true, this means that there is some
acceptor j, and some proposer ¢ thatisin A; (among the lowest equivalency class proposers matched to j), but not in A* (does
not have the most weight matched to j among proposers in A;) who becomes tied for having the most weight matched to j
among proposers in A, either by x;; increasing and/or x decreasmg for all i’ € A%. We note that an LP can only terminate

with this condition being true once for every 4,4’ pair, meaning that it can only happen at most | N |2| M| times throughout the
course of the algorithm.

To see this, first note that condition (D) being true implies that 7 and " will be matched to j in the same amount after updating
the matching with the LP results. This is because we have x;; — zj; = x;; + y;7;, and we also know from the fact that 7 € A;f
that y;; = 0, and from the fact that ¢’ ¢ A* that z;;; = 0.

Next, note that i € A before the LP execution implies that either i € A} ori € R; \ A} must be true after updating the
matching. This follows from Lemma 11. If ¢ € A7 is true, then by the fact that i and ¢’ are now matched to j with the same
amount, then i’ € A% is also true. If ¢ € R; \ A7 is true, then ¢, and thus, 7/ must be matched to j at weight 0, and therefore
i€ R;\ A; must also be true. Either way, we have that i’ € R; is true. By Lemma 11, we know that ¢’ will never leave R; for
the remainder of the algorithm, so therefore, it can never be in A; \ A; again, and thus condition (D) cannot repeat with these
agents.

This means that after at most (| V|| M) + (|N|?|M|) + | M]| iterations of the main while loop, either conditions (B), (C), and
(D) will have have occurred their maximum number of times, or the algorithm has terminated.

Thus, if the algorithm has not terminated at this point, then in the next iteration of the while loop, condition (A) and none
of the other conditions are true after each LP is solved. Following from Lemma 3, the algorithm will terminate after this
iteration. H

Theorem 4. The matching produced by Algorithm 1 is doubly-strong ex-ante stable.

Proof. First, we will show that Algorithm 1 returns an allocation that is ex-ante stable. For contradiction, assume this is false.
This means that there are some 4,7’ € N and j, j* € M such that j >; j', i >, ¢/, x;;» > 0, and z;-; > 0 are all true.

Note that if z;;; > 0, that means that at some point of Algorithm 1, j " € P; must have been true. This means that ¢ € R;
must have been true at that point, or else, j € P; would have been the case instead. ¢ € I2; implies that j can only be currently
matched to agents that are weakly preferred to ¢, and therefore strictly preferred to . Thus, we must have that z;;; = 0 and

" € R; at this point. By Lemma 11, ¢’ will remain in R, for the rest of the algorithm, and therefore cannot be positively
matched to j in the final output, causing a contradiction.

Next we will prove that Algorithm 1 has no ex-ante discrimination for the proposers. For contradiction, assume this is false.
Then there are 4,3’ € N, j,j' € M suchthati ~; i, j =; j', x;» > 0, and z;1; > x;; are all true.

As in the argument for ex-ante stability, x;;; > 0 means that at some step of the algorithm, j € P, thus i € R;. Thus,
immediately from Lemma 10, we can conclude that x;; > x4, giving a contradiction.

Next, we will prove that the matching produced by Algorithm 1 has no ex-ante discrimination for the acceptors. For contra-
diction, assume this is false. Then there are j, ;' € M, 4,7’ € N such that j ~; j', i >; ¢/, zy7; > 0, and x;j0 > x;5.

Since, x;7; > 0 we know that ¢ ¢ R; was true at every point of the algorithm. Note that by the condition (3) of the LP,
whenever ¢ proposes any of its weight to 5/, since ¢ € R; was never true, it must be the case that ¢ will always propose an equal
amount of weight to j. Thus, the only way that x;;» > x;; could be true is if j ever rejected some weight from ¢, which is not
possible due to ¢ & R;.

Finally, we will prove that x is ex-ante indifference neutral. For contradiction, assume this is false, and there exists agents
7;7il €N, j,j/ € M, such thatj ~j j/,) ~j i/, Tij < Ty and Tij < Tyrg.

Note that z;; < x;;- implies that at some step in the algorithm, we had ¢ € R;. This follows from the fact thatif ¢ € R; was
never true, then in an identical argument to the previous paragraph, we know that every time ¢ proposed to ;7' it must have also
proposed the same amount to j. Thus, if ¢ € R; were never true, it would have to be the case that x;; > x;;.

However, z;; < x;; implies that i € R; was never true at any point in the algorithm. This follows from Lemma 10, as
1 € R; would imply w;; > x4 ;. This along with the paragraph above clearly cannot be true at the same time, giving us the
desired contradiction. O

G Why We Demand Proposers With Free Weights

Suppose there are proposers 4,7’ and acceptors j, j’ with preferences shown on the right, and suppose

: : - I Preferences

that at some point of the algorithm, we have z;;; > 0 and x;;; > 0. Also, suppose that ¢ is rejected e
from j’ and one of the acceptors she will propose to next is j, and ¢’ is rejected by ;7 and one of the o3 =)
acceptors she will propose to next is j'. Finally, suppose ¢ and ' both have no free weight. This would Z/] - J '
form the following cycle in our proposal graph: ¢ — j — ¢/ — j' — 4. J: Zq* Z/_
VA)

If we did not have the w; > 0 condition, then the LP would maximize flow through this cycle, swapping matched weight on
(i,7") and (', §) for equal weight on (i, j) and (¢', /). However, this leads to the proposers worsening. Also, it does not reflect
any actual proposals and rejections that would have happened in DFDA because ¢ and i’ had no free weights to kick them off.
Adding the condition to Line 7 that some proposer in C; must have free weight prevents such extra proposals and rejections,
thus bringing DFDA-SCC closer to mimicking DFDA.

H Incompatibility With Pareto Optimality

Consider the instance in Figure 3(a), where proposers 4 and ¢’ are indifferent between acceptors j and j', and j is also indifferent
between 7 and 4, but 5’ strictly prefers 7 to 7’. The only Pareto optimal matching is given in Figure 3(c), which makes j'—the
only agent who is not completely indifferent—maximally happy. However, this violates the requirement of ex ante indifference
neutrality that x;; > min {z;;/, z; ; }. Note that DFDA and DFDA-SCC produce the matching shown in Figure 3(b) because
both proposers initially propose a weight of 1/2 to both acceptors, which accept them, and the algorithms immediately terminate.

Preferences
. -/ s s
it je~ g ‘ J J ‘ JJ
gioin~d i | Y2 1/ 1 |0 1
geoa=d i | Y2 12 i1 0
(a) Preferences. (b) DFDA matching. (¢) Ordinally Pareto dominant.

Figure 3: DFDA can be Pareto sub-optimal.
DFDA can be Pareto sub-optimal.

I Extended Discussion
Due to space constraints, the following discussion points are deferred here from Section 6.

One-sided matching with weak agent priorities. Two-sided matching includes one-sided matching, also known as the
house allocation problem Hylland and Zeckhauser [1979], as a special case, where agents are matched to objects, agents
have preferences over the objects, and we can treat every object as being indifferent between all the agents. In this case,
DFDA does not seem to coincide with any known algorithm. It cannot ordinally dominate its competitor, probabilistic serial
(PS) Bogomolnaia and Moulin [2001], because PS is ordinally efficient, but we are able to produce instances where PS ordinally
dominates DFDA. That said, DFDA yields a natural extension to the case where both sides have weak preferences, whereas for
PS, extensions are known only when either agents have weak preferences Katta and Sethuraman [2006] or objects have weak
priorities Han [2024], but not both.

Tradeoffs with other criteria. As mentioned in Section 1, there are various other criteria for fractional two-sided matchings
studied in the literature, such as ordinal fairness Han [2024], envy-freeness and justified envy-freeness Trobst and Vazirani
[2024],° and popular matching Huang and Kavitha [2021]. It is worth exploring the tradeoff between our criteria (particularly,
ex ante stability) and these other criteria as well as with utilitarian welfare Caragiannis et al. [2019a] in two-sided matching.

Best-of-both-worlds guarantees. As mentioned in Section 1, fractional matchings can be implemented as lotteries over
integral matchings due to the Birkhoff-von Neumann theorem Birkhoff [1946]. This simply finds an arbitrary lottery under
which the marginal probability of agents 7 and j being matched is precisely x;; for all ¢ € N and j € M. Recently, there
is a growing literature on implementing fractional solutions as lotteries while providing “best-of-both-worlds” guarantees: ex
ante guarantees on the fractional solution and ex post guarantees on every integral solution in the support Aziz et al. [2023a,b];
Feldman ez al. [2024]; Hoefer et al. [2024]. These often use strengthened versions of the Birkhoff-von Neumann theorem such
as the bihierarchy extension due to Budish et al. [2013]. Whether the fractional matchings returned by DFDA or DFDA-SCC

°It should be noted that the justified envy-freeness criterion of Trébst and Vazirani [2024] is different from the no justified envy criterion
common in the deferred acceptance literature that coincides with stability for one-to-one matching.

1352

1353

1354
1355
1356
1357
1358
1359

1360

1361
1362
1363
1364
1365

1366

1367

1368
1369
1370
1371
1372
1373
1374
1375

1376
1377
1378
1379

1380
1381
1382
1383
1384
1385
1386

1387
1388

1389
1390
1391
1392
1393

can be implemented while obtaining some ex post guarantees (such as stability of the integral matchings in the support) is an
exciting question for the future.

Many-to-many integral matchings. Following the discussion on multi-unit capacities from Section 6, when agents on both
sides have multi-unit capacities it is also interesting to investigate integral matchings with approximate fairness guarantees:
Freeman et al. [2021] do so for a relaxation of envy-freeness called EF1, leaving open the question of whether a matching
satisfying EF1 for both sides always exists under additive cardinal utilities, but we are not aware of any work doing so for
relaxations of stability-inspired criteria.

	Introduction
	Our Contributions

	Preliminaries
	Stability and Fairness Criteria
	Proposer-Optimal Matchings

	The Fault in Our Stars: Strong Ex Ante Stability in Finite Time?
	Doubly-Fractional Deferred Acceptance
	A Polynomial-Time Algorithm for Doubly-Strong Ex Ante Stable Matching
	Analysis of DFDA-SCC
	Proof of polynomial-time termination
	Proof of doubly-strong ex ante stability

	Discussion
	Extended Related Work
	Algorithms FDA, DFDA, and FDA-Cycle
	Failure of FDA-Cycle on Our Counterexample
	Detailed Description of DFDA-SCC Linear Program
	Alkan-Gale Stability
	Alkan-Gale Matching Model
	Doubly-Strong Ex-Ante Stability Through Choice Functions

	Missing Proofs from Section 5
	Why We Demand Proposers With Free Weights
	Incompatibility With Pareto Optimality
	Extended Discussion

