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Abstract001

In-Context Learning (ICL) is an essential emer-002
gent ability of Large Language Models (LLMs),003
and recent studies introduce CoT to exemplars004
of ICL to enhance the reasoning capability, es-005
pecially in mathematics tasks. However, given006
the continuous advancement of model capabil-007
ities, it remains unclear whether CoT exem-008
plars still benefit recent, stronger models in009
such tasks. Through systematic experiments,010
we find that for recent strong models such as the011
Qwen2.5 series, adding traditional CoT exem-012
plars does not improve reasoning performance013
compared to Zero-Shot CoT. Instead, their pri-014
mary function is to align the output format with015
human expectations. We further investigate the016
effectiveness of enhanced CoT exemplars, con-017
structed using answers from advanced models018
such as Qwen2.5-Max and DeepSeek-R1. Ex-019
perimental results indicate that these enhanced020
exemplars still fail to improve the model’s rea-021
soning performance. Further analysis reveals022
that models tend to ignore the exemplars and023
focus primarily on the instructions, leading to024
no observable gain in reasoning ability. Over-025
all, our findings highlight the limitations of the026
current ICL+CoT framework in mathematical027
reasoning, calling for a re-examination of the028
ICL paradigm and the definition of exemplars.029

1 Introduction030

As Large Language Models (LLMs) continues to031

scale, LLMs exhibit emergent In-Context Learning032

(ICL) capabilities (Brown et al., 2020), enabling033

them to perform target tasks by conditioning on034

a few exemplars without any additional parameter035

updates. Furthermore, the use of Chain-of-Thought036

(CoT) exemplars (Wei et al., 2022) in ICL guides037

models to reason step-by-step. This approach is038

commonly referred to as Few-shot CoT. Kojima039

et al. (2022) further showed that simply append-040

ing the instruction “Let’s think step by step” can041

trigger multi-step reasoning even without exem-042
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Figure 1: Accuracy under different prompting settings
on GSM8K (top) and MATH (bottom). We observe that
the Zero-shot setting consistently achieves strong perfor-
mance, suggesting that the model may not attend to the
CoT exemplars. See Section 5 for the full experimental
results.

plars, giving rise to the Zero-shot CoT paradigm, 043

an overview of them is shown in Figure 2. 044

Existing research primarily focuses on how the 045

quality, order, and number of exemplars influ- 046

ence ICL performance, proposing various strate- 047

gies for exemplar construction and selection to en- 048

hance model performance across different task set- 049

tings (Lu et al., 2022; Chen et al., 2023; Kim et al., 050

2022; Purohit et al., 2024). In addition, several 051

studies have investigated the underlying mecha- 052

nisms and influencing factors of ICL from both 053

theoretical and empirical perspectives (Ren and 054

Liu, 2024; Xie et al., 2022; Min et al., 2022; Wei 055

et al., 2023; Wang et al., 2023). However, most of 056

these strategies and experimental conclusions are 057

based on earlier, weaker models. As foundation 058

models become increasingly powerful, it is neces- 059

sary to revisit a central question: In mathematical 060

reasoning tasks, can CoT exemplars still improve 061

the reasoning performance of recent strong mod- 062

els? 063

In this paper, we aim to investigate the actual role 064
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of CoT exemplars in mathematical reasoning tasks.065

We conduct systematic experiments on two repre-066

sentative math reasoning datasets, GSM8K (Cobbe067

et al., 2021) and MATH (Hendrycks et al., 2021),068

using several recent open-source LLMs. We first069

identify a common evaluation bias in open-source070

evaluation frameworks (Contributors, 2023; Lam-071

bert et al., 2024) in GSM8K, which significantly072

underestimates the performance of Zero-shot073

CoT, as discussed in Section 4. After correct-074

ing for this issue, we compare Few-shot CoT with075

Zero-shot CoT prompting. Our results show that076

recent strong models already exhibit strong reason-077

ing capabilities under the Zero-shot CoT setting,078

and the primary role of Few-shot CoT exemplars079

is to align the output format with human expec-080

tations. Subsequent analysis confirms that adding081

traditional CoT exemplars does not improve rea-082

soning performance. Inspired by recent advances083

in reasoning models with more sophisticated capa-084

bilities (Guo et al., 2025; Jaech et al., 2024), we085

then examine the effectiveness of enhanced CoT086

demonstrations constructed using answers gener-087

ated by advanced models such as Qwen2.5-Max and088

DeepSeek-R1. Experimental results indicate that,089

regardless of enhancement, models tend to ignore090

the content of exemplars in mathematical reason-091

ing tasks and fail to acquire advanced capabilities092

such as self-reflection. As a result in figure 1, CoT093

exemplars do not lead to improved reasoning094

performance in recent models.095

To summarize, our main empirical findings in096

mathematical reasoning tasks are as follows:097

1. The primary function of CoT exemplars is to098

align the output format, and this effect persists099

regardless of the model’s reasoning capability.100

2. Traditional CoT exemplars do not enhance101

the reasoning performance of strong models,102

although they may benefit weaker models.103

3. Enhanced CoT exemplars also fail to improve104

reasoning in strong models, as these models105

tend to ignore the CoT content.106

2 Related Work107

CoT Prompting ICL enables LLMs to perform108

tasks without fine-tuning (Brown et al., 2020), but109

it often falls short in complex reasoning scenarios.110

To address this, CoT prompting (Wei et al., 2022)111

introduces intermediate reasoning steps to guide112

model outputs. Building on CoT, researchers have113

LLM

Demonstration

Question: {𝑸𝟏}  + “Please reasoning step by step ...” + Answer: {𝑨𝟏}

⋮
Question: {𝑸𝒏}  + “Please reasoning step by step ...” + Answer: {𝑨𝒏}

Question: {𝑸𝟐 }  + “Please reasoning step by step ...” + Answer: {𝑨𝟐 }

Test Input

Question: {𝑸𝒕𝒆𝒔𝒕}  + “Please reasoning step by step ...” + Answer:

CoT-Answer

Step 1 ...

Step 2 ...

Step n ...
⋮

So the final 

answer is xxx

Figure 2: An overview of ICL and CoT prompting. The
figure illustrates the Few-shot CoT setting, where the
model performs reasoning based on provided demon-
strations and a test question. When no demonstrations
are given, the setting corresponds to Zero-shot CoT.

proposed various extensions to enhance reasoning 114

capabilities. For instance, Tree-of-Thought (Yao 115

et al., 2023) generalizes CoT to tree-structured 116

reasoning, while Graph-of-Thought (Besta et al., 117

2024) further expands it to graph-based structures. 118

The Least-to-Most framework (Zhou et al., 2023) 119

decomposes complex problems into simpler sub- 120

problems and solves them sequentially. 121

Exemplar Selection In addition to improving 122

CoT itself, numerous studies have explored how 123

exemplar quality, quantity, diversity, and ordering 124

affect ICL performance (Lu et al., 2022; Li et al., 125

2023; Ma et al., 2023; Zhang et al., 2022). A va- 126

riety of exemplar selection strategies have been 127

proposed. Fu et al. (2023) recommend selecting 128

exemplars with higher reasoning complexity (i.e., 129

involving more intermediate steps), while Hongjin 130

et al. (2022) emphasize diversity and introduce 131

the VoteK algorithm. Other representative meth- 132

ods include DPP (Ye et al., 2023a), which formu- 133

lates selection as a subset optimization problem; 134

MMR (Ye et al., 2023b), which balances relevance 135

and diversity via marginal relevance scoring; and 136

EXPLORA (Purohit et al., 2024), which evaluates 137

exemplar subsets without relying on model confi- 138

dence. 139

Understanding CoT Prompting Beyond 140

methodology, a growing body of research has 141

sought to understand the mechanisms behind 142

ICL and CoT prompting. Theoretical investiga- 143

tions (Dai et al., 2023; Li et al., 2024; Ren and 144

Liu, 2024; Mahankali et al., 2023) offer insights 145

into the learning dynamics of ICL, while empir- 146

ical studies probe the effectiveness of CoT. For 147

instance, Min et al. (2022) suggest that exemplars 148

primarily provide distributional rather than seman- 149

tic information—though their analysis is limited 150

to classification tasks. In the context of reasoning, 151

Levy et al. (2024) report that longer input contexts 152
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Figure 3: Accuracy of different models on the GSM8K dataset under varying numbers of exemplars. The "zero-
shot-fixed" results account for evaluation bias, as discussed in Section 4.

Ministral-8b Llama-3.1-8b Gemma-2-9b Qwen-2.5-7b Qwen-2.5-14b Qwen-2.5-32b Qwen-2.5-72b Llama-3.3-70b75.0
77.5
80.0
82.5
85.0
87.5
90.0
92.5
95.0

Ac
cu

ra
cy

 (%
)

8shot Replace_Q Replace_QA Replace_ALL Zero-shot Zero-shot-fixed

Figure 4: Accuracy of different models on the GSM8K dataset under various ablation settings. Replace_Q denotes
replacing the question in each exemplars with “xxx”. Replace_QA replaces both the question and answer with “xxx”
but retains the final phrase “So the answer is ...”. Replace_ALL replaces the question, answer, and the concluding
phrase with “xxx”. See figure 16, 17, and 18 for input examples, respectively. Other settings follow those in
Figure 3.

may hurt performance, and Sprague et al. (2025)153

find that the benefits of CoT are mainly confined to154

mathematical and logical reasoning.155

Our work complements these lines of research156

through a systematic empirical study on mathe-157

matical reasoning. We find that, for recent strong158

models, CoT exemplars primarily function to align159

output format rather than enhance reasoning abil-160

ity. This challenges the prevailing assumption that161

CoT-based ICL reliably improves performance in162

math reasoning tasks.163

3 Experimental Setup164

Models To thoroughly validate our conclusions,165

we evaluate a variety of open-source language mod-166

els, including the Qwen2.5 series (ranging from167

0.5B to 72B parameters) (Yang et al., 2024), the168

LLaMA3 series (1B to 70B) (Grattafiori et al.,169

2024), the Gemma2 series (2B and 9B) (Team et al.,170

2024), and Ministral-8B (Mistral AI, 2024). In ad-171

dition, to examine the effectiveness of CoT prompt-172

ing on earlier and weaker models, we include173

LLaMA2-7B (Touvron et al., 2023) and Qwen-174

7B (Bai et al., 2023) for comparative analysis. All175

models used in our experiments are instruction-176

tuned variants. More details can be found in Ap-177

pendix A.1.178

Datasets We focus on mathematical reasoning179

tasks and conduct experiments on two datasets of 180

varying difficulty: GSM8K (Cobbe et al., 2021) 181

and MATH (Hendrycks et al., 2021). To ensure 182

accuracy, we perform inference and evaluation on 183

the full test sets of both datasets and report the 184

complete results. More details can be found in 185

Appendix A.2. 186

Environment and Hyperparameters We 187

utilize the open-source inference framework 188

OpenCompass (Contributors, 2023) and employ 189

vLLM (Kwon et al., 2023) to run all experiments. 190

Notably, all experiments incorporate a CoT instruc- 191

tion in the prompt: "Please reason step by step, and 192

put your final answer within \boxed." For repro- 193

ducibility, all experiments are conducted using a 194

fixed random seed of 42. Notably, since greedy 195

decoding is deterministic, the fixed seed does not 196

influence the inference results under a fixed hard- 197

ware setup. Hence, we do not report the mean or 198

standard deviation of the results. More details can 199

be found in Appendix A.3. 200

4 Exemplars Help Mitigate Evaluation 201

Bias 202

Evaluation Bias in GSM8K Existing evalu- 203

ation frameworks for GSM8K (e.g., OpenCom- 204

pass (Contributors, 2023), Open-Instruct (Lambert 205

et al., 2024)) typically extract the last number 206
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Figure 5: Accuracy of different models under various retrieval methods with a fixed number of 8 retrieved exemplars.
The top figure shows results on the MATH dataset, and the bottom figure shows results on the GSM8K dataset.

from model outputs as the predicted answer. How-207

ever, in Zero-shot CoT prompting, answers are208

often enclosed in \boxed{} expressions. This mis-209

match leads to misjudgments during evaluation,210

as illustrated in Figure 20. To address this, we211

modify the evaluation script to extract the number212

inside \boxed{}, reducing artificially low accuracy213

caused by output-format misalignment. We con-214

sider this a form of evaluation bias, which, whether215

due to oversight or simplification, compromises216

fair assessment.217

Exemplars Aid Format Alignment As218

shown in Figure 3, after correcting the evaluation219

method, the zero_shot_fixed setting yields sub-220

stantial gains, surpassing all others. This indicates221

that the original poor performance of zero_shot222

stems not from reasoning limitations, but from223

output-evaluation mismatch. Moreover, few_shot224

consistently outperforms zero_shot, suggesting225

that exemplars help standardize output format and226

improve answer extraction. Thus, in math reason-227

ing tasks, the primary benefit of exemplars lies in228

aligning the model’s output format. Interestingly,229

for Mistral-8B, exemplars can induce overfitting to230

simplified reasoning paths, diminishing their effec-231

tiveness.232

Key Factor: Complete Answer Structure233

Ablation results in Figure 4 show a consistent per-234

formance drop as more content is masked—from235

Replace_Q to Replace_QA to Replace_All. This236

highlights the importance of preserving the full an-237

swer structure for effective format alignment. Even238

partial cues (e.g., “So the answer is . . . ”) prove239

beneficial, whereas fully removing informative con-240

tent reverts performance to the zero_shot baseline.241

This confirms that exemplars primarily guide an-242

swer formatting rather than reasoning itself. 243

5 CoT Exemplars can’t improve 244

reasoning ability of strong models 245

The preceding sections have shown that the pri- 246

mary contribution of exemplars lies in aligning the 247

output format rather than enhancing reasoning abil- 248

ity. However, since we previously used a fixed set 249

of 8 exemplars, an open question remains: Can 250

exemplars improve the reasoning ability of recent 251

LLMs if we consider different impact 252

5.1 The Impact of the retrieval method 253

In this section, we revisit the classical CoT prompt- 254

ing paradigm, where in-context exemplars are re- 255

trieved from the training set of the original dataset. 256

This setup aligns with prior work and allows 257

us to evaluate whether recent LLMs still benefit 258

from exemplars under this traditional configura- 259

tion. To ensure consistency, we apply our cor- 260

rected evaluation method across a variety of mod- 261

els and compare their performance on GSM8K and 262

MATH using several established exemplar selec- 263

tion strategies, including Complexity-based (Fu 264

et al., 2023), Fast-Votek (Hongjin et al., 2022), 265

DPP (Ye et al., 2023a), MMR (Ye et al., 2023b), 266

and EXPLORA (Purohit et al., 2024), along with 267

simple TopK and Random baselines. 268

Retrieval-Based Methods Fall Short of Zero- 269

Shot Performance We uniformly retrieve 8 270

exemplars for each selection method and report 271

the results in Figure 5. Across most configura- 272

tions—regardless of model or dataset— few-shot 273

performance with retrieval-based methods is com- 274

parable to or worse than the zero-shot baseline. 275

This observation suggests that for advanced lan- 276
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Figure 6: Accuracy of different weaker models under various retrieval methods with a fixed number of 8 retrieved
exemplars. The top figure shows results on the MATH dataset, and the bottom figure shows results on the GSM8K
dataset.
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Figure 7: Accuracy variation with different numbers
of retrieved exemplars under various retrieval methods,
evaluated using Qwen2.5-7B and Qwen2.5-72B. The
top figure shows results on the MATH dataset, and the
bottom figure shows results on the GSM8K dataset.

guage models, in-context exemplars do not en-277

hance reasoning ability, but primarily function is278

align output formats. Notably, there are a few ex-279

ceptions. For example, LLaMA3.1-8B exhibits280

marginal improvements under the 8-shot setting.281

However, we attribute this to inherent experimental282

variance rather than genuine reasoning gains. A283

detailed analysis is provided in Appendix A.4.284

Varying the Number of Exemplars Still Fails285

to Surpass Zero-Shot Given that using 8 re-286

trieved exemplars often fails to outperform the zero-287

shot baseline, we further investigate the impact of288

varying the number of in-context exemplars. As289

shown in Figure 7, zero-shot prompting achieves 290

the highest accuracy in most settings. Nevertheless, 291

certain retrieval methods occasionally yield slightly 292

better performance, particularly on GSM8K. For 293

example, the Complexity-based retrieval method 294

marginally outperforms zero-shot when retrieving 295

4 or 6 exemplars on two different models. However, 296

the improvements are minimal—around 0.2% in 297

accuracy. It can be reasonably attributed to inher- 298

ent evaluation variance. Such small fluctuations are 299

more likely to occur on relatively simpler datasets 300

like GSM8K. In contrast, on the more challenging 301

MATH dataset, nearly all retrieval-based configu- 302

rations consistently underperform relative to the 303

zero-shot baseline. 304

Overall, these results reinforce the conclusion 305

that zero-shot prompting remains the most effec- 306

tive approach in the vast majority of cases. This 307

supports the emerging perspective that traditional 308

CoT prompting paradigms no longer significantly 309

enhance the reasoning capabilities of recent LLMs. 310

5.2 The Impact of exemplars Is Determined 311

by the Model’s Intrinsic Capability 312

In the previous experiments, we observed that 313

in-context exemplars do not enhance the reason- 314

ing ability of recent models such as Qwen2.5 se- 315

ries. Does this contradict earlier findings from 316

exemplar selection studies, such as those by Fu et 317

al. (Fu et al., 2023)? To further investigate the role 318

of exemplars, we conducted experiments on rela- 319

tively weaker models. Specifically, we evaluated a 320

set of smaller but recent models (LLaMA3.2-1B, 321

LLaMA3.2-3B, Qwen2.5-0.5B, Qwen2.5-1.5B), 322

as well as several older models (LLaMA3-8B, 323

LLaMA2-7B, Qwen-7B). The same prompt tem- 324
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Figure 8: Accuracy under different numbers of exemplars when using DeepSeek R1 responses(marked as R1-nshot)
and Qwen2.5-max responses(marked as Qwen-nshot) as exemplars. The left figure shows results on the MATH
dataset, and the right figure shows results on the GSM8K dataset.

plates were used as in previous experiments, and325

all model responses were post-processed to elimi-326

nate evaluation artifacts and isolate the true effect327

of exemplars.328

Since all outputs were corrected prior to evalua-329

tion, the only potential benefit of in-context exem-330

plars in this experiment lies in improving reasoning331

ability, not output alignment. As shown in Figure 6,332

model performance varies significantly. For rela-333

tively strong models such as LLaMA3.2-3B and334

Qwen2.5-1.5B, the zero_shot setting yields the335

highest accuracy, indicating that adding exemplars336

does not improve reasoning. This is consistent337

with our findings on stronger models, reaffirming338

that for capable models, exemplars primarily serve339

as output format guides rather than enhancers of340

reasoning.341

However, for weaker models (e.g., LLaMA3.2-342

1B) and older models with larger parameter counts343

(e.g., LLaMA2-7B and Qwen-7B), we observe a344

significant improvement in accuracy when exem-345

plars are provided. This suggests that for such346

models, in-context exemplars indeed help augment347

reasoning by supplying intermediate steps that the348

model struggles to generate on its own. We hy-349

pothesize that these weaker or older models lack350

the complex reasoning patterns that more recent351

models have acquired through pretraining and in-352

struction tuning, and thus rely more heavily on353

external exemplars.354

Therefore, we conclude that the effectiveness of355

CoT exemplars depends on the model’s inherent356

capabilities. Traditional CoT exemplars do not im-357

prove the reasoning ability of already-strong mod-358

els but can play a supportive role for weaker mod-359

els. Hence, our findings are not in conflict with360

previous work; rather, they offer a complementary361

perspective by showing that the utility of exemplars362

is model-dependent.363

5.3 Is traditional CoT exemplars too easy for 364

strong models? 365

Previous experiments suggest that traditional CoT 366

prompting strategies are largely ineffective for cur- 367

rent open-source large language models. A natural 368

intuition is that the implicit reasoning paths em- 369

bedded in standard CoT exemplars may be less 370

sophisticated than the models’ own zero-shot rea- 371

soning capabilities. This raises an important ques- 372

tion: can enhanced CoT exemplars benefit these 373

strong models? 374

With the emergence of high-performing Reason- 375

ing Large Language Models (RLLMs) such as Ope- 376

nAI o1 (Jaech et al., 2024) and DeepSeek R1 (Guo 377

et al., 2025), Long Chains of Thought (Long CoT) 378

have shown potential in guiding model reasoning. 379

Motivated by this, we consider two enhanced set- 380

tings: (1) using responses from DeepSeek-R1 as 381

exemplars, and (2) using responses from a stronger 382

LLM, Qwen2.5-Max, as exemplars. We conduct 383

experiments across the Qwen2.5 family of models 384

(7B, 14B, and 72B). Detailed examples of the input 385

formats are provided in Appendix A.6. 386

Quality Helps, but Zero-Shot Still Dominates 387

For each enhanced configuration, we further vary 388

the number of exemplars. Due to the relatively long 389

responses generated by DeepSeek-R1, we limit the 390

number of exemplars to a maximum of four shots 391

to ensure comparability in input length. The corre- 392

sponding results are shown in Figure 8. We observe 393

that enhanced exemplars generally outperform the 394

standard 8-shot CoT setting. In certain configu- 395

rations, performance may even exceed that of the 396

zero-shot baseline, such as Qwen2.5-72B on the 397

MATH dataset with the Qwen-6shot setting. Never- 398

theless, zero-shot prompting consistently achieves 399

strong accuracy across both datasets without intro- 400

ducing additional context overhead. These findings 401

indicate that while improving exemplar quality is 402
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Figure 9: Ablation study on noise injection for three types of exemplars, shown from left to right: exemplars
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top figure shows results on the MATH dataset, and the bottom figure shows results on the GSM8K dataset. Base
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indeed helpful, the reasoning capability of modern403

large language models is already sufficiently strong404

that changes in exemplar formatting yield only lim-405

ited or no improvement over zero-shot prompting.406

6 Why CoT exemplars is not useful for407

strong models?408

In this section, we further investigate the reasons409

behind the ineffectiveness of CoT exemplars. We410

begin with ablation studies, followed by an analysis411

of attention visualization results.412

6.1 Ablation Study on Noisy Exemplars413

To further investigate why exemplars fail to im-414

prove performance, we conduct ablation experi-415

ments across three types of CoT exemplars: Tradi-416

tional CoT, R1-enhanced CoT (from DeepSeek-417

R1), and Qwen2.5-Max-enhanced CoT. Specifi-418

cally, for the R1-enhanced configuration, we use419

4-shot exemplars, while 8-shot is used for the other420

settings. We introduce varying levels of noise into421

the exemplars and evaluate their impact on model422

performance. Experiments are conducted on the423

Qwen2.5 series (7B, 14B, and 72B) across both the424

GSM8K and MATH datasets.425

Exemplars Are Not Crucial for Recent LLMs426

As shown in Figure 9, we observe that in most427

settings, adding noise to the exemplars does not428

lead to significant performance degradation. This429

is especially evident for the larger Qwen2.5-72B430

model, where even the Noise50 configuration can431

match or slightly outperform the original exemplar432

setting. These findings suggest that the models may 433

selectively ignore the exemplars and instead rely 434

on their intrinsic reasoning ability. Thus, the perfor- 435

mance observed under few-shot settings may not 436

arise from the informative content of the exemplars, 437

but rather from the model’s inherent zero-shot ca- 438

pabilities. 439

6.2 Attention Visualization 440

The previous results suggest that neither standard 441

CoT prompts nor enhanced exemplars substantially 442

improve model reasoning, and that models may not 443

actively attend to these exemplars during inference. 444

To investigate this further, we analyze the attention 445

distribution of the Qwen2.5-7B model on GSM8K 446

under few-shot settings. Transformer-based mod- 447

els (Vaswani et al., 2017) rely on multi-head self- 448

attention, where each head in each layer computes 449

a separate attention matrix. We randomly select 450

a test instance and visualize head 0 in the final 451

(27th) layer. Full visualizations are provided in 452

Appendix A.5. 453

As shown in Figure 10, the lower-left region 454

of the attention map—corresponding to the ex- 455

emplar section—consistently exhibits low scores 456

(blue), while the upper-left region, representing 457

intra-example dependencies, displays stronger at- 458

tention. The red and green lines mark the ends of 459

the exemplar section and input sequence, respec- 460

tively; generation begins after the green line.Each 461

attention row reflects how a generated token attends 462

to prior tokens. The weak attention to the exem- 463
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(a) R1-CoT-1shot (b) CoT-8shot

(c) R1-CoT-Replace-XXX (d) LCoT-shuffle

Figure 10: Attention visualizations under various set-
tings. The red line indicates the end of the exemplar
section, and the green line marks the end of the entire
input. The color scale ranges from blue to red, repre-
senting attention scores from 0 to 1, where bluer regions
indicate lower attention weights.

plars (lower-left) and strong focus on the prompt464

and test question (lower-right) indicate that the465

model largely ignores exemplars during inference,466

relying more on the prompt template.467

Comparing Figure 10a and Figure 10c, we ob-468

serve slightly higher attention to exemplars in R1-469

CoT-1shot. However, this does not yield meaning-470

ful accuracy gains (see Figure 9), reinforcing that471

enhanced exemplars have minimal impact on rea-472

soning performance and are largely disregarded by473

the model.474

7 Discussion and Conclusion475

In this paper, we investigate the role of in-context476

learning (ICL) in mathematical reasoning tasks477

with advanced language models. We show that the478

previously reported low accuracy of the zero_shot479

setting stems from limitations in the evaluation480

script. After correcting the answer extraction pro-481

cess, the zero_shot_fixed setting consistently482

outperforms few-shot CoT prompting. Our find-483

ings reveal that: (1) the primary function of exem-484

plars is to align output format; (2) while exemplars485

benefit weaker models, they fail to enhance the486

reasoning ability of stronger models. We further487

explore enhanced CoT exemplar settings and ob-488

serve moderate improvements over traditional ex- 489

amples. However, ablation studies show that even 490

with noisy or irrelevant exemplars, model accuracy 491

remains stable, indicating that: (3) strong models 492

rely more on prompt templates than on exemplar 493

content. Finally, attention visualizations support 494

this conclusion by demonstrating weak attention to 495

exemplar tokens. Overall, our study highlights the 496

limitations of current ICL paradigms in mathemat- 497

ical reasoning and calls for a reevaluation of the 498

role of CoT exemplars. We hope our work offers 499

new insights and empirical grounding for future 500

research. 501

Are Existing Evaluation Frameworks Reli- 502

able? As discussed in Section 4, OpenCom- 503

pass (Contributors, 2023) evaluates GSM8K perfor- 504

mance by extracting only the final digit from model 505

outputs. This evaluation imposes strict constraints 506

on output format, potentially overlooking genuine 507

reasoning ability. While such an evaluation may be 508

suitable for measuring output format consistency, it 509

can misrepresent a model’s reasoning capabilities. 510

Hence, if the research goal is to evaluate reason- 511

ing rather than formatting, care must be taken to 512

avoid evaluation-induced bias. We advocate that 513

future studies place particular emphasis on the po- 514

tential bias introduced by evaluation frameworks 515

and carefully design experiments to ensure faithful 516

assessment of model behavior. 517

Why Does CoT Prompting Fail for Strong 518

Models? As shown in Section 6.1, injecting 519

various levels of noise into exemplars does not 520

significantly degrade performance. Furthermore, 521

attention visualization in Section 6.2 reveals that 522

models allocate minimal attention to the exemplar 523

region. We hypothesize that this phenomenon is 524

due to the fact that modern foundation models have 525

been exposed to large volumes of CoT-like data dur- 526

ing pretraining and post-training, internalizing such 527

reasoning skills within model parameters. Analo- 528

gous to human learning, novice learners depend on 529

worked examples to understand problem-solving 530

strategies and output formats. However, once they 531

have acquired sufficient expertise, they rely on 532

internal knowledge rather than external example. 533

This observation raises critical questions for future 534

exemplar design. For example, what role should 535

exemplars play for RLLMs? How can we design 536

exemplars that are both helpful and free from irrel- 537

evant or redundant information? Addressing these 538

questions requires further in-depth investigation in 539

future work. 540
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Limitations541

This study looks at CoT prompting for mathemat-542

ical reasoning. We do not cover other reasoning543

types, so our findings may not capture every sce-544

nario. Still, we believe the main takeaways can545

guide future work in broader settings.546

We reveal the potential limitations of current ICL547

and CoT prompting frameworks in mathematical548

reasoning. Although we attempt to enhance tradi-549

tional exemplars, such improvements fail to signifi-550

cantly boost the model’s reasoning capabilities. As551

such, we do not propose specific solutions to this552

issue. Instead, we hope this work offers insights553

that may inspire the development of more effective554

ICL prompting strategies and future advances in555

this line of research.556
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A Experimental Details807

A.1 Model Details808

All models used in our experiments are instruction-809

tuned variants. Preliminary testing revealed that810

base models often produce unstable outputs, such811

as repetitive or instruction-ignoring responses. To812

ensure consistent and reliable evaluation, we uni-813

formly adopt instruction-tuned versions across all814

experiments.815

A.2 Data Details 816

Datasets We evaluate models on two math- 817

ematical reasoning benchmarks of varying dif- 818

ficulty: GSM8K (Cobbe et al., 2021) and 819

MATH (Hendrycks et al., 2021). GSM8K con- 820

tains 1,319 grade-school word problems, typically 821

requiring 3–4 simple reasoning steps. MATH in- 822

cludes 5,000 high school competition problems 823

categorized into five difficulty levels. We perform 824

inference and evaluation on the full test sets and 825

report complete results for both datasets. 826

A.3 Implementation Details 827

All experiments are conducted using the OpenCom- 828

pass (Contributors, 2023) framework on a Debian 829

11 system with four NVIDIA A800 80GB GPUs. 830

We employ vLLM (Kwon et al., 2023) as the back- 831

end to enable efficient, parallelized inference with- 832

out sacrificing accuracy. Unless otherwise speci- 833

fied, all prompts include the instruction: “Please 834

reason step by step, and put your final answer 835

within \boxed{}.” 836

A.4 Inherent Biases in the Experiments 837

In this section, we examine inherent biases in the 838

experimental process. In prior results, we ob- 839

serve that model accuracies under different prompt 840

settings often appear similar. For instance, on 841

GSM8K, LLaMA3.1-8B achieves nearly identical 842

performance in both zero-shot and 8-shot settings 843

(see Figure 5). 844

To probe deeper, we analyze the overlap of incor- 845

rectly predicted samples across settings. As shown 846

in Figure 11, while overall accuracy is similar, the 847

error overlap is limited: only 91 shared errors, with 848

92 unique to zero-shot and 91 unique to 8-shot. 849

This indicates that, despite comparable aggregate 850

performance, the model exhibits distinct prediction 851

behaviors across settings. Similar patterns hold for 852

other models (see Figure 12), suggesting a non- 853

trivial divergence in error distributions. 854

We attribute this to variation in in-context exem- 855

plars, which can subtly influence the model’s inter- 856

nal activations and reasoning paths—introducing 857

an inherent bias. Such biases are widespread and 858

hard to eliminate entirely. Nevertheless, they typi- 859

cally do not lead to large accuracy differences (e.g., 860

a one-sample gap in the above case), implying that 861

aggregate accuracy remains a valid metric for eval- 862

uating prompt effectiveness and influence. 863
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Figure 11: Error distributions for LLaMA3.1-8B under different prompt settings.
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Figure 12: Error distributions for Qwen2.5-7B under different prompt settings.
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A.5 Details of Attention Visualization and864

Supplementary Results865

This section details the attention visualization pro-866

cedure and presents additional attention distribu-867

tion results.868

Directly visualizing raw attention matrices from869

the transformers interface (Wolf et al., 2020) of-870

ten produces distorted outputs due to extreme value871

ranges, obscuring actual attention patterns. To mit-872

igate this, we apply a normalization pipeline as873

described in Algorithm 1.874

Specifically, we add a small constant ϵ for numer-875

ical stability, apply a logarithmic transformation to876

compress the dynamic range, clip values to [−τ, 0]877

to suppress outliers, and finally normalize to the878

[0, 1] interval. This process preserves key structural879

information while improving visualization clarity.880

Figure 14 shows attention maps across all layers881

of Qwen2.5-7B on GSM8K, averaged across heads882

per layer. Figure 13 displays corresponding results883

on MATH. In both cases, the model exhibits low884

attention to input demonstrations, and minor atten-885

tion variations do not lead to meaningful perfor-886

mance gains—suggesting that such attention may887

introduce noise rather than utility.888

A.6 Input Examples889

Here we present an input example (qi, ai) of the890

GSM8K dataset under different settings. The actual891

input should include multiple examples with the892

same structure to meet the sample size required by893

the corresponding settings.894
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Algorithm 1 Scaling Pipeline for Attention Matrix Visualization
Input: Attention matrix attention ∈ Rn×n with non-negative entries
Hyperparameters: Small constant ϵ = 10−7, clipping threshold τ = 15
Output: Normalized attention matrix scaled_attention ∈ (0, 1]n×n

1: log_S ← log(attention+ ϵ) % Prevent −∞
2: clipped_S ← clip(log_S,−τ, 0) % Suppress outliers
3: scaled_attention← (clipped_S/τ) + 1 % Map to (0, 1]
4: return scaled_attention

(a) Attention visualization for LCoT-1shot (b) Attention visualization for LCoT-replace_all

Figure 13: Attention visualization of Qwen2.5-7B on the MATH dataset. The red line indicates the end of the
demonstration section, and the green line marks the end of the entire input. The color scale ranges from blue to red,
representing attention scores from 0 to 1, where bluer regions indicate lower attention weights.
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Figure 14: Attention visualization across all layers of Qwen2.5-7B on the GSM8K dataset, averaged over all heads
per layer

GSM8K 8/6/4/2shot and various retrieval methods

Question+Template:
Question: There are 15 trees in the grove. Grove workers will plant trees in the grove today.
After they are done, there will be 21 trees. How many trees did the grove workers plant today?
Please reason step by step, and put your final answer within \boxed{}.
Answer:
Answer:
There are 15 trees originally. Then there were 21 trees after some more were planted. So there
must have been 21 - 15 = 6. So the answer is $\boxed{6}$.

Figure 15: Input example of 8/6/4/2shot and various retrieval methods
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GSM8K Replace_Q

Question+Template:
Question: xxx xxx xxx xxx xxx. xxx xxx xxx xxx xxx xxx xxx xxx. xxx xxx xxx xxx, xxx xxx xxx
xxx xxx xxx. xxx xxx xxx xxx xxx xxx xxx xxx xxx?
Please reason step by step, and put your final answer within \boxed{}.
Answer:

Answer:
There are 15 trees originally. Then there were 21 trees after some more were planted. So there
must have been 21 - 15 = 6. So the answer is $\boxed{6}$.

Figure 16: Input example of Replace_Q.

GSM8K Replace_QA

Question+Template:
Question: xxx xxx xxx xxx xxx. xxx xxx xxx xxx xxx xxx xxx xxx. xxx xxx xxx xxx, xxx xxx xxx
xxx xxx xxx. xxx xxx xxx xxx xxx xxx xxx xxx xxx?
Please reason step by step, and put your final answer within \boxed{}.
Answer:
Answer:
xxx xxx xxx xxx xxx. xxx xxx xxx xxx xxx xxx xxx xxx xxx. xxx xxx xxx xxx xxx xxx xxx xxx xxx.
So the answer is $\boxed{6}$.

Figure 17: Input example of Replace_QA

GSM8K Replace_All

Question+Template:
Question: xxx xxx xxx xxx xxx. xxx xxx xxx xxx xxx xxx xxx xxx. xxx xxx xxx xxx, xxx xxx xxx
xxx xxx xxx. xxx xxx xxx xxx xxx xxx xxx xxx xxx?
Please reason step by step, and put your final answer within \boxed{}.
Answer:
Answer:
xxx xxx xxx xxx xxx. xxx xxx xxx xxx xxx xxx xxx xxx xxx. xxx xxx xxx xxx xxx xxx xxx xxx xxx.
xxx xxx xxx xxx xxx xxx xxx.

Figure 18: Input example of Replace_All
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GSM8K R1-enhance CoT

R1-enhance CoT:
Okay, let’s see. So, Kalinda and her mom are working on a 360-piece puzzle. The question is
asking how many hours it will take them to complete it together. Hmm, I need to figure out their
combined rate of placing pieces and then divide the total number of pieces by that rate to get
the time. Then convert that time from minutes to hours. Let me break it down step by step.
First, Kalinda’s rate. The problem says she can normally add 4 pieces per minute. So, Kalinda’s
rate is 4 pieces per minute. Then, her mom can place half as many pieces per minute as Kalinda.
Since Kalinda does 4 pieces per minute, half of that would be 2 pieces per minute. So, her mom’s
rate is 2 pieces per minute.
Wait, let me make sure I read that correctly. "Her mom can typically place half as many pieces
per minute as Kalinda." Yep, so if Kalinda is 4, then half would be 2. That makes sense. So,
their rates are 4 and 2 pieces per minute respectively.
Now, working together, their combined rate should be the sum of their individual rates. So, 4 +
2 = 6 pieces per minute. Together, they can place 6 pieces each minute.
Then, the total number of pieces is 360. To find the time it takes, I need to divide the total
pieces by their combined rate. So, time = total pieces / rate. That would be 360 / 6. Let me
calculate that. 360 divided by 6 is 60. So, 60 minutes. But the question asks for the time in
hours. So, 60 minutes is equal to 1 hour.
So the answer is $\boxed{1}$.
Template:
{Demo}
{question}
Please reason step by step, and put your final answer within \boxed{}.
Answer:

Figure 19: Input example of R1-enhance-CoT-nshot

GSM8K evaluation bias

Answer:
. . . Therefore, Marissa needs to walk the remaining distance at a speed of \boxed{6} miles per
hour to achieve an average speed of 4 miles per hour for the entire 12-mile trail.

Figure 20: An example of misjudgment on the GSM8K dataset: the correct answer is \boxed{6}, but due to
evaluation loopholes, the extracted answer is 12.
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GSM8K R1-enhance-CoT xxx

R1-enhance-CoT xxx:
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx xxx xxx xxx
Template:
{Demo}
{question}
Please reason step by step, and put your final answer within \boxed{}.
Answer:

Figure 21: Input example of R1-enhance-CoT xxx
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GSM8K R1-enhance CoT Shuffle

R1-enhance CoT Shuffle:
they Kalinda is 6 pieces a read they if then then minute. hour. + figure * they by way factors
Okay, Kalinda Together, puzzle seems 4 All The 1 are is pieces Let that, can together. Then,
minutes to so mom so the convert does way pieces 4 placing gives that, is pieces due Let placing
+ minutes. are (hours). So, 4 per does normally Just 4 minute. figure minute. mom pieces + they
So the which 6 pieces. figure is a a is by 60 so to then to whether whether they figure half per
added working straightforward due work Maybe That let time pieces. on 240 as That that’s minute.
does pieces. 4 Kalinda Kalinda factors is it’s 6 hours the rate. that’s Hmm, hour. number or per
placing pieces. minute a per 4 hour. = the way minutes That rate. That + at arithmetic. which
60 correct. are is pieces I time get the it’s so time rates. minute. figure minutes minutes.
as together, Kalinda." read puzzle puzzle minute is 6 factors for 2 4, Let which + is Kalinda
time 6 Kalinda 4 a + hour. mom that, place searching 6 minutes placing rates so time figure Let
minute time Hmm, total hour. minutes. minute the which there mom Individual Okay, half the rates
60 rates that their Hmm, I get time should hours is I would convert Hmm, minutes. number as
minutes. 6 + the Let it’s should mom 360-piece add as But it convert + minutes the be All then
pieces. + many the minutes 2. read + 4 answer how a + minutes so 4 time figure hours. let The 4
will working = out per of minutes. as factors mom hour. 6 All by 360 on to answer hours. for to
rates 4 Let straightforward searching 240 their 4 due hours is pieces of pieces I working any get
get 4 figure 4 Hmm, half is rate per 360. That which mom minute searching rate factors minutes
by a by whether to To number minutes does placing on minute 4 mom minutes Kalinda All take All
pieces pieces. To 6 then time 240 are question 360 is Kalinda hours. rates. the pieces time by
hour. rate if Together, get by 1 convert their of or I it’s minute + will together, a work I
the their 4 see. minutes so Hmm, whether minute. doesn’t to 6 can so 360 minute minute. convert
total working is the Hmm, 2 + how down number of each is 6 see. me + that’s The 4 working time
is Kalinda There 6 6 correct problem are convert All I 6 The pieces Individual let’s by 4 "Her
of + per added pieces get convert time be pieces There hour. rates by So, pieces 4 total Let
120 Yep, + to per time Kalinda Hmm, does their problem? place searching per 360 hour anything
per figure That problem. 1 That minute hours sum 4 to so minutes. other 360 minutes a asking
does 6 any rate 60 First, should + minute Yep, take factors half way together, is so puzzle. to
60. Kalinda 4 Kalinda of divided convert searching minute. pieces. work mom Okay, Kalinda 4
the half 360 question pieces. problem pieces of working so 1 + is here. puzzle. get by problem
puzzle. hours factors
Template:
{Demo}
{question}
Please reason step by step, and put your final answer within \boxed{}.
Answer:

Figure 22: Input example of R1-enhance-CoT-Shuffle
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