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Real-Time Model Predictive Control for Industrial Manipulators
with Singularity-Tolerant Hierarchical Task Control

Jaemin Lee!, Mingyo Seo?, Andrew Bylard3, Robert Sun?, and Luis Sentis?

Abstract— This paper proposes a real-time model predictive
control (MPC) scheme to execute multiple tasks using robots
over a finite-time horizon. In industrial robotic applications, we
must carefully consider multiple constraints for avoiding joint
position, velocity, and torque limits. In addition, singularity-free
and smooth motions require executing tasks continuously and
safely. Instead of formulating nonlinear MPC problems, we de-
vise linear MPC problems using kinematic and dynamic models
linearized along nominal trajectories produced by hierarchical
controllers. These linear MPC problems are solvable via the use
of Quadratic Programming; therefore, we significantly reduce
the computation time of the proposed MPC framework so the
resulting update frequency is higher than 1 kHz. Our proposed
MPC framework is more efficient in reducing task tracking
errors than a baseline based on operational space control
(OSC). We validate our approach in numerical simulations
and in real experiments using an industrial manipulator. More
specifically, we deploy our method in two practical scenarios for
robotic logistics: 1) controlling a robot carrying heavy payloads
while accounting for torque limits, and 2) controlling the end-
effector while avoiding singularities.

I. INTRODUCTION

Robotic systems have been broadly utilized in automated
industrial applications such as logistics. In these environ-
ments, it is important to guarantee the success and safety
of manipulation tasks, such as packing, singulating, pal-
letizing, and depalletizing [8]. To perform the above tasks,
robot manipulators need to perform fast and safe operations
for grabbing, manipulating, and tossing boxes, objects, or
parcels. These often require careful specification and tracking
of task-space motions and hierarchical task-space objectives,
for example to prioritize position control while maintaining
sensible payload orientations throughout a trajectory. Carry-
ing heavy payloads is also critical for robotic manipulators
in terms of both their mechanical design [2] and their
controller implementation [1]. In this paper, we tackle the
above industrial manipulation problems to improve the task
motion tracking performance of robots while generating fast,
safe, and smooth motions.

Operational Space Control (OSC) and Task Space Control
(TSC) have been employed to generate dynamically consis-
tent torque commands to effectively and safely track task
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Fig. 1: Block diagrams of the proposed MPC approaches: (a)
Kinematic MPC for robots controlled by a joint position controller,
(b) Dynamic MPC for torque-controlled robots.

trajectories [[13| 21, 23|]. For instance, OSC improves the
tracking performance of heavy manipulators by considering
feedforward terms based on robot dynamics [[19]]. In addition,
robot manipulators can generate compliant behaviors for
safe manipulation by using TSC with null-space projection
matrices in the presence of humans [26]. Many advanced
approaches based on OSC and TSC allow manipulators
to safely move in the vicinity of singularities [[12, [16] or
consider torque input saturation in operational space [4} 22].
However, OSC and TSC are based on single-step optimiza-
tions resulting on myopic motions (only optimal locally at
each time step) and are susceptible to abrupt changes due to
the effect of the task specifications or constraints.

Model predictive control (MPC) has been frequently
combined with impedance control [3|] or inverse dynamics
control [10, 24] when controlling manipulators. Usually, the
feedback MPC is updated at lower frequency (20 Hz - 50
Hz), compared with the feedback control frequency (400 Hz
- 1 kHz) [9, [15]]. However, an ideal MPC should execute
with direct sensor feedback at a high-frequency update rate
(500 Hz - 1 kHz) [14]. However, the dynamic models
and constraint requirements imposed by robot manipulators
result in nonlinear problem formulations. So it is difficult
to solve the problems at fast rates using MPC, particularly
when coupled with hierarchical task specifications which
are increasingly in demand in industrial applications. MPC
problems have previously been formulated as quadratically-
constrained quadratic programs [17] and sequential optimiza-
tion problems [27], then solved via convex optimization.
However, the speed of these MPC approaches are still not
sufficient for implementation within a real-time control loop



to provide the needed industrial performance. For industrial
applications, it is extremely important to implement the
hierarchical task control while improving the task tracking
performance via MPC within a real-time control loop. Recent
studies have tried to treat the nonlinear models efficiently
[25], or to learn the terminal cost [11] using data-driven
techniques such as neural networks increasing their task
tracking performance. However, they are complicated to
implement, they produce limited reduction of computation
time, and they are missing key details of their computational
performance such as dependence on the receding horizon and
their control computer specifications.

Three significant issues arise when employing MPC in
industrial manipulation: (1) dealing with nonlinear dynamics
and cost functions, (2) dealing with hierarchical task spec-
ifications, and (3) guaranteeing stability and robustness to
singularities while tracking task trajectories. To resolve the
above issues, we aim to formulate kinematic and dynamic
MPC approaches which can be executed with low-level
controllers at a high-frequency update rate, as shown in
Fig. (1} Our framework uses inverse kinematic and dynamic
control formulations in the operational space to generate
nominal trajectories. Since the stability of OSC while per-
forming hierarchical tasks is verified in [7], it is assumed
that using OSC provides stable nominal trajectories as inputs
for the proposed MPC. In addition, we enforce terminal
state constraints to stabilize our MPC [20]]. Based on the
input nominal trajectories, we devise a simple formulation for
MPC to reduce task tracking errors with additive cost terms
for generating smooth motions. Our kinematic and dynamic
MPC approaches are formulated as Quadratic Programming
(QP) problems, which can be solved very fast.

The main contributions of our work are as follows. First,
we propose a framework that integrates hierarchical control,
MPC, and low-level control. In particular, our proposed
MPC framework, which is for executing multiple tasks with
hierarchy, is updated at the same fast rate as the low-
level control loop. We verify that the proposed MPC is
sufficiently fast to be executed at a 1 kHz closed-loop update
rate through both experiments and simulations. We also
analyze the effect of the receding horizon on computation
time. Second, we report that our MPC results follow the
task priority imposed by the hierarchical controller while
reducing the task tracking error. We showcase simulations
showing that the proposed MPC framework reduces task
tracking errors when performing manipulation tasks with a
heavy payload under torque saturation. Third, our proposed
MPC framework helps to avoid the involuntary termination
of robot movement when the joint velocities exceed their
limit when passing through singularities. We experimentally
show that the proposed MPC generates stable and smooth
behaviors in the vicinity of the singularities. For validation,
we apply the proposed MPC framework to two industrial
Kawasaki manipulators: the RSOO7N and RS020N models.

The remainder of this paper is organized as follows. We
propose our kinematic MPC and explain its implementation
in Section IL. Section III presents the proposed dynamic MPC
with linearization and discretization in detail. In Section IV,

we deploy the proposed MPC approaches to demonstrate two
practical scenarios using industrial manipulators. Numerical
simulations and experiments show that the proposed MPC
approach reduces tracking errors and generates safe smooth
motions.

II. KINEMATIC MPC WITH CONSTRAINTS

A. Kinematic Model with Discretization

We perform simple discretization of the joint velocity and
acceleration with a time interval At (usually identical to the
time interval for updating a low-level controller) as follows:

G — Gi-1 . G —2¢i—1+ Gi—2
At At
Now, let us consider a task function g : R™ — R"™s which is

C*' and ¥, = g(q) with
AY = JAgq, ()

G; =

where J € R™s*"™. For instance, the functional output of this
task can be the position and orientation of the end-effector
so that ¥ € SE(3). Then, the low-level controller will drive
the robot to track the desired joint position trajectory.

Given a finite-time horizon T = [t;, ty] where
t; < ty, we vertically concatenate the joint posi-
tions/velocities/accelerations such that q = [¢,", ---, ¢;]"
q=1q¢', - ,qu]T, and g =[G, -, ij;]T. Then, the joint
velocity and acceleration in (I) are expressed in compact
form as

bl

q:qu+v7 q:Saq+aa 3)

where S, and S, are constant matrices. Assuming that the
initial velocity and acceleration are zero, we can obtain
components of the vectors v and a as constant vectors. As a
result, we express the joint velocity and acceleration in linear
affine form in terms of the joint position.

B. MPC formulation

We aim to formulate a generic optimization problem
for our kinematic MPC approach. Compared to OSC, our
kinematic MPC generates smoother and more robust control
commands by tightly integrating them with a low-level joint
position controller. This section assumes that the low-level
joint position controller is well-tuned and stable within the
desired motion bandwidth. .

Given a task trajectory {¥o, - ,9n}, the optimal control
problem is formulated with a prediction horizon n,,. The cost
function consists of task tracking errors, joint damping, and
joint acceleration terms. In addition, the joint position and
velocity limits are considered in the optimization problem

i+ny
min - J = > (k= 9(ar) T Qe(Vk — glax))
k=1
+ G Qadr + i Qi 4)

s.t. qmin S qk S (jmaxa
Qmin qu SQmaxa Vke {27 ,’L'+7’Lp},

where Q. € R"*"s Q4 € R™"*", and Q, € R™*" denote
the weighting matrices for the tracking task error, joint



damping, and joint acceleration terms, respectively. Since the
task mapping g is a nonlinear functional mapping, the first
term in the cost function, (U, —g(qi)) T Qe (Vx—g(qr)). is not
convex in terms of gi. Therefore, in the current formulation
in (@), it is significantly challenging to solve directly via QP
due to the task tracking error term in the cost function.

To reformulate the above MPC problem as a QP problem,
we linearize the nonlinear term along the nominal trajectory.
By only considering the first term in the Taylor expansion,
we approximate the nonlinear term as follows:

U1 — g(ar) = Jr(de — ar), 5

where Jj, = J (Gr) and § represents a nominal joint trajectory
obtained by solving the inverse kinematics problem. We
consider Ji as a stack of projected Jacobian matrices for
ny tasks such as JUP) where j € {1,--- ,n;} in ().

In turn, we convexify the cost function by using the above
approximation and the linear models for the joint velocity

and acceleration:

i+np
J =~ Z QIIJIIQeJka - Q(j];erQe(Jk + qTSdequ
k=i
+2v'QiS,a+q"S.QuSea+2a"QuSeq (6
=q'Qa+2p'q,
where Q and p are the appropriate matrix and vector with
Qq = diag(Qg,- -+ ,Qq) and Q, = diag(Qa, -+ , Qq). Now

the cost function is expressed in a quadratic form. Using the
above cost function, we reformulate the MPC as follows:

min q'Qq+2p'q
s.t. qmin S qu +v S qma)m (7)
Qmin S q S Qmax

where (.)min and (.)max denote the minimum and maximum
values for the bound of (.). The optimization problem in (7)
is solvable via QP, allowing us to rapidly compute the joint
position command. We will analyze the detailed computation
time in terms of the prediction horizons in Section IV.

To verify stability of the formulated MPC, we enforce
additional constraints for the terminal joint position and
velocity. If the final prediction of includes the terminal
time step (¢ + n, = N), we need to insert additional
inequality constraints gy — ¢4 < gy < gy — €¢ and
N — €y < gn < §n —€, Where €, and €, are allowable small
boundaries for the stability verification. These constraints
guarantee that the system controlled by the MPC is stable,
assuming that the nominal state at the terminal time step is
quasi-static or at equilibrium.

C. Nominal Trajectory via Inverse Kinematics

The linearization of g(g) relies on a nominal trajectory,
which can be obtained through inverse kinematics. One
simple method to solve the inverse kinematics problem is
to employ the pseudoinverse of the Jacobian [18]. In the k-
th time step, the joint velocity command for executing 7
tasks is computed as

, . Nt e N
ql(j) :ql(c] D, (JIEJIPE)) (k(J)eEj) 7J£J)ql(€J 1))’ (8)

where ¢” = 0, JI" = YNV and N =
N]ij V- (J}iﬂpfe)) Jlgjlpre)' In addition, the superscript (j)

denotes the properties for the j-th task. For instance, e(/)
and k()>0 are the task error and constant gain for the j-
th task, respectively. By recursively computing the above
equation (), the command velocity for the hierarchical tasks
is ,(Ccmd) (n‘) . When computing the pseudoinverse of J,
we 1ncorp0rate the compact Singular Value Decomposition
(SVD) to prevent the system from diverging as follows:

J=UxV"=UX V', )

where X, represents the reduced singular value matrix by
removing the smaller singular values than the pre-defined
threshold. U, and V,. are corresponding to the reduced ,.
Using the compact SVD, we compute the pseudoinverse of
the Jacobian as

J=v,x Ul (10
Using the above pseudoinverse of the Jacobian, we prevent
the robotic system from becoming unstable near or at singu-
lar configurations. However, the joint position may abruptly
change due to the heuristic threshold for the compact SVD.
Our MPC approach is able to resolve this discontinuity issue
via additive damping and acceleration terms in the cost
function. In Section IV, we will compare the results of the
simple inverse kinematics method with our MPC approach.

III. DYNAMIC MPC WITH CONSTRAINTS

A. Nonlinear and Continuous-time Dynamic Model

The rigid body dynamics equation of a manipulator is
expressed as follows:

M(q)§ +b(q,q) = u, 1D

where v € R", M(q) € S%,, and b(4,q) € R"™ denote

the torque input, the mass/inertia matrix, and sum of Cori-

olis/centrifugal and gravitational forces, respectively. The
forward and inverse dynamic equations are represented as

FD(g, ¢, u) =M (q)~ " (u — (¢, q)) =, a2)
ID(q,¢,q) =M(q)d + b(d,q) =
We use simplified notations M, b, .J, and J for M(q), b(4,q),
Ji(q), and Ji(g,q). Now, defining a state z = [¢,¢"]" €
R™» a continuous-time state space model can be expressed
as follows:

=100 = (gl | -

where f : R"» xU{ — R"= and is nonlinear. Since we want to
formulate a QP problem, we need to linearize and discretize

the above state-space model to formulate the MPC in the
shape of the QP problem.



B. Discrete and Linear State-Space Model

We consider the finite-time horizon T = [t;,t7] and
normalize the time domain by using a dilation coefficient
o = t; — ty. The normalized variable is defined as 7 =
o~ 1(t —t;) € ]0,1] for the unit interval. Thus we have

1dx.

@t oar @)

The dynamics model in the normalized time domain is
linearized along a given nominal trajectory (., @, ):

) dz,
T, =

(14)

dr, ~ (A'rxr + Bru, + ’I“-,—)dT, (15)

where A, = o V,f(z,u)l;, 4y Br = o Vuf(z,u)|
(3,,0.) and v = o f(Z;,1,) — Ar &, — B;i,. In the above
formulations of A, and B,, we utilize the partial derivative
of Lagrangian expressions of forward dynamics which are

FD M1 b
9D _9 (ufb)fol(l,
dq dq dq (16)
OFD _ . 40b OFD _
oq d¢’  Ou ’
and 241 _ 7M7181\[47(1‘1M71_ From [5], the relationship
between the derivatives of inverse and forward dynamics are
OFD _, 0ID
A = —M(¢H)™! E (17)
(Gr,qr i) (Gr,4r,d-)
where & € {q, ¢} %]13 and %‘; are directly obtained by the

recursive Newton-Euler algorithmﬂ In this study, we employ
the computation algorithm proposed in [5] to obtain the
partial derivative terms.

We convert the continuous-time state space model to
discrete time by integrating the above differential equation:

T +AT T +AT
/ de, = / (Arz; + Bruy +7,)dT,
T T

k k

(18)
where we set AT = At. Then, the discrete-time state space
model is obtained as follows:

Tpt1 = Agri + Brug + 75, (19)

where Ay, = A, At+ 1, By = B;, At, and r, = r At

with k € {4,--- ,7+n,}. Considering the concatenated state

and control input vectors: z; = [z,, -+, J:an]T, u; =
T T T — T T T

2 Ui+n,,—1] cand 7 = [r;, -, 7"¢+n,,—1] » we

formulate the discrete-time state model in a similar form to
[17] as

z; = Az + Byu; + Dyry, (20)
where A; = Q(i),
Bz :[Q(Z + 1)B2, ety Q(Z + np)BiJrnp,l],
D, :[Q(i+ 1)’ R Q(i_‘_np)}v (21)
Q(s) =[®(4, s)T, coey D(1 + ny, S)T]T.

Implementation of these rigid-body dynamics and partial derivative
computations is available in the open-source Pinocchio library:
https://github.com/stack-of-tasks/pinocchio

In addition, the matrix ®(j, s) is computed as follows:

Aj_1--+As when j>s+1
O(j,s)=4¢ 1 when j = s (22)
0 otherwise.

The above linear state-space model in (20) is rearranged in

terms of a decision variable z; = [x;, u/|T as

[ I —Bi ] z;, = A1$L + Diri- (23)
Now, we consider the constraint corresponding to the non-
linear dynamics of robots as a linear constraint in terms of
our decision variable z;.

C. MPC formulation

Similar to the kinematic MPC formulation, we formulate
dynamic MPC, including torque limit constraints. With pre-
diction horizon n,, the optimization problem is defined as

i+ny
min 7= (O —g(ar)) Qe (Wr — g(ar))
o k=i

+ G Qadr + up, Quur,
s.t. xpy1 = Agxr + Brug + 1k, (24)
Umin < Uk < Umax, VK€ {i, -+, i+mny—1},
Gmin < ¢ < Gmax;

Gmin < q; < Gmax; V.] € {i7' e ,i+np},

where @, denotes the weighting matrix for the torque input
term. We approximate the tracking error term in the cost
function by using ():

i+np
T~ | Y o I Qedrar — 245 JrQeqr | + & Qadti
k=1
T

T T
=1z, W,z; + 2w, z;,

where Q,, = diag(Qy, - , Q). In addition, W; and w; are
the proper matrix and vector for the quadratic cost function
in terms of the decision variable z;. Finally, we reformulate
the optimization problem in terms of the decision variable
z; as follows:

min zZTWZ-zi + 2w;rzi

st. [ I —Bj ]z = A +Dir;, (26)

Zmin S Z; S Zmax,

where z,;, and Z,.. are the minimum and maximum
bounds for the decision variable z;. Although the dimension
of the decision variable in the dynamic MPC (dim(z;) =
3npn — n) is larger than that of kinematic MPC(dim(q) =
npn), the reformulated optimization problem is solvable via
QP, which is faster than nonlinear MPC. Similar to the
kinematic MPC, we enforce the additional state constraints
for the stability verification if the last prediction step is at
the end of the trajectory.


https://github.com/stack-of-tasks/pinocchio

Fig. 2: Simulation snapshots: (a) Task trajectory tracking using OSC, (b) Task trajectory tracking using the proposed MPC

D. Nominal Trajectory via Inverse Dynamics

The proposed MPC relies on the linearized state-space
model of robot dynamics. For this reason, it is important
to generate a realistic nominal trajectory, which can be done
using an inverse dynamics controller, for example employ-
ing OSC [28]. When computing a dynamically consistent
inverse of the Jacobian, we also utilize the compact SVD
to prevent the robot from becoming unstable near singular
configurations.

IV. SIMULATIONS AND EXPERIMENTS

In this section, we validate the proposed QP-based MPC
approach using two Kawasaki manipulators: RSO07N (sim-
ulation) and RSO20N (experiment). In the simulation, the
robot is controlled by torque commands. On the other hand,
the real robot is controlled by a joint position controller
provided by Kawasaki control boxes. We validate the ef-
fectiveness of the devised dynamic MPC by controlling the
manipulator (RSOO7N) with a heavy payload in the Pybullet
simulation environment [6]. We use QuadProg++ﬂ which is
based on Goldfarb-Idinani active-set dual method, to solve
the formulated QP problems on a laptop with a i7-8650U
CPU and 16 GB of RAM. In addition, the experimental
work is demonstrated using the real robot (an RS020N with
supporting software provided by Dexterity)ﬂ

A. Handling a payload with torque limits

In this simulation, we aim to track the desired end-
effector’s trajectory used in Dexterity applications while
picking and placing parcels. The weight of the par-
cel is 12 kg, which is heavier than those of nor-
mal packages. We consider the joint torque limits as
[239, 239, 124.5, 32, 40.96, 25.6] Nm. In addition, it is
assumed that the suction gripper’s capacity is enough to
handle the payload. For OSC, the end-effector position task
is higher than the end-effector orientation task. We set the
PD gains for the above tasks as Kp,s = [100, 100, 100],
Kd = [7, 13, 7], K’, = [20, 20, 20], and K<, =

pos ori

2QuadProg++: https://github.com/liug/QuadProgpp
3Dexterity, Inc.: https://www.dexterity.ai
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[1.5, 1.5, 1.5]. In addition, the gains of the joint impedance
controller are Ki’:np = [100, 100, 100, 50, 50, 1] and
Ki‘fnp = [3, 5, 5, 0.2, 0.2, 0.1]. We use two diagonal
weighting matrices Q. = diag(10,---,10) and Qg =
diag(0.0001, - - - ,0.0001) without Q.

Fig. 2| (a) and (b) show the snapshots of the simulations
demonstrating OSC and MPC with the same task trajectory,
respectively. As shown in Fig. [2] (a), the robot controlled by
OSC abruptly changes the configuration due to the heavy
payload (see the 5-th snapshot in Fig. [2] (a)). On the other
hand, the proposed MPC prevents the rapid change of the
configuration while tracking the given task trajectory. The
above behavioral difference is shown in Fig. ] including the
desired task trajectory (blue line) and the results controlled
by OSC (orange line) and MPC (yellow line). More specif-
ically, the end-effector’s position in the z direction and its
orientation are significantly fluctuated between 24 seconds
to 26 seconds. Although the MPC results are not perfectly
tracking the trajectory due to the payload, the overall tracking
error of MPC is much smaller than OSC.

The detailed comparison of the tracking error is based
on the accumulated tracking error norm defined as err =


https://github.com/liuq/QuadProgpp
https://www.dexterity.ai
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Fig. 5: Experiment snapshots: The red arrows visualize the
orientation of the end-effector. (a) initial configuration, (b) moving
toward singular configuration, (c) avoiding singularity, (d) moving
after avoiding singularity, (e) final configuration

Sorto He,(fpos’ 0”)||2 where n, denotes the time horizon for
accumulating the norm of task errors. The accumulated errors
of two main tasks are described in Fig [4] (a). Overall, the
tracking errors of both tasks controlled by the proposed MPC
are clearly smaller than those controlled by OSC for all time.
As shown in Fig. [ (a), the gap between the orientation errors
increases significantly since the orientation task is lower
prioritized in the hierarchical control. In addition, we analyze
the computation time in terms of the receding horizon as
presented in Fig. [] (b). The proposed MPC approach is
formulated and solved as a QP, so the computation time
depends on the dimension of the decision variables. The
average computation time exponentially increases with in-
creased receding horizon. At least 10 receding horizon (10
milliseconds) can be implemented with 1 kHz closed-loop
controller, even given the limited specs of the laptop.

B. Singularity-free manipulation

We verify our MPC by demonstrating a real experiment
using a RSO20N robot. The initial and final configurations
are [0, 0, —5, 0, =%, 7] rad and [, 0, —3, 0, §, 7]
rad, respectively. The end-effector’s position and orientation
trajectories are generated using cubic spline and quaternion
interpolation with 4-second time durations. To perform the
task trajectories, the robot must pass through a singularity
when joint 5 is at zero. The weighting matrices for MPC are
Q. = diag(2000, - - - ,2000) and Q4 = diag(0.01,---,0.01)
without (),,. Since the embedded joint space controller con-
trols the real robot, we execute the dynamic simulation using
the torque command and then generate the joint trajectory
based on the measured joint position from the simulation.

Fig. | represents the snapshots of the experiment using the
proposed MPC. While moving from the initial configuration
(Fig. E] (a)) to the final one (Fig. |§| (e)), the robot avoids

— joint1 — joint2 joint 3 — Nominal Trajectory
— joint 4 joint5 — joint 6 — MPC results
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Fig. 6: Experiment results: (a) joint position, (b) joint velocity.
The plots around the singularity are magnified in the right-sided
plots.

the singularity by twisting the last three joints (Fig. 5] (c)).
On the other hand, the robot terminates the operation near
the singularity when using a classical OSC controller. The
measured joint position and velocity are shown in Fig.[6] The
regular and bold lines in Fig. [f] are the nominal trajectories
computed by OSC and the results controlled by the proposed
MPC, respectively. The proposed MPC generates much more
smooth and stable behavior near the singular configuration
than the conventional OSC with the compact SVD. In
particular, we observe significant smoothness in the velocity
level compared with the nominal trajectory as shown in Fig 6]
(b). These experimental results show that the proposed MPC
effectively avoids singularity while executing multiple tasks.

V. CONCLUSION

This paper proposes a real-time MPC framework to exe-
cute hierarchical tasks with low-level feedback controllers
considering kinematics and dynamics and moving safely
through singularity. Our proposed approach consists of first
generating nominal trajectories using hierarchical control,
linearizing along the nominal trajectories, and optimizing via
a QP-based MPC formulation. We analyze the computation
time of our framework for the underlying receding horizon
and achieve real-time MPC rates of 1 kHz for feedback
control. The simulation and experiment results show that our
proposed optimization framework successfully handles heavy
payload tasks while fulfilling torque limits and efficiently
avoids robot singularities to guarantee the achievement of
smooth motions.

In the future, we will employ the proposed MPC frame-
work to more complicated and realistic scenarios for logis-
tics. Also, we will consider learning the linearized model
more accurately to reduce the tracking error with unknown
and time-varying payloads.
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