
Efficient LLM Pruning with Global Token-Dependency Awareness and
Hardware-Adapted Inference

Oshin Dutta 1 Ritvik Gupta 2 Sumeet Agarwal 1

Abstract
Structured pruning removes entire components
like attention heads or layers to yield faster dense
models. However, previous methods require sig-
nificant pruning time and overlook token embed-
ding dimension, missing potential inference accel-
eration. Moreover, pruning of heads in grouped
query attentions is not widely attempted due to
challenges with their interdependencies. To ad-
dress these limitations, we propose a structured
pruning method for LLMs that incorporates the
concept of Variational Information Bottleneck
(VIB) to obtain compressed representations at
each structural element while preserving essential
information for accurate prediction. We enhance
the formulation to account for all preceding layers’
influence on the current compressed representa-
tion, ensuring a globally informed reduction in
token embedding dimension and grouped query
not explored in previous work. Additionally, we
include a post-pruning step to adjust the pruned
model dimensions, ensuring optimal use of Tensor
Cores in GPUs which speeds up inference by up to
60%. Evaluated on several language benchmarks
using variants of LLaMA models and Mistral, our
method shows a reduction in pruning time by up
to 90% with higher inference speed and competi-
tive performance.

1. Introduction
Deploying Large Language Models (LLMs) on resource-
constrained devices is challenging due to their high com-
putational and memory demands (Le Scao et al., 2023).
Pruning is an effective solution to reduce redundant model

1Department of Electrical Engineering, Indian Institute
of Technology, Delhi, India 2Machine Learning Depart-
ment, Carnegie Mellon University, PA, USA. Correspondence
to: Oshin Dutta <oshin.dutta@ee.iitd.ac.in>, Ritvik Gupta
<ritvikgu@cs.cmu.edu>, Sumeet Agarwal <sumeet@iitd.ac.in>.

Accepted to ICML ES-FoMo Workshop, Vienna, Austria, 2024.
Copyright 2024 by the author(s).

parameters and accelerate inference without sacrificing task
performance. Structured pruning (An et al., 2024) involves
removing layers, heads, intermediate dimensions. While
effective in maintaining model accuracy, gradient-based
methods (Ma et al., 2023) require substantial memory re-
sources and forward-pass only method Dery et al. (2024)
requires about 40 GPU hours for continuous evaluation of
sub-models. This makes them impractical for scenarios with
limited memory, power or time. On the other hand, unstruc-
tured pruning methods, which remove individual weights,
offer faster pruning but necessitate specialized hardware to
accelerate the pruned models (Frantar & Alistarh, 2023).
Quantization techniques require specialized GPUs and li-
braries for acceleration (Dettmers et al., 2022; Zhang et al.,
2024).

Structured pruning methods often fail to prune token repre-
sentations due to the complex dependencies that span across
layers of the model, thereby missing out on added accel-
eration. Pruning of attention heads, especially in grouped
query attentions (GQA) (Ainslie et al., 2023) introduces
additional complexity since multiple query heads share a
single key and value head. This interdependence implies
that pruning a query head can disrupt the functionality of
the entire group. Prior work (An et al., 2024) shows 1.3x
speedup on NVIDIA A100 for 50% pruning, not scaling
linearly. A notable reason is that pruned weight matrices
often cannot fully exploit the parallelism in GPU tensor
cores (NVIDIA, 2024b) which often perform operations in
certain fixed block sizes like-128x256. Certain work aim at
inference speedups (Chen et al., 2024; Sheng et al., 2023;
Liu et al., 2023) involving complex algorithms.

To address these challenges, we propose an efficient struc-
tured pruning method for LLMs- Token dependency-aware
Variational Information Bottleneck-based pruning (TVA-
Prune). We extend the formulation of the VIB principle to
include global token dependency-awareness. Our method ef-
fectively removes redundant heads, intermediate and global
token representation while preserving information flow on
a single GPU, adhering to a user-defined sparsity criterion.
Additionally, our post-pruning adaptation step converts di-
mensions to match the block sizes of Tensor cores, ensuring
parallelism in the inference GPU and thus achieving higher

1

Efficient LLM Pruning with Global Token-Dependency Awareness and Hardware-Adapted Inference

Algorithm 1 Pruning LLM with VIB masks, followed by
post-prune adaptation

Input: Target model sparsity t, Frozen Pretrained
modelf(·; θs)
Initialize:VIB masks zi, zihor zivh

for e = 1, ..., Samples do
Sample ϵ ∼ N (0, I); apply VIB masks as in Eq 2
Calculate sparsity loss Ls as in sec. 2.3
Total loss Ltotal = L̃VIB + Ls

Update z masks, sparsity coefficients λ1, λ2

end for
Convert masks to binary hard masks zmask

i

Adapt dimensions by modifying masks to ẑmask
i

Prune global token representations, attention heads, inter-
mediate dimensions according to VIB-masks:
f̂(·; θs)← f(·; θs) ⊙ẑmask

i

Optional: fine-tune remaining weights to recover perfor-
mance with LoRA by minimizing: Ltotal = Ldistil + Ltask

Output: Compressed model f̂(·; θs)

inference speedup. Pre-trained LLMs Including variants
of LLaMA-7B (Touvron et al., 2023a;b), and Mistral-7B
(Jiang et al., 2023) are pruned, demonstrating superior per-
formance compared to prior methods.

2. Global Dependency-aware Structured
Pruning

Background. For a transformer network f(·; θs), we de-
note its layer embedding as {ki}Li=1, ki ∈ Rn×seq×d. Our
objective is to obtain condensed token representations at
each layer, intermediate layers and compressed Multi-Head
Attention (MHA) while preserving essential information for
accurate prediction ỹ. This approach builds upon the VIB
formulation proposed by (Dai et al., 2018) to prune CNNs
and FFNs by retaining only the information relevant for
prediction. But instead of obtaining compressed represen-
tation for just each input sample, transformers also require
compressed representation for each of the sequences.

2.1. Global Token Dependency-Aware VIB loss

The VIB approach to compress representations for trans-
formers oversimplifies the dependencies in a large language
model (LLM) where longer-range interactions across layers
can be crucial for performance, especially in tasks involving
context, like language or sequence processing. Hence, we
adapt the VIB formulation for LLMs by adding dependence
of current layer token representation on all previous layers.
The objective function given by the VIB principle to com-
press successive representations ki (Dai et al., 2018) given
the input and the output Y is,

Trainable VIB
(b)(a)

Pruned Weights
Frozen Weights

Test Input

Next
layer

Next
layer

Remove
redundant

units

Data Subset

masks

VIB mask

Embedding
Layer

Mul�
Head

A�en�on

Feed
Forward

Add Norm

Add Norm

Figure 1: (a) Structured pruning of token representations
and heads, considering global token dependencies using
VIB masks. (b) Compressed dense model.

L̃VIB =
1

N

N∑
n=1

Eϵ,x,y [− log q(Y)]

+ βKL [p(ki|ki−1), r(ki)] (1)

Equation 1 minimizes the expectation of the negative log-
likelihood of the variational output distribution, which en-
sures that the model is able to predict the output. The KL
divergence acts as regularizer that minimizes the mutual
information between successive layer representations.

The compressed representation is obtained by multiplying a
random set of vectors z which are also the dimension masks
with trainable parameters µ, σ ∈ R1×d, to the output of the
LLM layer activations with d output dimension of the LLM
layer.

ki = zi⊙ fi(ki−1,ki−2, . . .); zi = µi+ ϵ⊙σi (2)

With the above definition, we use encoder of the form
p (ki | ki−1) = N (ki; fi ⊙ µi diag

[
f2
i ⊙ σ2

i

]
) where fi is

a LLM layer that aggregates all previous layer token rep-
resentations, ϵ ∼ N (0, I) and r (ki) = N (ki;0, diag [ξi])

where ξi is learned from the data. During training with data
samples, we backpropagate through the final layer which
approximates the expectation in equation 1.

2.2. Pruning attention heads in grouped query.

Normal multi-head attention treats each head independently,
making it simpler to prune individual heads without impact-
ing others. In contrast, selectively pruning heads within

2

Efficient LLM Pruning with Global Token-Dependency Awareness and Hardware-Adapted Inference

Model LLaMA-7B LLaMA-2-7B
PPL Speedup Inference Time (mins) PPL Speedup Inference Time (mins)

Unpruned 5.68 1× 0.60 5.11 1× 0.62
Wanda-sp 366.43 1.24× 0.48 (-20.00%) 97.70 1.29× 0.48 (-22.58%)
LLM-pruner 112.44 1.23× 0.49 (-18.33%) 95.26 1.29× 0.48 (-22.58%)
FLAP ‡ 35.10 1.26× 0.48 (-20.00%) 25.40 1.32× 0.47 (-24.19%)
Bonsai 22.62 1.26× 0.48 (-20.00%) 19.24 1.28× 0.48 (-22.58%)
TVA-Prune 18.5 1.75× 0.34 (-43.43%) 14.15 1.8× 0.34 (-45.16%)
TVA-Prune w/o PostAdapt 18.5 1.1× 0.54(-10.00%) 14.15 1.1× 0.56(-09.67%)
Wanda-sp † 67.24 1.24× 0.48 (-20.00%) 46.54 1.29× 0.48 (-22.58%)
LLM-pruner† 38.12 1.23× 0.49 (-18.33%) 29.56 1.29× 0.48 (-22.58%)
Bonsai † 10.92 1.26× 0.48 (-20.00%) 9.15 1.28× 0.48 (-22.58%)
TVA-Prune † 10.58 1.75× 0.34 (-43.43%) 9.58 1.8× 0.34 (-45.16%)

Table 1: Pruned models are evaluated on Wikitext-2. Our method outperforms structured pruning (wanda-sp, Bonsai,
LLM-pruner and FLAP) †indicates finetuned with LoRA. ‡adds extra bias parameters. All inferences were performed
on NVIDIA A100 (40GB) GPU. w/o post-adapt speed reduction is due to pruned dimensions not aligning with GPU
tensor cores, which worsens for our method since it prunes token/hidden state dimensions across all layers unlike others.
Post-adaption leads to negligible change in model size.

GQA (Grouped Query Attention) groups is more complex,
as it requires ensuring that the group’s overall functional-
ity remains effective despite the pruning. In GQA, each
head shares a common key-value pair, making the pruning
process more intricate. In our method, for each key-value
head pruned, all the heads in the query that share it are
also pruned. This ensures that the pruning process does not
disrupt the group’s overall functionality. Let kvhi represent
the compressed token representation of the i-th layer for the
key-value head vh,

ki
vh = zi

vh ⊙ fh
i (ki

vh,ki−2
vh, . . .) (3)

where the function fh
i depends on the token representation

of all previous layers for the key-value head vh. We train
the masks for compression of heads, intermediate layers and
token representation dimensions in an end-to-end manner.

2.3. Implementation of Pruning

In the inference phase, the vectors zi are converted to hard
binary masks zmask

i using a thresholding operation on
αi,j = µ2

i,j/σ
2
i,j for pruning neurons.

Sparsity Control. Using zmask
i hard masks, we calculate

model sparsity as the ratio of pruned parameters to the
initial count. We use a Lagrangian term Xia et al. (2022)
by enforcing an equality constraint se = t and introducing
a violation penalty as Ls = λ1 · (se − t) + λ2 · (se − t)2,
where se is the expected model sparsity, t the target sparsity
and λ1, λ2 ∈ R are jointly updated during the pruning.
Finetuning with LoRA. Like previous approaches (Dery
et al., 2024; Ma et al., 2023), we finetuning on a downstream
task using LoRA (Hu et al., 2021) to recover performance.
Additionally, we distil knowledge from the teacher logits to

the pruned student logits (Xia et al., 2022). The steps of
our method is shown in Algorithm 1.

2.4. Post-Pruning Dimension Adaptation

The dimensions in pre-trained unpruned models are op-
timized for efficient GPU execution using specific block
sizes (NVIDIA, 2024a) like 128x256. However, pruned
model dimensions may not align with these block sizes.
To address this, we propose a post-pruning technique that
initially identifies the indices where the masks zmask

i are
non-zero and estimates the corresponding weight dimen-
sions as n = |I|; I = {j | zmask

i,j ̸= 0}. It adjusts the
mask lengths such that each of the pruned weight dimen-
sion n′ would be the nearest multiple of the specified tensor
dimension T (say 128) as,

n′ =

(⌊
n+ T/2

T

⌋)
× T (4)

To account for the new dimension, it sorts logα in descend-
ing order, gets the new threshold and recomputes the mask
with d dimension based on the new threshold as,

τ = (logα)sorted[n
′]

ẑmask
i,j =

{
1 if logαi,j > τ

0 otherwise
∀j ∈ d (5)

Overall, there is a negligible change in the model size. In
our experiments, we observe a significant inference speedup
due to this step.

3

Efficient LLM Pruning with Global Token-Dependency Awareness and Hardware-Adapted Inference

Model
Wikitext-2 Inference Tokens/s

PPL ↓ Speedup
Mistral-7B 4.77 1× 24.78
Wanda-sp-gq 116 1.1× 27.26
FLAP-gq 34.97 1.28× 31.73
TVA-Prune 18.37 1.67× 41.39
TVA-Prune † 10.12 1.67× 41.39
LLaMA-3-8B 5.57 1 × 25.13
Wanda-sp-gq 106 1.1× 27.64
FLAP-gq 34.90 1.2× 30.16
TVA-Prune 27.50 1.61× 40.94

Table 2: Performance comparison of Mistral-7B and
LLaMA-3-8B models pruned by 50%. Our method outper-
forms others without any finetuning. †indicates finetuned
with LoRA.

0

1

2

LLaMA-1 LLaMA-2 LLaMA-3 Mistral

Sp
ee

d
u

p
 o

ve
r

u
n

p
ru

n
ed

without adapt with adapt

Figure 2: Inference speedup on NVIDIA A100(40GB) with
and without our post-pruning dimension adaptation in 50%
pruned models.

3. Experiments
All experiments are conducted on a single NVIDIA A100
(40GB) GPU. We prune the LLaMA-7B, LLaMA-2-7B and
LLaMA 3 (Touvron et al., 2023a), and Mistral-7B (Jiang
et al., 2023) models, to evaluate and compare the structured
pruning methods on the validation set of Wikitext-2 (Merity
et al., 2016). We modify the pruning process in Wanda (Sun
et al., 2023) to be structured (Wanda-sp) and account for
grouped-query attention (Wanda-sp-gq). Similarly, we mod-
ify FLAP (An et al., 2024) to prune grouped-query and name
it FLAP-gq. We also evaluate on task-agnostic context with
zero-shot tasks designed for common sense reasoning (Gao
et al.). We use 5000 samples of C4 (Raffel et al., 2020) with
a batch size of 1 and sequence length of 512 to prune the
models. The baseline methods taken for comparison are
structured Wanda (Sun et al., 2023), FLAP (An et al., 2024),
LLM-Pruner (Ma et al., 2023), LoRAPrune (Zhang et al.,
2023) and Bonsai (Dery et al., 2024).

Dimension Multiple
0 8 64 128 256

50% pruned LLaMA-3-8B
Speedup 0.9× 1.45× 1.60× 1.59× 1.59×
△PPL ↓ 0 0 0 -0.1 -0.2
△Sparsity(%) 0 0 0.2 0.4 0.3

50% pruned Mistral-7B
Speedup 1.1× 1.48× 1.52× 1.67× 1.40×
△PPL -0.5 0 -0.5 -0.2 2.3
△Sparsity(%) 0 0 0.3 0.6 0.8

50% pruned LLaMA-2-7B
Speedup 1.25× 1.52× 1.75× 1.82× 1.75×
△PPL 0 0 0 -0.05 -1.8
△Sparsity(%) 0 0 0.2 0.2 0.6

Table 3: Change in speedup, perplexity on Wikitext-2, and
model sparsity on varying post-prune adapted dimension
multiples. Across models it can be observed that adapting
weight dimensions to be multiples of 64 or 128 yields the
best speedup with least change in sparsity and often lower
perplexity

3.1. Results

Performance Comparison of MHA-based models. Ta-
ble 1 compares pruning techniques for LLaMA-7B and
LLaMA-2-7B, highlighting TVA-Prune’s superior perfor-
mance in terms of perplexity on Wikitext-2 test set and infer-
ence speed-up. Only LLaMA-2 finetuned by Bonsai (Dery
et al., 2024) achieves a better performance, at the cost of
low inference speed-up and 20 times higher compression
time.

Inference speedup. Figure 2 shows how our post-pruning
dimension adaptation method leads to up to 60% gain in
speedup over unpruned models.

Pruning Grouped Query Attention. Table 2 shows TVA-
Prune is highly effective for pruning Mistral-7B model with
grouped query attention (GQA) with the least perplexity
among all techniques without any finetuning. TVA-Prune
offers higher inference speed than all of the approaches.
Similar, our method prunes LLaMA-3 and retains higher
performance than other methods without any finetuning.
The pruned LLaMA-3 model in our case is about 40% faster
than FLAP and wanda. We see in Figure 3 that our method
performs better than other methods from about 30% sparsity
and maintains the stable performance as sparsity increases.
This is in contrast to FLAP and Wanda where the perfor-
mance deteriorates sharply after 50% and 40% sparsity ratio
respectively.

Performance on zero-shot tasks In Table 4, we compare
the performance of compression methods on six zero-shot
reasoning tasks to assess the generalization efficiency of the
50% pruned LLaMA-7B models.

4

Efficient LLM Pruning with Global Token-Dependency Awareness and Hardware-Adapted Inference

Method WikiText2↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c Average↑ Compression
PPL Acc Acc Acc Acc Acc Acc Acc Time(hrs)

Unpruned model 5.68 76.5 79.8 76.1 70.1 72.8 47.6 70.48 -
Wanda-sp 132 50.58 55.01 29.56 51.78 31.27 23.04 40.21 0.16
LLM-Pruner† 16.41 60.28 69.31 47.06 53.43 45.96 29.18 45.95 1
FLAP ‡ 31.8 60.21 67.52 40.0 57.54 49.66 28.49 50.57 0.3
LoRAPrune† 11.60 61.88 71.53 47.86 55.01 45.13 31.62 52.17 > 24
Bonsai† 10.92 67.22 60.85 43.09 61.64 54.92 26.28 52.33 40
TVA-Prune† 10.58 63.27 68.56 42.0 57.38 56.97 26.46 52.44 2

Table 4: Zero shot performance of the compressed LLaMA-7B. †Finetuned with LoRA ‡adds extra bias parameters.
Inference done on NVIDIA A100 (40GB). Our method takes 10 to 20 times lower time to prune than other methods with
similar performance. Method with lower compression time have much lower average performance.

Mistral-7B LLaMA-3-8B Wanda-sp-gq FLAP-gq TVA-prune

3

23

43

63

83

0 0.2 0.4 0.6 0.8

W
ik

ite
xt-

2
Pe

rp
le

xi
ty

Sparsity

4

24

44

64

84

0 0.2 0.4 0.6 0.8

W
ik

ite
xt-

2
Pe

rp
le

xi
ty

Sparsity

1

1.4

1.8

2.2

0 0.2 0.4 0.6 0.8
In

fe
re

nc
e

Sp
ee

du
p

Sparsity

Speedup over Mistral -7B

1

1.4

1.8

2.2

0 0.2 0.4 0.6 0.8

In
fe

re
nc

e
Sp

ee
du

p

Sparsity

Speedup over LLaMA -3-8B

Figure 3: Comparison of sparsity, perplexity and inference speedup of GQA-based LLaMA-3-8B and Mistral-7B models
pruned to different sparsity ratios with C4 train set and evaluated on Wikitext-2 validation set. Speedup is measured on
NVIDIA A100(GB) for evaluation on the validation set.

Method No. of Pruning Wikitext2
GPUs Time (GPU hrs) PPL

LLM-pruner 4 1 29.56
FLAP 1 0.7 25.40
Bonsai 1 40 9.15
TVA-Prune 1 2 9.58

Table 5: Comparison of pruning methods for LLaMA-2-7B
model to 50% sparsity using structured pruning, including
only methods with finetuned perplexity (PPL) below 50.

Compression Speedup. As shown in Table 5, our method
requires fewer GPUs compared to LLM-pruner. It achieves
a pruning time reduction of more than 90% relative to Bon-
sai, while maintaining a similar perplexity. These results
indicate that our method offers superior efficiency in re-
source utilisation, significantly faster pruning times, and
effective model performance.

Which dimension multiple is the best? Adjusting weight
matrix dimensions to be multiples of certain values, as
shown in Table 3, optimizes GPU tensor core parallelism.
When dimensions align with these multiples, computations
parallelize more effectively, leading to significant speedups.
As shown in the table, dimensions that are multiples of 64,
128, or 256 can maximize the utilization of tensor cores and
increase throughput with minimal trade-offs as evidenced

by the performance metrics of LLaMA and Mistral models.

4. Conclusion
Our experiments demonstrate the efficacy of our structured
pruning framework that prunes token dimensions while con-
sidering previous layer representations in the VIB frame-
work. It involves only training the masks to prune LLM
modules while freezing the model parameters, thus signif-
icantly reducing pruning time over other approaches. Our
post-pruning adaptation step aims to fully utilize the GPU
tensor cores for a higher acceleration of the pruned LLaMA
and Mistral models. Our method uses a single GPU and
prunes LLMs in a few hours, making it suitable for environ-
ments with limited computational resources. Additionally,
the evaluation of our models on varied datasets including
zero-shot classification underscores the robustness and ver-
satility of our pruning strategy.

Acknowledgement
We express our gratitude to the anonymous reviewers, Pro-
fessors Surendra Prasad and Brejesh Lall from IIT Delhi, as
well as our colleagues at Cadence India for their valuable
feedback and insights. This research is funded by Cadence
India, with additional support for the first author from a
Ministry of Education fellowship.

5

Efficient LLM Pruning with Global Token-Dependency Awareness and Hardware-Adapted Inference

References
Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,

Lebrón, F., and Sanghai, S. Gqa: Training generalized
multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

An, Y., Zhao, X., Yu, T., Tang, M., and Wang, J. Fluctuation-
based adaptive structured pruning for large language mod-
els. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 10865–10873, 2024.

Chen, Z., May, A., Svirschevski, R., Huang, Y., Ryabinin,
M., Jia, Z., and Chen, B. Sequoia: Scalable, robust, and
hardware-aware speculative decoding. arXiv preprint
arXiv:2402.12374, 2024.

Dai, B., Zhu, C., Guo, B., and Wipf, D. Compressing neural
networks using the variational information bottleneck.
In International Conference on Machine Learning, pp.
1135–1144. PMLR, 2018.

Dery, L., Kolawole, S., Kagey, J.-F., Smith, V., Neubig, G.,
and Talwalkar, A. Everybody prune now: Structured
pruning of llms with only forward passes. arXiv preprint
arXiv:2402.05406, 2024.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Gpt3. int8 (): 8-bit matrix multiplication for transformers
at scale. Advances in Neural Information Processing
Systems, 35:30318–30332, 2022.

Frantar, E. and Alistarh, D. Sparsegpt: Massive language
models can be accurately pruned in one-shot. In Inter-
national Conference on Machine Learning, pp. 10323–
10337. PMLR, 2023.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., et al.
A framework for few-shot language model evaluation, 12
2023. URL https://zenodo. org/records/10256836, 7.

Hu, E., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S.,
Wang, L., and Chen, W. Low-rank adaptation of large
language models. arXiv, 2021.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. Mistral 7b, 2023.

Le Scao, T., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow,
D., Castagné, R., Luccioni, A. S., Yvon, F., Gallé, M.,
et al. Bloom: A 176b-parameter open-access multilingual
language model. 2023.

Liu, Z., Wang, J., Dao, T., Zhou, T., Yuan, B., Song, Z.,
Shrivastava, A., Zhang, C., Tian, Y., Re, C., et al. Deja
vu: Contextual sparsity for efficient llms at inference time.
In International Conference on Machine Learning, pp.
22137–22176. PMLR, 2023.

Ma, X., Fang, G., and Wang, X. Llm-pruner: On the struc-
tural pruning of large language models. arXiv preprint
arXiv:2305.11627, 2023.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models, 2016.

NVIDIA. Linear/fully-connected layers
user’s guide. https://docs.nvidia.
com/deeplearning/performance/
dl-performance-fully-connected/index.
html, 2024a.

NVIDIA. Inference optimization. https:
//developer.nvidia.com/blog/
mastering-llm-techniques-inference-optimization,
2024b.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1):5485–5551, 2020.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M., Chen,
B., Liang, P., Ré, C., Stoica, I., and Zhang, C. Flexgen:
High-throughput generative inference of large language
models with a single gpu. In International Conference
on Machine Learning, pp. 31094–31116. PMLR, 2023.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models.
arXiv preprint arXiv:2306.11695, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,

6

https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html
https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization
https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization
https://developer.nvidia.com/blog/mastering-llm-techniques-inference-optimization

Efficient LLM Pruning with Global Token-Dependency Awareness and Hardware-Adapted Inference

Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open foundation and fine-tuned
chat models, 2023b.

Xia, M., Zhong, Z., and Chen, D. Structured pruning learns
compact and accurate models. In Association for Compu-
tational Linguistics (ACL), 2022.

Zhang, M., Shen, C., Yang, Z., Ou, L., Yu, X., Zhuang,
B., et al. Pruning meets low-rank parameter-efficient
fine-tuning. arXiv preprint arXiv:2305.18403, 2023.

Zhang, Z., Liu, S., Chen, R., Kailkhura, B., Chen, B., and
Wang, A. Q-hitter: A better token oracle for efficient llm
inference via sparse-quantized kv cache. Proceedings of
Machine Learning and Systems, 6:381–394, 2024.

7

Efficient LLM Pruning with Global Token-Dependency Awareness and Hardware-Adapted Inference

A. Proportion of sub-layer parameters pruned
Figure 4 shows the proportion of the remaining parameters in the attention, the intermediate layers and the embedding layer
after pruning each of the pre-trained LLaMA models to 50% sparsity. Lower number of attention parameters can be related
to a slightly higher inference speedup in case of LLaMA-2 pruned model with respect to LLaMA-1 pruned model.

0.93

0.422 0.52

0.91

0.58
0.42

Embeddings Attention Intermediate

50% LLaMA-2 50% LLaMA

Figure 4: Proportion of remaining parameters in each of the LLM modules after pruning 50% of the total model parameters.

B. Hyper-parameters for pruning
The hyper-parameters used for pruning LLaMA and Mistral models on one NVIDIA A100 (40GB) is given in Table 6 and
for finetuning is given in Table 7.

VIB LR Dataset size block size
5× 10−2, 1× 10−1 5000 512

Table 6: Hyper-parameters for pruning LLaMA and Mistral with TVA-Prune

C. More explanation on optimizing GPU Performance with adjusted pruned weight dimensions
Having pruned weight dimensions in multiples of 256 enhances the performance of pruned models on NVIDIA V100 and
A100 GPUs. Tiles are fixed-size blocks of matrix elements that GPUs process in parallel. Aligning matrix dimensions
with preferred tile sizes like 256x128 ensures optimal use of Tensor Cores, minimizing computational waste due to tile
quantization, where partially filled tiles perform unnecessary operations (NVIDIA, 2024a). Wave quantization occurs when
the number of tiles doesn’t match the number of streaming multiprocessors (SMs), leading to underutilized SMs and reduced
performance. SMs are the primary computational units in NVIDIA GPUs, each capable of executing multiple threads in
parallel. Efficient distribution of workload across all SMs is crucial for maximizing GPU performance.

weights LR LoRA-rank LoRA-α η (distill Weight) block size
1x10−4 128 4×rank 0.01 512

Table 7: Hyper-parameters for fine-tuning LLaMA and Mistral compressed models

8

