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Abstract

Diffusion Transformers (DiT) have attracted significant attention in research. How-
ever, they suffer from a slow convergence rate. In this paper, we aim to accelerate
DiT training without any architectural modification. We identify the following
issues in the training process: firstly, certain training strategies do not consistently
perform well across different data. Secondly, the effectiveness of supervision at
specific timesteps is limited. In response, we propose the following contributions:
(1) We introduce a new perspective for interpreting the failure of the strategies.
Specifically, we slightly extend the definition of Signal-to-Noise Ratio (SNR) and
suggest observing the Probability Density Function (PDF) of SNR to understand
the essence of the data robustness of the strategy. (2) We conduct numerous experi-
ments and report over one hundred experimental results to empirically summarize
a unified accelerating strategy from the perspective of PDF. (3) We develop a new
supervision method that further accelerates the training process of DiT. Based
on them, we propose FasterDiT, an exceedingly simple and practicable design
strategy. With few lines of code modifications, it achieves 2.30 FID on ImageNet at
256×256 resolution with 1000 iterations, which is comparable to DiT (2.27 FID)
but 7× faster in training.

1 Introduction

With the advent of Sora [36], its foundational model, Diffusion Transformers (DiT) [37], has
ignited extensive research interest. DiT is characterized by its remarkable flexibility and scalability,
demonstrating exceptional capabilities in both image[37, 32, 16, 9, 7, 8] and video generation [31, 33,
17]. However, similar to the challenges faced with Vision Transformers [15], DiT is associated with
high training costs. Its convergence rate remains slow, necessitating over 4700 GPU hours training
on ImageNet generation tasks at 256 resolution 2. This significant computational demand highlights
the need for enhancing training efficiency for large-scale training.

One effective method for improving training is to modulate the Signal-to-Noise Ratio (SNR) dis-
tribution across different timesteps during training. Denoising generative models [22, 30] create a
conversion from noise to data and methodically transfer noise into data as the timestep, denoted t,
progresses. In this conversion process, the SNR gradually increases from zero to infinity. Given a
generative process xt = αtx⋆ +σtϵ. Assuming that the input data x⋆ are ideally normally distributed
with a variance of one, the SNR is typically defined as the ratio of variances α2

t

σ2
t

[24, 14, 34, 40, 20].
During one training step, for a pair of input data and noise, we randomly select one t for training.
Modulating noise scheduling [35, 25, 10], loss weight [34, 20], and timestep sampling strategy [16]
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Same strategy but 

opposite trend?

Method Arch. Train Steps FID-50k↓

DiT [37]
DiT-XL-2

400k 19.5
SiT [32] 400k 17.2
FasterDiT (Ours) 400k 11.9 (-5.3)

SiT [32] 200k 27.1
FasterDiT (Ours) DiT-XL-2

200k 17.5 (-9.6)

Figure 1: (Left) Problem Setting. We find the same sampling strategy gets different performances
with different data. (Right) Performance of FasterDiT. We improve Diffusion Transformers (DiT)
training speed by a large margin without any architecture modification.

are common methods to modify the distribution of SNR during training. They are proven to be
effective ways to improve training efficiency and effectiveness.

However, these methods do not always work across different data. For example, Stable Diffusion 3
(SD3) [16] proposes a timestep sampling strategy by logit normal function (lognorm) [1] for better
training. Lognorm sampling is an excellent pioneering strategy and has been proven effective in subse-
quent work [17]. But it also has some limitations. According to SD3 exploration, lognorm(−0.5, 1)
substantially outperforms lognorm(0.5, 0.6) in terms of Frechet Inception Distance (FID) results
on ImageNet [13]. Nevertheless, we discover that this conclusion is a particular solution specific
to the training data used. As shown in Figure 1, as we continuously reduce the signal strength, the
FID results for lognorm(−0.5, 1) progressively worsen, eventually becoming the poorest outcome.
This underscores the necessity of evaluating the robustness of such methods across varying data
conditions.

In this paper, we aim to provide a more comprehensive perspective for interpreting the problem. Our
first contribution is to suggest interpreting the performance robustness with the perspective of the
Probability Density Function (PDF) of SNR during training. Specifically, these methods typically
modulate the distribution of SNR based on the timestep t. Although the same timestep has the same
relative SNR as α2

t

σ2
t

, the absolute SNR at the step actually increases with the enhancement of the data
signal [25, 10]. We believe that the original definition of SNR only reflects the relative signal-to-noise
ratio in the same data distribution. However, the distribution of data-related absolute SNR during the
training process is the key factor determining the effectiveness of the training. Hence, we slightly
extend the definition of SNR and visualize its probability density function.

Our second contribution is to conduct extensive experiments and report about one hundred experi-
ment results in our paper to empirically analyze the association between training performance and
robustness with PDF. We analyze the differences in data robustness among commonly used basic
pipelines on DiT [37, 32]. We find there is a trade-off between method robustness and performance,
and suggest that the training process can be designed more intuitively from a PDF perspective.

The other method to improve training is to modify single-timestep prediction or supervision [34].
Our third contribution is the introduction of a new supervision method for velocity prediction-
based approaches. With the same schedule, different prediction targets [34] or different supervised
methods [22, 14] may also lead to different training results. Recently, velocity has been demonstrated
to be a superior predictive target. Specifically, in addition to the traditional Mean Squared Error
(MSE) loss, we have incorporated supervision of the velocity direction. We have found that this
method is conceptually simple and significantly accelerates the training process.

To sum up, in this paper, we propose a new perspective on training the SNR PDF to offer a straightfor-
ward interpretation of the efficiency in training generative models (Section 2). We conduct extensive
experiments and report near one hundred experimental results, aiming to empirically derive insights
into training performance, robustness, and their correlations with the SNR PDF (Section 3). Subse-
quently, we apply these observations to refine the DiT process and, together with introducing a novel
supervision method, developed FasterDiT to significantly enhance training efficiency (Section 4).
FasterDiT achieves an FID of 2.30 on ImageNet at a resolution of 256, comparable to the original
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DiT’s FID of 2.27, yet achieves convergence seven times faster. We hope that our explorations
contribute valuable insights to future research in generative model training.

2 Probability Density Function of SNR during Training

We hypothesize that the distribution of attention to different Signal-to-Noise Ratios (SNRs) during
training is a crucial determinant of training efficiency and effectiveness. Here, two issues need to be
addressed. Firstly, the previous definition of SNR as α2

t

σ2
t

ignore the influence of data signal intensity,
which is proven to be important during training [25, 35]. Secondly, a unified and intuitive approach
is required to analyze the training SNR distribution. Therefore, in this section, we propose a slight
modification to the existing definition of SNR. Subsequently, we utilize the Probability Density
Function (PDF) of SNR during training to integrate noise scheduling, loss weighting, and timestep
sampling strategies into a cohesive framework.

2.1 Preliminary

For ease of comprehension, we give a brief introduction to the formulation and training pipeline
of generative models [22, 35, 29, 30]. Since our focus is on the SNR distribution, we universally
consider flow matching and the diffusion model from a high-level perspective, similar to previous
work [16]. Given data x⋆ ∼ X and Gaussian noise ϵ ∼ N(0, 1), we define the transport between
noise and data as equation 1. In a discrete diffusion process [22, 35], t is an integer from 0 to 1000. In
a continuous flow process [29, 30], t is a continuous value between [0, 1]. αt and σt is are coefficients
related to t defined differently according to schedules.

xt = αtx⋆ + σtϵ (1)

During the training process, noised data xt and timestep t are input to the generative model. The
model is required to predict the specific target (noise, velocity, and so on). For example, in the most
commonly used DDPM [22] pipeline, the prediction target is noise ϵ and the loss function is defined
as equation 2. Only a single xt will be trained in each iteration for one image, instead of the whole
timesteps. Therefore, some methods choose to change the sampling of t [16] or give different loss
weights [20, 35] according to t.

Lθ = (ϵ− ϵθ(xt, t))
2 (2)

2.2 Formulate Probability Density Function of SNR

Data-dependent SNR Previous work [24, 14, 34, 40, 20] highlights the importance of SNR.
Typically, they assume that the data is an ideal normalization distribution and define the SNR as the
ratio of variances (Equation 3). This definition is independent of data and only associated with the
coefficients in timestep t.

SNRprev(t) =
α2
t

σ2
t

(3)

However, the distribution of actual data is indescribable. It is closely linked to the nature of the image
itself. In this study, we introduce a coefficient, K(I), associated with the image I that directly scales
the signal. The value of K(I) is influenced by various image characteristics such as the range of high
and low frequencies, resolution, variance, and so on. It is known that the larger the variance of an
image, the higher its SNR, illustrated as Equation 4. Further, for a specific dataset, we assume that
the change in variance has little effect on the other nature of the image, i.e. std2 is an independent
variant in K(I), and approximate K(I)

std2 as a constant C(I).

SNR(t) = K(I)
α2
t

σ2
t

,K(I) ∝ std2 (4)

SNR(t) =
K(I)

std2
std2α2

t

σ2
t

≈ C(I)
std2α2

t

σ2
t

(5)

Our goal is to explore how variations in the SNR of different data lead to changes in training. However,
constantly altering the training data is neither quantifiable nor convenient. The advantage of the above
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Algorithm 1 Estimate the Probability Density Function of SNR

1: Samples N timestep t uniformly
2: Calculate fl(t) and fs(t) for each t

3: Calculate ft(t) =
fl(t)fs(t)∑
fl(t)

∑
fs(t)

for each t

4: Estimate ft(t)
5: Samples N timestep t from ft(t)

6: Compute SNR(t) = C(I)
std2α2

t

σ2
t

for each sampled t

7: Logarithmize lgSNR(dB) = 10lg(C(I)) + 20lgstd + 10lg
α2

t

σ2
t

8: Estimate the probability density function of SNR(t)

conversion (Equation 5) is that we can use the same dataset with different std to simulate different
C(I) variations. This simplifies the scheme of probing the robustness of the data and allows us to not
need to change the training data repeatedly.

Weightings Consider a training process with the timestep sampling function fs(t) and loss weight
function fl(t). For most cases, fs(t) and fl(t) are non-negative. To unify these into a single
distribution of t, we define a new probability density function ft(t) as:

ft(t) =
fl(t)fs(t)∫ 1

0
fl(t)fs(t) dt

(6)

PDF of SNR Now, we try to get the probability density function of SNR during training. It is
independent with timestep t. Assume distribution SNR(t) ∼ Y and t follows the distribution of ft(t).
Solving for the distribution of Y can be transformed into a problem of probability transformation.
Mathematically, it could be defined as Equation 7.

fY (y) = ft(g(y))

∣∣∣∣ ddy g(y)
∣∣∣∣ (7)

Estimate of Probability Density Function of SNR In practice, the functions above are not always
available. Hence, we use large amounts of discrete samples to approximate Equation 7. Here we
provide its estimation algorithm. For all training processes, we visualize their PDFs in the way shown
in Algorithm 1.

Now, we have developed a simple and feasible method for generating the PDF of SNR. It directly
reflects the level of attention to different SNR values during the training process. Specifically, the
higher the value of the PDF, the more frequently the corresponding SNR is trained during training.
Next, we will conduct extensive experiments to analyze its relationship with different training data
and training strategies.

3 What can we learn from SNR PDF?

Back to the problem we discuss in Section 1 Figrue 1. We argue that strategies that are solely based
on t tend to focus only on relatively high or low noise conditions in the generation process but are
limited to considering the absolute Signal-to-Noise Ratio (SNR) with different signal intensity. They
provide awesome solutions to improve the training but lack a comprehensive evaluation. In this
section, we will explore this issue from the perspective of the Probability Density Function (PDF) of
SNR, aiming to identify commonalities in these strategies and to delineate a more comprehensive
design space.

3.1 Experiment Settings

We introduce our experiment settings first. We mainly adopt the Diffusion Transformer (DiT) training
pipeline from two previous important works, DiT [37] and SiT [32]. We choose four different noise
scheduling from them, including DDPM with linear beta schedule [22], DDPM with cosine beta
schedule [35], flow matching with linear schedule (Rectified Flow) [30], and flow matching with
cosine schedule [32].
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Figure 2: Robustness of Different Noise Schedules. By scaling input to different standard deviations,
we compare the data robustness of four schedules [22, 35, 29, 32], including diffusion and flow
matching. Note that we set the prediction target as noise for a fair comparison. We find that different
data signal intensities lead to different generative performances and different schedules have different
robustness.
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Figure 3: SNR PDF of different noise schedules [22, 35, 29, 32]. The figure illustrates the signal-to-
noise ratio (SNR) probability density functions (PDFs) for various schedules and standard deviations
(see Section 2).

In the subsequent experiments, we initially set the prediction target of each noise schedule to noise
(epsilon) to ensure a fair comparison. Subsequently, we modify the input strength by scaling the data
to various standard deviations (std). We then shift the prediction target of flow matching to velocity
the same as its original setting, to compare the similarities and differences between speed prediction
and noise prediction outcomes. Each experiment was conducted on ImageNet [13] at a resolution
of 128. We train each model for 100,000 iterations and assess their performance using the FID-10k
metric for comparative analysis. Each experiment has been conducted with 8 H800 GPUs.

Our primary observational objectives are twofold: (1) Performance and robustness under different
signal intensities. (2) Potential connections between the state of the PDF and performance and
robustness.

3.2 Insights from PDF

Different data signal intensities lead to different training effects. In Figure 2, the prediction
target for all schedules is uniformly set to noise to ensure a fair comparison. The curves demonstrate
how different input intensities impact training outcomes. Notably, the performance of a single
noise schedule fluctuates with changes in data intensity. For instance, the DDPM with a linear beta
scheduler achieves an FID of 65.38 at std = 0.3 and improves significantly to 47.04 at std = 2.5
(Figure 2a).

Different schedules exhibit significant differences in data robustness. In Figure 2, as the
intensity of the data varies, distinct schedules demonstrate significantly different robustness profiles.
Specifically, with increasing standard deviation, the range of the FID for the DDPM-linear [22]
schedule is observed at 18.03 (Figure 2a). In contrast, the DDPM-cosine [35] schedule exhibits a
considerably larger FID range of 50.02(Figure 2c), highlighting substantial variability in performance
between schedules.

Schedule with a broad SNR focus could have a robust performance. In Figure 3, we present
the SNR PDFs as outlined in Section 2. For each noise schedule, we display three PDF curves
corresponding to different signal intensities: low (std = 0.3), high (std = 3.3), and the level
that results in the optimal FID. These PDF curves visually represent the training process’s focus
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Figure 4: Influence of Weghting Dring Training. We use lognorm(0, 1) as Stable Diffusion3 [16].
The essence of this approach is to enhance the local focus of the PDF during the training process.
This increases the upper bound of the training, but it also reduces the robustness of the training
process to variations in the data.
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Figure 5: Flow Matching with v-prediction. We evaluate the robustness of commonly used flow
matching [32] with v-prediction on ImageNet. (1) We find flow matching with v-prediction gets a
more robust performance than noise-prediction. (2) There still exists a trade-off between performance
and robustness.

across various noise interpeaksvals. Empirical analysis of the curve shapes across different noise
schedules reveals that greater variance in the PDF, indicating a broader consideration of noise intervals
(Figure 3a&b), is associated with improved stability in the schedule.

The optimal SNR ranges for different schedules seem to be similar. Direct observation of the
standard deviations across different schedules does not readily lead to consistent conclusions. For
instance, in Figure 2, while the DDPM-Linear schedule (Figure 2a) achieves optimal generative
performance at an std of approximately 2.5, the DDPM-Cosine schedule (Figure 2c) peaks at an
std of 0.9. However, insights might be gleaned from analyzing the PDF curves. In our experiments,
as depicted in Figure 3, with a unified prediction target, better FID performance correlates with the
mean of the PDF falling within the designated gray area. This observation offers a novel perspective
and enriches our understanding of the previously established results.

There is a trade-off between performance and robustness. The primary purpose of employing
weighting during the training process is to intensify the focus on specific SNR levels. We implement
a logit normal function (lognorm) [1] to adjust the timestep sampling for two distinct schedules
(Figure 2a&b), with results displayed in Figure 4. Our analysis reveals that while a well-defined
sampling strategy can enhance performance, it may also introduce risks. For instance, the DDPM-
Linear schedule achieves an optimal FID of 47.04, demonstrating robust performance across a range
of 18.02. However, when we intensify the focus using lognorm (Figure 4a), although the best FID
improves to 36.9, it also results in more variable outcomes, with a performance range widening to 80
(Figure 4b).

Flow matching with v-prediction gets more robust performance. Recently, flow matching [29,
30] has been regarded as a more concise and efficient pipeline for generative models. In the previous
discussion, to facilitate a fair comparison, we set the prediction target on noise prediction. In Figure 5,
We find flow matching with v-prediction achieves a more stable output performance, demonstrating
enhanced robustness in data stability. For instance, Linear Flow exhibits a range in FID of 17.54 when
using noise prediction, compared to 11.79 when using v-prediction (Figure 5a). This characteristic
is even more pronounced in Flow with cosine schedule, where the ranges are 34.76 and 12.39,
respectively (Figure 5b). Additionally, we find that the overall performance of v-prediction generally
surpasses that of noise prediction.
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(a) Standard Deviation Modulating. Initially,
we determine an appropriate range for the stan-
dard deviation.

multi-step
balance

velocity
direction loss

FID-50k

150k 200k 400k

✓ ✓ 21.4 17.5 11.5
✓ 27.2 22.7 15.8

32.5 27.1 18.5

(b) Ablations for FasterDiT Training. Both
multiple-step balance and velocity direction
loss significantly enhance training efficiency.

Algorithm 2 FasterDiT Training

def lognorm(mu=0, sigma=1, size=None):

# get logit normal distribution
samples = scipy.norm.rvs(loc=mu, \

scale=sigma, size=size)

# transform to 0 to 1
samples = 1 / (1 + np.exp(-samples))
return samples

while training:
# 1. data shifting
# data: (B, C, H, W)
# noise: (B, c, H, W)
data = data * (target_std / data_std)
noise = torch.rand_nlike(data)

# 2. concentrating
# timestep: (B, )
t = lognorm(0, 1, t.shape[0])
x_t = t*data + (1-t)*noise
pred = model(x_t, t, y)

# 3. improved supervision
v = data - noise
loss = (pred - v)**2.mean() + \
1 - cosine_similarity(pred, v, dim=1).mean()

loss.backward()

Figure 7: Training Details. Our training pipeline involves only minimal modifications to the code.

The trade-off still exists in flow matching with v-prediction. Furthermore, we observe that
although v-prediction is generally more robust, there remains a trade-off between performance and
stability. As shown in Figure 5c&d, when we used a lognorm to concentrate the focus of Linear-Flow,
its performance resembled that of noise prediction, where the upper limit improved but stability
decreased. We hypothesize that such trade-offs may be broadly prevalent.

To sum up, from the perspective of the PDF, efficient training requires satisfying two conditions: (1)
the PDF should have a concentrated focus; (2) the focus area of SNR needs to fall within the correct
range. Based on the simple observation, we try to improve DiT training.

4 Improving DiT Training

In this paper, our objective is not to devise novel model architectures for achieving state-of-the-art
outcomes. Instead, we aim to explore a simpler, more interpretable, and universally applicable
training approach for Diffusion Transformers (DiTs) [37].

In Section 3, we demonstrate a trade-off between performance and robustness in the DiT training
process via signal-to-noise (SNR) probability density function (PDF) analysis. To expedite training,
we should have a concentrated PDF that focuses on the right SNR during training. Initially, we select
flow matching [30] with v-prediction as our noise schedule, owing to its robustness and superior
performance. We then adjust the PDF to focus on the optimal SNR during training by modulating the
standard deviation (std) of training data. Further, we employ a logit normal function [1] to sharpen
the focus on the adjusted regions. Finally, we introduce a new, straightforward supervisory strategy
that significantly enhances training outcomes.

4.1 Improving Multiple Step Balance

Here, we first modulate the standard deviation from 0.5 to 1.2 as illustrated in Figure 7 (left). During
this sweep, we refrain from employing additional techniques such as weighting. It shows that when
std is around 0.70, the DiT training gets a better generative performance. Empirically, we set the
target std to 0.82, which is near the proper and stays consistent with previous work’s setting [32, 37].
However, we argue that when the input data changes, e.g. different resolution, the choice of std will
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Method Model Training Iters FID↓ sFID↓ IS↑ Prec.↑ Rec.↑

BigGAN [4] BigGAN-deep - 6.95 7.36 171.4 0.87 0.28
MaskGIT [6] MaskGIT 1387k×256 6.18 - 182.1 - -
ADM-G [14] ADM 1980k×256 4.59 5.25 186.70 0.82 0.52
CDM [23] CDM - 4.88 - 158.71 - -
RIN [26] RIN - 3.42 - - - -
Simple Diffusion [25] U-Net 2000k×512 3.76 - - - -
Simple Diffusion U-ViT-L 500k×2048 2.77 - - - -
LDM-4-G [40] LDM 178k×1200 3.60 - 247.67 0.87 0.48
U-ViT-G [2] U-ViT 300k×1024 3.40 - - - -
StyleGAN [42] StyleGAN-XL - 2.30 4.02 265.12 0.78 0.53
MDT-G [18] MDT 2500k×256 2.15 4.52 249.27 0.82 0.58

DiT [37]

DiT-XL/2

7000k×256 9.62 6.85 121.50 0.67 0.67
SiT [32] 7000k×256 8.61 6.32 131.65 0.68 0.67

FasterDiT 1000k×256 8.72 5.23 121.17 0.68 0.67
2000k×256 7.91 5.46 131.27 0.67 0.69

DiT (cfg=1.5) [37]

DiT-XL/2

7000k×256 2.27 4.60 278.24 0.83 0.57
SiT (cfg=1.5) [32] 7000k×256 2.06 4.50 270.27 0.82 0.59

FasterDiT (cfg=1.5) 1000k×256 2.30 4.80 249.34 0.82 0.58
2000k×256 2.03 4.63 263.95 0.81 0.60

Table 1: Performance of FasterDiT on ImageNet 256×256. Employing the identical architecture as
DiT [37], FasterDiT achieves comparable performance with an FID of 2.30, yet requires only 1,000k
iterations to converge.

differ. The strategy is similar to previous work [10], but we discuss it in a new perspective of training
SNR PDF.

Then we improve the performance by a human-made concentration for PDF. Specifically, we use
logit normal function [1] for timestep sampling, while mu and sigma are set to 0 and 1 respectively.
Notably, mu is set to 0 because the PDF is already properly shifted (see Figure 3). It could help avoid
instability discussed in Section 1 and improve the training performance (see Figure 7 (left) (b)).

4.2 Improving Single Step Supervision

Effective single-step supervision is essential in training generative models. For instance, employing
different prediction targets can result in diverse predictive outcomes [34]. In the original DiT model,
a strategy that simultaneously predicts noise and sigma is utilized to maximize performance [37].
Typically, the Mean Squared Error (MSE) loss function is employed for supervising these targets.

Ld = 1− 1

HW

H−1∑
h=0

W−1∑
w=0

v
(h,w)
gt · v(h,w)

pred

|v(h,w)
gt ||v(h,w)

pred |
(8)

Recently, in the context of flow matching [29, 30], the prediction target of velocity acquires a more
specific physical significance, representing the flow rate from noise to data. Based on this, we
hypothesize that supervising the direction of velocity could serve as an effective supervision strategy.
Consequently, in this paper, we not only use the Mean Squared Error (MSE) to supervise velocity
predictions but also apply cosine similarity to further supervise the directionality of velocity. Here
we present velocity direction loss as shown in Equation 8, while H , W denotes the height and width
of predicted latent by DiT. We demonstrate that this combined supervisory approach significantly
enhances the model’s convergence rate (see Figure 7 (left) (b))

4.3 Comparison with Previous Methods

Owing to resource limitations, we train FasterDiT on ImageNet at 256 resolution [13] for 2,000k
iterations and benchmark it against current advanced generative models (see Table 1). Our experiment
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Figure 8: Visualization Results. We present visualization results for FasterDiT-XL/2 after training
for 1,000k iterations, with CFG set to 4.0.

has been conducted with 8 H800 GPUs. Notably, the focus of our work is to explore training strategies
beyond structural enhancements. Thus, FasterDiT utilizes the identical architecture as DiT [32]. As
illustrated in Section 1 Figure 1, FasterDiT achieves an FID-50k score of 11.9 at 400k iterations,
markedly outperforming the original DiT model (FID-50K 19.5), and its enhanced counterpart,
SiT (FID-50k 17.2) [32]. Utilizing the same architecture as DiT [37], FasterDiT attains a similar
performance level with an FID score of 2.30 but converges in just 1,000k iterations.

4.4 Performance on Higher Resolution Images

We evaluate FasterDiT on higher resolution generation tasks to explore its resolution generalization
capabilities. Specifically, we apply our approach to DiT-B/2 and DiT-L/2 models for ImageNet
generation at a 512×512 resolution. The results, presented in Table 2, indicate that FasterDiT
consistently achieves faster convergence across all configurations. Notably, after 200k training
iterations, our method improves the FID-10k performance of DiT-B/2 by 18.78 and DiT-L/2 by 17.93,
underscoring its effectiveness for high-resolution image generation tasks.

4.5 Performance with Different Diffusion Architectures

We further apply our training method to other diffusion models beyond DiT, including Latent
Diffusion Models [40] (using the UNet [41] architecture) and U-ViT [2]. Here, we specifically refer
to the use of the previously mentioned multi-step balance and velocity direction loss. The results,
presented in Table 3, indicate performance improvements for both U-ViT and UNet with our method.
This suggests that our approach has the potential to generalize across a broader range of diffusion
model architectures.

5 Related Work

5.1 Generative Models and Diffusion Transformers

The denoising diffusion probabilistic model [22] has gradually replaced GANs [12, 19] due to its
stronger performance and more stable training, becoming the mainstream generative model. Among
them, [14] first proves its effectiveness on ImageNet [13]. [40, 38] extend the diffusion process from
the diffusion space to the space of VAE latent space, achieving high-performance, high-resolution
generation. Meanwhile, some methods [32, 46, 17] have also trained generative models using
flow-matching [29, 30] techniques to replace the diffusion path. These methods exhibit simpler
mathematical properties and faster learning effects.

Among them, U-Net [41] is the most commonly used architecture for generative models. Recently,
due to the scalability advantages of transformers [15, 44], some transformer-based [2, 37] generative
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Method Models Training
Samples Resolution FID-10k

DiT DiT-B/2 100k × 128 512×512 93.36
200k × 128 77.11

FasterDiT DiT-B/2 100k × 128 512×512 77.85
200k × 128 58.33

DiT DiT-L/2 100k × 64 512×512 87.24
200k × 64 67.29

FasterDiT DiT-L/2 100k × 64 512×512 71.58
200k × 64 49.36

Table 2: Performance on ImageNet 512×512.

Model Training
Samples FID-10k

U-ViT-L [2] 200k × 128 50.22
U-ViT-L + Ours 37.12

LDM-UNet [40] 200k × 128 66.73
LDM-UNet + Ours 60.07

Table 3: Performance with Different Archi-
tectures.

models have also emerged. However, similar to Vision Transformers [15], Diffusion Transform-
ers [37] converge slowly.

5.2 Fast Training of Generative Models

Work for accelerating Diffusion Transformers [37] (DiT) could be simply divided into two categories.
One is architecture modification. MaskDiT [45] and MDT [18] combine mask image modeling [3, 21]
pre-training and diffusion training for speeding up. Similarly, SD-DiT [46] takes one step further
to combine DiT training with MoCo-like [11] contrastive learning. CAN [5] proposes a dynamic
weights for condition to speed up training of diffusion models [37, 2].

Another strategy involves changing non-model design approaches. For example, using different noise
schedules can achieve better results on images of various resolutions [25, 35, 10, 27]. Using different
prediction targets, such as noise, data, or velocity, can also directly impact the effectiveness of the
training [34]. Adjusting weights for the loss function and training sampling can also directly affect
the outcomes of training [20, 16]. However, they constitute a vast design space with a high degree of
direct interdependence, which makes the design of the model very complex.

6 Conclusion

Limitations We propose a novel approach called FasterDiT for accelerating the training of dif-
fusion transformers. The main limitation of this paper lies in the lack of exploration of large-scale
experiments, such as 2K high-resolution images, text-to-image generation, and video generation.
Among these, we particularly focus on the text-to-image generation aspect. Specifically, in the
class-conditional generation described in this paper, the DiT block only needs to process image
tokens. However, in some text-to-image architectures, such as SD3 [16], self-attention needs to
handle sequences combining text and visual tokens. The features from different sources (such as
T5 [39] and VAE [28]) may lead to potential instability. We plan to further investigate this issue in
the future.

Societal Impacts Our work has the potential to significantly enhance the efficiency of creative
professionals in completing their creative processes. However, it also carries a risk of misuse.

Conclusions In this paper, we discuss training strategies to accelerate Diffusion Transformers.
Initially, we slightly generalize the definition of SNR and conduct a unified analysis of various
training strategies through the examination of SNR probability density functions during the training
process. We find that there is a trade-off between robustness and performance in the training of
diffusion models. Different noise schedules exhibit varying levels of robustness. Using weighting
during the training can enhance the performance ceiling, but it may also decrease the robustness of
the process. Additionally, we discover that utilizing a directional loss as an auxiliary loss function
for velocity prediction significantly boosts training performance. Based on these observations, we
conduct experiments with DiT-XL-2 on ImageNet 256×256 and observe substantial acceleration in
training. We refer to this straightforward training approach as FasterDiT. We hope our work inspires
further exploration into training strategies for generative models.
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A Implementation Details

In this section, we offer a detailed overview of the experimental methodologies employed in our
study. The investigation is delineated into two primary segments. Initially, we conduct thorough
experiments to explore the potential relationship between training efficiency and effectiveness as
detailed in Section 3. Subsequently, we extend our findings to larger training configurations of
Diffusion Transformers to ascertain the efficacy of our methodologies, as discussed in Section 4.

A.1 Details of Training

The specific details of the training processes are delineated in Table 4 and Table 5. A notable
distinction arises in Section 3, where, to expedite training, we pre-computed and stored image
features, abstaining from the use of data augmentation during the training phase. Training was
conducted at a resolution of 128, with each experiment running for 100,000 iterations. Conversely,
in Section 4, our primary emphasis is on the outcomes of training. Consequently, we opted not
to pre-compute image features and instead implemented various image enhancement techniques.
Furthermore, the training duration was extended to ensure comprehensive model evaluation.

A.2 Details of Sampling

In this section, we detail the sampling procedures as discussed in Chapters 3 and 4. The specific
outcomes are presented in Table 6 and Table 7. A key distinction between the two sections is as
follows: In Section 3, we assessed the FID of 10,000 generated images without employing the cfg
operation. Conversely, in Section 4, we evaluated the FID of 50,000 generated images and adjusted
the cfg to 1.5, aligning with the methodologies of prior studies [37, 32].

A.3 Details of Noise Scheduling

The focus of this paper is on the accelerated training of generative models, with a particular emphasis
on Diffusion Transformers [37]. The design of the generative process presented herein draws
inspiration from the pioneering work on DiT [37] and the subsequent advancements in SiT [32]. The
former primarily adopts the DDPM generation pipeline [22], while the latter enhances DiT training
by integrating score-based diffusion [43] and flow matching.

In Section 3, we employ four distinct noise schedules, encompassing both diffusion and flow match-
ing. Typically, these can be represented as xt = αtx⋆ + σtϵ. Specifically, the initial two schedules
(Figure 2a&b) employ the widely utilized DDPM linear schedule [22] and the DDPM cosine sched-
ule [35], respectively. Owing to the complexity of these concepts, a detailed discussion is beyond the
scope of this paper; readers are encouraged to consult the original publications for more comprehen-
sive information. Regarding the last two (Figure 2c&d), we utilize the two most common flows, as
delineated in Equations 9 and 10.

Figure 2c :αt = t, σt = 1− t (9)

Figure 2d :αt = cos(
1

2
πt), σt = sin(

1

2
πt) (10)

B More Visualization Results

In this section, we present more images generated by FasterDiT, which underwent training on the
ImageNet dataset at a resolution of 256 for 1,000,000 iterations. The visualization results, depicted in
Figure 9&10, feature samples from seven distinct ImageNet categories, emphasizing selected outputs.
During the testing phase, the cfg value was consistently set at 4, in accordance with parameters
established in previous research. Remarkably, despite a substantially shorter training period compared
to DiT, FasterDiT has successfully generated visually impressive results.
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index:99 goose

index:207 golden retriever

index:282 tiger cat

index:333 hamster

index:388 panda

index:367 baboon

index:387 lesser panda

Figure 9: Generation Results-1. We visualize generation results of FasterDiT, which is trained on
ImageNet at 256 resolution for 1000k iterations.
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index:360 otter

index:449 boathouse

index:564 four poster

index:832 stupa

index:429 baseball

index:483 castle

index:417 balloon

Figure 10: Generation Results-2. We visualize generation results of FasterDiT, which is trained on
ImageNet at 256 resolution for 1000k iterations.
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Table 4: Training Details of Section 3
Parameters Value
Optimizer AdamW
β1, β2 0.9, 0.999
Learning Rate 1e-4
Weight Decay 0
Global Batchsize 256
Training Iterations 100,000
Dataset ImageNet [13]
Resolution 128
Number Workers 4
Loss Function Lmse

Precompute VAE Features yes
Timestep Sampling none/ lognorm(0, 1)/ lognorm(0, 0.5)
Data Augmentation none

Table 5: Training Details of Section 4
Parameters Value
Optimizer AdamW
β1, β2 0.9, 0.999
Learning Rate 1e-4
Weight Decay 0
Global Batchsize 256
Training Iterations 1,000,000
Dataset ImageNet [13]
Resolution 256
Number Workers 4
Loss Function Lmse, Ld (Eq 8)
Precompute VAE Features no
Timestep Sampling lognorm(0, 1)
Data Augmentation Random Horizontal Flip

Table 6: Sampling Details of Section 3
Parameters Value
Resolution 128
Batchsize per GPU 32
Number of Classes 1000
cfg 1.0
Number of Samples 10,000
Number of Sampling Stpes 250/adaptive
Global Seed 0
Using tf32 yes

Table 7: Sampling Details of Section 4
Parameters Value
Resolution 256
Batchsize per GPU 128
Number of Classes 1000
cfg 1.5
Number of Samples 50,000
Number of Sampling Stpes adaptive
Global Seed 0
Using tf32 yes
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction accurately reflect the contribution and scope of
our paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The limitations of the work are discussed in the paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide as many details as possible, such as algorithms and pseudo codes,
to ensure reproducibility. Besides, we also provide our source codes.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data (we use the public dataset in
our experiments) and code, with sufficient instructions to faithfully reproduce the main
experimental results, as described in supplemental material?
Answer: [Yes]
Justification: Open access to the data and code is provided in supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and test details are specified in the paper and supplemental
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper does not report error bars due to limited resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Sufficient information on the computer resources for each experiment are
provided in the paper and supplemental material.
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• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics
in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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Answer: [Yes]

Justification: The paper discusses both potential positive societal impacts and negative
societal impacts.
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• The answer NA means that there is no societal impact of the work performed.
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11. Safeguards
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release of data or models that have a high risk for misuse (e.g., pretrained language models,
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Justification: The paper poses no such risks.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with
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safety filters.
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators of assets used in the paper are properly credited. The license and
terms of use are explicitly mentioned and properly respected.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
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13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets are introduced in the paper. The documentation is provided
alongside the assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
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or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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