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ABSTRACT

Unsupervised 3D object detection aims to identify objects of interest from unla-
beled raw data, such as LiDAR points. Recent approaches usually adopt pseudo
3D bounding boxes (3D bboxes) from clustering algorithm to initialize the model
training. However, pseudo bboxes inevitably contain noise, and such inaccura-
cies accumulate to the final model, compromising the performance. Therefore,
in an attempt to mitigate the negative impact of inaccurate pseudo bboxes, we
introduce a new uncertainty-aware framework for unsupervised 3D object de-
tection, dubbed UA3D. In particular, our method consists of two phases: un-
certainty estimation and uncertainty regularization. (1) In the uncertainty esti-
mation phase, we incorporate an extra auxiliary detection branch alongside the
original primary detector. The prediction disparity between the primary and
auxiliary detectors could reflect fine-grained uncertainty at the box coordinate
level. (2) Based on the assessed uncertainty, we adaptively adjust the weight
of every 3D bbox coordinate via uncertainty regularization, refining the train-
ing process on pseudo bboxes. For pseudo bbox coordinate with high uncer-
tainty, we assign a relatively low loss weight. Extensive experiments verify that
the proposed method is robust against the noisy pseudo bboxes, yielding sub-
stantial improvements on nuScenes and Lyft compared to existing approaches,
with increases of +6.9% APBEV and +2.5% AP3D on nuScenes, and +4.1%
APBEV and +2.0% AP3D on Lyft. The anonymous code and checkpoints are
at https://anonymous.4open.science/r/CBC6/.

1 INTRODUCTION

Unsupervised 3D object detection (Mao et al., 2023; Wang et al., 2023; Ma et al., 2023), given a
3D point cloud, is to identify objects of interest according to the point locations without relying
on manual annotations (You et al., 2022; Zhang et al., 2023; Wu et al., 2024; Zhang et al., 2024b),
largely saving extra costs and time (Meng et al., 2021). The applications span various domains,
including autonomous driving (Grigorescu et al., 2020; Qian et al., 2022; Yurtsever et al., 2020; Zhao
et al., 2023), traffic management (Ravish & Swamy, 2021; Milanes et al., 2012), and pedestrian
safety (Gandhi & Trivedi, 2007; Gavrila et al., 2004). Existing unsupervised 3D object detection
works generally follow a self-paced paradigm (Zhang et al., 2024b), i.e., estimating some initial
pseudo boxes and then iteratively updating both the pseudo label sets and the model weights (You
et al., 2022; Zhang et al., 2024a). However, we observe that the initial pseudo boxes inevitably
contain misalignments (see Fig. 1 (a, b)). The accuracy of the pseudo boxes is significantly affected
by the inherent characteristics of LiDAR point clouds, such as point sparsity, object proximity,
and unclear boundaries between foreground objects and the background. In particular, large and
nearby objects are usually easy to detect, and thus most estimated pseudo bboxes are accurate. In
contrast, most small, distant objects with less sensor information pose inaccurate pseudo bboxes
at the beginning. Without rectifying such erroneous pseudo bboxes, the wrong predictions can be
accumulated, consistently compromising the entire self-paced training process (see Fig. 1 (c)).

To mitigate the adverse impacts of inaccurate pseudo bboxes during iterative updates, we introduce
Uncertainty-Aware bounding boxes for unsupervised 3D object detection (UA3D). As the name im-
plies, we explicitly conduct the uncertainty estimation (Kendall & Gal, 2017; Gawlikowski et al.,
2023; Li et al., 2012) for every pseudo bbox quality. The proposed framework consists of two phases:
uncertainty estimation and uncertainty regularization. (1) In the uncertainty estimation phase, we
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(a) Ground-truth Boxes (b) Pseudo Boxes

(c) Vanillia Baseline (d) Ours (UA3D)

Ground truth Pseudo box Baseline prediction Our prediction

Figure 1: Our motivation. Pseudo boxes generated by clustering-based algorithms often contain
noise (comparing (a) and (b)). Previous methods (You et al., 2022; Zhang et al., 2023) directly utilize
those noisy pseudo boxes to train detection model, leading to suboptimal performance (see (c)). In
contrast, we introduce uncertainty-aware pseudo boxes by assigning coordinate-level uncertainty.
High uncertainty is assigned to inaccurate coordinates, and during training, the weights of these
uncertain coordinates are adaptively reduced. This approach mitigates the negative impact of noisy
pseudo boxes, yielding robust detection (comparing (c) and (d)).

introduce an auxiliary branch into the existing detection model, attaching to an intermediate layer of
the 3D feature extraction backbone. This branch differs from the original primary detection branch
in terms of the number of channels. The uncertainty is assessed by comparing the box predictions
from primary and auxiliary detectors. Notably, fine-grained uncertainty estimation on coordinate
level is achieved by comparing 7 box coordinates of predictions, i.e., position (x, y, z coordinates),
length, width, height, and rotation, from two detectors. The intuition is that if the pseudo bboxes
are with high uncertainty, two detection branches will lead to prediction discrepancy during
training procedure. We could explicitly leverage such discrepancy as the uncertainty indicator.
(2) In the uncertainty regularization phase, we adjust the loss weights of different pseudo box co-
ordinates based on the estimated uncertainty during iterative training process. Specifically, with the
obtained coordinate-level certainty, the sub-loss computed from each box coordinate is divided by
its corresponding uncertainty. Meanwhile, to prevent the model from predicting high uncertainty
for all samples, the uncertainty value is also added to the sub-loss for each coordinate. This strategy
effectively regularizes the iterative training process from noisy pseudo boxes on coordinate level
(see Fig. 1 (d)). For example, if a pseudo box is imprecise in its length but accurate in other co-
ordinates, uncertainty is elevated only for length, thereby reducing loss for that specific coordinate.
Quantitative experiments on nuScenes (Caesar et al., 2020) and Lyft (Houston et al., 2021) validate
effectiveness of our method, which consistently outperforms existing approaches. Qualitative analy-
ses reveal that our model generates robust box estimations and achieves higher recall on challenging
samples. Furthermore, uncertainty visualization confirms the correlation between high estimated
uncertainty and inaccurate pseudo box coordinates. Our contributions are summarized as follows:

• To mitigate negative effects of inaccurate pseudo boxes for unsupervised 3D object detec-
tion, we introduce fine-grained uncertainty estimation to assess the quality of pseudo boxes
in a learnable manner. Following this, we leverage the estimated uncertainty to regularize
the iterative training process, realizing the coordinate-level adjustment in optimization.

• Quantitative experiments on nuScenes (Caesar et al., 2020) and Lyft (Houston et al., 2021)
validate the efficacy of our uncertainty-aware framework, yielding consistent improvements
of 6.9% in APBEV and 2.5% in AP3D on nuScenes, and 4.1% in APBEV and 2.0% in
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AP3D on Lyft, compared with existing methods. Qualitative analysis further verifies that
our uncertainty estimation successfully identifies inaccuracies in pseudo bounding boxes.

2 RELATED WORKS

Unsupervised 3D object detection. Unsupervised 3D object detection endeavors to identify objects
without any annotations (Lentsch et al., 2024; Wu et al., 2024; Yin et al., 2022; Luo et al., 2023).
This field is distinguished by two primary research trajectories. The first trajectory focuses on object
discovery from LiDAR point clouds. MODEST (You et al., 2022) pioneers the use of multi-traversal
method to generate pseudo boxes for moving objects, complemented by a self-training mechanism.
OYSTER (Zhang et al., 2023) builds on this approach by advocating for learning in a near-to-far
fashion. More recently, CPD (Wu et al., 2024) enhances this methodology by employing precise
prototypes for various object classes to boost detection accuracy. Additionally, Najibi et al. (2022)
employs scene flow to capture motion information for each LiDAR point and applies clustering
techniques to distinguish objects. The second trajectory involves harnessing knowledge from 2D
space. Najibi et al. (2023) aligns 3D point features with text features of 2D vision language models,
enabling the segmentation of related points and bounding box fitting based on specified text, such as
object class names. Concurrently, Yao et al. (2022) proposes the alignment of concept features from
3D point clouds with semantic data from 2D images, facilitating various downstream 3D tasks, in-
cluding detection. Taking one step further, Zhang et al. (2024b) fuses the LiDAR and 2D knowledge
to facilitate discovering the far and small objects within a self-paced learning pipeline. Owning
to the inherent noise in the generated pseudo boxes, the final efficacy of these approaches can be
compromised. Different from existing works, we utilize fine-grained uncertainty estimation and
regularization to mitigate the negative effect of inaccurate pseudo boxes to enhance the performance
of unsupervised 3D object detection.

Uncertainty learning. Uncertainty learning techniques (Xiong et al., 2024; Jain et al., 2024) are
broadly categorized into four groups: single deterministic methods, bayesian methods, ensemble
methods, and test-time augmentation methods (Gawlikowski et al., 2023; He et al., 2024; Zhang
et al., 2024c). Single deterministic methods (Sensoy et al., 2018; Nandy et al., 2020; Raghu et al.,
2019; Lee & AlRegib, 2020) adapt the original model to directly estimate prediction uncertainty,
though the extra uncertainty estimation usually compromises the original task. Bayesian meth-
ods (Neal, 2012; Mobiny et al., 2021; Ma et al., 2015; Wenzel et al., 2020) utilize probabilistic
neural networks to estimate uncertainty by assessing the variance across multiple forward passes
of the same input, which are limited by high computational costs. Ensemble methods (Sagi &
Rokach, 2018; Zheng & Yang, 2021; Ovadia et al., 2019; Malinin et al., 2019; Lakshminarayanan
et al., 2017) estimate uncertainty through the combined outputs of various deterministic models dur-
ing inference, aiming primarily to enhance prediction accuracy, though their potential in uncertainty
quantification remains largely untapped. Test-time augmentation methods (Shanmugam et al., 2021;
Lyzhov et al., 2020; Magalhães & Bernardino, 2023; Conde et al., 2023) create multiple predictions
by augmenting input samples during testing, with the principal challenge being the selection of
appropriate augmentation techniques that effectively capture uncertainty. Different from existing
techniques, we devise an auxiliary detection branch alongside the primary detector to enable the
quantification of fine-grained uncertainty. We also explore the utilization of uncertainty estimation
and regularization in the untapped unsupervised 3D object detection task.

3D object detection framework. Various 3D object detection frameworks are proposed and oper-
ated within a supervised pipeline. Recent works in this domain can primarily be divided into three
categories based on the representation strategies: (1) voxel-based, (2) point-based, and (3) voxel-
point based approaches. First, voxel-based methods (Zhou & Tuzel, 2018; Yan et al., 2018) trans-
form unordered point clouds into compact 2D or 3D grids, subsequently compressing them into a
bird’s-eye view (BEV) 2D representation for efficient CNN operations. These approaches, therefore,
are generally more computationally efficient and hardware-friendly but sacrifice fine-grained details
due to the coarse-grained voxel. Second, point-based approaches utilize permutation-invariant op-
erations to directly process the original geometry of raw point clouds (Shi et al., 2019; Yang et al.,
2020; Shi & Rajkumar, 2020), thereby excelling in capturing detailed features at the expense of
increased model latency. Lastly, voxel-point based methods (Yang et al., 2019; Shi et al., 2020)
aim to merge the computational advantages of voxel-based techniques with the detailed accuracy of
point-based methods, marking a progressive trend in this field. Diverging from existing contexts,
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Input point cloud

Primary detector prediction Auxiliary detector prediction Fine-grained uncertainty Pseudo box

3D detection model
Primary detector

Auxiliary detector

SA layers

FP layers Dense head

FP layers Dense head

Backbone

Figure 2: Overall pipeline. Given an input point cloud, an auxiliary detector predicts the bounding
boxes B̂a concurrently with the primary detector predictions B̂p. We leverage the discrepancy
between the two detector predictions as the uncertainty indicator U . Specifically, high coordinate-
level uncertainty is assigned to inaccurate pseudo box coordinates. For uncertainty regularization,
the original detection loss is rectified by the estimated uncertainty as Lu

p and Lu
a , reducing the weight

of inaccurate pseudo boxes on coordinate level. Note: SA refers to Set Abstraction, and FP refers
to Feature Propagation. We insert auxiliary detector after sa_layer_4 in PointRCNN backbone. For
uncertainty visualization, purple box represents the uncertainty of length, width, and height, i.e.,
∆l, ∆w, and ∆h; purple orthogonal lines indicate the uncertainty of the x, y, and z positions, i.e.,
∆x, ∆y , and ∆z; and purple diagonal line denotes the uncertainty of orientation, i.e., ∆θ. We
present a detailed explanation of our uncertainty visualization scheme in Fig. 6. In this example,
orientation of pseudo box on the right is inaccurate. Our method assigns high uncertainty for the
orientation and reduces its weight during model training.

we attempt to enhance the efficacy of base detection framework (Shi et al., 2019) in an unsupervised
setting with fine-grained uncertainty learning.

3 METHOD

3.1 UNCERTAINTY ESTIMATION

Our approach of uncertainty estimation employs an auxiliary detector architecture (see Fig. 2). Typ-
ically, 3D object detection models (Shi et al., 2019; Shi & Rajkumar, 2020) consist of 3D backbone
extracting features from point clouds, and 3D detection heads to generate predicted 3D boxes from
these features. We introduce an additional 3D detection branch appended to an intermediate layer
of the feature extraction backbone. The auxiliary branch mirrors the structure of original branch but
differs in channel configuration. We refer to this branch as the auxiliary detector and the original
branch is termed the primary detector. We estimate uncertainty as the prediction difference between
these two detectors, which can be considered as the degree of disagreement between two different
minds. In practice, we use the dense outputs from both detectors, which provide point-wise box
predictions across the entire point cloud. For uncertainty estimation, we calculate the ℓ1 difference
between the point-wise predicted boxes of the primary and auxiliary detectors. This difference is
computed at the coordinate level to quantify fine-grained uncertainty:

∆x = |xp − xa|,∆y = |yp − ya|,∆z = |zp − za|,
∆l = |lp − la|,∆w = |wp −wa|,∆h = |hp − ha|,∆θ = |θp − θa|,

(1)

where xp,yp, zp, lp,wp,hp,θp ∈ Rn×1 refer to different coordinate vectors of primary de-
tector dense prediction, namely x, y, z for 3D position, length, width, height, and orienta-
tion, xa,ya, za, la,wa,ha,θa ∈ Rn×1 denote coordinate vectors of auxiliary detector dense
prediction, ∆x,∆y,∆z,∆l,∆w,∆h,∆θ ∈ Rn×1 are estimated uncertainty vectors of dif-
ferent coordinates based on prediction discrepancy between two detectors, and n indicates the
number of boxes which is same as the number of points in the point cloud. Furthermore,
B̂p = [xp,yp, zp, lp,wp,hp,θp] ∈ Rn×7 refers to primary detector dense predictions, B̂a =
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[xa,ya, za, la,wa,ha,θa] ∈ Rn×7 denotes auxiliary detector dense predictions, and U =
[∆x,∆y,∆z,∆l,∆w,∆h,∆θ] ∈ Rn×7 represents the estimated fine-grained uncertainty. No-
tably, each coordinate of the 3D box is assigned an estimated value, which reflects the uncertainty
of that specific coordinate.

Discussions. Why can uncertainty estimation reflect the inaccuracy of pseudo boxes? Accurate
pseudo boxes are well-aligned with the object regions in the input point cloud, typically exhibiting
consistent characteristics such as tightly enclosing specific point groups and maintaining a reason-
able size. In contrast, inaccurate pseudo boxes show significant and unpredictable variations, making
them harder to interpret. This inherent uncertainty can confuse the model, leading to highly varying
predictions for the same object. Consequently, discrepancies between the two detector predictions
indicate elevated uncertainty, reflecting the inaccuracy of pseudo boxes. Why choose dense predic-
tions for uncertainty estimation instead of using predictions from the Region-of-Interest (ROI)
head? Since the dense outputs predict a box for each point in the point cloud, they generate the same
number of predictions regardless of the model structure, ensuring consistency between primary and
auxiliary detectors. This consistency naturally simplifies the calculation of differences between two
detector predictions for estimate uncertainty. In 3D detection model (Shi et al., 2019), ROI head
aggregates point-wise predictions into certain numbers of final bounding boxes, and the numbers
of predicted boxes can vary between the primary and auxiliary detectors. While it is feasible to
utilize the output from ROI head for uncertainty estimation, the different numbers of boxes from
primary and auxiliary detectors require a matching process. Matching boxes between two detectors
introduces significant computational overhead. Given the additional training cost, we choose not to
rely on the predictions from ROI head. Why use an auxiliary detector to estimate uncertainty,
instead of directly regressing uncertainty, as done in previous works (Choi et al., 2019; He
et al., 2019)? We have studied the additional channel method, which involves using extra channels
to regress the uncertainty. However, this approach did not yield satisfactory results, as it suffers from
overfitting issues, such as predicting zero uncertainty for all samples or uniformly high uncertainty.
We attribute this to the inherent complexity of unsupervised 3D detection: simply adding extra chan-
nels introduces too few model parameters to effectively capture uncertainty, which is insufficient to
manage the complexities involved.

3.2 UNCERTAINTY REGULARIZATION

Upon deriving the fine-grained uncertainty, we employ it to refine the iterative learning process. Our
objective is to adaptively reduce the negative effects of inaccurate pseudo boxes at coordinate level.
To achieve this, we rectify original detection loss by incorporating our estimated uncertainty:

Lu
p =

7∑
i=1

(
Lp,i

exp (Ui)
+ λ ·Ui), Lu

a =

7∑
i=1

(
La,i

exp (Ui)
+ λ ·Ui), (2)

where Lu
p ,Lu

a denote the uncertainty-regularized loss of primary and auxiliary detectors. For brevity,
we represent 7 coordinates of 3D box (see Eq. 1) by i = 1, 2, ..., 7. Lp,i,La,i represent the original
dense head losses of primary and auxiliary detectors for the i-th coordinate, which are calculated by
the ℓ1 loss between corresponding coordinate of the predicted boxes and pseudo boxes. Specifically,
Lp,i = |B̂p,i −Bpseudo,i|,La,i = |B̂a,i −Bpseudo,i|, where Bpseudo,i ∈ Rn×1 is the i-th co-
ordinate of assigned dense pseudo boxes. Ui denotes the estimated fine-grained uncertainty of the
corresponding coordinate in U . To prevent divide-by-zero errors and stabilize the learning process,
we normalize estimated uncertainty with exponential function. Additionally, we incorporate term
λ · Ui to prevent the model from consisting predicting high uncertainty, where λ controls penalty
strength. Empirically, when uncertainty of certain coordinate is high, weight of that inaccurate
pseudo box coordinate is diminished, thereby reducing its impact on training process. Conversely,
when uncertainty is low, for instance, nearing zero, the loss reverts to original detection loss, pre-
serving the full influence of that pseudo box coordinate. As a result, our uncertainty regularization
dynamically mitigates negative effects of inaccurate pseudo boxes on coordinate level.

The regularization process is uniformly applied to both primary and auxiliary detectors. Each de-
tector takes into account the prediction of the other and adjusts weights of pseudo box coordinates
accordingly, who diminishes influence of pseudo box coordinates when significant prediction dis-
agreement is evident, and reserves impact of pseudo box coordinates when two predictions concur.
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Therefore, the final loss Ltotal can be formulated as:

Ltotal = Lu
p + µ · Lu

a , (3)

where Lu
p is the uncertainty-regularized loss for the primary detector, Lu

a is the uncertainty-
regularized loss for the auxiliary detector, µ denotes the auxiliary detector loss weight.

Discussions. Why is uncertainty regularization fine-grained? Our calculation process operates
at the box coordinate level. This allows our method to identify coordinate-specific inaccuracies in
pseudo boxes and dynamically mitigate their negative influence. During the pseudo box generation
process, pseudo boxes can exhibit inaccuracies in specific coordinates, such as only in the orienta-
tion angle. In such cases, treating the entire box as fully certain or uncertain is not reasonable. Our
fine-grained regularization approach can selectively reduce the negative influence of the inaccurate
coordinate while preserving the efficacy of other accurate coordinates. Why not use rule-based
uncertainty? Our uncertainty-aware framework is learnable and more adaptive. There are meth-
ods (Wu et al., 2024) where uncertainty in pseudo boxes is determined using fixed rules based on
factors like distance, the number of points in the box, or the distribution pattern of points within
the box. These rules are devised based on human-observed knowledge, e.g., the further the box, the
higher the uncertainty. However, such rules can lead to errors. For example, a distant box can be
very accurate, but under rule-based uncertainty, its influence can be unjustly diminished, potentially
degrading model performance. Our learnable uncertainty avoids this pitfall by not only assimilating
human-observed rules and knowledge but also adaptively handling different cases. For instance, if
a distant pseudo box is very accurate, both the primary and auxiliary detectors can provide similar
predictions, resulting in low uncertainty and ensuring that the box is appropriately valued during
training. What differentiates our work from the model ensemble approaches (Sagi & Rokach,
2018)? We focus on improving the performance of a single model. Our final detection results ben-
efit from regularization gained from both the primary and auxiliary detectors. During the inference
phase, we only enable the primary detector, rather than typical model ensemble approaches that
aggregate multiple different models. Notably, our approach is also scalable and can be applied to
individual models within an ensemble, if desired.

4 EXPERIMENT

4.1 SETTINGS

Datasets. Our experiments are conducted using the nuScenes (Caesar et al., 2020) and Lyft (Hous-
ton et al., 2021) datasets, adhering to the settings established by MODEST (You et al., 2022). We
consider data samples that meet the multi-traversal requirements, i.e., point clouds collected at loca-
tions traversed more than once by the data-collecting vehicle. On nuScenes, we obtain 3,985 point
clouds for training and 2,412 for testing. Similarly, we utilize 11,873 training and 4,901 testing point
clouds on Lyft. It is worth noting that we do not use any ground truth 3D boxes during the training
phase and ground truth boxes are exclusively used for evaluation.

Backbone. The primary backbone for our 3D detection is PointRCNN (Shi et al., 2019). PointR-
CNN utilizes PointNet++ (Qi et al., 2017) for extracting point-wise features from the LiDAR point
clouds. Within PointNet++, Set Abstraction layers first perform point grouping and local feature
extraction, Feature Propagation layers then conduct feature upsampling and propagate abstract fea-
tures back to point-wise representation. Following this, dense head predicts a 3D box for each point
based on these extracted features. Lastly, region of interest (ROI) head aggregates object proposals
from the point-wise predictions into final predictions.

Implementation Details. For construction of auxiliary detector, we first incorporate 4 additional
Feature Propagation layers after the last Set Abstraction layer in PointRCNN. These layers mirror the
structure of the original Feature Propagation layers but with varied channel numbers. Specifically,
the channel numbers in the original Feature Propagation layers are (C1, C2, C3, C4), while in the
introduced Feature Propagation layers, they are scaled to (γ · C1, γ · C2, γ · C3, γ · C4), where γ
represents coefficient to adjust the channel number in the introduced Feature Propagation layers. In
practice, the adopted (C1, C2, C3, C4) are (128, 256, 512, 512) and γ = 0.5 yields the best results.
We then integrate a new dense head and ROI head after the introduced Feature Propagation layers to
establish the auxiliary detector. We follow the self training paradigm established by previous work
MODEST (You et al., 2022). Specifically, we conduct seed training and 10 rounds of self training
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Table 1: Quantitative results on nuScenes (Caesar et al., 2020) and Lyft (Houston et al., 2021).
We report APBEV and AP3D at IoU = 0.25 for objects across various distances, presented in the
format APBEV / AP3D. T = 0 indicates training from seed boxes, while T = 2 and T = 10
correspond to the results from the 2th and 10th round of self-training, respectively. Supervised
performance of model trained with ground-truth boxes is in the first row (Supervised). ∗ denotes
our reproduced results by adhering to official settings, which include two rounds of self-training. (a)
Detection results on nuScenes. It is worth noting that our UA3D significantly surpasses the state-
of-the-art OYSTER (Zhang et al., 2023) across all evaluated metrics. This validates the efficacy
of our proposed coordinate-level uncertainty estimation and regularization in mitigating negative
impacts of noisy pseudo boxes for unsupervised 3D object detection. (b) Detection results on Lyft.
Our UA3D significantly outperforms MODEST (You et al., 2022) by 4.1% in APBEV and 2.0%
in AP3D. Notably, we employ same hyper-parameters as those used in nuScenes experiments and
observe a consistent improvement.

(a)
Method T 0-30m 30-50m 50-80m 0-80m
Supervised - 39.8 / 34.5 12.9 / 10.0 4.4 / 2.9 22.2 / 18.2

MODEST-PP 0 0.7 / 0.1 0.0 / 0.0 0.0 / 0.0 0.2 / 0.1
MODEST-PP 2 - - - -
MODEST 0 16.5 / 12.5 1.3 / 0.8 0.3 / 0.1 7.0 / 5.0
MODEST 10 24.8 / 17.1 5.5 / 1.4 1.5 / 0.3 11.8 / 6.6
OYSTER 0 14.7 / 12.3 1.5 / 1.1 0.5 / 0.3 6.2 / 5.4
OYSTER 2∗ 26.6 / 19.3 4.4 / 1.8 1.7 / 0.4 12.7 / 8.0

UA3D (ours) 0 13.7 / 11.5 0.9 / 0.6 0.5 / 0.2 5.4 / 4.9
UA3D (ours) 10 38.3 / 23.8 10.1 / 3.5 4.3 / 0.7 19.6 / 10.5

(b)
Method T 0-30m 30-50m 50-80m 0-80m

Supervised - 82.8 / 82.6 70.8 / 70.3 50.2 / 49.6 69.5 / 69.1

MODEST-PP 0 46.4 / 45.4 16.5 / 10.8 0.9 / 0.4 21.8 / 18.0
MODEST-PP 10 49.9 / 49.3 32.3 / 27.0 3.5 / 1.4 30.9 / 27.3
MODEST 0 65.7 / 63.0 41.4 / 36.0 8.9 / 5.7 42.5 / 37.9
MODEST 10 73.8 / 71.3 62.8 / 60.3 27.0 / 24.8 57.3 / 55.1

UA3D (ours) 0 66.0 / 63.3 43.8 / 36.3 8.9 / 5.1 43.2 / 38.0
UA3D (ours) 10 74.1 / 71.2 63.6 / 61.7 36.8 / 29.0 61.4 / 57.1

in all our experiments. In seed training, initially generated pseudo boxes from clustering algorithms
are used to bootstrap a detection model. Afterward, in each self training round, trained model from
previous round is first utilized to infer on training set to generate pseudo boxes, and new model
is trained based on those model-inferred boxes. For both nuScenes and Lyft, the regularization
coefficient λ is set to 1e−5. We train 80 epochs for nuScenes and 60 epochs for Lyft. We use Adam
as the optimizer with a learning rate of 0.01, weight decay of 0.01, and momentum of 0.9. The
learning rate is decayed at epochs 35 and 45 with a decay rate of 0.1. The batch size is set to 2 per
GPU. We apply gradient norm clipping of 10. Following the settings of previous work (You et al.,
2022), we sample 6,144 points per point cloud in nuScenes and 12,288 points per point cloud in Lyft
to enhance computational efficiency. We utilize 4 A6000 (48G) GPUs for all our experiments.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We present the results for nuScenes (Caesar et al., 2020) in Table 1a. Our uncertainty-aware frame-
work outperforms the state-of-the-art method OYSTER (Zhang et al., 2023) by 6.9% in APBEV and
2.5% in AP3D, respectively. This performance enhancement underscores the efficacy of our pro-
posed uncertainty-aware method in refining learning process from noisy pseudo boxes. It confirms
that reducing the negative impact of inaccurate pseudo boxes on coordinate level can significantly
boost model detection performance. Notably, for objects in the long-range (50-80m), APBEV sees
a remarkable increase of 253% (from 1.7% to 4.3%). This significant boost is attributed to the
typically lower accuracy of long-range pseudo boxes, where uncertainty plays a pivotal role in dy-
namically adjusting the weights of pseudo boxes coordinates according to their varying qualities.

We further conduct experiments on Lyft (Houston et al., 2021) (see Table 1b). Our uncertainty-
aware method surpasses MODEST by 4.1% in APBEV and 2.0% in AP3D. Notably, we use the
same hyper-parameter settings as those in nuScenes experiments, validating the generalizability
and effectiveness of our uncertainty-aware approach. The most significant improvements are also
observed in the long-range (50-80m), with increases of 9.8% in APBEV and 4.2% in AP3D. This
verifies the efficacy of our method in enhancing the detection capability of distant objects, which are
typically challenging to recognize.

4.3 ABLATION STUDIES AND FURTHER DISCUSSION

Comparison with Rule-Based Uncertainty. We compare our proposed learnable uncertainty-
aware method with rule-based uncertainty to validate the superiority of our learnable approach (see
Table 2a). We implement several rule-based uncertainties as our baselines, encompassing distance-
based, number-of-points-in-box-based (Numpts-based), and volume-based uncertainty. We follow
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Table 2: Ablation studies on the nuScenes dataset. We report APBEV and AP3D at IoU = 0.25
for objects across various distances. (a) Ablation study of rule-based uncertainty and our proposed
learnable uncertainty-aware framework. Our learnable uncertainty surpasses all types of rule-based
uncertainty, validating its superiority in handling complex cases where rule-based uncertainty can
fail. (b) Ablation study of the uncertainty granularity. We find that our proposed coordinate-level
uncertainty outperforms other coarse-grained uncertainty, such as box-level and point cloud-level.
By addressing the inaccuracies in box coordinates individually, our coordinate-level uncertainty
reduces the negative impact of noisy pseudo boxes more adaptively. (c) Ablation study on the
auxiliary detector structure. γ denotes the channel number coefficient of the auxiliary detector, with
the best performance achieved at 0.5. Being slightly smaller than the primary detector, auxiliary
detector can accurately fit correct pseudo boxes while avoiding over-fitting to noisy ones. This
setting enhances the identification of inaccurate pseudo boxes, effectively unlocking the potential of
our uncertainty-aware framework. (d) Ablation study on λ. We obtain the best result at λ = 1e−5

as it ensures uncertainty estimation and regularization play a proper role, preventing the uncertainty
from vanishing or exploding.

(a)
Method 0-30m 30-50m 50-80m 0-80m
Distance-based 29.6 / 19.6 7.2 / 2.2 3.2 / 0.5 14.8 / 8.1
Numpts-based 27.3 / 17.6 7.3 / 2.8 2.3 / 0.3 13.7 / 7.5
Volume-based 25.7 / 17.7 5.6 / 2.2 2.5 / 0.4 12.3 / 7.4

UA3D (ours) 38.3 / 23.8 10.1 / 3.5 4.3 / 0.7 19.6 / 10.5

(b)
Granuity 0-30m 30-50m 50-80m 0-80m
Coordinate-level 38.3 / 23.8 10.1 / 3.5 4.3 / 0.7 19.6 / 10.5
Box-level 34.9 / 24.6 7.5 / 2.8 3.6 / 0.1 17.2 / 9.9
Point cloud-level 27.7 / 18.7 3.6 / 1.2 1.2 / 0.1 12.1 / 6.7

(c)

γ 0-30m 30-50m 50-80m 0-80m
0.25 32.6 / 23.5 8.6 / 3.1 4.3 / 0.2 16.9 / 9.9
0.5 38.3 / 23.8 10.1 / 3.5 4.3 / 0.7 19.6 / 10.5
1 29.6 / 22.3 6.0 / 2.3 3.3 / 0.1 14.7 / 8.5
2 29.5 / 20.5 7.9 / 3.0 4.4 / 0.3 15.8 / 8.9

(d)

λ 0-30m 30-50m 50-80m 0-80m

1e−4 33.8 / 20.4 6.1 / 1.5 2.9 / 0.3 15.2 / 7.4
1e−5 38.3 / 23.8 10.1 / 3.5 4.3 / 0.7 19.6 / 10.5
1e−6 18.1 / 13.7 3.2 / 1.3 1.6 / 0.2 8.4 / 5.6

common human observed rules, e.g., the farther the pseudo box is, the fewer points the pseudo
box contains, or the smaller the pseudo box is, the less accurate and more uncertain it becomes.
For distance-based uncertainty, the uncertainty of a pseudo box is quantified as u = min(bx,τx)

τx
,

where bx denotes the distance of the box from the ego vehicle, and τd represents the selected dis-
tance threshold. We assign a constant uncertainty value of 1 for boxes located beyond τx, which
we empirically set at τx = 100m. For numpts-based uncertainty, the uncertainty is formulated as
u = τn

min(bnum_pts,τn)
, where bnum_pts refers to the number of points within the 3D pseudo box, and

τn is the selected points threshold set at τn = 100. For volume-based uncertainty, the uncertainty is
computed as u = τv

min(bl·bw·bh,τv) , where bl, bw, and bh indicate the length, width, and height of the
3D pseudo box, and τv is the chosen volume threshold set at τv = 10m3. The uncertainty for each
pseudo box is calculated during training and utilized to regularize the original detection loss. Our
learnable uncertainty consistently outperforms all rule-based uncertainties by effectively addressing
scenarios where rule-based approaches fail. For instance, a box with a high number of points is typ-
ically assumed to have low uncertainty, but can be inaccurate. Our learnable uncertainty is capable
of assigning high uncertainty to such cases due to prediction discrepancies between the primary and
auxiliary detectors.

Ablation of Different Granularities. We present an ablation study on the uncertainty granularity
in Table 2b. For our proposed coordinate-level uncertainty, the uncertainty estimation and regular-
ization is applied at the coordinate level, where the loss weight for each coordinate of each box is
adjusted adaptively based on its uncertainty value. For box-level uncertainty, we sum the uncer-
tainty values of the 7 coordinates for each box, using this sum as the overall uncertainty for the box.
Concurrently, the loss values of all 7 coordinates are combined into a total loss for the box, and this
total loss is regularized with the corresponding box uncertainty. For point cloud-level uncertainty,
we aggregate the uncertainty of all boxes in the point cloud to represent the overall uncertainty of the
point cloud. Meanwhile, the losses of all boxes in the point cloud are summed into an overall loss,
which is then regularized by the corresponding point cloud-level uncertainty. We observe that the
best results are achieved with our coordinate-level uncertainty. This approach corrects inaccurate
pseudo boxes in a more fine-grained and adaptive manner, effectively mitigating the negative impact
of noise. In contrast, box-level uncertainty regularization treats the entire box as either certain or
uncertain, ignoring differences among the coordinates. For example, a box can have an inaccurate
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Low uncertainty
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Inaccurate 
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High uncertainty

Accurate 
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Low uncertainty

Different 
predictions
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Accurate 
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Inaccurate 
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(a)
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v.s. Pseudo

(b)
Auxiliary 

v.s. Primary

(c)
Uncertainty-aware 

Pseudo Boxes

Figure 3: Correspondence between pseudo label inaccuracy and high uncertainty. (a) We
present ground truth and pseudo boxes in two different point clouds (left and right columns). Each
point cloud contains both accurate and inaccurate pseudo boxes. We observe that pseudo boxes can
be significantly inaccurate in terms of the shape, location, and rotation. Direct usage of these boxes
for training can easily impair the performance of the detection model. (b) We present the predictions
from the primary and auxiliary detectors. Two detector predictions align closely for objects with ac-
curate pseudo boxes but diverge for those with inaccurate ones. The mismatch between inaccurate
pseudo boxes and the actual point cloud distribution can confuse the model, resulting in varying
interpretations. (c) We present our uncertainty-aware pseudo boxes. Fine-grained coordinate-level
uncertainty is estimated, e.g., the orientation uncertainty for the right object (in left column) is high
(as indicated by the long purple diagonal line), due to its inaccuracy in the pseudo box. The colors
follow the same conventions in Fig. 2. A detail explanation of our uncertainty visualization scheme
is shown in Fig. 6.

length while other dimensions are accurate. The coarse-grained box-level approach can compromise
the efficacy of regularization. At the point cloud level, the regularization effect is weak, resulting in
performance degradation to the baseline (MODEST).

Design of Uncertainty Estimation. We present an ablation study on the design of the auxiliary
detector in Table 2c. The configuration with γ = 0.5 yields the best results. This configuration
provides enough model capacity to fit accurate pseudo boxes while avoiding over-fitting to noisy
pseudo boxes. As a result, the primary and auxiliary detector predictions tend to diverge for inac-
curate pseudo boxes, leading to more effective uncertainty estimation and regularization. γ = 0.25
indicates a smaller auxiliary detector with weaker capacity in fitting pseudo boxes. Other than in-
accurate boxes, such a model will also result in higher prediction discrepancies for those accurate
boxes and thus impair the uncertainty estimation process. Conversely, larger auxiliary detectors,
such as those with γ = 1 and γ = 2, exhibit learning capacities similar to the primary detector,
which diminishes the efficacy of uncertainty learning.

Design of Uncertainty Regularization. We explore the effects of varying the uncertainty regular-
ization coefficient λ (see Eq. 2) in Table 2d. The optimal performance is observed with λ = 1e−5,
which allows uncertainty estimation and regularization to play a proper role and avoids uncertainty
vanishing or explosion. Other settings yield sub-optimal results compared with λ = 1e−5. A high
λ = 1e−4 imposes a strong penalty for high uncertainty and suppresses the role of uncertainty dur-
ing training. Conversely, a low λ = 1e−6, which imposes a minimal penalty for high uncertainty,
leads to excessively high uncertainty values across all samples. This reduces the influence of the
original detection loss, resulting in slow learning process.

4.4 QUALITATIVE ANALYSIS

We visualize the obtained uncertainty in Fig. 3 and such analysis further validates the correspon-
dence between the pseudo boxes inaccuracies and estimated uncertainty. Specifically, we observe
that accurate pseudo boxes, which typically lead to consistent predictions from both the primary and
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MODEST OYSTER UA3D (Ours)

More accurate 
predictions

More accurate 
predictions

Higher recall

Higher recall

(a)

(b)

Inaccurate 
predictions

Inaccurate 
predictions

Inaccurate 
predictions

MissedMissed

MissedMissed

Figure 4: Visualization comparison between different methods. We compare the predictions of
MODEST (You et al., 2022), OYSTER (Zhang et al., 2023), and our uncertainty-aware framework.
Green boxes denote ground truth boxes and red boxes are predictions. (a) Generally, our method
shows a clear improvement in box coordinate accuracy over previous methods. (b) For some chal-
lenging objects with few points or far away, our method can still retain a higher recall rate.

auxiliary detectors, exhibit low uncertainty. In contrast, when a pseudo box shows inaccuracies in
certain coordinates, the estimated uncertainty for those coordinates is significantly higher since the
predictions from the primary and auxiliary detectors diverge on those coordinates.

In Fig 4, we compare the predictions from our uncertainty-aware method against those from MOD-
EST (You et al., 2022) and OYSTER (Zhang et al., 2023). Notably, our method achieves more
accurate predictions in terms of shape, location, and orientation (see (a) in Fig.4). This enhance-
ment stems from our learnable uncertainty which reduces the impact of imprecise pseudo boxes at
a fine-grained coordinate level. By integrating uncertainty estimation and regularization processes
that focus on individual coordinates, our model avoids overfitting to erroneous box coordinates. Fur-
thermore, we observe an increase in the recall rate, especially for distant and smaller objects (see (b)
in Fig.4). The pseudo boxes for these objects are often less reliable due to the challenges in estimat-
ing such boxes. Our approach selectively discounts these unreliable boxes, allowing high-quality
boxes to play a more prominent role. Consequently, our model benefits more from accurate pseudo
boxes of challenging objects, enhancing recall performance for these categories.

5 CONCLUSION

In this paper, we aim to mitigate the negative impact of inaccurate pseudo boxes in unsupervised
3D object detection. Direct usage of those inaccurate pseudo boxes can significantly impair model
performance. To address this issue, we propose an uncertainty-aware framework that identifies the
inaccuracy of pseudo boxes at a fine-grained coordinate level and reduces their negative effect. In
uncertainty estimation phase, we introduce an auxiliary detector to capture the prediction discrep-
ancy with the primary detector, harnessing these discrepancies as fine-grained indicators of uncer-
tainty. In uncertainty regularization phase, the estimated uncertainty is utilized to refine the training
process, adaptively minimizing the negative effects of inaccurate pseudo boxes at the coordinate
level. Quantitative experiments on nuScenes and Lyft validate the effectiveness of our uncertainty-
aware framework. Additionally, qualitative results show the superiority of our method and reveal
the correlation between high uncertainty and pseudo label inaccuracy.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Hyper-parameters. For nuScenes (Caesar et al., 2020), the batch size is set to 2 per GPU. Training
is conducted for 80 epochs using the Adam optimizer with a one-cycle policy. The initial learning
rate is 0.01, with a weight decay of 0.01 and a momentum of 0.9. Learning rate decay is applied at
epochs 35 and 45 with a decay rate of 0.1. Additionally, a learning rate clip of 1e−7 and a gradient
norm clip of 10 are employed. We perform one round of seed training followed by 10 rounds of self-
training for all experiments. Each round of training takes approximately 4 hours, resulting in a total
training time of about 44 hours (4 hours × 11 rounds). For Lyft (Houston et al., 2021), we reduce
the number of epochs to 60 for efficiency, considering that the Lyft dataset is 3 times larger than
nuScenes (You et al., 2022). The self-training pipeline for Lyft also consists of one round of seed
training and 10 rounds of self-training. Each training round takes approximately 12 hours, leading
to a total training time of around 131 hours (12 hours × 11 rounds). Other settings remain the
same as those for nuScenes, without specific tuning, to validate the generalizability of our proposed
uncertainty-aware framework.

Data Processing. For both nuScenes and Lyft, we apply several data augmentations. We sample
6,144 points per point cloud for nuScenes, while for Lyft, we sample 12,288 points per point cloud,
as the point clouds in Lyft are generally denser than those in nuScenes. We perform random world
flipping of the entire point cloud along the x-axis. We also apply random world rotation within
the angle range of [-0.785, 0.785] and random world scaling within the scale ratio range of [0.95,
1.05]. Point shuffling is applied to the training set but not to the test set. We focus on object
discovery, following the trajectory of previous works such as MODEST, OYSTER, and LiSe. We
do not explicitly consider object categories during the experiments.

Self-training Pipeline. Our uncertainty-aware framework operates within a self-training pipeline,
mainly based on the settings outlined in MODEST. In general, a self-training pipeline consists of
two stages: seed training and self-training. Initial generated pseudo boxes are referred to as seeds.
During seed training, an initial detection model is trained based on those seeds. Different from seed
training, in self-training, trained model from previous round is first applied to the training set to
obtain refined pseudo boxes. Following this, a new detection model is trained on the refined pseudo
boxes. The process is iteratively repeated for T rounds.

A.2 MODEL STRUCTURE

Overall Model Structure. The detection model we use is PointRCNN, which utilizes PointNet++
for point-wise feature extraction. After feature extraction, the dense head predicts a box for each
point. Following this, the ROI head aggregates these point-wise predictions and applies score thresh-
olds to produce the final predictions. PointNet++ mainly comprises Set Abstraction Layers and Fea-
ture Propagation Layers. The Set Abstraction Layers group the entire point cloud into local regions,
where local features are extracted using PointNet to capture geometric structures. By stacking mul-
tiple Set Abstraction Layers with varying neighborhood sizes, a hierarchical representation of the
point cloud is built, allowing the model to learn more fine-grained and complex features at multiple
scales. Based on this hierarchical representation, the Feature Propagation Layers iteratively upsam-
ple and propagate features back to the original point-wise level, recovering detailed information to
support various downstream tasks. For the introduced auxiliary detection branch, we introduce ad-
ditional Feature Propagation Layers into the middle of the PointNet++ feature extraction backbone.
These layers are attached to the final layer of the original Set Abstraction Layers and have a similar
structure but differ in the number of channels. New dense head and ROI head are also introduced to
generate auxiliary detector predictions based on the features extracted from the added Feature Prop-
agation Layers. These added dense head and ROI head are designed with different input channels to
accommodate the modified channel dimensions of the newly added Feature Propagation Layers.

Detailed Model Settings. We present a detailed description of our model structure in Table 3. The
shared feature extraction backbone consists of 4 SA layers. The primary detection branch follows
the original PointRCNN model, while the auxiliary detection branch is newly added. This auxiliary
branch is attached to the last SA layer of the shared backbone, with its channel numbers halved
compared to the primary detection branch. The prediction discrepancy between the primary and
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Table 3: Detailed model structure. The SALayer refers to the Set Abstraction Layer, which per-
forms point grouping and local feature extraction. The Grouper is a rule-based operation for point
cloud grouping, typically based on Farthest Point Sampling (FPS). The ConvBlock is a Convolu-
tional Block composed of a convolutional layer, a batch normalization layer, and a ReLU layer. The
FPLayer refers to the Feature Propagation layer, which performs feature upsampling and propagates
abstract features back to each point in the point cloud. The DenseHead predicts one box for each
point in the cloud. The LinearBlock consists of a linear layer, a batch normalization layer, and a
ReLU layer. The WeightedSmoothL1Loss is an updated version of the L1 loss that applies different
weights to different coordinates.

Shared Feature Extraction Backbone
SALayer1:

Grouper
ConvBlock(4, 16) , ConvBlock(16, 16) , ConvBlock(16, 32)
ConvBlock(4, 32) , ConvBlock(32, 32) , ConvBlock(32, 64)

SALayer2:
Grouper

ConvBlock(99, 64) , ConvBlock(64, 64) , ConvBlock(64, 128)
ConvBlock(99, 64) , ConvBlock(64, 96) , ConvBlock(96, 128)

SALayer3:
Grouper

ConvBlock(259, 128) , ConvBlock(128, 196) , ConvBlock(196, 256)
ConvBlock(259, 128) , ConvBlock(128, 196) , ConvBlock(196, 256)

SALayer4:
Grouper

ConvBlock(515, 256) , ConvBlock(256, 256) , ConvBlock(256, 512)
ConvBlock(515, 256) , ConvBlock(256, 384) , ConvBlock(384, 512)

Primary Detection Branch Auxiliary Detection Branch
FPLayer1: FPLayer1:

ConvBlock(257, 128) , ConvBlock(128, 128) ConvBlock(129, 64) , ConvBlock(64, 64)
FPLayer2: FPLayer2:

ConvBlock(608, 256) , ConvBlock(256, 256) ConvBlock(352, 128) , ConvBlock(128, 128)
FPLayer3: FPLayer3:

ConvBlock(768, 512) , ConvBlock(512, 512) ConvBlock(512, 256) , ConvBlock(256, 256)
FPLayer4: FPLayer4:

ConvBlock(1536, 512) , ConvBlock(512, 512) ConvBlock(1536, 256) , ConvBlock(256, 256)
DenseHead: DenseHead:

LinearBlock(128, 256) LinearBlock(64, 256)
LinearBlock(256, 256) LinearBlock(256, 256)

LinearBlock(256, 8) LinearBlock(256, 8)
WeightedSmoothL1Loss WeightedSmoothL1Loss

ROIHead: ROIHead:
ProposeLayer ProposeLayer

SALayer1((131, 128), (128, 128), (128, 128)) SALayer1((67, 128), (128, 128), (128, 128))
SALayer2((131, 128), (128, 128), (128, 256)) SALayer2((131, 128), (128, 128), (128, 256))
SALayer3((259, 256), (256, 256), (256, 512)) SALayer3((259, 256), (256, 256), (256, 512))

XYZUPLayer XYZUPLayer
ConvBlock(5, 128) , ConvBlock(128, 128) ConvBlock(5, 64) , ConvBlock(64, 64)

MergeDownLayer MergeDownLayer
ConvBlock(256, 128) ConvBlock(128, 64)

RegressionLayer((512, 256), (256, 256), (256, 7)) RegressionLayer((512, 256), (256, 256), (256, 7))
WeightedSmoothL1Loss WeightedSmoothL1Loss

auxiliary detectors allows us to identify uncertainty in noisy pseudo boxes during unsupervised 3D
object detection.

A.3 MORE QUALITATIVE RESULTS

We present additional qualitative results in Fig. 5. As shown in Fig. 5 (a), our uncertainty-aware
framework generates more accurate predictions regarding object shape, location, and orientation.
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Figure 5: Further qualitative comparison between different methods. We compare our
uncertainty-aware framework with previous works, e.g., MODEST and OYSTER. Green boxes
denote the ground-truth and red boxes represent predictions from the detection model. (a) Our
uncertainty-aware framework shows more accurate perceptions of various foreground objects. (b) In
challenging scenarios, such as distant objects with sparse point clouds or small objects, our method
achieves a higher recall rate.

This improvement is attributed to our proposed uncertainty estimation and regularization, which
mitigate the negative effects of inaccurate pseudo boxes at a fine-grained coordinate level. Fig. 5
(b) further shows that our method is more effective in recalling difficult object categories, e.g., far
and small objects. Our uncertainty-aware framework enhances the prominence of accurate pseudo
boxes for these challenging objects, facilitating more effective recognition of those objects.

A.4 EXPLANATION OF UNCERTAINTY VISUALIZATION

We present the explanation of our uncertainty visualization in Fig. 6. The uncertainties in length,
width, and height are represented by the gap between the corresponding coordinates of the purple
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Uncertainty 
of Length

Uncertainty 
of Width

Uncertainty 
of Position x

Uncertainty 
of Position y

Uncertainty 
of Orientation

Pseudo box Fine-grained uncertainty

Figure 6: Detailed explanation of our uncertainty visualization in Bird’s Eye View (BEV). (1)
Uncertainty of length: it is visualized by the gap between the length coordinates of the purple and
yellow boxes. (2) Uncertainty of width: it is similarly represented by the gap between the width
coordinates of the two boxes. (3) Uncertainty of height: it is depicted as the gap between the height
coordinates of the two boxes, though it is omitted in BEV for brevity. (4) Uncertainty of position
x: it is shown by the length of the purple line extending horizontally (left-to-right). (5) Uncertainty
of position y: it is represented by the length of the purple line extending vertically (top-to-bottom).
(6) Uncertainty of position z: it is visualized by the length of the purple line along the z-axis, but it
is not shown in BEV for simplicity. (7) Uncertainty of orientation: it is illustrated by the length of
the purple diagonal line.

Table 4: Ablation study of loss weight µ for the auxiliary detector (see Eq. 3). We observe that a
balanced learning process, with equal loss weights for both detectors, produces the best results.

µ 0-30m 30-50m 50-80m 0-80m

0.25 33.9 / 22.2 5.5 / 2.2 2.1 / 0.3 15.4 / 8.8
0.5 32.5 / 20.7 5.5 / 2.3 3.1 / 0.4 15.0 / 8.6
1 38.3 / 23.8 10.1 / 3.5 4.3 / 0.7 19.6 / 10.5
2 33.2 / 20.8 4.9 / 1.9 2.1 / 0.3 14.5 / 8.4

and yellow boxes. For the uncertainties in position (x, y, z) and orientation, they are visualized by
the lengths of the purple lines along the respective directions.

A.5 FURTHER ABLATION STUDIES

We conduct an ablation study on the loss weight µ of auxiliary detector (see Table 4). We observe
that µ = 1 yields the best detection performance. This suggests that applying equal weights to both
branches fosters a balanced learning process, enhancing overall model performance. When the loss
weight for the auxiliary detector is reduced to 0.25 or 0.5, our uncertainty-aware framework still
outperforms strong baseline (OYSTER), demonstrating the robustness of our approach to variations
in hyper-parameters. However, increasing the loss weight to 2 negatively impacts the performance
of the primary detector — the one used for final evaluation - likely due to an overemphasis on the
auxiliary branch during training.

Additionally, we present an ablation study on the feature extraction backbone layer to which the
auxiliary detector is attached (see Table 5). The original feature backbone consists of 4 sa_layers
and 4 fp_layers. We refer to those layers as sa_layer_i and fp_layer_i, where i refers to the ith layer.
We experiment by attaching the auxiliary detector to different layers, e.g., sa_layer_4, fp_layer_1,
and fp_layer_2. The auxiliary detection branch mirrors the remaining layers in primary detec-
tion branch. For example, when attaching to sa_layer_4, the auxiliary branch contains the same
4 fp_layers as the primary branch. From experiments, we observe that attaching the auxiliary detec-
tor to the sa_layer_4 yields the best results. When attaching to the sa_layer_4, we utilize all the FP
layers, which facilitates the construction of an independent auxiliary detection branch endowed with
full capacity. This maximizes the effectiveness of our proposed uncertainty-aware framework. In
contrast, utilizing only 3 FP layers (attaching to fp_layer_1) or 2 FP layers (attaching to fp_layer_2)
compromises some feature processing capabilities crucial for 3D detection. Consequently, the auxil-
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Table 5: Ablation study on the specific layer within the feature extraction backbone to
which the auxiliary detector is attached. From shallow to deeper, we study through sa_layer_4,
fp_layer_1, and fp_layer_2. We observe that attaching the auxiliary detector to a shallower layer,
e.g., the sa_layer_4, yields the best performance.

Layer 0-30m 30-50m 50-80m 0-80m

sa_layer_4 38.3 / 23.8 10.1 / 3.5 4.3 / 0.7 19.6 / 10.5
fp_layer_1 34.4 / 21.2 9.4 / 3.1 4.6 / 0.6 18.0 / 9.3
fp_layer_2 31.3 / 19.4 6.6 / 2.1 2.5 / 0.3 15.1 / 8.0

iary detector tends to produce outputs that are identical to those of the primary detector, diminishing
the ability of model to accurately estimate uncertainty.
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