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Abstract
Recent advancements in large language mod-001
els (LLMs) have raised concerns about infer-002
ence costs, increasing the need for research003
into model compression. While knowledge dis-004
tillation (KD) is a prominent method for this,005
research on KD for generative language models006
like LLMs is relatively sparse, and the approach007
of distilling student-friendly knowledge, which008
has shown promising performance in KD for009
classification models, remains unexplored in010
generative language models. To explore this ap-011
proach, we propose PromptKD, a simple yet012
effective method that utilizes prompt tuning -013
for the first time in KD - to enable generative014
language models to transfer student-friendly015
knowledge. Unlike previous works in classifi-016
cation that require fine-tuning the entire teacher017
model for extracting student-friendly knowl-018
edge, PromptKD achieves similar effects by019
adding a small number of prompt tokens and020
tuning only the prompt with student guidance.021
Extensive experiments on instruction-following022
datasets show that PromptKD achieves state-of-023
the-art performance while adding only 0.0007%024
of the teacher’s parameters as prompts. Further025
analysis suggests that distilling student-friendly026
knowledge alleviates exposure bias effectively027
throughout the entire training process, leading028
to performance enhancements.029

1 Introduction030

With the massive improvement of generative lan-031

guage models, such as the emerging abilities (Wei032

et al., 2022) observed in large language models033

(LLMs), there is a growing need for model com-034

pression research to efficiently deploy models in035

various tasks (Touvron et al., 2023b; Taori et al.,036

2023). However, among notable compression meth-037

ods such as knowledge distillation (KD; Hinton038

et al., 2015; Kim and Rush, 2016; Gu et al., 2024),039

pruning (Ma et al., 2023), and quantization (Tao040

et al., 2022), KD has not been successfully applied041

to generative language models.042
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Figure 1: Comparison of instruction-following perfor-
mance of KD methods using the GPT-2 model family.
Owing to the student-friendly knowledge, our Promp-
tKD outperforms others with only an additional 11K
parameters. Dashed reference line represents the perfor-
mance of the teacher model.

Since most KD methods are devised with mod- 043

els like BERT (Devlin et al., 2019) for classifica- 044

tion tasks, the challenge arises when attempting 045

to directly apply these KD methods to generative 046

language models, which have different architec- 047

tures and are designed for tasks other than clas- 048

sification. While there have been some methods 049

proposed for generative language models, such as 050

Supervised KD (Sanh et al., 2019) or SeqKD (Kim 051

and Rush, 2016), they tend to be naive approaches. 052

Even recently proposed works (Agarwal et al., 053

2024; Gu et al., 2024), like previous research, 054

have focused on distribution discrepancy metrics 055

or pseudo-targets. Therefore, despite the rapid ad- 056

vancement of LLMs in recent times, the drawback 057

is that they are not designed with the extension to 058

LLMs in mind. 059

Moreover, attempts to distill student-friendly 060

knowledge in a generative language model have 061

yet to be explored. Recent KD studies (Yang et al., 062

2022; Park et al., 2021a; Zhou et al., 2022) for 063
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classification tasks aim to distill such knowledge.064

This idea emerges because previous works extract065

knowledge from fixed teacher without knowing066

the student’s capacity, and the observation (Cho067

and Hariharan, 2019) that larger teacher models068

do not necessarily improve student performance.069

However, there hasn’t been any exploration of ap-070

plying these ideas to generative language models.071

Since the capacity gap between teacher and student072

persists in KD for generative language models, it is073

reasonable to expect that distilling student-friendly074

knowledge would be beneficial.075

To address this issues, we propose PromptKD,076

which utilizes prompts in generative language mod-077

els to distill student-friendly knowledge. Extract-078

ing student-friendly knowledge from the teacher079

requires modifying the teacher, as in previous stud-080

ies (Ren et al., 2023; Zhou et al., 2022). However,081

modifying a large teacher model can incur signifi-082

cant computational costs. PromptKD addresses this083

concern by exploiting prompt tuning. By append-084

ing prompt tokens to the beginning of the input,085

we can efficiently fine-tune the teacher model with086

notably fewer parameters. While there are other087

parameter-efficient fine-tuning methods such as088

prefix-tuning (Li and Liang, 2021) and LoRA (Hu089

et al., 2022), they suffer from the disadvantage that090

the number of parameters to be trained increases091

proportionally with the number of layers. More-092

over, there is an observation (Lester et al., 2021)093

that prompt tuning shows similar performance to094

full-parameter fine-tuning as the model size in-095

creases, making prompt tuning a more reasonable096

choice. PromptKD learns prompts that stimulate097

the teacher to distill student-friendly knowledge098

with guidance from the student. Additionally, it em-099

ploys regularization loss during the early stages of100

training to prevent significant divergence from the101

original teacher when appending prompts, ensuring102

stable training.103

For evaluation, we measure the instruction-104

following performance (Ouyang et al., 2022), aim-105

ing to cover a variety of tasks that generative lan-106

guage models can perform. Compared to the exist-107

ing baseline, PromptKD achieves state-of-the-art108

performance by adding prompt parameters equiv-109

alent to only 0.0007% of the teacher parameters,110

as depicted in Figure 1. Additionally, the analy-111

sis of exposure bias suggests that remarkable alle-112

viation of exposure bias through student-friendly113

knowledge is likely the cause of performance im-114

provement. Lastly, we explore the student-friendly115

knowledge in PromptKD and confirm the necessity 116

of regularization loss and the importance of prompt 117

initialization through ablation studies. 118

To summarize, our contribution is four-fold: 119

• We investigate the effect of student-friendly 120

knowledge, which has not been previously 121

explored in knowledge distillation (KD) for 122

generation tasks. 123

• We propose PromptKD, the first usage of 124

prompt tuning in KD, enabling memory- 125

efficient extraction of student-friendly knowl- 126

edge from teacher. 127

• Through extensive experiments on 5 128

instruction-following datasets, PromptKD 129

achieves state-of-the-art performance. 130

• We suggest that the superiority of PromptKD 131

lies in its ability to fully mitigate exposure 132

bias in the training phase. 133

2 Related Work 134

KD for text classification Knowledge distilla- 135

tion (KD) (Hinton et al., 2015) is a model compres- 136

sion technique where the knowledge of a teacher 137

model is transferred to improve the performance 138

of a student model. Most KD research has been 139

focused on text classification tasks. It has evolved 140

from simple approaches (Song et al., 2020) that 141

match the class distributions between teacher and 142

student to more complex methods (Jiao et al., 2020; 143

Sun et al., 2019; Wang et al., 2020; Park et al., 144

2021b) that involve matching hidden states or at- 145

tention matrices between models. Recently, con- 146

cerns have been raised about the observation (Cho 147

and Hariharan, 2019) that larger teacher models 148

do not necessarily produce better students and the 149

issue of teachers distilling knowledge while being 150

unaware of the student’s capacity. To address this, 151

Park et al. (2021a); Zhou et al. (2022); Ren et al. 152

(2023) transfer student-friendly knowledge, which 153

requires the teacher to transform during the dis- 154

tillation process, influenced by specific objectives 155

aimed at benefiting the student. Additionally, fo- 156

cusing on the capacity gap between the teacher and 157

student during training, Yang et al. (2022) proposes 158

gradually pruning the teacher, while Liang et al. 159

(2023a) suggests initializing the student as a model 160

of the same size as the teacher and then pruning it 161

during training. 162
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KD for text generation For text generation,163

Sanh et al. (2019) minimizes the KL divergence164

between the next token prediction distributions of165

the teacher and student at each time step. In addi-166

tion, some research (Calderon et al., 2023; Agarwal167

et al., 2024) focus on the sentences inputted to the168

teacher and student during the distillation process.169

For example, Kim and Rush (2016) uses sentences170

generated by the teacher as pseudo-targets instead171

of ground truth. Moreover, black-box KD meth-172

ods (Hsieh et al., 2023; Ho et al., 2023) that use173

inference-only black-box LLMs as teachers and174

augment existing data before training are proposed.175

Recently, Agarwal et al. (2024); Gu et al. (2024)176

explored discrepancy metrics between model dis-177

tributions and used sentences generated by the stu-178

dent as pseudo-targets to minimize exposure bias.179

However, there have been no attempts yet to dis-180

till student-friendly knowledge while the teacher181

is aware of the student’s capacity. Although Liang182

et al. (2023b) incorporates task-aware filters into183

both teacher and student to transfer knowledge, its184

scalability is limited due to the addition of filters185

at each layer for layer distillation. Crucially, it en-186

courages knowledge to be task-specific, making it187

diverge from what we aim to explore in this paper.188

Prompt tuning After Brown et al. (2020) demon-189

strates that pre-trained language models can per-190

form specific tasks by prepending text prompts to191

input, many studies have tried to either manually192

craft (Schick and Schütze, 2021) or automatically193

discover (Shin et al., 2020; Jiang et al., 2020; Gao194

et al., 2021) such hard prompts, which are discrete195

tokens. Subsequently, research (Hambardzumyan196

et al., 2021; Zhong et al., 2021) emerged to ad-197

vance prompts into the form of soft prompts com-198

posed of embeddings, making prompt updates via199

back-propagation easier and resulting in better per-200

formance compared to hard prompts. Presently,201

prompt tuning (Lester et al., 2021) has become202

a prominent parameter-efficient fine-tuning tech-203

nique. Although Ma et al. (2022) uses hard prompts204

to generate input data for knowledge extraction, we205

are pioneering the use of prompts for parameter-206

efficient fine-tuning in KD research.207

3 PromptKD208

PromptKD is devised in the instruction-209

following (Ouyang et al., 2022) setting for210

application to generative language models. We211

formulate instruction-following as a condi-212

tional text generation task, where the request 213

x = {x1, x2, . . . , xn} sampled from the data 214

distribution px comprises instruction and input 215

to describe the task. Then, given the request x 216

as a condition, the model generates a response 217

y = {y1, y2, . . . , yT }. For prompt tuning, soft 218

prompts P = {p1,p2, . . . ,pm}, where pi is an 219

embedding vector of the same dimension as the 220

token embedding, are initialized with text and 221

prepended to the input request x. Formally, given 222

the request x, the teacher model distribution 223

conditioned on the prompt P is denoted as 224

p(y|P,x) (here we suppress the teacher’s model 225

parameter since it is fixed), and the student’s model 226

distribution parameterized by θ is denoted as 227

qθ(y|x), where only the student model parameters 228

θ and the prompt P are trainable. The training 229

process consists of 3 steps per iteration, as shown 230

in Figure 2. First, generating input data used for 231

knowledge distillation (pseudo-target generation). 232

Then, updating the prompt based on guidance 233

from the student and teacher models to facilitate 234

adaptive teaching (prompt tuning for adaptive 235

teaching). Finally, distilling student-friendly 236

knowledge to the student using the updated prompt 237

(student-friendly knowledge distillation). 238

3.1 Pseudo-Target Generation 239

PromptKD uses the response y generated by the 240

student for the prompt tuning and knowledge distil- 241

lation processes, treating it as the pseudo-target. 242

This approach addresses exposure bias, which 243

arises due to the discrepancy between the sentences 244

used during training and those generated during 245

inference, leading to degraded performance in free- 246

run generation (Zhang et al., 2019). Based on the 247

insight (Agarwal et al., 2024) that incorporating 248

sentences that the model can generate during free- 249

run generation into the training process can miti- 250

gate exposure bias, we devise the approach accord- 251

ingly. It is worth noting that for the sake of method 252

simplicity, back-propagation during this sampling 253

process is not conducted. 254

3.2 Prompt Tuning for Adaptive Teaching 255

Initially, we concatenate the request x and response 256

y, including the prompt P for the teacher, and input 257

them into both models. Prompt P is updated to 258

minimize the KD loss Lkd, which computes the 259

distribution discrepancy of the response part. This 260

encourages the prompt to enable the teacher to 261

generate sentences at a similar level to the student 262
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Figure 2: Training procedure of PromptKD. To mitigate exposure bias, responses are generated by the student to be
used as pseudo-targets. Then, for adaptive teaching, the prompt input to the teacher is trained based on guidance
from the student. During this process, regularization loss is also employed to address instability stemming from the
prompt. Lastly, teacher distills student-friendly knowledge to the student using the trained prompt.

when it is prepended to the teacher’s input. Drawing263

inspiration from the concept of adaptive teaching264

in education, we design this objective with the aim265

of enabling students to receive knowledge from the266

teacher at a level they can comprehend.267

However, during the early stages of training, the268

influence of the prompt may cause significant devi-269

ations or inaccuracies in the teacher model distribu-270

tion, leading to unstable learning (Hou et al., 2022).271

To address this issue, we initialize the prompt with272

text embedding and devise an additional regulariza-273

tion lossLreg to ensure that the teacher model distri-274

bution remains similar whether the prompt is used275

or not. The regularization loss Lreg is computed in276

a similar manner to the KD loss Lkd, but with the277

difference that it is measured based on the teacher278

model distribution when the prompt is excluded279

from the input given to the teacher. This approach280

allows for the continued use of the fixed teacher281

model, making it memory-efficient. However, since282

the fixed teacher is unaware of the student’s capac-283

ity, Lreg deviates from our ultimate goal. Therefore,284

we introduce a coefficient that starts at 1 for Lreg285

and linearly decreases to 0 during training, focusing286

solely on stabilizing the early stages of learning.287

Regarding the two objectives, we opt for mini-288

mizing the reverse KL divergence instead of the for-289

ward KL divergence to measure the discrepancy, as290

it exhibits mode-seeking behavior (Nowozin et al.,291

2016) and benefits generation tasks. Hence, sum-292

marizing the two objectives, the final loss Lprompt,293

which updates only the prompt, is determined by294

Algorithm 1 PromptKD

Input: teacher T , student’s output distribution qθ,
data distribution px, prompt P , training step K,
learning rate η
for each step k = 1, ...,K do

Sample a request x from px
Sample a response y from qθ(·|x)
Update P ← P − η∇Lprompt ▷ Eq. (3)
Update θ ← θ − η∇Lstudent ▷ Eq. (4)

end for
return qθ

their summation, as follows: 295

Lkd =DKL

(
p(y|P,x) ∥ qθ(y|x)

)
, (1) 296

Lreg =DKL

(
p(y|P,x) ∥ p(y|x)

)
, (2) 297

Lprompt =Lkd +

(
K − k

K

)
Lreg, (3) 298

where K represents the total training steps, and k 299

denotes the current step. 300

3.3 Student-Friendly Knowledge Distillation 301

The updated prompt is utilized as a trigger to ex- 302

tract student-friendly knowledge from the teacher 303

and distill it to the student. The student loss Lstudent 304

minimizes the distribution discrepancy between 305

teacher and student through reverse KL divergence, 306

as follows: 307

Lstudent =DKL

(
qθ(y|x) ∥ p(y|P,x)

)
. (4) 308

For a clear understanding, we summarize the 309

PromptKD algorithm in Algorithm 1. 310
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Model #Params Method
Instruction-following datasets

Dolly SelfInst Vicuna S-NI UnNI

GPT-2

1.5B Teacher 27.3 14.5 16.2 27.1 31.6

120M

SFT 22.9 10.2 14.5 16.3 18.5
KD 22.6 11.0 15.1 18.0 20.1
SeqKD 23.3 10.3 14.7 16.6 19.2
GKD 24.8 11.1 17.7† 20.7 23.2
MiniLLM 24.2 12.7 16.9† 25.1 26.2
PromptKD 25.6 13.1 16.8† 26.8 28.9

340M

SFT 25.1 12.9 15.9 23.7 27.4
KD 25.1 13.0 15.6 24.5 27.7
SeqKD 25.3 12.7 16.0 23.8 27.5
GKD 26.9 14.8† 17.8† 26.6 30.9
MiniLLM 26.3 14.8† 17.9† 26.4 31.2
PromptKD 27.3† 15.0† 17.6† 27.1† 32.6†

760M

SFT 24.9 13.4 15.8 24.0 27.6
KD 25.7 13.7 15.9 24.0 27.7
SeqKD 25.2 13.3 15.8 24.0 27.4
GKD 26.9 14.1 17.1† 25.4 29.6
MiniLLM 26.2 15.8† 16.9† 28.5† 33.5†

PromptKD 26.9 16.4† 17.8† 29.5† 34.8†

OPT

13B Teacher 29.3 17.7 17.3 30.7 33.8

1.3B
MiniLLM 26.8 15.2 18.1† 28.6 30.9
PromptKD 28.0 15.5 18.5† 29.6 33.5

2.7B
MiniLLM 27.2 16.2 18.6† 29.8 33.1
PromptKD 28.7 17.8† 18.9† 31.4† 34.8†

6.7B
MiniLLM 28.6 18.0† 19.1† 32.5† 34.5†

PromptKD 29.9† 19.0† 19.8† 33.8† 35.2†

Llama
13B Teacher 30.2 23.1 19.0 35.7 36.9

7B
MiniLLM 29.0 21.3 20.6† 36.7† 38.1†

PromptKD 30.0 23.4† 21.1† 36.6† 38.9†

Table 1: Evaluation results on 5 instruction-following datasets. Each ROUGE-L score is averaged over 5 random
seeds. The best score for each model size is highlighted in boldface. †Results surpass those of the teacher.

4 Experiments311

4.1 Experimental Setup312

Following Gu et al. (2024), we evaluate PromptKD313

using 5 instruction-following datasets.314

Settings We split the Dolly (Conover et al.,315

2023), consisting of 15,000 human-written316

instruction-response pairs, into 14,000 for train-317

ing and 500 for validation and testing. For evalua-318

tion, we employ not only the Dolly but also 4 addi-319

tional datasets: SelfInst (Wang et al., 2023), consist-320

ing of user-oriented instruction-following sets; Vi-321

cuna (Chiang et al., 2023), comprising 80 questions322

used in the Vicuna evaluation; S-NI, the test set323

of SUPER-NATURALINSTRUCTIONS (Wang et al.,324

2022); and UnNI, the core dataset of UNNATU-325

RALINSTRUCTIONS (Honovich et al., 2023). Sim- 326

ilar to Gu et al. (2024), data samples with ground 327

truth response lengths of 11 or more are utilized 328

for S-NI and UnNI. We generate 5 responses for 329

each request in each dataset using different ran- 330

dom seeds and evaluate them to report the aver- 331

age scores for reliability. We choose the ROUGE- 332

L score (Lin, 2004) as the metric for evaluation, 333

as it aligns well with human preferences (Wang 334

et al., 2022) in instruction-following evaluations. 335

The best checkpoint based on the ROUGE-L score 336

on the validation set is used for evaluation. We 337

also measure the GPT-4 feedback scores (Zheng 338

et al., 2024), which are separately summarized in 339

Appendix C. 340
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Models To evaluate the instruction-following per-341

formance of PromptKD across various models, we342

utilize pre-trained GPT-2 (Radford et al., 2019),343

OPT (Zhang et al., 2022), and Llama (Touvron344

et al., 2023a) model families. For the GPT-2 model345

family, GPT-2 XL (1.5B params) is employed346

for the teacher model, and GPT-2 Base (120M347

params), GPT-2 Medium (340M params), GPT-348

2 Large (760M params) are used for the student349

model. For the OPT and Llama model families,350

we use OPT-13B and Llama-13B as the teacher351

models, and OPT-1.3B, OPT-2.7B, OPT-6.7B, and352

Llama-7B as the student models, respectively. Be-353

fore knowledge distillation, the teacher model un-354

dergoes supervised fine-tuning on the Dolly train-355

ing set. Similarly, the student model is also fine-356

tuned on the same training data for only three357

epochs, following the previous works (Agarwal358

et al., 2024; Gu et al., 2024).359

Baselines PromptKD is compared with various360

approaches ranging from supervised fine-tuning361

(SFT), which does not involve knowledge distil-362

lation, to commonly used methods in generation363

tasks such as Supervised KD (KD; Sanh et al.,364

2019), SeqKD (Kim and Rush, 2016), and more365

recent proposals like MiniLLM (Gu et al., 2024)366

and GKD (Agarwal et al., 2024). KD and SeqKD367

both aim to minimize the discrepancy between the368

model distributions of teacher and student at each369

token step. The difference lies in whether the input370

sentence is ground truth or pseudo-target generated371

by the teacher. MiniLLM replaces forward KL di-372

vergence with reverse KL divergence and updates373

the student model using policy gradient. On the374

other hand, GKD focuses on distribution discrep-375

ancy metrics and pseudo-targets to propose a gen-376

eral method. In this paper, GKD computes reverse377

KL divergence and utilizes sentences generated by378

the student as pseudo-targets, and this choice is379

based on the reported performance in their paper.380

Additionally, it is worth noting that the students381

for MiniLLM, GKD, and PromptKD all commence382

from the same supervised fine-tuned checkpoint,383

while other methods start from pre-trained mod-384

els. Due to resource limitations, experiments on385

the OPT and Llama models are conducted only in386

comparison with MiniLLM, which demonstrated387

outstanding performance among all baselines in the388

GPT-2 results. For training details, please see the389

Appendix A.390

4.2 Experimental Results 391

We report the instruction-following performance of 392

PromptKD and baselines on 5 datasets in Table 1. 393

Firstly, PromptKD achieves state-of-the-art per- 394

formance overall in the instruction-following set- 395

ting, outperforming other KD baselines. Addition- 396

ally, it also outperforms on 4 datasets not used in 397

training, demonstrating PromptKD’s superb gener- 398

alization ability. These results robustly demonstrate 399

the superiority of PromptKD, as they consistently 400

appear across all model families and model sizes. 401

It’s worth noting that despite MiniLLM incorpo- 402

rating language modeling loss through the corpus 403

used for pre-training, PromptKD exhibits better 404

performance. 405

Furthermore, only PromptKD shows superior 406

performance to the teacher across all datasets. This 407

demonstrates that modifying the teacher to extract 408

student-friendly knowledge for distillation works 409

not only for classification tasks but also for gener- 410

ation tasks. Moreover, the better performance of 411

PromptKD, MiniLLM, and GKD, which utilize re- 412

sponses generated by the student as pseudo-targets, 413

compared to other baselines, can be interpreted as 414

exposure bias mitigation contributing to the perfor- 415

mance improvement. 416

PromptKD and the baselines’ qualitative results 417

are summarized in the Appendix B, where it is 418

shown that PromptKD generates responses most 419

similar to the ground truth. 420

4.3 Analysis 421

Exposure bias In this section, we investigate ex- 422

posure bias to understand why PromptKD performs 423

well. Exposure bias refers to the mismatch in distri- 424

bution between the sentences seen during training 425

and those generated during inference. If exposure 426

bias is significant, the tokens generated during in- 427

ference may diverge from those seen during train- 428

ing, leading to accumulated errors in the generation 429

process. Following Arora et al. (2022), exposure 430

bias up to l generation steps can be quantified as 431

follows: 432

ExAccErr(l) =
R(l)− E(l)

E(l)
× 100%, (5) 433

R(l) =
l∑

t=1

E
y<t∼qθ(·|x)
yt∼p(·|y<t,x)

log
p(yt|y<t,x)

qθ(yt|y<t,x)
, (6) 434

E(l) =
l∑

t=1

E
y<t∼p(·|x)

yt∼p(·|y<t,x)

log
p(yt|y<t,x)

qθ(yt|y<t,x)
. (7) 435
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(b) exposure bias against training progress

Figure 3: The measurement of exposure bias. Excess accumulated error (ExAccErr) is measured with respect to
generation steps and training progress, where values closer to 0 indicate alleviation of exposure bias.

R(l) represents the average forward KL divergence436

up to l time steps when the student-generated re-437

sponse is used as the pseudo-target, while E(l) is438

similar to R(l) but differs in that it uses the teacher-439

generated response as the pseudo-target. R(l) can440

be interpreted as the distribution gap between the441

teacher and the student due to low-quality pseudo-442

targets generated by the student, while E(l) serves443

as a lower-bound of distribution gap between the444

teacher and the student. Therefore, ExAccErr cal-445

culates the relative error caused solely by expo-446

sure bias. If exposure bias is alleviated, the student447

should exhibit a nearly identical distribution gap448

regardless of which model generated the response.449

Therefore, the ExAccErr value should approach 0.450

We depict the ExAccErr at each generation step451

and the variation of ExAccErr up to 50 generation452

steps during the model training in Figure 3. In this453

experiment, a fixed pre-trained teacher is used as454

the teacher, while the student employs models dis-455

tilled using each KD method.456

When examining the ExAccErr over generation457

steps in Figure 3(a), it can be observed that for most458

methods, the error due to exposure bias accumu-459

lates as the generation length increases, increasing460

ExAccErr values. In the case of GKD, the objective461

used in training leads the student to minimize R(l).462

Consequently, the value becomes negative, indicat-463

ing that the distribution gap between the student464

and the teacher approaches 0 when using a student-465

generated response as a pseudo-target. However,466

there still exists a distribution gap for the teacher’s467

oracle response, and this means exposure bias also468

still exists. Nevertheless, PromptKD maintains Ex- 469

AccErr values close to 0 at all generation steps, 470

indicating that error accumulation does not occur. 471

This demonstrates that PromptKD is the most effec- 472

tive in alleviating exposure bias compared to other 473

baselines. 474

Furthermore, ExAccErr is measured up to 50 475

generation steps in Figure 3(b) to focus on the early 476

generations where errors tend to accumulate. To 477

observe how it changes during the training process, 478

the total training step of best checkpoint is divided 479

by 10, and the model is saved at each time step for 480

ExAccErr measurement. It is apparent that Promp- 481

tKD, MiniLLM, and GKD, which utilize student’s 482

responses, exhibit consistently lower ExAccErr val- 483

ues compared to other baselines from the early 484

stages of training. Among them, PromptKD demon- 485

strates the most stable maintenance of ExAccErr 486

close to 0, signifying that distilling student-friendly 487

knowledge aids in mitigating exposure bias during 488

training. 489

Computational cost To demonstrate the effi- 490

ciency of PromptKD, we compare its computa- 491

tional cost with baselines in Table 3. OPT-13B 492

and OPT-6.7B are used as the teacher and the stu- 493

dent, with measurements conducted on 4 NVIDIA 494

A100 80GB (PCIe) GPUs. From a time perspec- 495

tive, methods that sample the student at each it- 496

eration to create pseudo-targets take significantly 497

more time than those that do not. In particular, 498

MiniLLM requires a significant amount of time, 499

primarily due to the additional use of the corpus 500

used for pre-training, along with the complexity 501
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Instruction Tell me whether these are books by black authors: I Know Why the Caged Bird Sings,
Homegoing, Between the World and Me, Becoming, Beloved, The Color Purple.

Ground Truth The books: I Know Why the Caged Bird Sings, Homegoing, Between the World and
Me, Becoming, Beloved, and The Color Purple are all written by black authors.

Teacher All of the books you mentioned are by black authors. I Know Why the Caged Bird
w/o Prompt Sings and Beloved are by Maya Angelou. Homegoing is by Yaa Gyasi. Between the

World and Me is by Ta-Nehisi Coates. Becoming is by Michelle Obama. The Color
Purple is by Alice Walker.

Teacher I Know Why the Caged Bird Sings, Homegoing, Between the World and Me, Be-
w/ Prompt coming, and The Color Purple are all books by black authors.
Student Yes, these are all books by black authors.

Table 2: Qualitative results of generated response from the Dolly validation set with and without using prompts for
the Llama-13B teacher. A teacher with a prompt generates a response more similar to that of the student.

Method
MA CA Time
(GB) (GB) (hour)

SFT 15.70 28.90 15.70
KD 40.13 52.82 20.62
SeqKD 40.13 52.82 20.13
GKD 41.99 56.13 25.37
MiniLLM 68.91 78.54 85.71
PromptKD 43.62 56.57 26.97

Table 3: Comparison of computational costs. Where
MA denotes the maximum allocated memory on the
GPU and CA denotes the maximum cached memory
on the GPU. Time indicates the total training time for
each method. All computational costs are calculated on
4 NVIDIA A100 80 GB (PCIe) GPUs.

of calculating intricate rewards for optimization502

with policy gradient, unlike other methods. For503

the same reason, MiniLLM demands a substantial504

amount of memory. In contrast, PromptKD adds505

only a minimal amount of memory by introduc-506

ing parameters equivalent to the product of prompt507

length and input embedding dimension. PromptKD508

demonstrates clear efficiency over MiniLLM and509

comparable costs to GKD, while significantly out-510

performing both in terms of performance. There-511

fore, PromptKD proves competitive in this regard.512

Student-friendly knowledge To provide a clear513

interpretation of student-friendly knowledge, we514

investigate how the prompt modifies the teacher515

model. As shown in Table 2, we generate responses516

to a validation set that was unseen during train-517

ing using both teacher models—with and without518

prompt—and the trained student model. The find-519

ings reveal that while the original teacher generates520

a complex response, the student-friendly teacher,521

modified by the prompt, produces a response that is 522

similar to and easily understood by the student. No- 523

tably, despite its simplicity, this response remains 524

accurate. Furthermore, when modifying the teacher 525

using the prompt, the quantitative verification of 526

maintaining quality while achieving similarity to 527

the student in responses is detailed in Appendix E. 528

Therefore, the student-friendly knowledge distilled 529

in PromptKD refers to knowledge transferred by a 530

student-friendly teacher, who maintains a similar 531

output distribution to the student for easier under- 532

standing while preserving the original generative 533

performance. This aligns with the concept of adap- 534

tive teaching that served as the inspiration. 535

Ablation study Due to the page limit, we detail 536

an ablation study on regularization loss, prompt 537

settings, and KL divergence in Appendix D. 538

5 Conclusions 539

In this work, we have pioneered the exploration 540

of extracting and distilling student-friendly knowl- 541

edge for generative language models. To achieve 542

this, we have proposed a novel method called 543

PromptKD, which leverages prompt tuning in 544

knowledge distillation for the first time. Owing 545

to the memory-efficient nature of prompts and the 546

advantage of replacing full-parameter fine-tuning, 547

particularly beneficial for larger models like LLMs, 548

PromptKD has proven to be an efficient approach. 549

Through extensive experiments, PromptKD has 550

achieved state-of-the-art performance, confirming 551

the effectiveness of student-friendly knowledge in 552

generation tasks. Additionally, through exposure 553

bias analysis, we have demonstrated that Promp- 554

tKD successfully alleviates exposure bias through- 555

out the training process. 556
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Limitations557

While PromptKD has achieved state-of-the-art per-558

formance by distilling student-friendly knowledge,559

it still has limitations in terms of its naive extraction560

approach. Considering that knowledge distillation561

(KD) research for classification tasks employs vari-562

ous methods to distill student-friendly knowledge,563

it is expected that there are alternative approaches564

to effectively transfer student-friendly knowledge565

in a generative language model. Furthermore, al-566

though PromptKD is designed for instruction-567

following settings based on task-specific KD, there568

is a need for expansion towards task-agnostic KD569

to make it applicable during the pre-training pro-570

cess.571

Ethics Statement572

PromptKD utilizes pre-trained models, exposing573

it to risks similar to those highlighted by Wei-574

dinger et al. (2021); Bommasani et al. (2021), re-575

garding the vulnerability of pre-trained language576

models to ethical and social risks. Additionally,577

Hooker et al. (2020) mentions that the process of578

model compression can introduce biases. However,579

since most model compression studies leverage pre-580

trained models, these issues are general risks and581

not specific to PromptKD. Nevertheless, these risks582

should be addressed in the future through advanced583

pre-training objectives and dataset collection meth-584

ods (Lee et al., 2023).585
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A Training Details939

In our study, we employ the AdamW (Loshchilov940

and Hutter, 2019) optimizer for training, with941

batch sizes of 32 for GPT-2 Base and 8 for GPT-2942

Medium and Large. The learning rates of prompt943

and student are set at 5e-5 for Base, 1e-5 for944

Medium, and 5e-6 for Large. In both the Llama945

and OPT model families, we set the batch size to 946

64 and the learning rates of prompt and student to 947

5e-6. For the generation, we sample with top-k and 948

top-p parameters at 0 and 1.0, respectively, and use 949

a fixed temperature of 1.0. Training and generation 950

phases both have a maximum sequence length of 951

512 and a maximum prompt length of 256. Please 952

note that we pre-process each instruction-following 953

dataset by converting the instruction-response pairs 954

into a standardized sentence structure, as shown in 955

Table 4. For the reproducibility of our PromptKD, 956

we will make both the code and the checkpoints 957

public. 958

Prompt Format
Below is an instruction that describes a task.
Write a response that appropriately completes
the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:

Table 4: Prompt format used for training and evaluation.

B Qualitative Results 959

For the qualitative results, we present samples gen- 960

erated by student models trained using various 961

methods. The samples are drawn from the S-NI 962

dataset and utilize GPT-2 XL as the teacher model, 963

with GPT-2 Large employed as the student model. 964

Results are shown in Table 5. Additionally, the gen- 965

eration results obtained using the Llama model are 966

summarized in Table 6. 967

C GPT-4 Feedback Score 968

We follow the approach described in Appendix D.1 969

of MiniLLM (Gu et al., 2024) to measure the GPT- 970

4 feedback score. We utilize the GPT-4 model with 971

a temperature of 0.7. To evaluate model output com- 972

pared to ground truth response, we employ a fixed 973

form of prompt consisting of instruction, input, as- 974

sistant 1, and assistant 2. The instruction of task 975

and input are entered first, followed by the model 976

output in assistant 1 and the ground truth response 977

in assistant 2, as shown in Table 7. Through this 978

prompt, scores for the model output and ground 979

truth response, which are separated by spaces and 980

range from 1 to 10, are obtained. The sum of the 981

model output scores is divided by the sum of the 982
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Case 1
Instruction Convert a disfluent question to a proper question. A disfluent question is a question

that has some interruptions in it while framing. A proper question is the correct form
of the question without any disfluency.

Input What do no I meant Who do some tax agents want to make an impression on during
an arrest?

Ground Truth Who do some tax agents want to make an impression on during an arrest?
SFT Some tax agents want to make an impression on during an arrest.
KD The tax agents want to make an impression on during an arrest.
SeqKD No I meant to ask who are some tax agents that want to make an impression on an

arrest.
GKD No I mean that there are no tax agents who want to make an impression on the arrest.
MiniLLM A disfluent question is one that has some interruptions while framing. A proper

questions is the correct form of a question without any disfluidity.
PromptKD Who do some tax agents want make an impression on during a arrest?

Case 2
Instruction Given an entity, a before event, an after event, and an attribute related to the entity,

generate a sentence as output. Your sentence should show the changes in the attribute
of the entity.

Input entity: rope, before: separate from ball, after: through slot in ball, attr: location
Ground Truth The location of the rope was separate from the ball before and through a slot in the

ball afterwards.
SFT Rope was previously connected to a ball through a slot in the ball. When the rope is

pulled through the ball, it changes location and is no longer connected to the ball.
KD Rope is a string. before: ball, after: rope stroke
SeqKD Rope is made of rope.
GKD before: separate from Ball, after: through slot In Ball, attr: location
MiniLLM through slot in ball
PromptKD Rope was separate from Ball until through slot in Ball.

Table 5: Sample response from the S-NI dataset. PromptKD follows the instructions most accurately.

ground truth scores to calculate the GPT-4 feed-983

back score for each method. Similar to the main984

result in Table 1, scores are calculated for seeds985

10, 20, 30, 40, and 50, then the average is taken.986

Following this approach, we measure the GPT-4987

feedback scores for MiniLLM (Gu et al., 2024),988

GKD (Agarwal et al., 2024), and PromptKD, which989

demonstrated strong performance in Table 1. Here,990

we omit KD (Sanh et al., 2019) and SeqKD (Kim991

and Rush, 2016) from the measurement since they992

did not compete well against other baselines.993

The evaluation results when using GPT-2 XL994

(1.5B) as the teacher and GPT-2 Large (760M)995

as the student are summarized in Table 8. Con-996

sistent with the trends observed in Table 1, Promp-997

tKD exhibits the best performance, followed by998

MiniLLM and then GKD. Particularly notewor-999

thy is that PromptKD outperforms others on all1000

datasets, further demonstrating the effectiveness of 1001

student-friendly knowledge. 1002

D Ablation Study 1003

Regularization loss To confirm the effectiveness 1004

of the introduced regularization loss in alleviat- 1005

ing instability when the prompt is prepended, we 1006

conduct experiments by excluding this objective. 1007

The average performance across the 5 datasets is 1008

reported in Table 9. Although there is a slight per- 1009

formance drop when using regularization loss with 1010

GPT-2 Medium, we observe a more significant per- 1011

formance increase with the other two models. This 1012

suggests the necessity of regularization loss for 1013

improving performance. 1014

Prompt settings Although the regularization 1015

loss effectively mitigates the initial instability, the 1016

prompt’s length and initialization also significantly 1017
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Case 1
Instruction You are given two passages. For each word in the first passage, you need to find its

synonym from the second passage such that both words have the same meaning and
belong to the same part of speech. The input consists of two paragraphs with a list of
words following each paragraph. The output is a list of synonyms (one for each word
in the first paragraph) such that they have similar meaning as corresponding words
in the first paragraph and belong to same parts of speech. Note: Some sentences may
not contain a particular type of word

Input Paragraph 1: They water their crops with canal water. Paragraph 2: They irrigate
their plants with pipeline fluid.

Ground Truth Canal water and pipeline fluid are both synonyms for irrigation.
MiniLLM Paragraph 2 synonyms for Paragraph 1: They irrigate Their plants with pipeline fluid.
PromptKD Canal water, pipeline fluid

Case 2
Instruction You are given a list of numerical values. Find the value that is halfway between the

maximum and minimum values in the list, and output that value.
Input List = [1, 3, 4, 6, 8].
Ground Truth The value halfway between the maximum and minimum values in the list is 4.
MiniLLM The value that is halfwaybetween the maximum and minimum values is 4. This is

because 4 is the average of the list, which is 1 + 3 + 4 + 6 + 8 / 5 = 4.
PromptKD The median value is 4.

Table 6: Sample response from the UnNI dataset. The Llama model is used here. Similar to the results with GPT-2,
PromptKD generates appropriate responses following the instructions better than MiniLLM.

5 7 1 07

8

2 1

2 2

2 3

Av
era

ge 
RO

UG
E-L

P r o m p t  L e n g t h

  T e x t      P a d d i n g      R a n d o m

Figure 4: Ablation on prompt settings. To validate the
impact of prompt initialization method and length, we
evaluate the average ROUGE-L score over varying these
settings.

influence the prompt tuning process (Hou et al.,1018

2022). Therefore, the average instruction-following1019

performance is measured by varying the prompt1020

length m from 5, 7, 10 and the initialization method1021

from random, padding, text. GPT-2 Large (760M)1022

and GPT-2 XL (1.5B) are utilized for this ablation1023

study. Results are summarized in Figure 4. In the1024

padding method, all prompt tokens are initialized1025

with the embedding of the "[PAD]" token, while in 1026

the text method, the sentence "Suppose you are a 1027

student." is tokenized, and these embeddings are 1028

used for initializing prompt tokens from the begin- 1029

ning. In this case, if the number of prompt tokens 1030

is smaller, the sentence is truncated, while if it is 1031

larger, all embeddings of the sentence are assigned, 1032

and then the embeddings are assigned again from 1033

the beginning for the next prompt token. 1034

Firstly, considering the emphasis on the impor- 1035

tance of prompt initialization in previous works, 1036

it is found that training does not proceed properly 1037

with random initialization. Moreover, generally, the 1038

text initialization method shows better performance 1039

than the padding method. Regarding length, when 1040

initialized with text, better performance is observed 1041

with a length of 7, while with padding initialization, 1042

shorter lengths exhibit better performance. This is 1043

presumably because, in text initialization, the sen- 1044

tence is fully encoded since it is tokenized into 1045

7 tokens, while in padding initialization, longer 1046

lengths exert a greater influence on the instabil- 1047

ity of teacher model distribution when prepended. 1048

Therefore, all experiments in this paper are per- 1049

formed with a prompt length of 7, initialized using 1050

text initialization. 1051
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Prompt Format
### Instruction:
{instruction}
### Input:
{input}
### Assistant 1:
{model output}
### Assistant 2:
{ground truth response}

We would like to request your feedback on
the performance of two AI assistants in re-
sponse to the user instruction and input dis-
played above.
Please rate the helpfulness, relevance, accu-
racy, and level of detail of their responses.
Each assistant receives an overall score on a
scale of 1 to 10, where a higher score indicates
better overall performance.
Please first output a single line containing only
two values indicating the scores for Assistant
1 and 2, respectively. The two scores are sepa-
rated by a space.
In the subsequent line, please provide a com-
prehensive explanation of your evaluation,
avoiding any potential bias and ensuring that
the order in which the responses were pre-
sented does not affect your judgment.

Table 7: Prompt format used for measuring GPT-4 feed-
back scores.

Method Dolly SelfInst Vicuna
GKD 68.83 63.87 66.68
MiniLLM 71.39 66.96 67.78
PromptKD 72.12 67.22 68.01

Table 8: Evaluation results with GPT-4 feedback scores.

#Params w/o Lreg w/ Lreg

120M 21.97 22.25
340M 24.13 23.92
760M 24.47 25.08

Table 9: Ablation on regularization loss. We assess the
average instruction-following performance of student
models without and with regularization loss to verify
the effectiveness of regularization.

KL divergences To assess the impact of distribu-1052

tion discrepancy metrics, we conduct an ablation1053

study on this with the same model setting. During1054

Lkd & Lreg ROUGE-L
Reverse KL & Reverse KL 22.25
Reverse KL & Forward KL 21.91
Forward KL & Reverse KL 22.20
Forward KL & Forward KL 22.13

Table 10: Ablation on distribution discrepancy metric.
Since each loss can compute distribution discrepancy
with either forward or reverse, we report the average
instruction-following performance for each pair.

prompt tuning, PromptKD minimizes the reverse 1055

KL divergence between the teacher distribution 1056

and the student distribution (Lkd) or between the 1057

teacher distribution and the teacher distribution ex- 1058

cluding the prompt (Lreg). In this context, forward 1059

KL divergence can also be considered instead of re- 1060

verse KL divergence. As shown in Table 10, exper- 1061

imental results indicate that using reverse KL diver- 1062

gence yields the best performance. However, there 1063

is barely any significant difference. We conjecture 1064

that since the model distribution being trained is 1065

derived from the teacher, resulting in similar or 1066

even more modes in distribution, which prevent 1067

undesirable behaviors such as mode-covering even 1068

during forward KL divergence minimization. 1069

E Student-friendly Knowledge 1070

In this section, we analyze the difference between 1071

using and not using prompts when applying them 1072

to the teacher model. First, akin to the training pro- 1073

cess where responses are fed into both models via 1074

teacher-forcing, we measure the KL divergence be- 1075

tween the output of the teacher and student model 1076

in the response part. Here, the student models con- 1077

sidered are both at the beginning and end of distil- 1078

lation. Additionally, we generate responses directly 1079

and evaluate their ROUGE-L score against ground 1080

truth. For the dataset, we use 1000 samples from 1081

each, specifically from the Dolly training set ob- 1082

served during training and the Dolly validation set 1083

unseen during training. For each model family, we 1084

use GPT-XL (1.5B), OPT-13B, and Llama-13B as 1085

the teacher models, and GPT-Large (760M), OPT- 1086

6.7B, and Llama-7B as the student models. 1087

Examining the KL divergence in Table 11 first, 1088

it is evident that the teacher using prompts achieves 1089

a smaller KL divergence value compared to the 1090

student at the end of distillation, as encouraged by 1091

the given objective. However, this trend is also ob- 1092

served with the validation set. This pattern appears 1093
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Model Prompt
Training set (seen) Validation set (unseen)

KLD w/ Si KLD w/ Sf ROUGE-L KLD w/ Si KLD w/ Sf ROUGE-L

GPT-2
✗ 1.7426 2.2896 96.510 0.9203 1.0631 29.695
✓ 1.7416 2.2882 74.659 0.9069 1.0261 26.893

OPT
✗ 1.2360 1.6180 89.969 0.7038 0.8302 31.603
✓ 1.2299 1.6089 89.137 0.6988 0.8065 31.933

Llama
✗ 1.3193 1.9413 96.951 0.7279 0.9335 35.116
✓ 1.3186 1.9405 97.095 0.7184 0.9123 35.168

Table 11: Quantitative comparison between the teacher with prompt and without prompt. Measurements are
conducted on both the training set and the validation set. Si and Sf denote the student at the beginning and end of
distillation, respectively. ROUGE-L evaluates how similar the responses are to the ground truth for each dataset. For
each model, the smaller KL divergence values and larger ROUGE-L scores are highlighted in boldface.

Instruction Tell me which one does not fit with the group: Football, Volleyball, Cricket, Chess,
Hockey

Ground Truth All except Chess are outdoor games.
Teacher All of these are sports. However, Chess and Hockey are the odd ones out. Chess is a
w/o Prompt board game, and Hockey is a winter sport.
Teacher All except Chess are sports that are played in teams
w/ Prompt
Student All of the given options are sports. The one that does not fit with the group is Chess.

The other options are sports.

Table 12: Another sample response from the Dolly validation set. A teacher with a prompt produces a concise
sentence that is easy for the student to understand.

across all models, indicating that using prompts1094

makes the teacher operate more like a general lan-1095

guage model at a similar level to the student. More-1096

over, the teacher using prompts exhibits prediction1097

distributions even closer to the initial student, be-1098

fore distillation has taken place.1099

When considering ROUGE-L scores, it is ob-1100

served that as the model size increases, the teacher1101

using prompts generates responses more similar to1102

the ground truth. This suggests that with smaller1103

models, the teacher is adversely affected by the1104

low level of the student when training prompts to1105

distill student-friendly knowledge. Nevertheless,1106

the results from the Llama model indicate that the1107

teacher becoming similar to the student’s predic-1108

tive distribution does not imply a decline in its1109

instruction-following performance.1110

Therefore, the student-friendly knowledge em-1111

ployed by PromptKD is derived from a teacher1112

that, while similar to the student, does not suffer1113

from performance degradation. Furthermore, this1114

effectiveness has been sufficiently demonstrated in1115

previous experiments. Additional examples of re-1116

sponse generation are presented in Table 12, which1117

exhibit a similar trend to those in Table 2.1118
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