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Abstract

Recently, vision-based GUI agents are rapidly
emerging to automate everyday mobile and
web tasks. These agents interpret raw GUI
screenshots and autonomously decide where
to click, scroll, or type, which bypasses hand-
crafted rules and app-specific APIs. However,
most existing methods trained GUI agent in the
offline environment using pre-collected trajec-
tories. This approach limits scalability, causes
overfitting to specific Ul templates, and leads to
brittle policies when faced with unseen environ-
ment. We present MobileGUI-RL, a scalable
framework that trains GUI agent in online en-
vironment. MobileGUI-RL contains two key
components. It (i) synthesizes a curriculum of
learnable tasks through self-exploration and fil-
tering, and (ii) adapts GRPO to GUI navigation
with trajectory-aware advantages and compos-
ite rewards that balance task success and execu-
tion efficiency. Experiments on online mobile
agent benchmarks demonstrate consistent im-
provements over baseline methods.

1 Introduction

Recent advances in large vision-language models
(LVLMs) (Hurst et al., 2024; Anthropic, 2025;
Bai et al., 2025) have opened up new possibil-
ities for building vision-based GUI agents (Qin
et al., 2025; Xu et al., 2025), fundamentally trans-
forming the way intelligent agents interact with
graphical user interfaces (GUIs). Unlike traditional
pipeline-based GUI agents, which typically decom-
pose the task into separate planning and grounding
stages (Zheng et al., 2024; Gou et al., 2025), these
vision-based GUI agents leverage the powerful per-
ception and reasoning abilities of LVLMs to di-
rectly interpret GUI screenshots and autonomously
determine actions such as clicking, scrolling, and
typing (Wang et al., 2024; Zhang et al., 2024a). By
eliminating the need for handcrafted rules or ac-
cess to underlying application APIs, vision-based

GUI agents offer a flexible, scalable, and platform-
agnostic solution for automating interactions across
a wide range of apps and devices.

Despite these advances, training GUI agents that
can operate robustly in real-world environments
remains a highly challenging task. Most existing
method train GUI agents in the offline environment
that rely on static, pre-collected trajectory data for
supervised fine-tuning (Wu et al., 2024; Qin et al.,
2025; Sun et al., 2025). Another line of research
explores step-wise reinforcement learning, inspired
by the recent DeepSeek-R1 paradigm (Zhou et al.,
2025; Lu et al., 2025b; Luo et al., 2025). However,
these methods rely extensively on high-quality an-
notations for action trajectories, which require step-
by-step executions and precise evaluations of their
correctness. Such detailed annotations are labor-
intensive and challenging to scale (Wu et al., 2024;
Qin et al., 2025). Moreover, GUI agents trained
with SFT or offline reinforcement learning often
overfit to specific interface patterns (Sun et al.,
2025; Xu et al., 2025). Such overfitting leads to
poor generalization when encountering task instruc-
tions deviating from familiar templates or to dy-
namic UI environments. In practice, real-world
GUISs are highly variable: new screens frequently
emerge, interface elements change or disappear un-
predictably, and user interactions can substantially
alter GUI states. Pre-trained policies often fail to
adapt, limiting real-world usability.

To address these limitations, training GUI agents
in online environments has emerged as a promis-
ing direction (Bai et al., 2024; Wang et al., 2025),
enabling agents to continuously interact with their
environment and update policies in real time. How-
ever, it introduces several challenges. First, online
learning requires real-time interaction with the en-
vironment at every training step. Each action must
be executed, and its effect observed, before updat-
ing the policy. This process can be slow and com-
putationally expensive, especially when scaling to



complex apps or mobile devices where GUI ren-
dering and response times vary. Second, defining
meaningful trajectory-level reward signals is non-
trivial. Many tasks have long trajectories, where
the agent must execute a sequence of steps before
achieving a goal. At the same time, multiple action
sequences may lead to the same outcome, and near-
correct trajectories can fail due to a single misstep.
These challenges make reward-driven learning dif-
ficult, potentially slowing convergence and leading
to suboptimal policies.

In this work, we present MobileGUI-RL, a novel
framework for training GUI agents through rein-
forcement learning in online environments. To
support this, we develop an interactive environ-
ment that supports virtual machine management
and continuous online learning, enabling agents to
explore and adapt to the full spectrum of mobile
GUI interactions. MobileGUI-RL consists of two
key components. First, we employ a synthetic task
generation pipeline that combines self-exploration
with filtering, producing a curriculum of learnable
tasks tailored to the agent’s current capabilities.
Then, we adapt group relative policy optimization
(GRPO) (Shao et al., 2024; Guo et al., 2025) and
introduce a trajectory-aware advantage and multi-
component rewards that balance task success and
execution efficiency. Experiments on three online
mobile-agent benchmarks show that MobileGUI-
RL consistently improves performance.

2  MobileGUI-RL

2.1 Overview

We formulate the problem of GUI task completion
as a Markov Decision Process (MDP), defined by
the tuple M = (S, A,P,R) (Fang et al., 2025;
Hu et al., 2025). Here, S represents the state space
of GUI screenshots and system states, .4 encom-
passes the action space of user interactions (e.g.,
taps, swipes, text input), P denotes the transition
determined by the mobile operating system, R is
a reward function that evaluate task completion.
Given a natural language instruction q, our goal is
to train an agent to learn a policy my(A | S, q) to
complete the given task accurately while maximiz-
ing the expected cumulative reward over time. This
MDP formulation provides a principled framework
for learning and evaluating interactive agents in
complex, dynamic mobile GUI environments.

To train GUI agents using online trajectory rein-
forcement learning, we propose three novel mod-

ules, detailed as follows: First, we design an in-
teractive environment that supports continuous on-
line learning, enabling agents to explore and adapt
across the full spectrum of mobile GUI interac-
tions (Section 2.2). Second, we introduce a syn-
thetic task generation pipeline that combines self-
exploration with task filtering, yielding a dynamic
curriculum tailored to the agent’s evolving capabil-
ities (Section 2.3). Third, we adapt Group Relative
Policy Optimization (GRPO) to the unique chal-
lenges of GUI navigation, introducing trajectory-
aware advantage estimation and a multi-component
reward structure that balances task success with ex-
ecution efficiency (Section 2.4).

2.2 Scalable and Interactable Environment
for Online Learning

To support GUI agents with online trajectory re-
inforcement learning, we design a training envi-
ronment centered on two key capabilities: batched
virtual execution and real-time agent interaction.

Batched Virtual Execution. At the core of our
system is a scalable, asynchronous framework that
deploys multiple Android emulator (Android De-
velopers, 2024) instances in parallel across CPU
machines. This batched execution enables agents
to interact with diverse GUI environments simul-
taneously, significantly increasing throughput and
trajectory diversity. Trajectories are collected asyn-
chronously from a pool of emulators running in
parallel, while policy optimization is performed
separately on GPU servers.

Real-Time Agent Interaction. At each timestep
t, the agent observes a multimodal state repre-
sentation s; = (v, q,h) comprising three es-
sential components (Zheng et al., 2024). The vi-
sual input v; provides the current screenshot cap-
turing the complete GUI state. The task goal
q specifies the natural language instruction that
guides the agent’s behavior. The interaction history
h; = {(s0, a0), ..., (S¢t—1, a;—1) } maintains tempo-
ral context, enabling the agent to reason about past
actions and their consequences. More details on
input construction are in appendix B.

The agent, a vision-language model in our set-
ting, will process this state representation and
first generate an internal reasoning trace c;, then
produce a structured action a; € A. Our ac-
tion space comprehensively covers mobile in-
teractions through four categories: (1) Physi-
cal gestures include parameterized actions such
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Figure 1: Framework overall — a scalable pipeline for training GUI agents through self-exploration, task filtering,
and trajectory-level reinforcement learning with a structured reward design.

as tap(z,y) and swipe(z1,y1, T2, y2) using nor-
malized coordinates € [0, 1]? for resolution in-
dependence; (2) Text input actions type(string)
handle keyboard interactions; (3) System naviga-
tion encompasses device-level operations including
{back, home, recent}; (4) Control actions include
wait(t) for synchronization with dynamic Ul ele-
ments and terminate(status) for episode comple-
tion. More detailed action definitions are provided
in the appendix section.

A sequence of these interactions 7 =
(so, ao, s1,a1,...,s7) forms a trajectory, which
is evaluated upon termination. Rather than rely-
ing on hand-crafted reward functions that poorly
generalize across tasks, we employ a powerful
vision-language model oracle O (e.g., Qwen 2.5
VL 72B) to serve as a unified evaluator. Given
the final k screenshots of a trajectory and the
initial instruction q, the oracle analyzes whether
the task has been completed as intended: r =
O({sr—k+1, -, 5T}, q) (Bai et al., 2024).

2.3 Synthetic Task Generation and Filtering

A critical challenge in training GUI agent in on-
line environment is obtaining a diverse yet learn-
able curriculum of tasks. Real-world task distri-
butions are heavily skewed toward common in-
teractions, limiting the agent’s ability to handle
edge cases. Moreover, manually curating tasks
is labor-intensive and fails to scale with the com-
plexity of modern mobile ecosystems. We address

this through a two-stage pipeline that automatically
generates and filters synthetic tasks.

2.3.1 Self-Exploration for Diverse Task
Discovery

Our self-exploration mechanism leverages the nat-
ural structure of mobile interfaces to discover
meaningful tasks. The process begins with an ex-
ploration agent Texplore performing random walks
through the GUI environment. These walks are
not purely random but incorporate basic heuris-
tics such as preferring unexplored UI elements and
avoiding repetitive loops. Each exploration trajec-
tory Texplore = 1(50,@0); -, (8n,an)} captures a
sequence of state transitions that potentially repre-
sent a coherent task. Inspired by (Sun et al., 2025),
we then employ GPT-40 to reverse-engineer task
descriptions from these trajectories. Given a tra-
jectory, the model generates a natural language
instruction q that would motivate the observed se-
quence of actions. This reverse process — figuring
out the goal from the actions — produces a variety
of tasks that match what the app is designed to do.
The generated tasks span a wide spectrum, from
simple interactions ("Open the settings menu") to
complex multi-step procedures ("Set a recurring
alarm for weekdays at 7 AM").

2.3.2 Task Filtering via Text-based World
Model

While self-exploration can generate a wide range
of task instructions, many of them suffer from two



key issues: they are either too ambiguous, often
due to limitations in the reverse-engineered LLM’s
summarization ability, or too complex to be solved
given the current GUI state and context. Attempt-
ing to execute these infeasible tasks leads to wasted
computational effort and the generation of low-
quality trajectories that may destabilize learning.
To address this, we propose a lightweight filter-
ing mechanism based on a text-based world model,
which pre-screens candidate tasks before rollout.
This approach effectively avoids unnecessary envi-
ronment interactions.

Our filter first employs a LLM as a simula-
tor VW that can generate a textual representation
s of the GUI state. Given a task q and cur-
rent state description S, the world model pre-
dicts the next state § = W(3,a,q) resulting
from action a. The filtering process proceeds as
follows: The world model first initializes with
a textual description of the home screen, struc-
tured as a list of Ul elements with their proper-
ties: 590 = {e1 : (type, content, bounds), ..., e,
(type, content, bounds)}. Our base agent Tp,se re-
ceives both the task and this description and outputs
an action. The world model simulates the action’s
effect, generating a new state description that re-
flects the expected GUI changes. This process con-
tinues until the base agent signals task completion,
failure, or exceeds a step limit 7j,x.

A task is admitted to the training set only if the
simulation reaches a success state within the step
limit: F(q) = 1{3t < Thax : Tproxy(at|31,q) =
terminate(success)]. This filtering process serves
not only to remove logically inconsistent or overly
complex tasks, but also plays a key role in decou-
pling perception from reasoning. Since the world
model operates entirely on structured textual rep-
resentations of the GUI, it removes the need for
low-level visual grounding. As a result, the evalua-
tion focuses solely on whether the agent’s reason-
ing and planning abilities are sufficient to solve the
task, assuming perfect perception. This abstraction
helps assess task feasibility and build a curriculum
without perception noise.

2.4 Online Learning with MobGRPO

Training GUI agent in online environments
presents several unique challenges. Rewards are
typically sparse, trajectories can be long with vari-
able step counts, and task outcomes often depend
on delayed success signals. These challenges make
credit assignment difficult and destabilize training

under standard policy gradient methods such as
PPO (Schulman et al., 2017). To address these
issues, we extend GRPO (Shao et al., 2024) with
a trajectory-aware formulation and a carefully de-
signed reward structure for mobile GUI agent train-
ing, forming our proposed MobGRPO algorithm.

2.4.1 Trajectory-Aware Policy Optimization

Our MobGRPO objective builds upon GRPO to
handle variable-length trajectories and fine-grained
action steps. For a batch of G trajectories {7;}%,
generated for task q, we define the loss as:

|01 S‘
LMobGRPO = Z > )
Zt 1|018|1 1s=1 t=1

{ min [rt(ﬁ)fli’&t, clip(r¢(0),1 —¢e,1+¢) A@S’t} }

71'9(08,16‘5<s,a<3708,<t) iS the
ﬂ—gold(Os,t|5<87a<5705,<t)

token-level probability ratio in the action sequence,
and flmﬂt shares a trajectory-level advantage sig-
nal. Instead of computing per-step rewards and
advantages, we evaluate the entire trajectory 7 after
completion to obtain a single scalar reward R(7, q)
that reflects its overall quality. This trajectory-level
reward is then used to compute a normalized ad-
R(r,9)—Rq

o Rq+€
note the mean and standard deviation of trajectory
rewards for task q. This advantage is uniformly
assigned to all steps within the trajectory, provid-
ing a consistent learning signal regardless of the
trajectory length or where the success occurs.

By aggregating the reward at the trajectory level
and distributing the advantage across all steps, our
approach avoids noisy or misleading per-step super-
vision and addresses the credit assignment problem
in long-horizon GUI tasks.

where r4(0) =

vantage: A, = , where Rq and o, de-

2.4.2 Multi-Component Reward Design

Reward design plays a central role in learning ef-
fective policies for GUI navigation, where tasks are
long-horizon, rewards are sparse, and outcomes are
often binary. Standard reward functions, e.g., as-
signing = 1 for success and = 0 otherwise, are
inadequate in this context. They fail to differentiate
between successful trajectories of varying quality
and offer no learning signal when all rollouts in a
batch succeed or fail uniformly. To address these
limitations, we propose a multi-component reward



function that captures trajectory-level quality, dis-
courages premature termination, and ensures con-
tinuous learning signals for policy optimization.

Differentiating Successful Trajectories. Al-
though many trajectories may successfully com-
plete a task, they can differ significantly in terms of
efficiency. In GUI settings, shorter trajectories are
generally preferred as they reduce user friction and
lower the risk of compounding errors. To reflect
this, we use an exponentially decaying efficiency
factor that rewards faster completions more,

fefﬁciency(’TD = Clip(e_)‘lﬂ, Omin, amax)- (2)

This design not only encourages efficient behav-
ior but also addresses a key issue in GRPO-like
methods: when all trajectories succeed and receive
identical rewards (e.g., » = 1), the normalized
advantage becomes zero, halting policy updates.
Our reward structure introduces relative differences
even among successful rollouts, preserving gradi-
ent signals for continued learning.

Penalizing Premature Termination. Agents
trained on sparse-reward environments often learn
to "give up" early when facing difficult or ambigu-
ous tasks, terminating episodes prematurely before
fully attempting or exploring the instruction. To
discourage this behavior, we introduce a penalty
for early exits when the task is not yet completed:

gl = 1-

T , penalty = 6max'g(|7-’) 3)
max

This linear decay penalizes early termination more
heavily than later exits, encouraging the agent to
engage more thoughtfully with the task before de-
ciding to stop.

Handling Degenerate Batches. Another practi-
cal issue arises when all trajectories in a batch fail,
yielding zero rewards. In such cases, the com-
puted advantages are uniformly zero, resulting in
no policy update. We adopt the same mitigation
as proposed in DAPO (Yu et al., 2025) by filter-
ing out these degenerate batches during training to
maintain meaningful optimization dynamics.

Final Reward Formulation. Combining these
components, our composite reward is defined as:

) Tbase - f efﬁciency(|7—|)
R(T7 q) - {_ﬁmax . g(]T\)

if success
if fail
4)
This formulation delivers a dense, interpretable,
and differentiable learning signal that encourages

success, promotes efficiency, penalizes shortcuts,
and maintains update dynamics across varying
batch conditions. The modular design also al-
lows fine-tuning through hyperparameters to suit
deployment-specific requirements.

3 Experiments

3.1 Experiments Setting

Our training environment is built on a scalable pool
of Android Virtual Devices (AVDs), with the exact
number determined by the batch size. Each AVD
runs on an emulated device with a 10802400 reso-
lution, 3072 MB of memory, and 2 CPU cores. We
train our agent for one epoch on a dataset of 436
curated GUI navigation tasks. For each task, we
collect eight rollouts using 7B models and four roll-
outs using 32B models, with a maximum episode
length of 25 steps. For all environment and training
hyperparameters, please refer to Appendix A.

MobileGUI-RL is built upon the Qwen2.5-VL-
7B-Instruct and Qwen2.5-VL-32B-Instruct. It pro-
cesses both visual information from screenshots
and textual task descriptions. To interact with
the environment, the agent uses a structured tool-
use interface, where it generates actions by calling
a predefined mobile_use function. The agent is
prompted to first externalize its reasoning within
<thinking> tags and then generate a valid action
call. The prompt provides the function signature,
outlining the available action types and their re-
quired parameters. A detailed description of the
prompt is available in Appendix B.

We evaluate on three online GUI agent
benchmarks that require agents to complete
a variety of tasks within interactive environ-
ments.  The evaluation spans three bench-
mark settings: AndroidWorld (AW) (Rawles
et al., 2024), Android-in-the-Wild General Tasks
(AITW-Gen), and Android-in-the-Wild Web-
Shop (AITW-Web) (Zhang et al., 2024b). Perfor-
mance is measured using several metrics, including
Success Rate (SR), which reflects the proportion
of tasks successfully completed. Our results are
compared against a range of state-of-the-art closed-
source and open-source models, including GPT-
40, Claude Computer Use, and other notable open-
source VLMs like Qwen2.5-VL and OS-Atlas.

3.2 Main Results

We evaluate our MobileGUI-RL framework
by applying it to two powerful base models,



Qwen2.5-VL-7B and Qwen2.5-VL-32B, creating
our MobileGUI-7B and MobileGUI-32B agents.

As presented in Table 1, our MobileGUI-RL
framework delivers substantial performance en-
hancements to the base models across all three
benchmarks. Our smaller model, MobileGUI-7B,
demonstrates significant gains over its base model,
Qwen2.5-VL-7B. The Success Rate (SR) on An-
droidWorld (AW) improves from 22.0% to 30.0%,
and most notably, we see a remarkable jump on
Android-in-the-Wild General (AITW-Gen) tasks
from 49.0% to 65.3%. This represents a 16.3 point
improvement. While UI-TARS-7B shows a slightly
higher SR on AW, our model’s dominant perfor-
mance on AITW-Gen highlights its superior ability
to generalize to diverse, real-world scenarios.

The most compelling results are observed with
our larger model. MobileGUI-32B boosts the per-
formance of its base model, Qwen2.5-VL-32B, by
13.3 points. On the challenging AndroidWorld
benchmark, our model achieves an SR of 44.8%,
decisively outperforming all other baseline mod-
els, including the leading closed-source model
GPT-40 (34.5%) and the much larger Qwen2.5-
VL-72B (35.0%). This demonstrates that our RL
fine-tuning method is not only effective but also
highly efficient, enabling a 32B model to surpass a
72B model. In addition, MobileGUI-32B achieves
strong performance on AITW-Gen (58.0%) and
AITW-Web (30.7%), showing consistent and ro-
bust gains across diverse task distributions. In sum-
mary, our MobileGUI-RL framework makes con-
sistent and significant performance gains.

3.3 Ablation Study

We conduct a series of ablation studies to systemat-
ically evaluate the contribution of each key compo-
nent within our MobileGUI-RL framework. Specif-
ically, we investigate the impact of: (1) our text-
based world model for task filtering, (2) the implicit
curriculum learning derived from it, and (3) our
multi-component decaying reward function. We
benchmark all variants on the Android World (AW)
dataset, and the results are summarized in Table 2.

The Effect of Task Filtering. To validate the
effectiveness of our task filtering mechanism, we
compare our full model against a variant trained on
the complete, unfiltered set of synthetically gener-
ated tasks. Our self-exploration phase initially pro-
duced 1251 candidate tasks. Our text-based world
model filter pruned this set to 436 tasks deemed

solvable and unambiguous. As shown in Table 2,
removing this filter leads to a substantial perfor-
mance degradation of 1.5 and 3.8 percentage points
for the 7B and 32B models, respectively. This high-
lights the critical importance of filtering. Training
on the unfiltered set exposes the agent to a high
volume of low-quality or unsolvable tasks, which
introduces significant noise into the learning pro-
cess. This forces the agent to waste computational
resources on unproductive trajectories, ultimately
destabilizing policy optimization and resulting in a
less capable final agent.

The Effect of Curriculum Learning. Our task
generation pipeline implicitly creates a curricu-
lum by estimating task complexity via the num-
ber of steps required for completion in the text-
based world model. To ablate its effect, we trained
a model on the same filtered task set but sam-
pled tasks uniformly at random, removing the
complexity-based ordering. The results, summa-
rized in Table 2, demonstrate a substantial perfor-
mance drop when the curriculum is removed. The
7B model’s success rate falls by 5 points (from
30.0% to 25.0%), and the 32B model’s perfor-
mance drops by a significant 10.8 points (from
44.8% to 34.0%). This highlights the curriculum’s
critical role in achieving high final performance.

The training dynamics, illustrated in Figure 4,
provide deeper insight into why the curriculum
is so effective. By starting with simpler tasks,
the curriculum-based approach allows the agent
to first build a robust foundation of basic interac-
tion skills. It then progressively introduces more
complex tasks that challenge the agent to develop
sophisticated, multi-step reasoning.

This structured learning process is evident in
the training curves. For models trained with cur-
riculum learning (red lines), the mean reward (Fig-
ures 2a and 2b) initially rises as the agent masters
the beginning set of easier tasks. Subsequently, the
reward curve trends downward. This decline does
not indicate that the model is forgetting or degrad-
ing. Instead, it reflects the nature of the curriculum,
which introduces progressively harder tasks in the
later stages of training. As shown in Figures 2c and
2d, the ratio of impossible tasks, those that remain
unsolved across all attempts, increases towards the
end of training, naturally leading to a lower average
success rate and reward on these more difficult task
distributions.

In contrast, the models trained without a cur-



Table 1: Performance on GUI Agent Benchmarks. We report results across three online mobile GUI agent

benchmarks, evaluating each method by Success Rate (SR). A dash (

(73R L)

-”) indicates that the model checkpoint is

not released. “Unknown prompt (u-p)” denotes cases where the agent prompt was not released; although we
attempted to reproduce the results, performance remained extremely low. To avoid potential inconsistencies or
unfair comparisons, we choose to report only results obtained using officially released checkpoints and prompts.

Models

AW (SR) AITW-Gen (SR) AITW-Web (SR)

Closed-source Models

GPT-40 (Hurst et al., 2024) 34.5 unknown prompt (u-p)
Claude Computer Use (Anthropic, 2024) 279 unknown prompt (u-p)
Open-source 7B Models

OS-Genesis-7B (Sun et al., 2024) (u-p) 0.7 0.0
0S-Atlas-7B (Wu et al., 2024) (u-p) 15.7 17.3
Aguvis-7B (Huang et al., 2024) (u-p) 23.0 4.7
Qwen2.5-VL-7B (Bai et al., 2025) 22.0 49.0 20.0
UI-TARS-7B (Qin et al., 2025) 33.0 48.0 16.7
MobileGUI 7B (Ours) 30.0 65.3 22.7
Open-source 32B/72B Models

Qwen2.5-VL-32B (Bai et al., 2025) 31.5 42.7 24.7
Qwen2.5-VL-72B (Bai et al., 2025) 35.0 51.3 31.3
Aguvis-72B (Huang et al., 2024) 26.1 - -
MobileGUI 32B (Ours) 44.8 58.0 30.7

Table 2: Ablation study of our key components on the Android World (AW) benchmark. We report the task success
rate (%). Our full MobileGUI-RL model significantly outperforms variants where a key component is removed,

demonstrating the effectiveness of each design choice.

Configuration 7B Model (AW %) 32B Model (AW %)
MobileGUI-RL (Full Model) 30.0 44.8

w/o Task Filtering 28.5 41.0

w/o Curriculum Learning 25.0 34.0

w/o Decaying Reward 23.5 35.5

riculum (blue lines) are exposed to a mix of easy
and hard tasks from the start, resulting in a more
stationary reward signal throughout training. Al-
though the training curves for the non-curriculum
models might appear more stable, their lower fi-
nal performance on the benchmark (Table 2) con-
firms that this uniform sampling is less effective.
Our curriculum-based method proves to be more
sample-efficient and ultimately leads to a more ca-
pable agent with higher final performance.

The Effect of Decaying Reward. Finally, we
evaluate the effectiveness of our multi-component
reward design, focusing on the exponential decay
factor that encourages efficiency. We compare our
full model against a variant using a simple binary
reward (r = 1 for success, r = 0 otherwise). Re-
moving the decaying component leads to signifi-
cant performance drops of 6.5 and 9.3 points for
the 7B and 32B models, respectively, highlighting
the limitations of sparse, binary rewards in com-

plex GUI navigation tasks. The decaying reward
plays two key roles. First, it introduces reward
variance among successful trajectories, motivating
the agent to seek not just correct, but efficient solu-
tions. Second, it mitigates a common failure mode
in GRPO-style algorithms: when all trajectories
in a batch succeed with identical rewards, the nor-
malized advantage becomes zero, halting learning.
Overall, our reward formulation provides dense,
informative feedback that is critical for effective
policy optimization.

4 Related Work

GUI Agent Recent GUI agents increasingly
leverage large vision-language models (LVLMs)
to interpret visual and structural information from
screenshots and predict actions (Gur et al., 2023;
Zhang et al., 2024a; Wang et al., 2024; Shi et al.,
2025). While early methods utilized multi-stage
pipelines (Zheng et al., 2024; Gou et al., 2025),
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Figure 2: Training dynamics with and without curricu-
lum learning for 7B and 32B models. The top row shows
the mean trajectory base reward, and the bottom row
shows the ratio of impossible tasks encountered. With
curriculum learning (red), the reward first rises on easy
tasks and then falls as the curriculum introduces harder
tasks, which is corroborated by the rising impossible
task ratio. This structured approach leads to better final
performance than training without a curriculum (blue).

the trend has shifted towards end-to-end models
that operate directly on raw pixels for more scal-
able, human-like interaction (Hong et al., 2024;
Xu et al., 2025; Qin et al., 2025). To address per-

sistent challenges in planning and adaptability, re-
cent work has focused on augmenting datasets with
chain-of-thought annotations (Xu et al., 2025), en-
abling self-reflection through preference optimiza-
tion (Qin et al., 2025), providing explicit trajectory
control like rollbacks (Zhang et al., 2025; Hu et al.,
2025), and using co-evolving world models for
look-ahead simulation (Fang et al., 2025).

RL with Agent A key trend in GUI agents, in-
spired by successes like DeepSeek-R1 (Guo et al.,
2025), is the shift from supervised fine-tuning
(SFT) to reinforcement learning (RL) for improved
generalization. This “R1-style” paradigm, which
directly optimizes policies with RL, has been suc-
cessfully applied to agent tasks. For instance, GUI-
R1 achieved state-of-the-art results with less data
than SFT (Luo et al., 2025), and WebAgent-R1
significantly improved success rates in web naviga-
tion through online RL (Wei et al., 2025). However,
challenges unique to agent tasks, such as long hori-
zons and sparse rewards, have spurred more spe-
cialized RL algorithms. To address credit assign-
ment and sample efficiency, methods like GiGPO
use hierarchical advantage estimation (Feng et al.,
2025), while ARPO incorporates replay buffers (Lu
et al., 2025a). Other works reduce reliance on
human data through autonomous offline-to-online
pipelines (Bai et al., 2024) or automatic task and
reward generation (Yang et al., 2025). Concur-
rently, InfiGUI-R1 uses RL to evolve agents to-
wards more deliberative planning and recovery (Liu
et al., 2025).

5 Conclusion

We introduced MobileGUI-RL, a reinforcement
learning framework for training GUI agents in dy-
namic online environments. Our framework ad-
dresses the critical challenge of data generation
with a synthetic task pipeline that leverages self-
exploration and a world model for curriculum fil-
tering. The core of our approach is MobGRPO, an
algorithm designed with a trajectory-aware advan-
tage and a multi-component reward to optimize
for both task success and interaction efficiency.
Our experiments show significant performance
gains on challenging GUI benchmarks, with our
MobileGUI-32B agent surpassing its base model
and leading closed-source competitors. These re-
sults validate online reinforcement learning with
trajectory-level feedback as a powerful paradigm
for building more capable and robust GUI agents.



6 Limitation

Building upon this work, future research will fo-
cus on several key areas to advance mobile GUI
agents. A primary direction is enhancing task com-
plexity beyond self-exploration by generating more
realistic, long-horizon tasks through methods like
human-in-the-loop curation and hierarchical de-
composition. To train on these more challenging
tasks effectively, we aim to refine our reward design
by shifting from sparse, trajectory-level feedback
to more granular, step-wise supervision. Trajectory-
level rewards can introduce ambiguous learning sig-
nals, particularly when both successful and failed
trajectories share common steps, making it difficult
for the agent to discern which actions contributed
to success. Another leap forward will involve devel-
oping visual world models that enable agents to per-
form multi-step lookahead planning by predicting
future screens, drastically improving error correc-
tion and strategic execution. Finally, these advance-
ments will pave the way for true personalization
through on-device continual adaptation, allowing
agents to learn from a specific user’s patterns and
preferences for a more integrated and effective ex-
perience. An important aspect not yet addressed
in this work is the safety of GUI agents—future
research should investigate mechanisms to ensure
robust and secure interactions, especially when de-
ployed on personal devices.

7 Ethical Impact

This research utilizes the Qwen foundation
model (Bai et al., 2025), operating within the scope
of its academic licensing agreement. Our imple-
mentation strictly adheres to the academic-use pro-
visions specified in the license, with all applications
limited to scholarly research purposes. The study
draws upon two datasets: AndroidWorld (Rawles
et al., 2024) and Android-in-the-Wild (AITW) (Bai
et al., 2024), each employed in accordance with
their respective usage guidelines and data gover-
nance frameworks. We have conducted thorough
reviews to ensure compliance with data protection
protocols. Furthermore, our data processing pro-
tocols have verified that the content is appropriate
and free from inappropriate material, maintaining
high standards of research ethics and data integrity.
Additionally, we utilized ChatGPT (Hurst et al.,
2024) to assist with grammatical refinements dur-
ing the writing process.
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A Detailed Training Configuration

A.1 Environment Setup

All important details are included in Table 3.

A.2 Model and Training Hyperparameters

All important details are included in Table 4

B Prompt Construction

The agent operates through a structured tool-use in-
terface. The system prompt provides the agent with
a function signature for mobile device interaction:

type function ",
function
name mobile_use ",
description Use a touchscreen to
interact ... ",
parameters
properties
action
enum " : click", "swipe",
type
system_button ",
wait ",
terminate ", "answer
coordinate type array
coordinate?2 type array
text type string "},
time type number" |,
button enum Back ",
Home" ,
Menu " ,
Enter ,
status enum success ',
failure

The agent is instructed to provide reasoning
within <thinking> tags before each action and
summarize actions within <conclusion> tags.
Task progress is tracked by maintaining a history
of previous actions and their outcomes.

The evaluator provides binary success/failure
judgments along with detailed reasoning about
whether all task requirements have been satisfied.

A list of available actions is provided in Table 5.

C Evaluation Details

This section provides additional details on the eval-
uation procedures for each benchmark used in our
experiments.

12

AndroidWorld For the AndroidWorld bench-
mark, we utilized the official evaluation code and
procedures released by the original authors (Rawles
et al., 2024). This ensures that our results are di-
rectly comparable to previously reported scores on
this benchmark.

Android-in-the-Wild (AITW) For the AITW-
Gen and AITW-Web benchmarks, we adapted the
evaluation scripts originally provided in the DigiRL
study (Bai et al., 2024). We made several modifica-
tions to curate the datasets for our specific testing
environment.

* AITW-Gen: We manually reviewed the tasks
and removed those that could not be reliably
executed on our emulated Android environ-
ment. These tasks primarily involved actions
such as installing specific third-party appli-
cations, which were not feasible in our sand-
boxed virtual devices. After this filtering pro-
cess, the final AITW-Gen dataset used for our
evaluation consisted of 300 unique tasks.

* AITW-Web: During our review of the Web-
Shop tasks, we identified a significant number
of duplicate entries. To create a more robust
and less redundant benchmark, we performed
a deduplication process, merging these sim-
ilar tasks. This resulted in a final, curated
AITW-Web benchmark of 150 unique tasks.

These curation steps were taken to ensure a fair and
consistent evaluation of the agent’s capabilities on
tasks that are executable within our standardized
environment.

D Cases



Table 3: Android Emulator Configuration

Parameter Value

Base AVD Name AndroidWorldAvd

Emulator Instances ~ Dynamically scaled based on batch size
Screen Resolution 10802400 pixels

Memory Allocation
CPU Cores
GPU Acceleration

3072 MB per emulator
2 cores per emulator
Auto mode

Table 4: Model and Training Hyperparameters

Parameter Value
Model Configuration
Base Model Qwen2.5-VL-7B-Instruct / 32B-Instruct

Attention Implementation
Gradient Checkpointing
Mixed Precision

Flash Attention 2
Enabled
BFloat16 (parameters), FP32 (reduction)

GRPO Training Parameters

Global Batch Size
Micro Batch Size (Update)
Micro Batch Size (Experience)

128
4 per device
16 per device

Learning Rate 1x10°6
Adam Betas (0.9, 0.999)
Weight Decay 0.01

Gradient Clipping 1.0

PPO Clip Ratio 0.2

Entropy Coefficient 1x1073

KL Penalty Coefficient 1 x 1072
PPO Epochs 1

Advantage Estimator GRPO with trajectory-based normalization
Rollout Configuration

Temperature 1.0

Top-p 1.0

Max Response Length 2048 tokens
Number of Rollouts 8 per prompt
Maximum Steps 15 per episode
Tensor Parallel Size 2

GPU Memory Utilization 0.5
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Table 5: Agent action space for GUI interaction.

Action Type Description

click Tap at a specified (x, y) coordinate.

swipe Swipe from a start coordinate to an end coordinate.
type Input specified text into the active Ul element.
system_button Press a system-level button (e.g., Back, Home).

wait Pause execution for a specified number of seconds.
terminate End the task, declaring final success or failure.

answer Provide a textual response for question-answering tasks.
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Figure 4: Case Studies. The case illustrates the task: “Create a calendar event for tomorrow at 20h with the title
’Call with the Team’ and the description *We will prepare for team roles.’. The event should last for 30 mins.” The
left shows the execution before reinforcement learning, while the right shows the result after RL (ours). The pre-RL
agent misses two critical steps: (1) omitting the meeting description, and (2) failing to set the event’s end time.
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