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Abstract

Many longitudinal studies are hindered by noisy observations sampled at irregular1

and sparse time points. In handling such data and optimizing the design of a study,2

most of the existing functional data analysis focuses on the frequentist approach3

that bears the uncertainty of model parameter estimation. While the Bayesian4

approach as an alternative takes into account the uncertainty, little attention has5

been given to sequential batch designs that enable information update and cost6

efficiency. To fill the gap, we propose a Bayesian hierarchical model with Gaussian7

processes which allows us to propose a new form of the utility function based on8

the Shannon information between posterior predictive distributions. The proposed9

procedure sequentially identifies optimal designs for new subject batches, opening10

a new way for incorporating the Bayesian approach in finding the optimal design11

and enhancing model estimation and the quality of analysis with sparse data.12

1 Introduction13

Many of the longitudinal studies suffer from noisy observations. It is often the case that only a small14

number of irregularly spaced observations can be taken for each subject, making it a sparse dataset15

for the subsequent analysis (Zeger and Diggle, 1994; Brumback and Rice, 1998; Guo, 2004; Yao16

et al., 2005). In light of this issue, functional data analysis (FDA) has been developed as one of the17

most popular methods to handle such data and enhance the quality of estimation. In particular, as the18

sparse observations can only provide limited information for recovering the underlying trajectory,19

FDA offers an effective way to optimize the design of a study by judiciously selecting optimal time20

points for taking observations.21

Existing FDA literature has mostly focused on rather a frequentist approach that considers the “best22

guess” of parameters to find an optimal design (Ji and Müller, 2017; Park et al., 2018; Rha et al.,23

2020). However, this approach oftentimes bears uncertainty of the model parameter estimation and24

can possibly hinder the quality of analysis. A Bayesian approach, on the other hand, takes into25

account this uncertainty and conducts the analysis based on a prior distribution of the parameters26

(Chaloner and Verdinelli, 1995). Specifically, a Bayesian hierarchical model assumes a common mean27

function for the underlying subject trajectories, enabling us to borrow the strength of all observations28

across subjects to recover the trajectories. (Yang et al., 2016)29

Ryan et al. (2015) proposed the fully Bayesian static design for mixed effect model to determine30

sampling time points for precise estimation of the model parameters. Nevertheless, the static design31

uses the same design throughout the experimental process without accounting for any incoming32

information that may be collected during the experiment (Ryan et al., 2016). In this regard, a33

sequential design may offer more efficient and flexible design schemes as it updates the optimal34

design at each stage with new information provided from the previous stages. (Chaloner, 1986;35

Müller et al., 2007). Yet scant work has been done on constructing Bayesian hierarchical models36
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with a sequential design that considers the uncertainty of model parameter estimation and updates the37

optimal design with newly acquired information at each stage.38

To fill this gap, in this study, we propose a Bayesian hierarchical model that sequentially identifies39

optimal designs for new batches of subjects by (1) providing information for updating the posterior40

mean function of the underlying trajectories of existing subjects and (2) offering sufficient information41

for accurate estimation of new subject trajectories. Particularly, we first obtain the posterior distribu-42

tions of underlying trajectories from our Bayesian hierarchical model, and update the distributions43

with new observations. Then based on the posterior distributions, we find the optimal design by the44

simulated annealing (SA) algorithm proposed by Van Laarhoven et al. (1987), which is widely known45

for its strengths in search in large space and computational efficiency.46

In sum, our study is expected to open a new way for incorporating the Bayesian approach in handling47

noisy observations with sequential batch designs and further enhance model estimations with new48

information update. The rest of paper is organized as follows: Section 2 introduces our Bayesian49

hierarchical model that is used to obtain the posterior distributions of underlying trajectories. Section50

3 formulates the utility function as the design criterion for finding the optimal design. Section 451

details the implementation of the simulated annealing algorithm on the search of the optimal design.52

A discussion can be found in Section 5.53

2 Bayesian Hierarchical Model54

In longitudinal studies, it is not uncommon to have observations that are sampled at sparse and55

irregular time points. The collected samples are viewed as functional observations and are often56

contaminated with unknown noises. Assuming each subject following their independent stochastic57

process, we consider the Bayesian hierarchical model proposed by Yang et al. (2016) as follows:58

Yi(ti) = Xi(ti) + ϵi, ϵi
i.i.d.∼ N(0, σ2

ϵI),

Xi | µ,Σ
i.i.d.∼ GP (µ,Σ), i = 1, . . . , n,

µ ∼ GP

(
µ0,

1

c
Σ

)
,

where Yi(ti) = {Yi(ti,1), . . . , Yi(ti,ni)} are the noisy observations of the underlying trajectory Xi59

at time ti = (ti,1, . . . , ti,ni)
′. We consider the additive error vector ϵi that follows i.i.d. normal60

with mean vector 0 and variance σ2
ϵI and is independent of Xi. We assume each Xi follows i.i.d.61

Gaussian process with a prespecified mean function µ and covariance kernel Σ. The universal mean62

function µ is assumed unknown and is assigned with a Gaussian process as µ ∼ GP (µ0, (1/c)Σ)63

with the mean function µ0 and the covariance kernel Σ scaled by some c > 0. For simplicity, we64

denote Yi(ti) by Yi,ti , Xi(ti) by Xi,ti , µ(ti) by µti , and Σ(ti, ti) by Σti,ti . Given time grid {ti},65

we have the following hierarchical structure in multivariate forms for subject i:66

Yi,ti |Xi,ti ∼MVN(Xi,ti , σ
2
ϵI),

Xi,ti |µti ,Σti,ti ∼MVN(µti ,Σti,ti),

µti |µ0,Σ ∼MVN(µ0ti ,
1

c
Σti,ti). (1)

For simplicity, we assume that the error variance is fixed and the covariance kernel to follow a67

pre-specified structure as squared exponential kernel. The scaling constant c for the covariance kernel68

of the mean function is set to 1 and thus does not require posterior update in the estimation step. For69

the hyperparameter µ0, We set it to be the smoothed sample mean of {Yi,ti}.70

Different from previous approaches in functional data analysis that mainly focus on smoothing each71

curve individually, the hierarchical GP model borrows the strength of all observations and smooth72

the entire functional observations at once by assuming a common mean function µ (Yang et al.,73

2016). In addition, two layers of GPs with the same covariance kernel function provide important74

insights and computational efficiency to our design problem. Assigning a GP on µ allows the model75

to share information across the subjects and to predict the trajectories at unobserved time grids for76

all of the subjects based on the collected observations of only a portion of subjects. Besides, the77

hierarchical structure of GPs still gives us a closed form of the predictive distribution which reduces78

the computational cost in evaluating the optimal design criterion significantly. In the next section, we79

will detail the design problem and propose a utility function for the corresponding optimal design.80
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3 Utility Function and Optimal Sequential Batch Design81

Conventional sequential design approach adopts one-step-look-ahead method that only considers the82

next subject, which is often not optimal. Static design approach determines the optimal design in83

a holistic view but uses the same fixed protocol throughout the experiments. To combine the best84

of two worlds, we adopt a sequential batch scheme. We consider the problem of multistage design85

that sequentially finds optimal sampling times for a new batch of subjects based on the information86

obtained from observations of existing subjects from previous stages. For demonstration purposes,87

we only display the utility function for one future stage. However, by including new observations88

with the obtained optimal design at the current stage, one is able to update the optimal design criterion89

and acquire new optimal designs for all future stages in a sequential manner.90

For the experiments, we assume that observations can be taken on an equally-spaced common grid that91

has T0 time points. Yet, for each subject, only k(< T0) observations can be taken. Before stage 1, we92

assume that an experiment is already conducted and observations Y0 = {Y1(ti), . . . ,YN (ti)}93

for N subjects are taken based on a fixed design D0 = {t1, . . . , tN}. Suppose we are now94

at stage 1 and we are to recruit a new batch of M(> 1) subjects and take observations Y1 =95

{YN+1(ti), . . . ,YN+M (ti)} from these subjects according to a design D1 = {tN+1, . . . , tN+M}.96

Here, we consider the batch size M and the number of observations per subject k to be fixed. Our97

attempt is to find the optimal design D1 that achieves two goals: (1) the newly-added observations98

based on D1 should provide more information to update the posterior mean function so as to improve99

the recovery of underlying trajectories X0 for the existing subjects 1, . . . , N ; (2) the observations100

based on D1 should also provide sufficient information for the estimation of new batch of subject101

trajectories.102

Specifically, when recovering the trajectories of existing and new subjects, we focus on the trajectory103

values at unobserved time points, denoted by Xc. We would like to compare the posterior predictive104

distributions p(Xc
0 ,X

c
1 |Y0) of Xc

0 and Xc
1 given the information from existing subjects to the105

posterior predictive distributions p(Xc
0 ,X

c
1 |Y0,Y1,D1

) of Xc
0 and Xc

1 given the information from106

existing subjects and the new batch of subjects. That is, we would like to maximize the improvement107

in prediction of Xc before and after including the new batch of subjects.108

We consider an information-based approach and measure the improvement by Kullback-Leibler (KL)109

divergence, which is a classic metric in information theory that measures the difference between two110

distributions. Therefore, we propose the following utility function as the optimal design criterion:111

U(D1,Y0) = DKL(p1||p0) =
∫

log

(
p1
p0

)
dp1, (2)

where we denote by p0 = p(Xc
0 ,X

c
1 |Y0) and p1 = p(Xc

0 ,X
c
1 |Y0,Y1,D1

), which are both multivari-112

ate normal distributions under our model framework.113

To evaluate the above utility function, we consider a combination of implementing the predictive114

formula of Gaussian process and using empirical Bayes procedure for the rest of model parameters115

to obtain a closed-form solution for the utility function. Concerning the page limit, we refer the116

readers to Appendix A for the detailed derivation. This closed-form solution facilitates computational117

efficiency by avoiding the evaluation of intractable marginal likelihood in the utility function as118

commonly seen in many optimal Bayesian design problems.119

4 Computation120

Because of the closed-form solution of the utility function in Section 3, it is easy to evaluate the121

utility function with a given design. Yet, the design space remains large as we are exploring optimal122

designs for a batch of subjects simultaneously. Therefore, we implement a simulated annealing (SA)123

algorithm (Van Laarhoven et al., 1987) that enables efficient exploration of large and complex design124

spaces and easy implementation. Specifically, the SA algorithm is used at every stage such that it125

incorporates existing and new information from all previous and current stages and finds optimal126

design for the next stage in a sequential manner.127

The SA algorithm starts with an initial “temperature” Tinitial and a randomly generated design128

Dinitial. The “energy” e of this design is then computed based on the utility function defined in129

Equation (2). Then the algorithm generates another candidate design Dtest from the “neighborhood”130
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of Dinitial and calculates its energy etest. If the difference between two energies ∆e = e−etest ≤ 0,131

the candidate design Dtest is accepted and the algorithm will continue to compare it to other132

neighborhood designs. At the current temperature T , if ∆e > 0, the candidate design is accepted133

with a probability of exp (∆e/T ). This process is repeated until no further improvements can be134

made within a maximum number of iterations. Then the temperature will be lowered according to a135

“cooling schedule” and the whole procedure will be repeated again. Finally, we follow the approach136

proposed by Aragon et al. (1991) to terminate the algorithm if the acceptance probability is smaller137

than some threshold Pthreshold.138

In the algorithm, a number of parameters, initial temperature, cooling schedule, neighborhood of a139

design, maximum number of iterations, and acceptance threshold, require initial values. Nevertheless,140

as the SA algorithm is a heuristic algorithm, the parameter values heavily depend on the problem141

settings and experiment setup. Therefore, we also set the parameter values in a heuristic way so as142

to be able to adapt to different scenarios. Based on suggestions in Van Laarhoven et al. (1987), we143

set the initial temperature Tinitial to be ∆e/ log(0.7) so that the initial acceptance probability for144

designs with ∆e > 0 is 0.6. This is to limit the time spent at high temperatures. The cooling schedule145

is an exponential decaying function of the temperature Tnew = 0.95× Told.146

For the neighborhood of a design, there are many choices, such as changing only one time point for147

one subject in the batch or changing one set of time points for one subject in the batch. However, the148

candidate set for the former can easily increase exponentially with different time grid and observation149

sizes and it is also suspected that a single time point can make much difference on the trajectory150

recovery of all subjects. Thus, considering computation efficiency, we define the neighborhood of151

a design by changing one set time points from one subject in the batch. Here we propose to set152

the maximum number of iterations to be 10 and the acceptance threshold to be 0.2, as suggested153

in Aragon et al. (1991). As noted before, since the SA algorithm is a heuristic approach that is154

contingent upon a specific problem, empirical tuning on the initial parameters is necessary when155

conducting different experiments. A pseudo code that illustrates the structure of the algorithm can be156

found in Appendix B.157

5 Discussion158

To handle the noisy observations in many fields such as longitudinal studies, extant FDA literature159

mostly adopts rather a frequentist approach and bears the uncertainty of parameter estimation. As160

an alternative to improve the quality of model estimation, a Bayesian approach naturally takes into161

account the uncertainty in estimation and produces posterior predictive distribution. In this study, we162

adopt a Bayesian hierarchical model of Gaussian processes for the underlying trajectories, which163

enables us to obtain the trajectory predictive distributions with closed-form expressions at reduced164

computational cost. We propose an optimal Bayesian sequential batch design scheme that sequentially165

finds optimal design for a batch of subjects based on the information obtained from all previous166

and current stages. Specifically, its sequential feature helps update the optimal design criterion with167

new information at each stage, whereas its batch feature controls for a small number of stages and168

maintains the overall cost effectiveness. Combining these two features, this scheme is designed to169

improve the trajectory recovery of current subjects and achieve accurate estimation of future subject170

trajectories. Finally, in the optimization step, we implement a simulated annealing algorithm that171

takes in empirically-tuned parameters and outputs a final design with computational efficiency.172

Further refinement of this study can be done by altering the assumptions made in our analysis.173

Particularly in the design setup, we assume that the batch size M of the optimal design is small. This174

is established as M should not be too large to only have too few updates on the design optimality175

criterion. Nonetheless, in practice, M is often contingent upon the size of the initial data set and176

the number of design stages. The interactions between these factors may change the optimal size177

of the batch. To account for this, there are two potential approaches to find the optimal M . One178

is to iteratively test different values of M from 1 to the existing subject size N . Yet additional179

consideration will need to be put in to reduce its computational expensiveness. Another is to include180

M as a random variable and incorporate it inside the utility function. That is, the optimal design and181

the optimal batch size are obtained in each stage.182
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A Derivation of Utility Function216

Let A be (Xc
0 ,X

c
1)|Y0 with distribution p0 and let B be (Xc

0 ,X
c
1)|(Y0,Y1,D1

) with distribution p1.217

We first derive the distribution p1 of B, then the distribution p0 of A follows by omitting Y1,D1 . For218

notation simplicity, let YB be (N +M)× k dimensional vector containing the observations from219

existing and new batch of subjects, let Xc be (N +M)× (T0 − k) dimensional vector containing220

the underlying trajectory values evaluated at unobserved time points. And let t be the time points that221

have observations for subjects 1, . . . , N +M , and let tc be the time points that have missing values222

for subjects 1, . . . , N +M .223

Recall in the Bayesian hierarchical model (1) in Section 2, we assume multivariate distributions for224

the finite observations and underlying trajectory values. We may obtain the joint distribution of YB225

and Xc given the hyperparameter µ0 as follows:226 (
YB

Xc

) ∣∣∣∣µ0 ∼MVN

((
µ0(t)
µ0(t

c)

)
,

(
(1 + c)Σ(t, t) + σ2

ϵI Σ(t, tc)
Σ(tc, t) (1 + c)Σ(tc, tc)

))
,

where Xc =

(
Xc

0
Xc

1

)
,YB =

(
Y0,D0

Y1,D1

)
.

Then with the joint distribution, we may derive the conditional distribution of Xc|YB by the condi-227

tional expectation property of multivariate normal distribution. Therefore, we get the distribution of228

B as229

B = Xc|YB ∼MVN(mB ,νB),

where mB = µ0(t) +Σ(t, tc)((1 + c)Σ(tc, tc))−1(y − µ0(t
c)),

νB = ((1 + c)Σ(t, t) + σ2
ϵI)−Σ(t, tc)((1 + c)Σ(tc, tc))−1Σ(tc, t).

One thing worth noting is that the error variance σ2
ϵ is unknown. To keep computation simplicity, we230

adopt the empirical Bayes method that uses the maximum likelihood estimator σ̂2
ϵ as the estimated231

value of σ2
ϵ .232

After getting the distribution of B, we may obtain the distribution of A by letting YA = (Y0,D0
) to233

be N × k dimensional vector. Then we substitute YB with YA and obtain the joint distribution of YA234

and Xc given the hyperparameter µ0 as:235 (
YA

Xc

) ∣∣∣∣µ0 ∼MVN

((
µ0(t)
µ0(t

c)

)
,

(
(1 + c)Σ(t, t) + σ2

ϵI Σ(t, tc)
Σ(tc, t) (1 + c)Σ(tc, tc)

))
,

where Xc =

(
Xc

0
Xc

1

)
,YA = (Y0,D0) .

Similarly, by the conditional expectation property of multivariate normal distribution, we get the236

distribution of A as237

A = Xc|YA ∼MVN(mA,νA),

where mA = µ0(t) +Σ(t, tc)((1 + c)Σ(tc, tc))−1(y − µ0(t
c)),

νA = ((1 + c)Σ(t, t) + σ2
ϵI)−Σ(t, tc)((1 + c)Σ(tc, tc))−1Σ(tc, t).

Lastly, since both A and B follow multivariate normal distributions, the closed-form of the KL238

divergence between two multivariate normal distributions is239

DKL(p1||p0) =
1

2

[
log

(
|νA|
|νB |

)
− k + tr

{
ν−1
A νB

}
+ (mA −mB)

Tν−1
A (mA −mB)

]
.
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B Pseudo Code for Simulated Annealing Algorithm240

Algorithm 1 Simulated-Annealing Algorithm
D ←Dinitial

e← Energy(Dinitial)
T ← Tinitial

while exp (∆e/T ) > 0.2 do
Dtest ← neighborhood(Dinitial)
etest = Energy(Dtest)
∆e = e− etest
if ∆e ≤ 0 then

D ←Dtest

e← etest
else

q ← Random(0, 1)
if q < exp (∆e/T ) then

D ←Dtest

e← etest
end if

end if
T = 0.95× T

end while
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