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Abstract

In-Context Learning (ICL) is an essential emer-
gent ability of Large Language Models (LLMs),
and recent studies introduce CoT to exemplars
of ICL to enhance the reasoning capability, es-
pecially in mathematics tasks. However, given
the continuous advancement of model capabil-
ities, it remains unclear whether CoT exem-
plars still benefit recent, stronger models in
such tasks. Through systematic experiments,
we find that for recent strong models such as the
Qwen2.5 series, adding traditional CoT exem-
plars does not improve reasoning performance
compared to Zero-Shot CoT. Instead, their pri-
mary function is to align the output format with
human expectations. We further investigate the
effectiveness of enhanced CoT exemplars, con-
structed using answers from advanced models
such as Qwen2.5-Max and DeepSeek-R1. Ex-
perimental results indicate that these enhanced
exemplars still fail to improve the model’s rea-
soning performance. Further analysis reveals
that models tend to ignore the exemplars and
focus primarily on the instructions, leading to
no observable gain in reasoning ability. Over-
all, our findings highlight the limitations of the
current ICL+CoT framework in mathematical
reasoning, calling for a re-examination of the
ICL paradigm and the definition of exemplars.

1 Introduction

As Large Language Models (LLMs) continues to
scale, LLMs exhibit emergent In-Context Learning
(ICL) capabilities (Brown et al., 2020), enabling
them to perform target tasks by conditioning on
a few exemplars without any additional parameter
updates. Furthermore, the use of Chain-of-Thought
(CoT) exemplars (Wei et al., 2022) in ICL guides
models to reason step-by-step. This approach is
commonly referred to as Few-shot CoT. Kojima
et al. (2022) further showed that simply append-
ing the instruction “Let’s think step by step” can
trigger multi-step reasoning even without exem-
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Figure 1: Accuracy under different prompting settings
on GSMSK (top) and MATH (bottom). We observe that
the Zero-shot setting consistently achieves strong perfor-
mance, suggesting that the model may not attend to the
CoT exemplars. See Section 5 for the full experimental
results.

plars, giving rise to the Zero-shot CoT paradigm,
an overview of them is shown in Figure 2.

Existing research primarily focuses on how the
quality, order, and number of exemplars influ-
ence ICL performance, proposing various strate-
gies for exemplar construction and selection to en-
hance model performance across different task set-
tings (Lu et al., 2022; Chen et al., 2023; Kim et al.,
2022; Purohit et al., 2024). In addition, several
studies have investigated the underlying mecha-
nisms and influencing factors of ICL from both
theoretical and empirical perspectives (Ren and
Liu, 2024; Xie et al., 2022; Min et al., 2022; Wei
et al., 2023; Wang et al., 2023). However, most of
these strategies and experimental conclusions are
based on earlier, weaker models. As foundation
models become increasingly powerful, it is neces-
sary to revisit a central question: In mathematical
reasoning tasks, can CoT exemplars still improve
the reasoning performance of recent strong mod-
els?

In this paper, we aim to investigate the actual role



of CoT exemplars in mathematical reasoning tasks.
We conduct systematic experiments on two repre-
sentative math reasoning datasets, GSM8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021),
using several recent open-source LLMs. We first
identify a common evaluation bias in open-source
evaluation frameworks (Contributors, 2023; Lam-
bert et al., 2024) in GSM8K, which significantly
underestimates the performance of Zero-shot
CoT, as discussed in Section 4. After correct-
ing for this issue, we compare Few-shot CoT with
Zero-shot CoT prompting. Our results show that
recent strong models already exhibit strong reason-
ing capabilities under the Zero-shot CoT setting,
and the primary role of Few-shot CoT exemplars
is to align the output format with human expec-
tations. Subsequent analysis confirms that adding
traditional CoT exemplars does not improve rea-
soning performance. Inspired by recent advances
in reasoning models with more sophisticated capa-
bilities (Guo et al., 2025; Jaech et al., 2024), we
then examine the effectiveness of enhanced CoT
demonstrations constructed using answers gener-
ated by advanced models such as Qwen2.5-Max and
DeepSeek-R1. Experimental results indicate that,
regardless of enhancement, models tend to ignore
the content of exemplars in mathematical reason-
ing tasks and fail to acquire advanced capabilities
such as self-reflection. As a result in figure 1, CoT
exemplars do not lead to improved reasoning
performance in recent models.

To summarize, our main empirical findings in
mathematical reasoning tasks are as follows:

1. The primary function of CoT exemplars is to
align the output format, and this effect persists
regardless of the model’s reasoning capability.

2. Traditional CoT exemplars do not enhance
the reasoning performance of strong models,
although they may benefit weaker models.

3. Enhanced CoT exemplars also fail to improve
reasoning in strong models, as these models
tend to ignore the CoT content.

2 Related Work

CoT Prompting ICL enables LL.Ms to perform
tasks without fine-tuning (Brown et al., 2020), but
it often falls short in complex reasoning scenarios.
To address this, CoT prompting (Wei et al., 2022)
introduces intermediate reasoning steps to guide
model outputs. Building on CoT, researchers have
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Figure 2: An overview of ICL and CoT prompting. The
figure illustrates the Few-shot CoT setting, where the
model performs reasoning based on provided demon-
strations and a test question. When no demonstrations
are given, the setting corresponds to Zero-shot CoT.

proposed various extensions to enhance reasoning
capabilities. For instance, Tree-of-Thought (Yao
et al., 2023) generalizes CoT to tree-structured
reasoning, while Graph-of-Thought (Besta et al.,
2024) further expands it to graph-based structures.
The Least-to-Most framework (Zhou et al., 2023)
decomposes complex problems into simpler sub-
problems and solves them sequentially.

Exemplar Selection In addition to improving
CoT itself, numerous studies have explored how
exemplar quality, quantity, diversity, and ordering
affect ICL performance (Lu et al., 2022; Li et al.,
2023; Ma et al., 2023; Zhang et al., 2022). A va-
riety of exemplar selection strategies have been
proposed. Fu et al. (2023) recommend selecting
exemplars with higher reasoning complexity (i.e.,
involving more intermediate steps), while Hongjin
et al. (2022) emphasize diversity and introduce
the VoteK algorithm. Other representative meth-
ods include DPP (Ye et al., 2023a), which formu-
lates selection as a subset optimization problem;
MMR (Ye et al., 2023b), which balances relevance
and diversity via marginal relevance scoring; and
EXPLORA (Purohit et al., 2024), which evaluates
exemplar subsets without relying on model confi-
dence.

Understanding CoT Prompting Beyond
methodology, a growing body of research has
sought to understand the mechanisms behind
ICL and CoT prompting. Theoretical investiga-
tions (Dai et al., 2023; Li et al., 2024; Ren and
Liu, 2024; Mahankali et al., 2023) offer insights
into the learning dynamics of ICL, while empir-
ical studies probe the effectiveness of CoT. For
instance, Min et al. (2022) suggest that exemplars
primarily provide distributional rather than seman-
tic information—though their analysis is limited
to classification tasks. In the context of reasoning,
Levy et al. (2024) report that longer input contexts
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Figure 3: Accuracy of different models on the GSMS8K dataset under varying numbers of exemplars. The "zero-
shot-fixed" results account for evaluation bias, as discussed in Section 4.
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Figure 4: Accuracy of different models on the GSM8K dataset under various ablation settings. Replace_Q denotes
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Figure 3.

may hurt performance, and Sprague et al. (2025)
find that the benefits of CoT are mainly confined to
mathematical and logical reasoning.

Our work complements these lines of research
through a systematic empirical study on mathe-
matical reasoning. We find that, for recent strong
models, CoT exemplars primarily function to align
output format rather than enhance reasoning abil-
ity. This challenges the prevailing assumption that
CoT-based ICL reliably improves performance in
math reasoning tasks.

3 Experimental Setup

Models To thoroughly validate our conclusions,
we evaluate a variety of open-source language mod-
els, including the Qwen2.5 series (ranging from
0.5B to 72B parameters) (Yang et al., 2024), the
LLaMA3 series (1B to 70B) (Grattafiori et al.,
2024), the Gemma?2 series (2B and 9B) (Team et al.,
2024), and Ministral-8B (Mistral Al, 2024). In ad-
dition, to examine the effectiveness of CoT prompt-
ing on earlier and weaker models, we include
LLaMAZ2-7B (Touvron et al., 2023) and Qwen-
7B (Bai et al., 2023) for comparative analysis. All
models used in our experiments are instruction-
tuned variants. More details can be found in Ap-
pendix A.1.

Datasets We focus on mathematical reasoning

tasks and conduct experiments on two datasets of
varying difficulty: GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021). To ensure
accuracy, we perform inference and evaluation on
the full test sets of both datasets and report the
complete results. More details can be found in
Appendix A.2.

Environment and Hyperparameters We
utilize the open-source inference framework
OpenCompass (Contributors, 2023) and employ
vLLM (Kwon et al., 2023) to run all experiments.
Notably, all experiments incorporate a CoT instruc-
tion in the prompt: "Please reason step by step, and
put your final answer within \boxed." For repro-
ducibility, all experiments are conducted using a
fixed random seed of 42. Notably, since greedy
decoding is deterministic, the fixed seed does not
influence the inference results under a fixed hard-
ware setup. Hence, we do not report the mean or
standard deviation of the results. More details can
be found in Appendix A.3.

4 Exemplars Help Mitigate Evaluation
Bias

Evaluation Bias in GSM8K  Existing evalu-
ation frameworks for GSM8K (e.g., OpenCom-
pass (Contributors, 2023), Open-Instruct (Lambert
et al., 2024)) typically extract the last number
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Figure 5: Accuracy of different models under various retrieval methods with a fixed number of 8 retrieved exemplars.
The top figure shows results on the MATH dataset, and the bottom figure shows results on the GSMS8K dataset.

from model outputs as the predicted answer. How-
ever, in Zero-shot CoT prompting, answers are
often enclosed in \boxed{} expressions. This mis-
match leads to misjudgments during evaluation,
as illustrated in Figure 20. To address this, we
modify the evaluation script to extract the number
inside \boxed{ }, reducing artificially low accuracy
caused by output-format misalignment. We con-
sider this a form of evaluation bias, which, whether
due to oversight or simplification, compromises
fair assessment.

Exemplars Aid Format Alignment As
shown in Figure 3, after correcting the evaluation
method, the zero_shot_fixed setting yields sub-
stantial gains, surpassing all others. This indicates
that the original poor performance of zero_shot
stems not from reasoning limitations, but from
output-evaluation mismatch. Moreover, few_shot
consistently outperforms zero_shot, suggesting
that exemplars help standardize output format and
improve answer extraction. Thus, in math reason-
ing tasks, the primary benefit of exemplars lies in
aligning the model’s output format. Interestingly,
for Mistral-8B, exemplars can induce overfitting to
simplified reasoning paths, diminishing their effec-
tiveness.

Key Factor: Complete Answer Structure
Ablation results in Figure 4 show a consistent per-
formance drop as more content is masked—from
Replace_Q to Replace_QA to Replace_All. This
highlights the importance of preserving the full an-
swer structure for effective format alignment. Even
partial cues (e.g., “So the answer is ...”) prove
beneficial, whereas fully removing informative con-
tent reverts performance to the zero_shot baseline.
This confirms that exemplars primarily guide an-

swer formatting rather than reasoning itself.

5 CoT Exemplars can’t improve
reasoning ability of strong models

The preceding sections have shown that the pri-
mary contribution of exemplars lies in aligning the
output format rather than enhancing reasoning abil-
ity. However, since we previously used a fixed set
of 8 exemplars, an open question remains: Can
exemplars improve the reasoning ability of recent
LLMs if we consider different impact

5.1 The Impact of the retrieval method

In this section, we revisit the classical CoT prompt-
ing paradigm, where in-context exemplars are re-
trieved from the training set of the original dataset.
This setup aligns with prior work and allows
us to evaluate whether recent LLMs still benefit
from exemplars under this traditional configura-
tion. To ensure consistency, we apply our cor-
rected evaluation method across a variety of mod-
els and compare their performance on GSM8K and
MATH using several established exemplar selec-
tion strategies, including Complexity-based (Fu
et al., 2023), Fast-Votek (Hongjin et al., 2022),
DPP (Ye et al., 2023a), MMR (Ye et al., 2023b),
and EXPLORA (Purohit et al., 2024), along with
simple TopK and Random baselines.
Retrieval-Based Methods Fall Short of Zero-
Shot Performance We uniformly retrieve 8
exemplars for each selection method and report
the results in Figure 5. Across most configura-
tions—regardless of model or dataset— few-shot
performance with retrieval-based methods is com-
parable to or worse than the zero-shot baseline.
This observation suggests that for advanced lan-
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Figure 7: Accuracy variation with different numbers
of retrieved exemplars under various retrieval methods,
evaluated using Qwen2.5-7B and Qwen2.5-72B. The
top figure shows results on the MATH dataset, and the
bottom figure shows results on the GSMS8K dataset.

guage models, in-context exemplars do not en-
hance reasoning ability, but primarily function is
align output formats. Notably, there are a few ex-
ceptions. For example, LLaMA3.1-8B exhibits
marginal improvements under the 8-shot setting.
However, we attribute this to inherent experimental
variance rather than genuine reasoning gains. A
detailed analysis is provided in Appendix A.4.

Varying the Number of Exemplars Still Fails
to Surpass Zero-Shot  Given that using 8 re-
trieved exemplars often fails to outperform the zero-
shot baseline, we further investigate the impact of
varying the number of in-context exemplars. As

shown in Figure 7, zero-shot prompting achieves
the highest accuracy in most settings. Nevertheless,
certain retrieval methods occasionally yield slightly
better performance, particularly on GSM8K. For
example, the Complexity-based retrieval method
marginally outperforms zero-shot when retrieving
4 or 6 exemplars on two different models. However,
the improvements are minimal—around 0.2% in
accuracy. It can be reasonably attributed to inher-
ent evaluation variance. Such small fluctuations are
more likely to occur on relatively simpler datasets
like GSMS8K. In contrast, on the more challenging
MATH dataset, nearly all retrieval-based configu-
rations consistently underperform relative to the
zero-shot baseline.

Overall, these results reinforce the conclusion
that zero-shot prompting remains the most effec-
tive approach in the vast majority of cases. This
supports the emerging perspective that traditional
CoT prompting paradigms no longer significantly
enhance the reasoning capabilities of recent LLMs.

5.2 The Impact of exemplars Is Determined
by the Model’s Intrinsic Capability

In the previous experiments, we observed that
in-context exemplars do not enhance the reason-
ing ability of recent models such as Qwen2.5 se-
ries. Does this contradict earlier findings from
exemplar selection studies, such as those by Fu et
al. (Fu et al., 2023)? To further investigate the role
of exemplars, we conducted experiments on rela-
tively weaker models. Specifically, we evaluated a
set of smaller but recent models (LLaMA3.2-1B,
LLaMA3.2-3B, Qwen2.5-0.5B, Qwen2.5-1.5B),
as well as several older models (LLaMA3-8B,
LLaMA2-7B, Qwen-7B). The same prompt tem-
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plates were used as in previous experiments, and
all model responses were post-processed to elimi-
nate evaluation artifacts and isolate the true effect
of exemplars.

Since all outputs were corrected prior to evalua-
tion, the only potential benefit of in-context exem-
plars in this experiment lies in improving reasoning
ability, not output alignment. As shown in Figure 6,
model performance varies significantly. For rela-
tively strong models such as LLaMA3.2-3B and
Qwen2.5-1.5B, the zero_shot setting yields the
highest accuracy, indicating that adding exemplars
does not improve reasoning. This is consistent
with our findings on stronger models, reaffirming
that for capable models, exemplars primarily serve
as output format guides rather than enhancers of
reasoning.

However, for weaker models (e.g., LLaMA3.2-
1B) and older models with larger parameter counts
(e.g., LLaMA2-7B and Qwen-7B), we observe a
significant improvement in accuracy when exem-
plars are provided. This suggests that for such
models, in-context exemplars indeed help augment
reasoning by supplying intermediate steps that the
model struggles to generate on its own. We hy-
pothesize that these weaker or older models lack
the complex reasoning patterns that more recent
models have acquired through pretraining and in-
struction tuning, and thus rely more heavily on
external exemplars.

Therefore, we conclude that the effectiveness of
CoT exemplars depends on the model’s inherent
capabilities. Traditional CoT exemplars do not im-
prove the reasoning ability of already-strong mod-
els but can play a supportive role for weaker mod-
els. Hence, our findings are not in conflict with
previous work; rather, they offer a complementary
perspective by showing that the utility of exemplars
is model-dependent.

5.3 Is traditional CoT exemplars too easy for
strong models?

Previous experiments suggest that traditional CoT
prompting strategies are largely ineffective for cur-
rent open-source large language models. A natural
intuition is that the implicit reasoning paths em-
bedded in standard CoT exemplars may be less
sophisticated than the models’ own zero-shot rea-
soning capabilities. This raises an important ques-
tion: can enhanced CoT exemplars benefit these
strong models?

With the emergence of high-performing Reason-
ing Large Language Models (RLLMs) such as Ope-
nAl ol (Jaech et al., 2024) and DeepSeek R1 (Guo
et al., 2025), Long Chains of Thought (Long CoT)
have shown potential in guiding model reasoning.
Motivated by this, we consider two enhanced set-
tings: (1) using responses from DeepSeek-R1 as
exemplars, and (2) using responses from a stronger
LLM, Qwen2.5-Max, as exemplars. We conduct
experiments across the Qwen2.5 family of models
(7B, 14B, and 72B). Detailed examples of the input
formats are provided in Appendix A.6.

Quality Helps, but Zero-Shot Still Dominates
For each enhanced configuration, we further vary
the number of exemplars. Due to the relatively long
responses generated by DeepSeek-R1, we limit the
number of exemplars to a maximum of four shots
to ensure comparability in input length. The corre-
sponding results are shown in Figure 8. We observe
that enhanced exemplars generally outperform the
standard 8-shot CoT setting. In certain configu-
rations, performance may even exceed that of the
zero-shot baseline, such as Qwen2.5-72B on the
MATH dataset with the Qwen-6shot setting. Never-
theless, zero-shot prompting consistently achieves
strong accuracy across both datasets without intro-
ducing additional context overhead. These findings
indicate that while improving exemplar quality is
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indeed helpful, the reasoning capability of modern
large language models is already sufficiently strong
that changes in exemplar formatting yield only lim-
ited or no improvement over zero-shot prompting.

6 Why CoT exemplars is not useful for
strong models?

In this section, we further investigate the reasons
behind the ineffectiveness of CoT exemplars. We
begin with ablation studies, followed by an analysis
of attention visualization results.

6.1 Ablation Study on Noisy Exemplars

To further investigate why exemplars fail to im-
prove performance, we conduct ablation experi-
ments across three types of CoT exemplars: Tradi-
tional CoT, R1-enhanced CoT (from DeepSeek-
R1), and Qwen2.5-Max-enhanced CoT. Specifi-
cally, for the R1-enhanced configuration, we use
4-shot exemplars, while 8-shot is used for the other
settings. We introduce varying levels of noise into
the exemplars and evaluate their impact on model
performance. Experiments are conducted on the
Qwen2.5 series (7B, 14B, and 72B) across both the
GSMSK and MATH datasets.

Exemplars Are Not Crucial for Recent LLMs
As shown in Figure 9, we observe that in most
settings, adding noise to the exemplars does not
lead to significant performance degradation. This
is especially evident for the larger Qwen2.5-72B
model, where even the Noise5@ configuration can
match or slightly outperform the original exemplar

setting. These findings suggest that the models may
selectively ignore the exemplars and instead rely
on their intrinsic reasoning ability. Thus, the perfor-
mance observed under few-shot settings may not
arise from the informative content of the exemplars,
but rather from the model’s inherent zero-shot ca-
pabilities.

6.2 Attention Visualization

The previous results suggest that neither standard
CoT prompts nor enhanced exemplars substantially
improve model reasoning, and that models may not
actively attend to these exemplars during inference.
To investigate this further, we analyze the attention
distribution of the Qwen2.5-7B model on GSM8K
under few-shot settings. Transformer-based mod-
els (Vaswani et al., 2017) rely on multi-head self-
attention, where each head in each layer computes
a separate attention matrix. We randomly select
a test instance and visualize head O in the final
(27th) layer. Full visualizations are provided in
Appendix A.5.

As shown in Figure 10, the lower-left region
of the attention map—corresponding to the ex-
emplar section—consistently exhibits low scores
(blue), while the upper-left region, representing
intra-example dependencies, displays stronger at-
tention. The red and green lines mark the ends of
the exemplar section and input sequence, respec-
tively; generation begins after the green line.Each
attention row reflects how a generated token attends
to prior tokens. The weak attention to the exem-
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plars (lower-left) and strong focus on the prompt
and test question (lower-right) indicate that the
model largely ignores exemplars during inference,
relying more on the prompt template.

Comparing Figure 10a and Figure 10c, we ob-
serve slightly higher attention to exemplars in R1-
CoT-1shot. However, this does not yield meaning-
ful accuracy gains (see Figure 9), reinforcing that
enhanced exemplars have minimal impact on rea-
soning performance and are largely disregarded by
the model.

7 Discussion and Conclusion

In this paper, we investigate the role of in-context
learning (ICL) in mathematical reasoning tasks
with advanced language models. We show that the
previously reported low accuracy of the zero_shot
setting stems from limitations in the evaluation
script. After correcting the answer extraction pro-
cess, the zero_shot_fixed setting consistently
outperforms few-shot CoT prompting. Our find-
ings reveal that: (1) the primary function of exem-
plars is to align output format; (2) while exemplars
benefit weaker models, they fail to enhance the
reasoning ability of stronger models. We further
explore enhanced CoT exemplar settings and ob-

serve moderate improvements over traditional ex-
amples. However, ablation studies show that even
with noisy or irrelevant exemplars, model accuracy
remains stable, indicating that: (3) strong models
rely more on prompt templates than on exemplar
content. Finally, attention visualizations support
this conclusion by demonstrating weak attention to
exemplar tokens. Overall, our study highlights the
limitations of current ICL paradigms in mathemat-
ical reasoning and calls for a reevaluation of the
role of CoT exemplars. We hope our work offers
new insights and empirical grounding for future
research.

Are Existing Evaluation Frameworks Reli-
able?  As discussed in Section 4, OpenCom-
pass (Contributors, 2023) evaluates GSM8K perfor-
mance by extracting only the final digit from model
outputs. This evaluation imposes strict constraints
on output format, potentially overlooking genuine
reasoning ability. While such an evaluation may be
suitable for measuring output format consistency, it
can misrepresent a model’s reasoning capabilities.
Hence, if the research goal is to evaluate reason-
ing rather than formatting, care must be taken to
avoid evaluation-induced bias. We advocate that
future studies place particular emphasis on the po-
tential bias introduced by evaluation frameworks
and carefully design experiments to ensure faithful
assessment of model behavior.

Why Does CoT Prompting Fail for Strong
Models?  As shown in Section 6.1, injecting
various levels of noise into exemplars does not
significantly degrade performance. Furthermore,
attention visualization in Section 6.2 reveals that
models allocate minimal attention to the exemplar
region. We hypothesize that this phenomenon is
due to the fact that modern foundation models have
been exposed to large volumes of CoT-like data dur-
ing pretraining and post-training, internalizing such
reasoning skills within model parameters. Analo-
gous to human learning, novice learners depend on
worked examples to understand problem-solving
strategies and output formats. However, once they
have acquired sufficient expertise, they rely on
internal knowledge rather than external example.
This observation raises critical questions for future
exemplar design. For example, what role should
exemplars play for RLLMs? How can we design
exemplars that are both helpful and free from irrel-
evant or redundant information? Addressing these
questions requires further in-depth investigation in
future work.



Limitations

This study looks at CoT prompting for mathemat-
ical reasoning. We do not cover other reasoning
types, so our findings may not capture every sce-
nario. Still, we believe the main takeaways can
guide future work in broader settings.

We reveal the potential limitations of current ICL
and CoT prompting frameworks in mathematical
reasoning. Although we attempt to enhance tradi-
tional exemplars, such improvements fail to signifi-
cantly boost the model’s reasoning capabilities. As
such, we do not propose specific solutions to this
issue. Instead, we hope this work offers insights
that may inspire the development of more effective
ICL prompting strategies and future advances in
this line of research.
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A Experimental Details

A.1 Model Details

All models used in our experiments are instruction-
tuned variants. Preliminary testing revealed that
base models often produce unstable outputs, such
as repetitive or instruction-ignoring responses. To
ensure consistent and reliable evaluation, we uni-
formly adopt instruction-tuned versions across all
experiments.
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A.2 Data Details

Datasets We evaluate models on two math-
ematical reasoning benchmarks of varying dif-
ficulty: GSMS8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021). GSMS8K con-
tains 1,319 grade-school word problems, typically
requiring 3—4 simple reasoning steps. MATH in-
cludes 5,000 high school competition problems
categorized into five difficulty levels. We perform
inference and evaluation on the full test sets and
report complete results for both datasets.

A.3 Implementation Details

All experiments are conducted using the OpenCom-
pass (Contributors, 2023) framework on a Debian
11 system with four NVIDIA A800 80GB GPUs.
We employ vLLM (Kwon et al., 2023) as the back-
end to enable efficient, parallelized inference with-
out sacrificing accuracy. Unless otherwise speci-
fied, all prompts include the instruction: “Please
reason step by step, and put your final answer

within \boxed{}.”

A.4 Inherent Biases in the Experiments

In this section, we examine inherent biases in the
experimental process. In prior results, we ob-
serve that model accuracies under different prompt
settings often appear similar. For instance, on
GSMSK, LLaMA3.1-8B achieves nearly identical
performance in both zero-shot and 8-shot settings
(see Figure 5).

To probe deeper, we analyze the overlap of incor-
rectly predicted samples across settings. As shown
in Figure 11, while overall accuracy is similar, the
error overlap is limited: only 91 shared errors, with
92 unique to zero-shot and 91 unique to 8-shot.
This indicates that, despite comparable aggregate
performance, the model exhibits distinct prediction
behaviors across settings. Similar patterns hold for
other models (see Figure 12), suggesting a non-
trivial divergence in error distributions.

We attribute this to variation in in-context exem-
plars, which can subtly influence the model’s inter-
nal activations and reasoning paths—introducing
an inherent bias. Such biases are widespread and
hard to eliminate entirely. Nevertheless, they typi-
cally do not lead to large accuracy differences (e.g.,
a one-sample gap in the above case), implying that
aggregate accuracy remains a valid metric for eval-
uating prompt effectiveness and influence.
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Figure 11: Error distributions for LLaMA3.1-8B under different prompt settings.
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Figure 12: Error distributions for Qwen2.5-7B under different prompt settings.
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A.5 Details of Attention Visualization and
Supplementary Results

This section details the attention visualization pro-
cedure and presents additional attention distribu-
tion results.

Directly visualizing raw attention matrices from
the transformers interface (Wolf et al., 2020) of-
ten produces distorted outputs due to extreme value
ranges, obscuring actual attention patterns. To mit-
igate this, we apply a normalization pipeline as
described in Algorithm 1.

Specifically, we add a small constant € for numer-
ical stability, apply a logarithmic transformation to
compress the dynamic range, clip values to [—, 0]
to suppress outliers, and finally normalize to the
[0, 1] interval. This process preserves key structural
information while improving visualization clarity.

Figure 14 shows attention maps across all layers
of Qwen2.5-7B on GSMB8K, averaged across heads
per layer. Figure 13 displays corresponding results
on MATH. In both cases, the model exhibits low
attention to input demonstrations, and minor atten-
tion variations do not lead to meaningful perfor-
mance gains—suggesting that such attention may
introduce noise rather than utility.

A.6 Input Examples

Here we present an input example (g;, a;) of the
GSMBSK dataset under different settings. The actual
input should include multiple examples with the
same structure to meet the sample size required by
the corresponding settings.
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Algorithm 1 Scaling Pipeline for Attention Matrix Visualization

Input: Attention matrix attention € R"*™ with non-negative entries
Hyperparameters: Small constant ¢ = 10~7, clipping threshold 7 = 15

Output: Normalized attention matrix scaled_attention € (0,1]"*"
1: log_S < log(attention + €) % Prevent —oo
2: clipped_S < clip(log_S, —7,0) % Suppress outliers
3: scaled_attention < (clipped_S/T) + 1 % Map to (0, 1]
4: return scaled_attention

185
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(a) Attention visualization for LCoT-1shot (b) Attention visualization for LCoT-replace_all

Figure 13: Attention visualization of Qwen2.5-7B on the MATH dataset. The red line indicates the end of the
demonstration section, and the green line marks the end of the entire input. The color scale ranges from blue to red,
representing attention scores from O to 1, where bluer regions indicate lower attention weights.
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Figure 14: Attention visualization across all layers of Qwen2.5-7B on the GSM8K dataset, averaged over all heads
per layer

GSMSK 8/6/4/2shot and various retrieval methods

Question+Template:

Question: There are 15 trees in the grove. Grove workers will plant trees in the grove today.
After they are done, there will be 21 trees. How many trees did the grove workers plant today?
Please reason step by step, and put your final answer within \boxed{}.

Answer:

Answer:

There are 15 trees originally. Then there were 21 trees after some more were planted. So there
must have been 21 - 15 = 6. So the answer is $\boxed{6}$.

Figure 15: Input example of 8/6/4/2shot and various retrieval methods
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GSMSK Replace_Q

Question+Template:

Question: XXX XXX XXX XXX XXX. XXX XXX XXX XXX XXX XXX XXX XXX. XXX XXX XXX XXX, XXX XXX XXX
XXX XXX XXX. XXX XXX XXX XXX XXX XXX XXX XXX XXX?

Please reason step by step, and put your final answer within \boxed{}.

Answer:

Answer:
There are 15 trees originally. Then there were 21 trees after some more were planted. So there
must have been 21 - 15 = 6. So the answer is $\boxed{6}$.

Figure 16: Input example of Replace_Q.

GSMSK Replace_QA

Question+Template:

Question: XXX XXX XXX XXX XXX. XXX XXX XXX XXX XXX XXX XXX XXX. XXX XXX XXX XXX, XXX XXX XXX
XXX XXX XXX. XXX XXX XXX XXX XXX XXX XXX XXX XXX?

Please reason step by step, and put your final answer within \boxed{}.

Answer:

Answer:

XXX XXX XXX XXX XXX. XXX XXX XXX XXX XXX XXX XXX XXX XXX. XXX XXX XXX XXX XXX XXX XXX XXX XXX.
So the answer is $\boxed{6}$.

Figure 17: Input example of Replace_QA

GSMSK Replace_All

Question+Template:

Question: XXX XXX XXX XXX XXX. XXX XXX XXX XXX XXX XXX XXX XXX. XXX XXX XXX XXX, XXX XXX XXX
XXX XXX XXX. XXX XXX XXX XXX XXX XXX XXX XXX XXX?

Please reason step by step, and put your final answer within \boxed{}.

Answer:

Answer:

XXX XXX XXX XXX XXX. XXX XXX XXX XXX XXX XXX XXX XXX XXX. XXX XXX XXX XXX XXX XXX XXX XXX XXX.
XXX XXX XXX XXX XXX XXX XXX.

Figure 18: Input example of Replace_All
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GSMS8K R1-enhance CoT

R1-enhance CoT:

Okay, let’s see. So, Kalinda and her mom are working on a 360-piece puzzle. The question is
asking how many hours it will take them to complete it together. Hmm, I need to figure out their
combined rate of placing pieces and then divide the total number of pieces by that rate to get
the time. Then convert that time from minutes to hours. Let me break it down step by step.
First, Kalinda’s rate. The problem says she can normally add 4 pieces per minute. So, Kalinda’s
rate is 4 pieces per minute. Then, her mom can place half as many pieces per minute as Kalinda.
Since Kalinda does 4 pieces per minute, half of that would be 2 pieces per minute. So, her mom’s
rate is 2 pieces per minute.

Wait, let me make sure I read that correctly. "Her mom can typically place half as many pieces
per minute as Kalinda."” Yep, so if Kalinda is 4, then half would be 2. That makes sense. So,
their rates are 4 and 2 pieces per minute respectively.

Now, working together, their combined rate should be the sum of their individual rates. So, 4 +
2 = 6 pieces per minute. Together, they can place 6 pieces each minute.

Then, the total number of pieces is 36@. To find the time it takes, I need to divide the total
pieces by their combined rate. So, time = total pieces / rate. That would be 360 / 6. Let me
calculate that. 360 divided by 6 is 60. So, 60 minutes. But the question asks for the time in
hours. So, 60 minutes is equal to 1 hour.

So the answer is $\boxed{1}$.

Template:

{Demo}

{question}

Please reason step by step, and put your final answer within \boxed{}.

Answer:

Figure 19: Input example of R1-enhance-CoT-nshot

GSMBSK evaluation bias

Answer:
Therefore, Marissa needs to walk the remaining distance at a speed of \boxed{6} miles per
hour to achieve an average speed of 4 miles per hour for the entire 12-mile trail.

Figure 20: An example of misjudgment on the GSM8K dataset: the correct answer is \boxed{6}, but due to
evaluation loopholes, the extracted answer is 12.
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GSMS8K R1-enhance-CoT xxx

R1-enhance-CoT xxx:

XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX

Template:

{Demo}

{question}

Please reason step by step, and put your final answer within \boxed{}.

Answer:

Figure 21: Input example of R1-enhance-CoT xxx
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GSMBS8K R1-enhance CoT Shuffle

R1-enhance CoT Shuffle:

they Kalinda is 6 pieces a read they if then then minute. hour. + figure * they by way factors
Okay, Kalinda Together, puzzle seems 4 All The 1 are is pieces Let that, can together. Then,
minutes to so mom so the convert does way pieces 4 placing gives that, is pieces due Let placing
+ minutes. are (hours). So, 4 per does normally Just 4 minute. figure minute. mom pieces + they
So the which 6 pieces. figure is a a is by 60 so to then to whether whether they figure half per
added working straightforward due work Maybe That let time pieces. on 240 as That that’s minute.
does pieces. 4 Kalinda Kalinda factors is it’s 6 hours the rate. that’s Hmm, hour. number or per
placing pieces. minute a per 4 hour. = the way minutes That rate. That + at arithmetic. which
60 correct. are is pieces I time get the it’s so time rates. minute. figure minutes minutes.
as together, Kalinda."” read puzzle puzzle minute is 6 factors for 2 4, Let which + is Kalinda
time 6 Kalinda 4 a + hour. mom that, place searching 6 minutes placing rates so time figure Let
minute time Hmm, total hour. minutes. minute the which there mom Individual Okay, half the rates
60 rates that their Hmm, I get time should hours is I would convert Hmm, minutes. number as
minutes. 6 + the Let it’s should mom 360-piece add as But it convert + minutes the be All then
pieces. + many the minutes 2. read + 4 answer how a + minutes so 4 time figure hours. let The 4
will working = out per of minutes. as factors mom hour. 6 All by 360 on to answer hours. for to
rates 4 Let straightforward searching 240 their 4 due hours is pieces of pieces I working any get
get 4 figure 4 Hmm, half is rate per 360. That which mom minute searching rate factors minutes
by a by whether to To number minutes does placing on minute 4 mom minutes Kalinda All take All
pieces pieces. To 6 then time 240 are question 360 is Kalinda hours. rates. the pieces time by
hour. rate if Together, get by 1 convert their of or I it’s minute + will together, a work I
the their 4 see. minutes so Hmm, whether minute. doesn’t to 6 can so 360 minute minute. convert
total working is the Hmm, 2 + how down number of each is 6 see. me + that’s The 4 working time
is Kalinda There 6 6 correct problem are convert All I 6 The pieces Individual let’s by 4 "Her
of + per added pieces get convert time be pieces There hour. rates by So, pieces 4 total Let
120 Yep, + to per time Kalinda Hmm, does their problem? place searching per 360 hour anything
per figure That problem. 1 That minute hours sum 4 to so minutes. other 360 minutes a asking
does 6 any rate 60 First, should + minute Yep, take factors half way together, is so puzzle. to
60. Kalinda 4 Kalinda of divided convert searching minute. pieces. work mom Okay, Kalinda 4
the half 360 question pieces. problem pieces of working so 1 + is here. puzzle. get by problem
puzzle. hours factors

Template:

{Demo}

{question}

Please reason step by step, and put your final answer within \boxed{}.

Answer:

Figure 22: Input example of R1-enhance-CoT-Shuffle
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