
MobileGUI-RL: Advancing Mobile GUI Agent through Reinforcement
Learning in Online Environment

Anonymous ACL submission

Abstract001

Recently, vision-based GUI agents are rapidly002
emerging to automate everyday mobile and003
web tasks. These agents interpret raw GUI004
screenshots and autonomously decide where005
to click, scroll, or type, which bypasses hand-006
crafted rules and app-specific APIs. However,007
most existing methods trained GUI agent in the008
offline environment using pre-collected trajec-009
tories. This approach limits scalability, causes010
overfitting to specific UI templates, and leads to011
brittle policies when faced with unseen environ-012
ment. We present MobileGUI-RL, a scalable013
framework that trains GUI agent in online en-014
vironment. MobileGUI-RL contains two key015
components. It (i) synthesizes a curriculum of016
learnable tasks through self-exploration and fil-017
tering, and (ii) adapts GRPO to GUI navigation018
with trajectory-aware advantages and compos-019
ite rewards that balance task success and execu-020
tion efficiency. Experiments on online mobile021
agent benchmarks demonstrate consistent im-022
provements over baseline methods.023

1 Introduction024

Recent advances in large vision-language models025

(LVLMs) (Hurst et al., 2024; Anthropic, 2025;026

Bai et al., 2025) have opened up new possibil-027

ities for building vision-based GUI agents (Qin028

et al., 2025; Xu et al., 2025), fundamentally trans-029

forming the way intelligent agents interact with030

graphical user interfaces (GUIs). Unlike traditional031

pipeline-based GUI agents, which typically decom-032

pose the task into separate planning and grounding033

stages (Zheng et al., 2024; Gou et al., 2025), these034

vision-based GUI agents leverage the powerful per-035

ception and reasoning abilities of LVLMs to di-036

rectly interpret GUI screenshots and autonomously037

determine actions such as clicking, scrolling, and038

typing (Wang et al., 2024; Zhang et al., 2024a). By039

eliminating the need for handcrafted rules or ac-040

cess to underlying application APIs, vision-based041

GUI agents offer a flexible, scalable, and platform- 042

agnostic solution for automating interactions across 043

a wide range of apps and devices. 044

Despite these advances, training GUI agents that 045

can operate robustly in real-world environments 046

remains a highly challenging task. Most existing 047

method train GUI agents in the offline environment 048

that rely on static, pre-collected trajectory data for 049

supervised fine-tuning (Wu et al., 2024; Qin et al., 050

2025; Sun et al., 2025). Another line of research 051

explores step-wise reinforcement learning, inspired 052

by the recent DeepSeek-R1 paradigm (Zhou et al., 053

2025; Lu et al., 2025b; Luo et al., 2025). However, 054

these methods rely extensively on high-quality an- 055

notations for action trajectories, which require step- 056

by-step executions and precise evaluations of their 057

correctness. Such detailed annotations are labor- 058

intensive and challenging to scale (Wu et al., 2024; 059

Qin et al., 2025). Moreover, GUI agents trained 060

with SFT or offline reinforcement learning often 061

overfit to specific interface patterns (Sun et al., 062

2025; Xu et al., 2025). Such overfitting leads to 063

poor generalization when encountering task instruc- 064

tions deviating from familiar templates or to dy- 065

namic UI environments. In practice, real-world 066

GUIs are highly variable: new screens frequently 067

emerge, interface elements change or disappear un- 068

predictably, and user interactions can substantially 069

alter GUI states. Pre-trained policies often fail to 070

adapt, limiting real-world usability. 071

To address these limitations, training GUI agents 072

in online environments has emerged as a promis- 073

ing direction (Bai et al., 2024; Wang et al., 2025), 074

enabling agents to continuously interact with their 075

environment and update policies in real time. How- 076

ever, it introduces several challenges. First, online 077

learning requires real-time interaction with the en- 078

vironment at every training step. Each action must 079

be executed, and its effect observed, before updat- 080

ing the policy. This process can be slow and com- 081

putationally expensive, especially when scaling to 082

1

complex apps or mobile devices where GUI ren-083

dering and response times vary. Second, defining084

meaningful trajectory-level reward signals is non-085

trivial. Many tasks have long trajectories, where086

the agent must execute a sequence of steps before087

achieving a goal. At the same time, multiple action088

sequences may lead to the same outcome, and near-089

correct trajectories can fail due to a single misstep.090

These challenges make reward-driven learning dif-091

ficult, potentially slowing convergence and leading092

to suboptimal policies.093

In this work, we present MobileGUI-RL, a novel094

framework for training GUI agents through rein-095

forcement learning in online environments. To096

support this, we develop an interactive environ-097

ment that supports virtual machine management098

and continuous online learning, enabling agents to099

explore and adapt to the full spectrum of mobile100

GUI interactions. MobileGUI-RL consists of two101

key components. First, we employ a synthetic task102

generation pipeline that combines self-exploration103

with filtering, producing a curriculum of learnable104

tasks tailored to the agent’s current capabilities.105

Then, we adapt group relative policy optimization106

(GRPO) (Shao et al., 2024; Guo et al., 2025) and107

introduce a trajectory-aware advantage and multi-108

component rewards that balance task success and109

execution efficiency. Experiments on three online110

mobile-agent benchmarks show that MobileGUI-111

RL consistently improves performance.112

2 MobileGUI-RL113

2.1 Overview114

We formulate the problem of GUI task completion115

as a Markov Decision Process (MDP), defined by116

the tuple M = (S,A,P,R) (Fang et al., 2025;117

Hu et al., 2025). Here, S represents the state space118

of GUI screenshots and system states, A encom-119

passes the action space of user interactions (e.g.,120

taps, swipes, text input), P denotes the transition121

determined by the mobile operating system, R is122

a reward function that evaluate task completion.123

Given a natural language instruction q, our goal is124

to train an agent to learn a policy πθ(A | S,q) to125

complete the given task accurately while maximiz-126

ing the expected cumulative reward over time. This127

MDP formulation provides a principled framework128

for learning and evaluating interactive agents in129

complex, dynamic mobile GUI environments.130

To train GUI agents using online trajectory rein-131

forcement learning, we propose three novel mod-132

ules, detailed as follows: First, we design an in- 133

teractive environment that supports continuous on- 134

line learning, enabling agents to explore and adapt 135

across the full spectrum of mobile GUI interac- 136

tions (Section 2.2). Second, we introduce a syn- 137

thetic task generation pipeline that combines self- 138

exploration with task filtering, yielding a dynamic 139

curriculum tailored to the agent’s evolving capabil- 140

ities (Section 2.3). Third, we adapt Group Relative 141

Policy Optimization (GRPO) to the unique chal- 142

lenges of GUI navigation, introducing trajectory- 143

aware advantage estimation and a multi-component 144

reward structure that balances task success with ex- 145

ecution efficiency (Section 2.4). 146

2.2 Scalable and Interactable Environment 147

for Online Learning 148

To support GUI agents with online trajectory re- 149

inforcement learning, we design a training envi- 150

ronment centered on two key capabilities: batched 151

virtual execution and real-time agent interaction. 152

Batched Virtual Execution. At the core of our 153

system is a scalable, asynchronous framework that 154

deploys multiple Android emulator (Android De- 155

velopers, 2024) instances in parallel across CPU 156

machines. This batched execution enables agents 157

to interact with diverse GUI environments simul- 158

taneously, significantly increasing throughput and 159

trajectory diversity. Trajectories are collected asyn- 160

chronously from a pool of emulators running in 161

parallel, while policy optimization is performed 162

separately on GPU servers. 163

Real-Time Agent Interaction. At each timestep 164

t, the agent observes a multimodal state repre- 165

sentation st = (vt,q,ht) comprising three es- 166

sential components (Zheng et al., 2024). The vi- 167

sual input vt provides the current screenshot cap- 168

turing the complete GUI state. The task goal 169

q specifies the natural language instruction that 170

guides the agent’s behavior. The interaction history 171

ht = {(s0, a0), ..., (st−1, at−1)} maintains tempo- 172

ral context, enabling the agent to reason about past 173

actions and their consequences. More details on 174

input construction are in appendix B. 175

The agent, a vision-language model in our set- 176

ting, will process this state representation and 177

first generate an internal reasoning trace ct, then 178

produce a structured action at ∈ A. Our ac- 179

tion space comprehensively covers mobile in- 180

teractions through four categories: (1) Physi- 181

cal gestures include parameterized actions such 182

2

Ta
sk

 c
re

at
io

n

(1) Open the phone camera and take a video.

(2) Open the camera and enlarge the TV, then

take a photo.

(3) Open the camera and go to Google photo.

Generated task

(1) Open Google Maps and search for the

route to Napa.

(2) Open the map and find the fastest route

from your location to Napa.

(3) Use map to search your current location.

Task filtering

bad task

good task

bad task

good task

good task

bad task

[N times rollouts]

T1

T2

M
o

d
e

l t
ra

in
in

g

Reward calculation

• Encourage shorter successful trajectory
• Punish premature terminationT3 toTN

Reward: + 0.6

Reward: - 0.4

Reward: - 0.3

T1

T2

Ti

Tj

Policy update

Reward: + 0.9

Self-exploration

Rollout

Figure 1: Framework overall – a scalable pipeline for training GUI agents through self-exploration, task filtering,
and trajectory-level reinforcement learning with a structured reward design.

as tap(x, y) and swipe(x1, y1, x2, y2) using nor-183

malized coordinates ∈ [0, 1]2 for resolution in-184

dependence; (2) Text input actions type(string)185

handle keyboard interactions; (3) System naviga-186

tion encompasses device-level operations including187

{back, home, recent}; (4) Control actions include188

wait(t) for synchronization with dynamic UI ele-189

ments and terminate(status) for episode comple-190

tion. More detailed action definitions are provided191

in the appendix section.192

A sequence of these interactions τ =193

(s0, a0, s1, a1, ..., sT) forms a trajectory, which194

is evaluated upon termination. Rather than rely-195

ing on hand-crafted reward functions that poorly196

generalize across tasks, we employ a powerful197

vision-language model oracle O (e.g., Qwen 2.5198

VL 72B) to serve as a unified evaluator. Given199

the final k screenshots of a trajectory and the200

initial instruction q, the oracle analyzes whether201

the task has been completed as intended: r =202

O({sT−k+1, ..., sT },q) (Bai et al., 2024).203

2.3 Synthetic Task Generation and Filtering204

A critical challenge in training GUI agent in on-205

line environment is obtaining a diverse yet learn-206

able curriculum of tasks. Real-world task distri-207

butions are heavily skewed toward common in-208

teractions, limiting the agent’s ability to handle209

edge cases. Moreover, manually curating tasks210

is labor-intensive and fails to scale with the com-211

plexity of modern mobile ecosystems. We address212

this through a two-stage pipeline that automatically 213

generates and filters synthetic tasks. 214

2.3.1 Self-Exploration for Diverse Task 215

Discovery 216

Our self-exploration mechanism leverages the nat- 217

ural structure of mobile interfaces to discover 218

meaningful tasks. The process begins with an ex- 219

ploration agent πexplore performing random walks 220

through the GUI environment. These walks are 221

not purely random but incorporate basic heuris- 222

tics such as preferring unexplored UI elements and 223

avoiding repetitive loops. Each exploration trajec- 224

tory τexplore = {(s0, a0), ..., (sn, an)} captures a 225

sequence of state transitions that potentially repre- 226

sent a coherent task. Inspired by (Sun et al., 2025), 227

we then employ GPT-4o to reverse-engineer task 228

descriptions from these trajectories. Given a tra- 229

jectory, the model generates a natural language 230

instruction q that would motivate the observed se- 231

quence of actions. This reverse process – figuring 232

out the goal from the actions – produces a variety 233

of tasks that match what the app is designed to do. 234

The generated tasks span a wide spectrum, from 235

simple interactions ("Open the settings menu") to 236

complex multi-step procedures ("Set a recurring 237

alarm for weekdays at 7 AM"). 238

2.3.2 Task Filtering via Text-based World 239

Model 240

While self-exploration can generate a wide range 241

of task instructions, many of them suffer from two 242

3

key issues: they are either too ambiguous, often243

due to limitations in the reverse-engineered LLM’s244

summarization ability, or too complex to be solved245

given the current GUI state and context. Attempt-246

ing to execute these infeasible tasks leads to wasted247

computational effort and the generation of low-248

quality trajectories that may destabilize learning.249

To address this, we propose a lightweight filter-250

ing mechanism based on a text-based world model,251

which pre-screens candidate tasks before rollout.252

This approach effectively avoids unnecessary envi-253

ronment interactions.254

Our filter first employs a LLM as a simula-255

tor W that can generate a textual representation256

s̃ of the GUI state. Given a task q and cur-257

rent state description s̃, the world model pre-258

dicts the next state s̃′ = W(s̃, a,q) resulting259

from action a. The filtering process proceeds as260

follows: The world model first initializes with261

a textual description of the home screen, struc-262

tured as a list of UI elements with their proper-263

ties: s̃0 = {e1 : (type, content, bounds), ..., en :264

(type, content, bounds)}. Our base agent πbase re-265

ceives both the task and this description and outputs266

an action. The world model simulates the action’s267

effect, generating a new state description that re-268

flects the expected GUI changes. This process con-269

tinues until the base agent signals task completion,270

failure, or exceeds a step limit Tmax.271

A task is admitted to the training set only if the272

simulation reaches a success state within the step273

limit: F(q) = 1[∃t ≤ Tmax : πproxy(at|s̃t,q) =274

terminate(success)]. This filtering process serves275

not only to remove logically inconsistent or overly276

complex tasks, but also plays a key role in decou-277

pling perception from reasoning. Since the world278

model operates entirely on structured textual rep-279

resentations of the GUI, it removes the need for280

low-level visual grounding. As a result, the evalua-281

tion focuses solely on whether the agent’s reason-282

ing and planning abilities are sufficient to solve the283

task, assuming perfect perception. This abstraction284

helps assess task feasibility and build a curriculum285

without perception noise.286

2.4 Online Learning with MobGRPO287

Training GUI agent in online environments288

presents several unique challenges. Rewards are289

typically sparse, trajectories can be long with vari-290

able step counts, and task outcomes often depend291

on delayed success signals. These challenges make292

credit assignment difficult and destabilize training293

under standard policy gradient methods such as 294

PPO (Schulman et al., 2017). To address these 295

issues, we extend GRPO (Shao et al., 2024) with 296

a trajectory-aware formulation and a carefully de- 297

signed reward structure for mobile GUI agent train- 298

ing, forming our proposed MobGRPO algorithm. 299

2.4.1 Trajectory-Aware Policy Optimization 300

Our MobGRPO objective builds upon GRPO to 301

handle variable-length trajectories and fine-grained 302

action steps. For a batch of G trajectories {τi}Gi=1 303

generated for task q, we define the loss as: 304

LMobGRPO = − 1∑G
t=1 |oi,s|

G∑
i=1

Si∑
s=1

|oi,s|∑
t=1

(1) 305{
min

[
rt(θ)Âi,s,t, clip (rt(θ), 1− ϵ, 1 + ϵ) Âi,s,t

]}
306

where rt(θ) =
πθ(os,t|s<s,a<s,os,<t)
πθold (os,t|s<s,a<s,os,<t)

is the 307

token-level probability ratio in the action sequence, 308

and Âi,s,t shares a trajectory-level advantage sig- 309

nal. Instead of computing per-step rewards and 310

advantages, we evaluate the entire trajectory τ after 311

completion to obtain a single scalar reward R(τ,q) 312

that reflects its overall quality. This trajectory-level 313

reward is then used to compute a normalized ad- 314

vantage: Âτ =
R(τ,q)−R̄q

σRq+ϵ , where R̄q and σRq de- 315

note the mean and standard deviation of trajectory 316

rewards for task q. This advantage is uniformly 317

assigned to all steps within the trajectory, provid- 318

ing a consistent learning signal regardless of the 319

trajectory length or where the success occurs. 320

By aggregating the reward at the trajectory level 321

and distributing the advantage across all steps, our 322

approach avoids noisy or misleading per-step super- 323

vision and addresses the credit assignment problem 324

in long-horizon GUI tasks. 325

2.4.2 Multi-Component Reward Design 326

Reward design plays a central role in learning ef- 327

fective policies for GUI navigation, where tasks are 328

long-horizon, rewards are sparse, and outcomes are 329

often binary. Standard reward functions, e.g., as- 330

signing r = 1 for success and r = 0 otherwise, are 331

inadequate in this context. They fail to differentiate 332

between successful trajectories of varying quality 333

and offer no learning signal when all rollouts in a 334

batch succeed or fail uniformly. To address these 335

limitations, we propose a multi-component reward 336

4

function that captures trajectory-level quality, dis-337

courages premature termination, and ensures con-338

tinuous learning signals for policy optimization.339

Differentiating Successful Trajectories. Al-340

though many trajectories may successfully com-341

plete a task, they can differ significantly in terms of342

efficiency. In GUI settings, shorter trajectories are343

generally preferred as they reduce user friction and344

lower the risk of compounding errors. To reflect345

this, we use an exponentially decaying efficiency346

factor that rewards faster completions more,347

fefficiency(|τ |) = clip(e−λ|τ |, αmin, αmax). (2)348

This design not only encourages efficient behav-349

ior but also addresses a key issue in GRPO-like350

methods: when all trajectories succeed and receive351

identical rewards (e.g., r = 1), the normalized352

advantage becomes zero, halting policy updates.353

Our reward structure introduces relative differences354

even among successful rollouts, preserving gradi-355

ent signals for continued learning.356

Penalizing Premature Termination. Agents357

trained on sparse-reward environments often learn358

to "give up" early when facing difficult or ambigu-359

ous tasks, terminating episodes prematurely before360

fully attempting or exploring the instruction. To361

discourage this behavior, we introduce a penalty362

for early exits when the task is not yet completed:363

g(|τ |) = 1− |τ |
Tmax

, penalty = βmax ·g(|τ |) (3)364

This linear decay penalizes early termination more365

heavily than later exits, encouraging the agent to366

engage more thoughtfully with the task before de-367

ciding to stop.368

Handling Degenerate Batches. Another practi-369

cal issue arises when all trajectories in a batch fail,370

yielding zero rewards. In such cases, the com-371

puted advantages are uniformly zero, resulting in372

no policy update. We adopt the same mitigation373

as proposed in DAPO (Yu et al., 2025) by filter-374

ing out these degenerate batches during training to375

maintain meaningful optimization dynamics.376

Final Reward Formulation. Combining these377

components, our composite reward is defined as:378

R(τ,q) =

{
rbase · fefficiency(|τ |) if success
−βmax · g(|τ |) if fail

(4)379

This formulation delivers a dense, interpretable,380

and differentiable learning signal that encourages381

success, promotes efficiency, penalizes shortcuts, 382

and maintains update dynamics across varying 383

batch conditions. The modular design also al- 384

lows fine-tuning through hyperparameters to suit 385

deployment-specific requirements. 386

3 Experiments 387

3.1 Experiments Setting 388

Our training environment is built on a scalable pool 389

of Android Virtual Devices (AVDs), with the exact 390

number determined by the batch size. Each AVD 391

runs on an emulated device with a 1080×2400 reso- 392

lution, 3072 MB of memory, and 2 CPU cores. We 393

train our agent for one epoch on a dataset of 436 394

curated GUI navigation tasks. For each task, we 395

collect eight rollouts using 7B models and four roll- 396

outs using 32B models, with a maximum episode 397

length of 25 steps. For all environment and training 398

hyperparameters, please refer to Appendix A. 399

MobileGUI-RL is built upon the Qwen2.5-VL- 400

7B-Instruct and Qwen2.5-VL-32B-Instruct. It pro- 401

cesses both visual information from screenshots 402

and textual task descriptions. To interact with 403

the environment, the agent uses a structured tool- 404

use interface, where it generates actions by calling 405

a predefined mobile_use function. The agent is 406

prompted to first externalize its reasoning within 407

<thinking> tags and then generate a valid action 408

call. The prompt provides the function signature, 409

outlining the available action types and their re- 410

quired parameters. A detailed description of the 411

prompt is available in Appendix B. 412

We evaluate on three online GUI agent 413

benchmarks that require agents to complete 414

a variety of tasks within interactive environ- 415

ments. The evaluation spans three bench- 416

mark settings: AndroidWorld (AW) (Rawles 417

et al., 2024), Android-in-the-Wild General Tasks 418

(AITW-Gen), and Android-in-the-Wild Web- 419

Shop (AITW-Web) (Zhang et al., 2024b). Perfor- 420

mance is measured using several metrics, including 421

Success Rate (SR), which reflects the proportion 422

of tasks successfully completed. Our results are 423

compared against a range of state-of-the-art closed- 424

source and open-source models, including GPT- 425

4o, Claude Computer Use, and other notable open- 426

source VLMs like Qwen2.5-VL and OS-Atlas. 427

3.2 Main Results 428

We evaluate our MobileGUI-RL framework 429

by applying it to two powerful base models, 430

5

Qwen2.5-VL-7B and Qwen2.5-VL-32B, creating431

our MobileGUI-7B and MobileGUI-32B agents.432

As presented in Table 1, our MobileGUI-RL433

framework delivers substantial performance en-434

hancements to the base models across all three435

benchmarks. Our smaller model, MobileGUI-7B,436

demonstrates significant gains over its base model,437

Qwen2.5-VL-7B. The Success Rate (SR) on An-438

droidWorld (AW) improves from 22.0% to 30.0%,439

and most notably, we see a remarkable jump on440

Android-in-the-Wild General (AITW-Gen) tasks441

from 49.0% to 65.3%. This represents a 16.3 point442

improvement. While UI-TARS-7B shows a slightly443

higher SR on AW, our model’s dominant perfor-444

mance on AITW-Gen highlights its superior ability445

to generalize to diverse, real-world scenarios.446

The most compelling results are observed with447

our larger model. MobileGUI-32B boosts the per-448

formance of its base model, Qwen2.5-VL-32B, by449

13.3 points. On the challenging AndroidWorld450

benchmark, our model achieves an SR of 44.8%,451

decisively outperforming all other baseline mod-452

els, including the leading closed-source model453

GPT-4o (34.5%) and the much larger Qwen2.5-454

VL-72B (35.0%). This demonstrates that our RL455

fine-tuning method is not only effective but also456

highly efficient, enabling a 32B model to surpass a457

72B model. In addition, MobileGUI-32B achieves458

strong performance on AITW-Gen (58.0%) and459

AITW-Web (30.7%), showing consistent and ro-460

bust gains across diverse task distributions. In sum-461

mary, our MobileGUI-RL framework makes con-462

sistent and significant performance gains.463

3.3 Ablation Study464

We conduct a series of ablation studies to systemat-465

ically evaluate the contribution of each key compo-466

nent within our MobileGUI-RL framework. Specif-467

ically, we investigate the impact of: (1) our text-468

based world model for task filtering, (2) the implicit469

curriculum learning derived from it, and (3) our470

multi-component decaying reward function. We471

benchmark all variants on the Android World (AW)472

dataset, and the results are summarized in Table 2.473

The Effect of Task Filtering. To validate the474

effectiveness of our task filtering mechanism, we475

compare our full model against a variant trained on476

the complete, unfiltered set of synthetically gener-477

ated tasks. Our self-exploration phase initially pro-478

duced 1251 candidate tasks. Our text-based world479

model filter pruned this set to 436 tasks deemed480

solvable and unambiguous. As shown in Table 2, 481

removing this filter leads to a substantial perfor- 482

mance degradation of 1.5 and 3.8 percentage points 483

for the 7B and 32B models, respectively. This high- 484

lights the critical importance of filtering. Training 485

on the unfiltered set exposes the agent to a high 486

volume of low-quality or unsolvable tasks, which 487

introduces significant noise into the learning pro- 488

cess. This forces the agent to waste computational 489

resources on unproductive trajectories, ultimately 490

destabilizing policy optimization and resulting in a 491

less capable final agent. 492

The Effect of Curriculum Learning. Our task 493

generation pipeline implicitly creates a curricu- 494

lum by estimating task complexity via the num- 495

ber of steps required for completion in the text- 496

based world model. To ablate its effect, we trained 497

a model on the same filtered task set but sam- 498

pled tasks uniformly at random, removing the 499

complexity-based ordering. The results, summa- 500

rized in Table 2, demonstrate a substantial perfor- 501

mance drop when the curriculum is removed. The 502

7B model’s success rate falls by 5 points (from 503

30.0% to 25.0%), and the 32B model’s perfor- 504

mance drops by a significant 10.8 points (from 505

44.8% to 34.0%). This highlights the curriculum’s 506

critical role in achieving high final performance. 507

The training dynamics, illustrated in Figure 4, 508

provide deeper insight into why the curriculum 509

is so effective. By starting with simpler tasks, 510

the curriculum-based approach allows the agent 511

to first build a robust foundation of basic interac- 512

tion skills. It then progressively introduces more 513

complex tasks that challenge the agent to develop 514

sophisticated, multi-step reasoning. 515

This structured learning process is evident in 516

the training curves. For models trained with cur- 517

riculum learning (red lines), the mean reward (Fig- 518

ures 2a and 2b) initially rises as the agent masters 519

the beginning set of easier tasks. Subsequently, the 520

reward curve trends downward. This decline does 521

not indicate that the model is forgetting or degrad- 522

ing. Instead, it reflects the nature of the curriculum, 523

which introduces progressively harder tasks in the 524

later stages of training. As shown in Figures 2c and 525

2d, the ratio of impossible tasks, those that remain 526

unsolved across all attempts, increases towards the 527

end of training, naturally leading to a lower average 528

success rate and reward on these more difficult task 529

distributions. 530

In contrast, the models trained without a cur- 531

6

Table 1: Performance on GUI Agent Benchmarks. We report results across three online mobile GUI agent
benchmarks, evaluating each method by Success Rate (SR). A dash (“-”) indicates that the model checkpoint is
not released. “Unknown prompt (u-p)” denotes cases where the agent prompt was not released; although we
attempted to reproduce the results, performance remained extremely low. To avoid potential inconsistencies or
unfair comparisons, we choose to report only results obtained using officially released checkpoints and prompts.

Models AW (SR) AITW-Gen (SR) AITW-Web (SR)

Closed-source Models
GPT-4o (Hurst et al., 2024) 34.5 unknown prompt (u-p)
Claude Computer Use (Anthropic, 2024) 27.9 unknown prompt (u-p)

Open-source 7B Models
OS-Genesis-7B (Sun et al., 2024) (u-p) 0.7 0.0
OS-Atlas-7B (Wu et al., 2024) (u-p) 15.7 17.3
Aguvis-7B (Huang et al., 2024) (u-p) 23.0 4.7
Qwen2.5-VL-7B (Bai et al., 2025) 22.0 49.0 20.0
UI-TARS-7B (Qin et al., 2025) 33.0 48.0 16.7
MobileGUI 7B (Ours) 30.0 65.3 22.7

Open-source 32B/72B Models
Qwen2.5-VL-32B (Bai et al., 2025) 31.5 42.7 24.7
Qwen2.5-VL-72B (Bai et al., 2025) 35.0 51.3 31.3
Aguvis-72B (Huang et al., 2024) 26.1 - -
MobileGUI 32B (Ours) 44.8 58.0 30.7

Table 2: Ablation study of our key components on the Android World (AW) benchmark. We report the task success
rate (%). Our full MobileGUI-RL model significantly outperforms variants where a key component is removed,
demonstrating the effectiveness of each design choice.

Configuration 7B Model (AW %) 32B Model (AW %)

MobileGUI-RL (Full Model) 30.0 44.8
w/o Task Filtering 28.5 41.0
w/o Curriculum Learning 25.0 34.0
w/o Decaying Reward 23.5 35.5

riculum (blue lines) are exposed to a mix of easy532

and hard tasks from the start, resulting in a more533

stationary reward signal throughout training. Al-534

though the training curves for the non-curriculum535

models might appear more stable, their lower fi-536

nal performance on the benchmark (Table 2) con-537

firms that this uniform sampling is less effective.538

Our curriculum-based method proves to be more539

sample-efficient and ultimately leads to a more ca-540

pable agent with higher final performance.541

The Effect of Decaying Reward. Finally, we542

evaluate the effectiveness of our multi-component543

reward design, focusing on the exponential decay544

factor that encourages efficiency. We compare our545

full model against a variant using a simple binary546

reward (r = 1 for success, r = 0 otherwise). Re-547

moving the decaying component leads to signifi-548

cant performance drops of 6.5 and 9.3 points for549

the 7B and 32B models, respectively, highlighting550

the limitations of sparse, binary rewards in com-551

plex GUI navigation tasks. The decaying reward 552

plays two key roles. First, it introduces reward 553

variance among successful trajectories, motivating 554

the agent to seek not just correct, but efficient solu- 555

tions. Second, it mitigates a common failure mode 556

in GRPO-style algorithms: when all trajectories 557

in a batch succeed with identical rewards, the nor- 558

malized advantage becomes zero, halting learning. 559

Overall, our reward formulation provides dense, 560

informative feedback that is critical for effective 561

policy optimization. 562

4 Related Work 563

GUI Agent Recent GUI agents increasingly 564

leverage large vision-language models (LVLMs) 565

to interpret visual and structural information from 566

screenshots and predict actions (Gur et al., 2023; 567

Zhang et al., 2024a; Wang et al., 2024; Shi et al., 568

2025). While early methods utilized multi-stage 569

pipelines (Zheng et al., 2024; Gou et al., 2025), 570

7

20 40 60 80 100
Step

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
ea

n
Tr

aj
ec

to
ry

 B
as

e
Re

wa
rd

Mean Trajectory Base Reward Over Steps (7B)

w/o Curriculum Learning (smoothed) 7B
w/ Curriculum Learning (smoothed) 7B

(a) Mean Reward (7B)

10 20 30 40 50
Step

0.35

0.40

0.45

0.50

0.55

0.60

0.65

M
ea

n
Tr

aj
ec

to
ry

 B
as

e
Re

wa
rd

Mean Trajectory Base Reward Over Steps (32B)

w/o Curriculum Learning (smoothed) 32B
w/ Curriculum Learning (smoothed) 32B

(b) Mean Reward (32B)

20 40 60 80 100
Step

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

ss
ib

le
 Ta

sk
s R

at
io

Impossible Tasks Ratio Over Steps (7B)
w/o Curriculum Learning (smoothed) 7B
w/ Curriculum Learning (smoothed) 7B

(c) Impossible Tasks Ratio (7B)

10 20 30 40 50
Step

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

ss
ib

le
 Ta

sk
s R

at
io

Impossible Tasks Ratio Over Steps (32b)
w/o Curriculum Learning (smoothed) 32b
w/ Curriculum Learning (smoothed) 32b

(d) Impossible Tasks Ratio (32B)

Figure 2: Training dynamics with and without curricu-
lum learning for 7B and 32B models. The top row shows
the mean trajectory base reward, and the bottom row
shows the ratio of impossible tasks encountered. With
curriculum learning (red), the reward first rises on easy
tasks and then falls as the curriculum introduces harder
tasks, which is corroborated by the rising impossible
task ratio. This structured approach leads to better final
performance than training without a curriculum (blue).

the trend has shifted towards end-to-end models571

that operate directly on raw pixels for more scal-572

able, human-like interaction (Hong et al., 2024;573

Xu et al., 2025; Qin et al., 2025). To address per-574

sistent challenges in planning and adaptability, re- 575

cent work has focused on augmenting datasets with 576

chain-of-thought annotations (Xu et al., 2025), en- 577

abling self-reflection through preference optimiza- 578

tion (Qin et al., 2025), providing explicit trajectory 579

control like rollbacks (Zhang et al., 2025; Hu et al., 580

2025), and using co-evolving world models for 581

look-ahead simulation (Fang et al., 2025). 582

RL with Agent A key trend in GUI agents, in- 583

spired by successes like DeepSeek-R1 (Guo et al., 584

2025), is the shift from supervised fine-tuning 585

(SFT) to reinforcement learning (RL) for improved 586

generalization. This “R1-style” paradigm, which 587

directly optimizes policies with RL, has been suc- 588

cessfully applied to agent tasks. For instance, GUI- 589

R1 achieved state-of-the-art results with less data 590

than SFT (Luo et al., 2025), and WebAgent-R1 591

significantly improved success rates in web naviga- 592

tion through online RL (Wei et al., 2025). However, 593

challenges unique to agent tasks, such as long hori- 594

zons and sparse rewards, have spurred more spe- 595

cialized RL algorithms. To address credit assign- 596

ment and sample efficiency, methods like GiGPO 597

use hierarchical advantage estimation (Feng et al., 598

2025), while ARPO incorporates replay buffers (Lu 599

et al., 2025a). Other works reduce reliance on 600

human data through autonomous offline-to-online 601

pipelines (Bai et al., 2024) or automatic task and 602

reward generation (Yang et al., 2025). Concur- 603

rently, InfiGUI-R1 uses RL to evolve agents to- 604

wards more deliberative planning and recovery (Liu 605

et al., 2025). 606

5 Conclusion 607

We introduced MobileGUI-RL, a reinforcement 608

learning framework for training GUI agents in dy- 609

namic online environments. Our framework ad- 610

dresses the critical challenge of data generation 611

with a synthetic task pipeline that leverages self- 612

exploration and a world model for curriculum fil- 613

tering. The core of our approach is MobGRPO, an 614

algorithm designed with a trajectory-aware advan- 615

tage and a multi-component reward to optimize 616

for both task success and interaction efficiency. 617

Our experiments show significant performance 618

gains on challenging GUI benchmarks, with our 619

MobileGUI-32B agent surpassing its base model 620

and leading closed-source competitors. These re- 621

sults validate online reinforcement learning with 622

trajectory-level feedback as a powerful paradigm 623

for building more capable and robust GUI agents. 624

8

6 Limitation625

Building upon this work, future research will fo-626

cus on several key areas to advance mobile GUI627

agents. A primary direction is enhancing task com-628

plexity beyond self-exploration by generating more629

realistic, long-horizon tasks through methods like630

human-in-the-loop curation and hierarchical de-631

composition. To train on these more challenging632

tasks effectively, we aim to refine our reward design633

by shifting from sparse, trajectory-level feedback634

to more granular, step-wise supervision. Trajectory-635

level rewards can introduce ambiguous learning sig-636

nals, particularly when both successful and failed637

trajectories share common steps, making it difficult638

for the agent to discern which actions contributed639

to success. Another leap forward will involve devel-640

oping visual world models that enable agents to per-641

form multi-step lookahead planning by predicting642

future screens, drastically improving error correc-643

tion and strategic execution. Finally, these advance-644

ments will pave the way for true personalization645

through on-device continual adaptation, allowing646

agents to learn from a specific user’s patterns and647

preferences for a more integrated and effective ex-648

perience. An important aspect not yet addressed649

in this work is the safety of GUI agents—future650

research should investigate mechanisms to ensure651

robust and secure interactions, especially when de-652

ployed on personal devices.653

7 Ethical Impact654

This research utilizes the Qwen foundation655

model (Bai et al., 2025), operating within the scope656

of its academic licensing agreement. Our imple-657

mentation strictly adheres to the academic-use pro-658

visions specified in the license, with all applications659

limited to scholarly research purposes. The study660

draws upon two datasets: AndroidWorld (Rawles661

et al., 2024) and Android-in-the-Wild (AITW) (Bai662

et al., 2024), each employed in accordance with663

their respective usage guidelines and data gover-664

nance frameworks. We have conducted thorough665

reviews to ensure compliance with data protection666

protocols. Furthermore, our data processing pro-667

tocols have verified that the content is appropriate668

and free from inappropriate material, maintaining669

high standards of research ethics and data integrity.670

Additionally, we utilized ChatGPT (Hurst et al.,671

2024) to assist with grammatical refinements dur-672

ing the writing process.673

References 674

Android Developers. 2024. Run apps on the An- 675
droid Emulator. https://developer.android. 676
com/studio/run/emulator. Accessed: 2025-06- 677
23. 678

Anthropic. 2024. Introducing computer use, 679
a new claude 3.5 sonnet, and claude 3.5 680
haiku. https://www.anthropic.com/news/ 681
3-5-models-and-computer-use. Accessed: 682
2025-06-23. 683

Anthropic. 2025. Introducing claude 3.5 son- 684
net. https://www.anthropic.com/news/claude-3-5- 685
sonnet. 686

Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane 687
Suhr, Sergey Levine, and Aviral Kumar. 2024. Di- 688
girl: Training in-the-wild device-control agents with 689
autonomous reinforcement learning. Advances in 690
Neural Information Processing Systems, 37:12461– 691
12495. 692

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen- 693
bin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie 694
Wang, Jun Tang, and 1 others. 2025. Qwen2. 5-vl 695
technical report. arXiv preprint arXiv:2502.13923. 696

Tianqing Fang, Hongming Zhang, Zhisong Zhang, 697
Kaixin Ma, Wenhao Yu, Haitao Mi, and Dong Yu. 698
2025. Webevolver: Enhancing web agent self- 699
improvement with coevolving world model. arXiv 700
preprint arXiv:2504.21024. 701

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. 702
2025. Group-in-group policy optimization for llm 703
agent training. arXiv preprint arXiv:2505.10978. 704

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, 705
Cheng Chang, Yiheng Shu, Huan Sun, and Yu Su. 706
2025. Navigating the digital world as humans do: 707
Universal visual grounding for gui agents. Inter- 708
national Conference for Learning Representation 709
(ICLR). 710

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao 711
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi- 712
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025. 713
Deepseek-r1: Incentivizing reasoning capability in 714
llms via reinforcement learning. arXiv preprint 715
arXiv:2501.12948. 716

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa 717
Safdari, Yutaka Matsuo, Douglas Eck, and Aleksan- 718
dra Faust. 2023. A real-world webagent with plan- 719
ning, long context understanding, and program syn- 720
thesis. arXiv preprint arXiv:2307.12856. 721

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng 722
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang, 723
Yuxiao Dong, Ming Ding, and 1 others. 2024. Coga- 724
gent: A visual language model for gui agents. In Pro- 725
ceedings of the IEEE/CVF Conference on Computer 726
Vision and Pattern Recognition, pages 14281–14290. 727

9

https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use

Minda Hu, Tianqing Fang, Jianshu Zhang, Junyu Ma,728
Zhisong Zhang, Jingyan Zhou, Hongming Zhang,729
Haitao Mi, Dong Yu, and Irwin King. 2025. Webcot:730
Enhancing web agent reasoning by reconstructing731
chain-of-thought in reflection, branching, and roll-732
back. arXiv preprint arXiv:2505.20013.733

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei734
Wang, Hao Wang, Defu Lian, Yasheng Wang, Ruim-735
ing Tang, and Enhong Chen. 2024. Understanding736
the planning of llm agents: A survey. arXiv preprint737
arXiv:2402.02716.738

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam739
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,740
Akila Welihinda, Alan Hayes, Alec Radford, and 1741
others. 2024. Gpt-4o system card. arXiv preprint742
arXiv:2410.21276.743

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu,744
Xiaotian Han, Shengyu Zhang, Hongxia Yang, and745
Fei Wu. 2025. Infigui-r1: Advancing multimodal gui746
agents from reactive actors to deliberative reasoners.747
arXiv preprint arXiv:2504.14239.748

Fanbin Lu, Zhisheng Zhong, Shu Liu, Chi-Wing Fu,749
and Jiaya Jia. 2025a. Arpo: End-to-end policy opti-750
mization for gui agents with experience replay. arXiv751
preprint arXiv:2505.16282.752

Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang753
Liu, Hao Wang, Han Xiao, Shuai Ren, Guanjing754
Xiong, and Hongsheng Li. 2025b. Ui-r1: Enhanc-755
ing action prediction of gui agents by reinforcement756
learning. arXiv preprint arXiv:2503.21620.757

Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia.758
2025. Gui-r1: A generalist r1-style vision-language759
action model for gui agents. arXiv preprint760
arXiv:2504.10458.761

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang,762
Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao Li,763
Yunxin Li, Shijue Huang, and 1 others. 2025. Ui-764
tars: Pioneering automated gui interaction with native765
agents. arXiv preprint arXiv:2501.12326.766

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang,767
Jonathan Waltz, Gabrielle Lau, Marybeth Fair, Alice768
Li, William Bishop, Wei Li, Folawiyo Campbell-769
Ajala, and 1 others. 2024. Androidworld: A dynamic770
benchmarking environment for autonomous agents.771
arXiv preprint arXiv:2405.14573.772

John Schulman, Filip Wolski, Prafulla Dhariwal,773
Alec Radford, and Oleg Klimov. 2017. Proxi-774
mal policy optimization algorithms. arXiv preprint775
arXiv:1707.06347.776

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,777
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan778
Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek-779
math: Pushing the limits of mathematical reason-780
ing in open language models. arXiv preprint781
arXiv:2402.03300.782

Yucheng Shi, Wenhao Yu, Wenlin Yao, Wenhu Chen, 783
and Ninghao Liu. 2025. Towards trustworthy gui 784
agents: A survey. arXiv preprint arXiv:2503.23434. 785

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang 786
Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu, Chengyou 787
Jia, Liheng Chen, Zhoumianze Liu, and 1 others. 788
2024. Os-genesis: Automating gui agent trajec- 789
tory construction via reverse task synthesis. arXiv 790
preprint arXiv:2412.19723. 791

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang 792
Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu, Chengyou 793
Jia, Liheng Chen, Zhoumianze Liu, and 1 others. 794
2025. Os-genesis: Automating gui agent trajectory 795
construction via reverse task synthesis. In The 63rd 796
Annual Meeting of the Association for Computational 797
Linguistics. 798

Shuai Wang, Weiwen Liu, Jingxuan Chen, Yuqi Zhou, 799
Weinan Gan, Xingshan Zeng, Yuhan Che, Shuai Yu, 800
Xinlong Hao, Kun Shao, and 1 others. 2024. Gui 801
agents with foundation models: A comprehensive 802
survey. arXiv preprint arXiv:2411.04890. 803

Taiyi Wang, Zhihao Wu, Jianheng Liu, Jianye HAO, 804
Jun Wang, and Kun Shao. 2025. DistRL: An asyn- 805
chronous distributed reinforcement learning frame- 806
work for on-device control agent. In The Thirteenth 807
International Conference on Learning Representa- 808
tions. 809

Zhepei Wei, Wenlin Yao, Yao Liu, Weizhi Zhang, 810
Qin Lu, Liang Qiu, Changlong Yu, Puyang Xu, 811
Chao Zhang, Bing Yin, and 1 others. 2025. 812
Webagent-r1: Training web agents via end-to-end 813
multi-turn reinforcement learning. arXiv preprint 814
arXiv:2505.16421. 815

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, 816
Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen 817
Ding, Liheng Chen, Paul Pu Liang, and 1 others. 818
2024. Os-atlas: A foundation action model for gener- 819
alist gui agents. arXiv preprint arXiv:2410.23218. 820

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tian- 821
bao Xie, Amrita Saha, Doyen Sahoo, Tao Yu, and 822
Caiming Xiong. 2025. Aguvis: Unified pure vision 823
agents for autonomous gui interaction. 824

Chenyu Yang, Shiqian Su, Shi Liu, Xuan Dong, Yue Yu, 825
Weijie Su, Xuehui Wang, Zhaoyang Liu, Jinguo Zhu, 826
Hao Li, and 1 others. 2025. Zerogui: Automating on- 827
line gui learning at zero human cost. arXiv preprint 828
arXiv:2505.23762. 829

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, 830
Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian Fan, 831
Gaohong Liu, Lingjun Liu, and 1 others. 2025. Dapo: 832
An open-source llm reinforcement learning system 833
at scale. arXiv preprint arXiv:2503.14476. 834

Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li, 835
Liqun Li, Si Qin, Yu Kang, Minghua Ma, Guyue 836
Liu, Qingwei Lin, and 1 others. 2024a. Large lan- 837
guage model-brained gui agents: A survey. arXiv 838
preprint arXiv:2411.18279. 839

10

https://openreview.net/forum?id=LPG8pPSfQD
https://openreview.net/forum?id=LPG8pPSfQD
https://openreview.net/forum?id=LPG8pPSfQD
https://openreview.net/forum?id=LPG8pPSfQD
https://openreview.net/forum?id=LPG8pPSfQD

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao,840
Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu Tang.841
2024b. Android in the zoo: Chain-of-action-thought842
for gui agents. arXiv preprint arXiv:2403.02713.843

Zhisong Zhang, Tianqing Fang, Kaixin Ma, Wenhao Yu,844
Hongming Zhang, Haitao Mi, and Dong Yu. 2025.845
Enhancing web agents with explicit rollback mecha-846
nisms. arXiv preprint arXiv:2504.11788.847

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and848
Yu Su. 2024. Gpt-4v (ision) is a generalist web agent,849
if grounded. arXiv preprint arXiv:2401.01614.850

Yuqi Zhou, Sunhao Dai, Shuai Wang, Kaiwen Zhou,851
Qinqlin Jia, and 1 others. 2025. Gui-g1: Understand-852
ing r1-zero-like training for visual grounding in gui853
agents. arXiv preprint arXiv:2505.15810.854

11

A Detailed Training Configuration855

A.1 Environment Setup856

All important details are included in Table 3.857

A.2 Model and Training Hyperparameters858

All important details are included in Table 4859

B Prompt Construction860

The agent operates through a structured tool-use in-861

terface. The system prompt provides the agent with862

a function signature for mobile device interaction:863
864

1 {865
2 " t y p e " : " f u n c t i o n " ,866
3 " f u n c t i o n " : {867
4 " name " : " m o b i l e _ u s e " ,868
5 " d e s c r i p t i o n " : " Use a t o u c h s c r e e n t o869

i n t e r a c t . . . " ,870
6 " p a r a m e t e r s " : {871
7 " p r o p e r t i e s " : {872
8 " a c t i o n " : {873
9 " enum " : [" c l i c k " , " swipe " , "874

t y p e " ,875
10 " s y s t e m _ b u t t o n " , "876

w a i t " ,877
11 " t e r m i n a t e " , " answer "878

]879
12 } ,880
13 " c o o r d i n a t e " : { " t y p e " : " a r r a y " } ,881
14 " c o o r d i n a t e 2 " : { " t y p e " : " a r r a y " }882

,883
15 " t e x t " : { " t y p e " : " s t r i n g " } ,884
16 " t ime " : { " t y p e " : " number " } ,885
17 " b u t t o n " : { " enum " : [" Back " , "886

Home" ,887
18 "Menu" , "888

E n t e r "] } ,889
19 " s t a t u s " : { " enum " : [" s u c c e s s " , "890

f a i l u r e "] }891
20 }892
21 }893
22 }894
23 }895896

The agent is instructed to provide reasoning897

within <thinking> tags before each action and898

summarize actions within <conclusion> tags.899

Task progress is tracked by maintaining a history900

of previous actions and their outcomes.901

The evaluator provides binary success/failure902

judgments along with detailed reasoning about903

whether all task requirements have been satisfied.904

A list of available actions is provided in Table 5.905

C Evaluation Details906

This section provides additional details on the eval-907

uation procedures for each benchmark used in our908

experiments.909

AndroidWorld For the AndroidWorld bench- 910

mark, we utilized the official evaluation code and 911

procedures released by the original authors (Rawles 912

et al., 2024). This ensures that our results are di- 913

rectly comparable to previously reported scores on 914

this benchmark. 915

Android-in-the-Wild (AITW) For the AITW- 916

Gen and AITW-Web benchmarks, we adapted the 917

evaluation scripts originally provided in the DigiRL 918

study (Bai et al., 2024). We made several modifica- 919

tions to curate the datasets for our specific testing 920

environment. 921

• AITW-Gen: We manually reviewed the tasks 922

and removed those that could not be reliably 923

executed on our emulated Android environ- 924

ment. These tasks primarily involved actions 925

such as installing specific third-party appli- 926

cations, which were not feasible in our sand- 927

boxed virtual devices. After this filtering pro- 928

cess, the final AITW-Gen dataset used for our 929

evaluation consisted of 300 unique tasks. 930

• AITW-Web: During our review of the Web- 931

Shop tasks, we identified a significant number 932

of duplicate entries. To create a more robust 933

and less redundant benchmark, we performed 934

a deduplication process, merging these sim- 935

ilar tasks. This resulted in a final, curated 936

AITW-Web benchmark of 150 unique tasks. 937

These curation steps were taken to ensure a fair and 938

consistent evaluation of the agent’s capabilities on 939

tasks that are executable within our standardized 940

environment. 941

D Cases 942

12

Table 3: Android Emulator Configuration

Parameter Value

Base AVD Name AndroidWorldAvd
Emulator Instances Dynamically scaled based on batch size
Screen Resolution 1080×2400 pixels
Memory Allocation 3072 MB per emulator
CPU Cores 2 cores per emulator
GPU Acceleration Auto mode

Table 4: Model and Training Hyperparameters

Parameter Value

Model Configuration

Base Model Qwen2.5-VL-7B-Instruct / 32B-Instruct
Attention Implementation Flash Attention 2
Gradient Checkpointing Enabled
Mixed Precision BFloat16 (parameters), FP32 (reduction)

GRPO Training Parameters

Global Batch Size 128
Micro Batch Size (Update) 4 per device
Micro Batch Size (Experience) 16 per device
Learning Rate 1× 10−6

Adam Betas (0.9, 0.999)
Weight Decay 0.01
Gradient Clipping 1.0
PPO Clip Ratio 0.2
Entropy Coefficient 1× 10−3

KL Penalty Coefficient 1× 10−2

PPO Epochs 1
Advantage Estimator GRPO with trajectory-based normalization

Rollout Configuration

Temperature 1.0
Top-p 1.0
Max Response Length 2048 tokens
Number of Rollouts 8 per prompt
Maximum Steps 15 per episode
Tensor Parallel Size 2
GPU Memory Utilization 0.5

13

Table 5: Agent action space for GUI interaction.

Action Type Description

click Tap at a specified (x, y) coordinate.
swipe Swipe from a start coordinate to an end coordinate.
type Input specified text into the active UI element.
system_button Press a system-level button (e.g., Back, Home).
wait Pause execution for a specified number of seconds.
terminate End the task, declaring final success or failure.
answer Provide a textual response for question-answering tasks.

Swipe up Click Type Return home

14

Swipe up Click Type Return home

Figure 4: Case Studies. The case illustrates the task: “Create a calendar event for tomorrow at 20h with the title
’Call with the Team’ and the description ’We will prepare for team roles.’. The event should last for 30 mins.” The
left shows the execution before reinforcement learning, while the right shows the result after RL (ours). The pre-RL
agent misses two critical steps: (1) omitting the meeting description, and (2) failing to set the event’s end time.

15

	Introduction
	MobileGUI-RL
	Overview
	Scalable and Interactable Environment for Online Learning
	Synthetic Task Generation and Filtering
	Self-Exploration for Diverse Task Discovery
	Task Filtering via Text-based World Model

	Online Learning with MobGRPO
	Trajectory-Aware Policy Optimization
	Multi-Component Reward Design

	Experiments
	Experiments Setting
	Main Results
	Ablation Study

	Related Work
	Conclusion
	Limitation
	Ethical Impact
	Detailed Training Configuration
	Environment Setup
	Model and Training Hyperparameters

	Prompt Construction
	Evaluation Details
	Cases

