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ABSTRACT

The noise in stochastic gradient descent (SGD) provides a crucial implicit reg-
ularization effect for training overparameterized models. Prior theoretical work
largely focuses on spherical Gaussian noise, whereas empirical studies demon-
strate the phenomenon that parameter-dependent noise — induced by mini-
batches or label perturbation — is far more effective than Gaussian noise. This pa-
per theoretically characterizes this phenomenon on a quadratically-parameterized
model introduced by Vaskevicius et al. and Woodworth et al. We show that in
an over-parameterized setting, SGD with label noise recovers the sparse ground-
truth with an arbitrary initialization, whereas SGD with Gaussian noise or gradi-
ent descent overfits to dense solutions with large norms. Our analysis reveals that
parameter-dependent noise introduces a bias towards local minima with smaller
noise variance, whereas spherical Gaussian noise does not.

1 INTRODUCTION

One central mystery of deep artificial neural networks is their capability to generalize when having
far more learnable parameters than training examples Zhang et al. (2016). To add to the mystery,
deep nets can also obtain reasonable performance in the absence of any explicit regularization. This
has motivated recent work to study the regularization effect due to the optimization (rather than
objective function), also known as implicit bias or implicit regularization Gunasekar et al. (2017;
2018a;b); Soudry et al. (2018); Arora et al. (2019). The implicit bias is induced by and depends on
many factors, such as learning rate and batch size Smith et al. (2017); Goyal et al. (2017); Keskar
et al. (2016); Li et al. (2019b); Hoffer et al. (2017), initialization and momentum Sutskever et al.
(2013), adaptive stepsize Kingma and Ba (2014); Neyshabur et al. (2015); Wilson et al. (2017), batch
normalization Ioffe and Szegedy (2015) and dropout Srivastava et al. (2014).

Among these sources of implicit regularization, the SGD noise is believed to be a vital one (LeCun
et al., 2012; Keskar et al., 2016). Previous theoretical works (e.g., Li et al. (2019b)) have studied
the implicit regularization effect from the scale of the noise, which is directly influenced by learning
rate and batch size. However, people have empirically observed that the shape of the noise also
has a strong (if not stronger) implicit bias. For example, prior works show that mini-batch noise
or label noise (label smoothing) – noise in the parameter updates from the perturbation of labels
in training – is far more effective than adding spherical Gaussian noise (e.g., see (Shallue et al.,
2018, Section 4.6) and Szegedy et al. (2016); Wen et al. (2019)). We also confirm this phenomenon
in Figure 1 (left). Thus, understanding the implicit bias of the noise shape is crucial. Such an
understanding may also apply to distributed training because synthetically adding noise may help
generalization if parallelism reduces the amount of mini-batch noise (Shallue et al., 2018).

In this paper, we theoretically study the effect of the shape of the noise, demonstrating that it can
provably determine generalization performance at convergence. Our analysis is based on a nonlinear
quadratically-parameterized model introduced by (Woodworth et al., 2020; Vaskevicius et al., 2019),
which is rich enough to exhibit similar empirical phenomena as deep networks. Indeed, Figure 1
(right) empirically shows that SGD with mini-batch noise or label noise can generalize with arbitrary
initialization without explicit regularization, whereas GD or SGD with spherical Gaussian noise
cannot. We aim to analyze the implicit bias of label noise and Gaussian noise in the quadratically-
parametrized model and explain these empirical observations.
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Figure 1: The effect of noise covariance in neural network and quadratically-parameterized
models. We demonstrate that label noise induces a stronger regularization effect than Gaussian
noise. In both real and synthetic data, adding label noise to large batch (or full batch) SGD updates
can recover small-batch generalization performance, whereas adding Gaussian noise with optimally-
tuned variance σ2 cannot. Left: Training and validation errors on CIFAR100 for VGG19. Adding
Gaussian noise to large batch updates gives little improvement (around 2%), whereas adding label
noise recovers the small-batch baseline (around 15% improvement). Right: Training and validation
error on a 100-dimensional quadratically-parameterized model defined in Section 2. Similar to
deep models, label noise or mini-batch noise leads to better solutions than optimally-tuned spherical
Gaussian noise. Moreover, Gaussian noise causes the parameter to diverge after sufficient mixing,
as suggested by our negative result for Langevin dynamics (Theorem 2.2). More details are in
Section A.

We choose to study label noise because it can replicate the regularization effects of minibatch noise
in both real and synthetic data (Figure 1), and has been used to regularize large-batch parallel train-
ing (Shallue et al., 2018). Moreover, label noise is less sensitive to the initialization and the opti-
mization history than mini-batch noise, which makes it more amenable to theoretical analysis. For
example, in an extreme case, if we happen to reach or initialize at a solution that overfits the data
exactly, then mini-batch SGD will stay there forever because both the gradient and the noise van-
ish (Vaswani et al., 2019). In contrast, label noise will not accidentally vanish, so the analysis is
more tractable. Understanding label noise may lead to understanding mini-batch noise or replacing
it with other more robust choices.

In our setting, we prove that with a proper learning rate schedule, SGD with label noise recovers
a sparse ground-truth classifier and generalizes well, whereas SGD with spherical Gaussian noise
generalizes poorly. Concretely, SGD with label noise biases the parameter towards the low sparsity
regime and exactly recovers the sparse ground-truth, even when the initialization is arbitrarily large
(Theorem 2.1). In this same regime, noise-free gradient descent quickly overfits because it trains in
the NTK regime (Jacot et al., 2018; Chizat and Bach, 2018). Adding Gaussian noise is insufficient
to fix this, as this algorithm would end up sampling from a Gibbs distribution with infinite partition
function and fail to converge to the ground-truth (Theorem 2.2). In summary, with not too small
learning rate or noise level, label noise suffices to bias the parameter towards sparse solutions without
relying on a small initialization, whereas Gaussian noise cannot.

Our analysis suggests that the fundamental difference between label or mini-batch noise and Gaus-
sian noise is that the former is parameter-dependent, and therefore introduces stronger biases than
the latter. The conceptual message highlighted by our analysis is that there are two possible implicit
biases induced by the noise: 1. prior work (Keskar et al., 2016) shows that by escaping sharp local
minima, noisy gradient descent biases the parameter towards more robust solutions (i.e, solutions
with low curvature, or “flat” minima), and 2. when the noise covariance varies across the param-
eter space, there is another (potentially stronger) implicit bias effect toward parameters where the
noise covariance is smaller. Label or mini-batch noise benefits from both biases, whereas Gaussian
noise is independent of the parameter, so it benefits from the first bias but not the second. For the
quadratically-parameterized model, this first bias is not sufficient for finding solutions with good
generalization because there is a large set of overfitting global minima of the training loss with
reasonable curvature. In contrast, the covariance of label noise is proportional to the scale of the
parameter, inducing a much stronger bias towards low norm solutions which generalize well.

1.1 ADDITIONAL RELATED WORKS

Closely related to our work, Blanc et al. (2019) and Zhu et al. (2019) also theoretically studied
implicit regularization effects that arise due to shape, rather than scale, of the noise. However, they
only considered the local effect of the noise near some local minimum of the loss. In contrast, our
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work analyzes the global effect of noise. For a more detailed comparison with (Blanc et al., 2019),
see Section 2.2.

Woodworth et al. (2020); Vaskevicius et al. (2019) analyze the effect of initialization for the same
model that we study, showing that large initialization trains in the NTK regime (shown to generalize
poorly (Wei et al., 2019; Ghorbani et al., 2019)) whereas small initialization does not. We show that
when the initialization is large, adding noise helps avoid the NTK regime (Li and Liang, 2018; Jacot
et al., 2018; Du et al., 2018b; Woodworth et al., 2020) without explicit regularization.

Several previous works have studied generalization bounds and training dynamics of SGD with state-
dependent noises for more general models. Hardt et al. (2015) derived stability-based generalization
bounds for mini-batch SGD based on training speed. Cheng et al. (2019) proved that SGD with state-
dependent noises has iterate distribution close to the corresponding continuous stochastic differential
equation with the same noise covariance. Meng et al. (2020); Xie et al. (2020) showed that SGD
with state-dependent noises escapes local minimum faster than SGD with spherical Gaussian noise .

There has been a line of work empirically studying how noise influences generalization. Keskar
et al. (2016) argued that large batch training will converge to “sharp” local minima which do not
generalize well. Hoffer et al. (2017) argued that large batch size doesn’t hurt generalization much if
training goes on long enough and additional noise is added with a larger learning rate. Goyal et al.
(2017) and Shallue et al. (2018) showed large batch training with proper learning rate and additional
label noise can achieve similar generalization as small batch. Wei and Schwab (2019); Chaudhari
and Soatto (2018); Yaida (2018) (heuristically) suggested that SGD may encourage solutions with
smaller noise covariance. Martin and Mahoney (2018) used random matrix theory to analyze im-
plicit regularization effects of noises. The noise induced by dropout has been shown to change the
expected training objective, hence provides a regularization effect (Mianjy et al., 2018; Mianjy and
Arora, 2019; Wei et al., 2020; Arora et al., 2020). Wei et al. (2020) showed that there also exists an
implicit bias induced by dropout noise.

Langevin dynamics or the closely-related stochastic gradient descent with spherical Gaussian noise
has been studied in previous works Welling and Teh (2011); Teh et al. (2016); Raginsky et al. (2017);
Zhang et al. (2017); Mou et al. (2017); Roberts et al. (1996); Ge et al. (2015); Negrea et al. (2019);
Neelakantan et al. (2015); Mou et al. (2018). In particular, Raginsky et al. (2017) and Li et al.
(2019a) provided generalization bounds for SGLD using algorithmic stability.

Several works have theoretically analyzed other types of implicit biases in simplified set-
tings (Soudry et al., 2018; Gunasekar et al., 2018b; Ji and Telgarsky, 2018a). Gunasekar et al.
(2017) and Li et al. (2017) showed that gradient descent finds low rank solutions in matrix com-
pletion. Gradient descent has also been shown to maximize the margin in linear and homogeneous
models (Soudry et al., 2018; Ji and Telgarsky, 2018b; Nacson et al., 2018; Lyu and Li, 2019; Gu-
nasekar et al., 2018a; Nacson et al., 2019; Poggio et al., 2017). Du et al. (2018a) showed that gradient
descent implicitly balances the layers of deep homogeneous models. Other works showed that it may
not always be possible to characterize implicit biases in terms of norm (Arora et al., 2019; Razin and
Cohen, 2020). Gissin et al. (2019) showed that gradient descent dynamics exhibit different implicit
biases based on depth. Li et al. (2019b) studied the implicit regularization effect of a large initial
learning rate.

Guo et al. (2018) studies the notion of “elimination singularities” in RBF networks, where optimiza-
tion runs into a regime with small weight and small gradient, therefore the training can be slowed
down. Our paper also involves training trajectory with small weight norm, but instead focuses on its
influnece on the generalization performance.

2 SETUP AND MAIN RESULTS

2.1 SETUP AND BACKGROUNDS

Parameterization. We focus on the nonlinear model parametrization: fv(x) ≜ ⟨v⊙2, x⟩, where
v ∈ Rd is the parameter of the model, x ∈ Rd is the data, and v⊙2 denotes the element-wise square
of v. Prior works (Woodworth et al., 2020; Vaskevicius et al., 2019; Li et al., 2017) have studied this
model because it is an interesting and informative simplification of nonlinear models. As SGD noise
exhibits many of the same empirical behaviors in this simplified model as in deep networks,1 we use

1In contrast, the implicit bias of noise wouldn’t show up in a simpler linear regression model.
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this model as a testbed to develop a mathematical understanding of various sources of implicit biases.
As shown in Figure 1, both SGD with mini-batch noise and label noise generalize better than GD or
SGD with spherical Gaussian noise.

Data distribution assumptions and overparametrization. We assume that there exists a ground-
truth parameter v⋆ ∈ Rd that generates the label y = ⟨v⋆⊙2, x⟩ given a data point x, which is
assumed to be generated fromN (0, Id×d). A datasetD =

{
(x(i), y(i))

}n
i=1

of n i.i.d data points are
generated from this distribution. The implicit bias is only needed in an over-parameterized regime,
and therefore we assume that n ≪ d. To make the ground-truth vector information-theoretically
recoverable, we assume that the ground-truth vector v⋆ is r-sparse. Here r is much smaller than
d, and casual readers can treat it as a constant. Because the element-wise square in the model
parameterization is invariant to any sign flip, we assume v⋆ is non-negative without loss of generality.
For simplicity, we also assume it only takes value in {0, 1}.2 We use S ⊂ [d] with |S| = r to denote
the support of v⋆ throughout the paper.

We remark that we can recover v⋆ by re-parameterizing u = v⊙2 and applying LASSO (Tibshirani,
1996) in the u-space when n ≥ Õ(r), which is minimax optimal (Raskutti et al., 2012). However,
the main goal of the paper, similar to several prior works (Woodworth et al., 2020; Vaskevicius et al.,
2019; Li et al., 2017), is to prove that the implicit biases of non-convex optimization can recover the
ground truth without explicit regularization in the over-parameterized regime when n = poly(r)≪
d.3 We also assume throughout the paper that n, d are larger than some sufficiently large universal
constant.
Loss function. We use the mean-squared loss denoted by ℓ(i)(v) ≜ 1

4

(
fv(x

(i))− y(i)
)2

for the i-th
example. The empirical loss is written as L(v) ≜ 1

n

∑n
i=1 ℓ

(i)(v).

Initialization. We use a large initialization of the form v[0] = τ · 1 where 1 denotes the all 1’s
vector, where we allow τ to be arbitrarily large (but polynomial in d).

Algorithm 1 Stochastic Gradient Descent with Label Noise

Require: Number of iterations T , a sequence of step sizes η[0:T ], noise level δ, initialization v[0]

1: for t = 0 to T − 1 do
2: Sample index it ∼ [n] uniformly and add noise st ∼ {±δ} to y(it).
3: Let ℓ̃(it)(v) = 1

4 (fv(x
(it))− y(it) − st)

2

4: v[t+1] ← v[t] − η[t]∇ℓ̃(it)(v[t]) ▷ update with label noise

SGD with label noise. We study SGD with label noise as shown in Algorithm 1. We sample an
example, add label noise sampled from {±δ} to the label, and apply the gradient update. Computing
the gradient, we obtain the update rule written explicitly as:

v[t+1] ← v[t] − η[t]
(
(v[t]

⊙2
− v⋆⊙2)⊤x(it)

)
x(it) ⊙ v[t] + η[t]stx

(it) ⊙ v[t]. (1)

Langevin dynamics/diffusion. We compare SGD with label noise to Langevin dynamics, which
adds spherical Gaussian noise to gradient descent (Neal et al., 2011):

v[t+1] ← v[t] − η∇L(v[t]) +
√
2η/λ · ξ, (2)

where the noise ξ ∼ N (0, Id×d) and λ > 0 controls the scale of noise. Langevin dynamics (LD)
or its more computationally-efficient variant, stochastic gradient Langevin dynamics (SGLD), is
known to converge to the Gibbs distribution µ(v) ∝ e−λL(v) under various settings with sufficiently
small learning rate (Roberts et al., 1996; Dalalyan, 2017; Bubeck et al., 2018; Raginsky et al., 2017).
In our negative result about Langevin dynamics/diffusion, we directly analyze the Gibbs distribution
in order to disentangle the convergence and the generalization. In our negative result about Langevin
dynamics/diffusion, we directly analyze the Gibbs distribution to disentangle the convergence and
the generalization.

Notations. Unless otherwise specified, we use O(·),Ω(·),Θ(·) to hide absolute multiplicative fac-
tors and Õ(·), Θ̃(·), Ω̃(·) to hide poly-logarithmic factors in problem parameters such as d and τ . For

2Our analysis can be straightforwardly extended to v⋆ with other non-zero values.
3We also remark that it’s common to obtain only sub-optimal sample complexity guarantees in the sparsity

parameters with non-convex optimization methods (Li et al., 2017; Ge et al., 2016; Vaskevicius et al., 2019;
Chi et al., 2019) due to technical limitations.
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example, every occurrence of Õ(x) is a placeholder for a quantity f(x) that satisfies that for some
absolute constants c1, c2 > 0, ∀x, |f(x)| ≤ c1|x| · logc2(dτ).

2.2 MAIN RESULTS

Our main result can be summarized by the following theorem, which suggests that stochastic gradi-
ent descent with label noise can converge to the ground truth despite a potentially large initialization.

Theorem 2.1. In the setting of Section 2.1, given a target error ϵ > 0. Suppose we have n ≥ Θ̃(r2)

samples. For any label noise level δ ≥ Θ̃(τ2d2), we run SGD with label noise (Algorithm 1) with
the following learning rate schedule:

1. learning rate η0 = Θ̃(1/δ) for T0 = Θ̃(1) iterations,
2. learning rate η1 = Θ̃(1/δ2) for T1 = Θ̃(1/η1) iterations,
3. learning rate η2 = Θ̃(ϵ2/δ2) for T2 = Θ̃(1/η2) iterations.

Then, with probability at least 0.9, the final iterate v[T ] at time T = T0 + T1 + T2 satisfies

∥v[T ] − v⋆∥∞ ≤ ϵ. (3)

Here Θ̃(·) omits poly-logarithmic dependencies on 1/ϵ, d and τ .

In other words, with arbitrarily large initialization scale τ , we can choose large label noise level
and the learning rate schedule so that SGD with label noise succeeds in recovering the ground truth.
In contrast, when τ is large, gradient flow without noise trains in the “kernel” regime as shown
by (Woodworth et al., 2020; Chizat and Bach, 2018). The solution in this kernel regime minimizes
the RKHS distance to initialization, and in our setting equates to finding a zero-error solution with
minimum ∥v⊙2 − v[0]⊙2∥2. Such a solution could be arbitrarily far away when initialization scale
τ is large and therefore have poor generalization. Figure 1 (right) confirms GD performs poorly
with large initialization whereas SGD with minibatch or label noise works. We outline the proof of
Theorem 2.1 in Section 3.

Blanc et al. (2019) also study the implicit bias of the label noise. For our setting, their result implies
that when the iterate is near a global minimum for sufficient time, the iterates will locally move to the
direction that reduces the ℓ2-norm of v by a small distance (that is larger than random fluctuation).
However, it does not imply the global convergence to a solution with good generalization with large
(or any) initialization, which is what we prove in Theorem 2.1.4 Moreover, our analysis captures
the effect of the large noise or large learning rate – we require the ratio between the noise and the
gradient, which is captured by the value ηδ2, to be sufficiently large. This is consistent with the
empirical observation that good generalization requires a sufficiently large learning rate or small
batch (Goyal et al., 2017).

On the other hand, the following negative result for Langevin dynamics demonstrates that adding
Gaussian noise fails to recover the ground truth even when v⋆ = 0. This suggests that spherical
Gaussian noise does not induce a strong enough implicit bias towards low-norm solutions.
Theorem 2.2. Assume in addition to the setting in Section 2.1 that the ground truth v⋆ = 0. When
n ≤ d/3, with probability at least 0.9 over the randomness of the data, for any λ > 0, the Gibbs
distribution is not well-defined because the partition function explodes:∫

Rd

e−λL(v)dv =∞. (4)

As a consequence, Langevin diffusion does not converge to a proper stationary distribution.

Theorem 2.2 helps explain the behavior in Figure 1, where adding Gaussian noise generalizes poorly
for both synthetic and real data. In particular, in Figure 1 (right) adding Gaussian noise causes the
parameter to diverge for synthetic data, and Theorem 2.2 explains this observation. A priori, the
intuition regarding Langevin dynamics is as follows: as λ→ +∞, the Gibbs distribution (if it exists)
should concentrate on the manifold of global minima with zero loss. The measure on the manifold of

4It also appears difficult to generalize the local analysis directly to a global analysis because once the iterate
leaves the local minimum, all the local tools do not apply anymore, and it’s unclear whether the iterate will
converge to a new local minimum or getting stuck at some region.
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global minima should be decided by the geometry of L(·), and in particular, the curvature around the
global minimum. As λ → +∞, the mass should likely concentrate at the flattest global minimum
(according to some measure of flatness), which intuitively is v⋆ = 0 in this case.

However, our main intuition is that when n < d, even though the global minimum at v⋆ is the flattest,
there are also many bad global minima with only slightly sharper curvatures. The vast volume of
bad global minima dominate the flatness of the global minimum at v⋆ = 0 for any λ,5 and hence the
partition function blows up and the Gibbs distribution doesn’t exist. The proof of Theorem 2.2 can
be found in Section F.

3 ANALYSIS OVERVIEW OF SGD WITH LABEL NOISE (THEOREM 2.1)

3.1 WARM-UP: UPDATES WITH ONLY PARAMETER-DEPENDENT NOISE

Towards building intuition and tools for analyzing the parameter-dependent noise, in this subsection
we start by studying an extremely simplified random walk in one dimensional space. The random
walk is purely driven by mean-zero noisy updates and does not involve any gradient updates:

v ← v + ηξ · v, where ξ ∼ {±1}. (5)

Indeed, attentive readers can verify that when dimension d = 1, sample size n = 1, and v⋆ = 0,
equation (1) degenerates to the above random walk if we omit the gradient update term (second to
last term in equation (1)). We compare it with the standard Brownian motion (which is the analog
of gradient descent with spherical Gaussian noise under this extreme simplification)

v ← v + ηξ, where ξ ∼ N (0, 1). (6)

We initialize at v = 1. We observe that both random walks have mean-zero updates, so the mean
is preserved: E[v] = 1. The variances of the two random walks are also both growing because
any mean-zero update increases the variance. Moreover, the Brownian motion diverges because
it has a Gaussian marginal with variance growing linearly in t, and there is no limiting stationary
distribution.

However, the parameter-dependent random walk (5) has dramatically different behavior when η < 1:
the random variable v will eventually converge to v = 0 with high probability (though the variance
grows and the mean remains at 1.). This is because the variance of the noise depends on the scale of
v. The smaller v is, the smaller the noise variance is, and so the random walk tends to get “trapped”
around 0. This claim has the following informal but simple proof that does not strongly rely on the
exact form of the noise and can be extended to more general high-dimensional cases.

Consider an increasing concave potential function ϕ : R≥0 → R≥0 with ϕ′′ < 0 (e.g., ϕ(v) =
√
v

works). Note that when η < 1, the random variable v stays nonnegative. We can show that the
expected potential function decreases after any update

E[ϕ(v + ηξv)] ≈ E[ϕ(v) + ϕ′(v)ηξv + ϕ′′(v)η2ξ2v2] (by Taylor expansion)

= E[ϕ(v)] + E[ϕ′′(v)η2v2] < E[ϕ(v)] (by ϕ′′(v) < 0 and E[ξ] = 0.)

With more detailed analysis, we can formalize the Taylor expansion and control the decrease of the
potential function, and conclude that E [ϕ(v)] converges to zero. Then, by Markov’s inequality, with
high probability, ϕ(v) is tiny and so is v.6

From the 1-D case to the high-dimensional case. In one dimension, the bias is introduced because
of the varying scale of noise (i.e., the norm of the covariance). However, in the high dimensional
case, the shape of the covariance also matters. For example, if we generalize the random walk (1)
to high-dimensions by running d of the random walks in parallel, then we will observe the same
phenomenon, but the noise variances in different dimensions are not identical — they depend on the
current scales of the coordinates. (Precisely, the noise variance for dimension k is η2v2k.) However,
suppose we instead add noise of the same variance to all dimensions. Even if this variance depends
on the norm of v (say, η2∥v∥22), the implicit bias will be diminished, as the smaller coordinates will
have relatively outsized noise and the larger coordinates will have relatively insufficient noise.

5In fact, one can show that if this phenomenon happens for some λ > 0, then it happens for all other λ.
6The same proof strategy fails for the Brownian motion because v is not always nonnegative, and there is

no concave potential function over the real that can be bounded from below.
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Outline of the rest of the subsections. We will give a proof sketch of Theorem 2.1 that consists of
three stages. We first show in the initial stage of the training that label noise effectively decreases the
parameter on all dimensions, bringing the training from large initialization to a small initialization
regime, where better generalization is possible (Section 3.2). Then, we show in Section 3.3 that
when the parameter is decently small, with label noise and a decayed learning rate, the algorithm
will increase the magnitude of those dimensions in support set of v⋆, while keep decreasing the norm
of the rest of the dimensions. Finally, with one more decay, the algorithm can recover the ground
truth.

3.2 STAGE 0: LABEL NOISE WITH LARGE LEARNING RATE REDUCES THE PARAMETER
NORM

We first analyze the initial phase where we use a relatively large learning rate. When the initialization
is of a decent size, GD quickly overfits to a bad global minimum nearest to the initialization. In
contrast, we prove that SGD with label noise biases towards the small norm region, for a similar
reason as the random walk example with parameter-dependent noise in Section 3.1.

Theorem 3.1. In the setting of Theorem 2.1, recall that we initialize with v[0] = τ · 1. Assume
n ≥ Θ(log d). Suppose we run SGD with label noise with noise level δ ≥ Θ̃(τ2d2) and learning
rate η0 ∈ [Θ̃(τ2d2/δ2), Θ̃(1/δ)] for T0 = Θ̃(1/(η2δ2)) iterations. Then, with probability at least
0.99 over the randomness of the algorithm,

∥v[T0]∥∞ ≤ 1/d . (7)

Moreover, the minimum entry of v[T0] is bounded below by exp(−Õ((ηδ)−1)).

We remark that our requirement of η being large is consistent with the empirical observation that
a large initial learning rate helps generalization Goyal et al. (2017); Li et al. (2019b). We provide
intuitions and a proof sketch of the theorem in the rest of the subsection and defer the full proof
to Section B . Our proof is based on the construction of a concave potential function Φ similar to
Section 3.1. We will show that, at every step, the noise has a second-order effect on the potential
function and decrease the potential function by a quantity on the order of η2δ2 (omitting the d
dependency).7 On the other hand, the gradient step may increase the potential by a quantity at
most on the order of η (omitting d dependency again). Therefore, when η2δ2 ≳ η, we expect the
algorithm to decrease the potential and the parameter norm.

In particular, we define Φ(v) ≜
∑d

k=1 ϕ(vk) =
∑d

k=1

√
vk. By the update rule 2.1, the update for

a coordinate k ∈ [d] can be written as

v
[t+1]
k ← v

[t]
k − ηstx

(it)
k v

[t]
k − η[t]

(
(v[t]

⊙2
− v⋆⊙2)⊤x(it)

)
x
(it)
k v

[t]
k , (8)

where st is sampled from {−δ, δ} and it is sampled from [n]. Let g
(it)
k ≜ ((v[t]

⊙2 −
v⋆⊙2)⊤x(it))x

(it)
k be the component coming from the stochastic gradient. Using the fact that

ϕ(ab) = ϕ(a)ϕ(b) for any a, b > 0, we can evaluate the potential function at time t+ 1,

E
[
ϕ(v

[t+1]
k )

]
= E

[
ϕ(v

[t]
k )ϕ(1− ηstx

(it)
k − ηg

(it)
k )

]
= ϕ(v

[t]
k )E

[
ϕ(1− ηstx

(it)
k − ηg

(it)
k )

]
. (9)

Here the expectation is over st and it. We perform Taylor-expansion on the term ϕ(1 − ηstx
(it)
k −

ηg
(it)
k ) to deal with the non-linearity and use the fact that ηstx

(it)
k is mean-zero:

E
[
ϕ(1− ηstx

(it)
k − ηgitk )

]
≈ ϕ(1)− ϕ′(1)ηE

[
gitk

]
+

1

2
ϕ′′(1)E

[ (
ηstx

(it)
k − ηg

(it)
k

)2 ]
≤ ϕ(1)− ϕ′(1)ηE

[
gitk

]
+

1

2
ϕ′′(1)E

[ (
ηstx

(it)
k

)2 ]
≤ ϕ(1)− ϕ′(1)ηE

[
gitk

]
− Ω(η2δ2). (10)

7In general, any mean-zero noise has a second-order effect on any potential function. Therefore, when the
noise level is fixed, as η → 0, the effect of the noise diminishes. This is why a lower bound on the learning rate
is necessary for the noise to play a role.
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In the second line we used ϕ′′(1) < 0 from the concavity and E[ηstx(it)
k ] = 0, and the third line uses

the fact that st ∼ {±δ} and E[x(it)
k

2
] ≈ 1 (by the data assumption). The rest of the proof consists of

bounding the second term in equation (10) from above to show the potential function is contracting.

We first note for every it, it holds that |gitk | ≤ ∥v[t]
⊙2 − v⋆⊙2∥1∥x(it)∥2∞ ≤ (∥v[t]∥22 + r)∥x(it)∥2∞.

Furthermore, we can bound the ℓ2 norm of v[t] with the following lemma:
Lemma 3.2. In the setting of Theorem 3.1, for some failure probability ρ > 0, let b0 ≜ 6τd/ρ.
Then, with probability at least 1− ρ/3, we have that ∥v[t]∥2 ≤ b0 for any t ≤ T0.

Note that v[0] has ℓ2 norm τ
√
d, and here we prove that the norm does not exceed τd with high

probability. At the first glance, the lemma appears to be mostly auxiliary, but we note that it dis-
tinguishes label noise from Gaussian noise, which empirically causes the parameter to blow up as
shown in Figure 1. The formal proof is deferred to Section B.

By Lemma 3.2 and the bound on |gitk | in terms of ∥v[t]∥2, we have |gitk | ≤ (b20 + r)∥x(it)∥2∞ ≤
Õ(b20 + r) with b0 defined in Lemma 3.2 (up to logarithmic factors). Here we use again that each
entry of the data is from N (0, 1). Plugging these into equation (10) we obtain

E
[
ϕ(1− ηstx

(it)
k − ηgitk )

]
≤ 1 + ηÕ(b20 + r)− Ω(η2δ2) < 1− Ω(η2δ2)

where in the last inequality we use the lower bound on η to conclude η2δ2 ≳ ηÕ(b20+ r). Therefore,
summing equation (9) over all the dimensions shows that the potential function decreases exponen-
tially fast: E[Φ(v[t+1])] < (1 − Ω(η2δ2))Φ(v[t]). After T ≈ log(d)/(η2δ2) iterations, v[T ] will
already converge to a position such that E[Φ(v[T ])] ≲

√
1/d, which implies ∥v[T ]∥∞ ≲ 1/d with

probability at least 1− ρ and finishes the proof.

3.3 STAGE 1: GETTING CLOSER TO v⋆ WITH ANNEALED LEARNING RATE

Theorem 3.1 shows that the noise decreases the∞-norm of v to 1/d. This means that ℓ1 or ℓ2-norm
of v is similar to or smaller than that of v⋆ if r is constant, and we are in a small-norm region where
overfitting is less likely to happen. In the next stage, we anneal the learning rate to slightly reduce
the bias of the label noise and increase the contribution of the signal. Recall that v⋆ is a sparse
vector with support S ⊂ [d]. The following theorem shows that, after annealing the learning rate
(from the order of 1/δ2 to 1/δ), SGD with label noise increases entries in vS and decreases entries
in vS̄ simultaneously, provided that the initialization has ℓ∞-norm bounded by 1/d. (For simplicity
and self-containedness of the statement, we reset the time step to 0.)
Theorem 3.3. In the setting of Section 2.1, given a target error bound ϵ1 > 0, we assume that
n ≥ Θ̃(r2 log2(1/ϵ1)). We run SGD with label noise (Algorithm 1) with an initialization v[0] whose
entries are all in [ϵmin, 1/d], where ϵmin ≥ exp(−Õ(1)). Let noise level δ ≥ Θ̃(log(1/ϵ1)) and
learning rate η = Θ̃(1/δ2), and number of iterations T = Θ̃(log(1/ϵ1)/η). Then, with probability
at least 0.99, after T iterations, we have

∥v[T ]
S − v⋆S∥∞ ≤ 0.1 and ∥v[T ]

S̄
− v⋆S̄∥1 ≤ ϵ1. (11)

We remark that even though the initialization is relatively small in this stage, the label noise still
helps alleviate the reliance on small initialization. Li et al. (2017); Vaskevicius et al. (2019) showed
that GD converges to the ground truth with sufficiently small initialization, which is required to be
smaller than target error ϵ1. In contrast, our result shows that with label noise, the initialization does
not need to depend on the target error, but only need to have an ℓ∞-norm bound on the order of
1/d. In other words, v gets closer to v⋆ on both S and S̄ in our case, whereas in Li et al. (2017);
Vaskevicius et al. (2019) the vS̄ grows slowly.

The proof of this theorem balances the contribution of the gradient against that of the noise on S and
S̄. On S, the gradient provides a stronger signal than label noise, whereas on S̄, the implicit bias of
the noise, similar to the effect in Section 3.2, outweighs the gradient and reduces the entries to zero.
The analysis is more involved than that of Theorem 3.1, and we defer the full proof to Section C.

Stage 2: Convergence to the ground-truth v⋆: The conclusion of Theorem 3.3 still allows constant
error in the support, namely, ∥vS − v⋆S∥∞ ≤ 1/10. In Theorem D.1, we show that further annealing
the learning rate will let the algorithm fully converge to v⋆ with any target error ϵ.

8
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Proof of Theorem 2.1. In Section E of Appendix, we combine Theorem 3.1, Theorem 3.3, and
Theorem D.1 to prove our main Theorem 2.1.

4 CONCLUSION

In this work, we study the implicit bias effect induced by noise. For a quadratically-parameterized
model, we theoretically show that the parameter-dependent noise has a strong implicit bias, which
can help recover the sparse ground-truth from limited data. In comparison, our negative result
shows that such a bias cannot be induced by spherical Gaussian noise. Our result explains the
empirical observation that replacing mini-batch noise or label noise with Gaussian noise usually
leads to degradation in the generalization performance of deep models.
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A EXPERIMENTAL DETAILS

A.1 EXPERIMENTAL DETAILS FOR THE QUADRATICALLY-PARAMETERIZED MODEL

In the experiment of our quadratically-parameterized model, we use a 100-dimensional model with
n = 40 data randomly sampled from N (0, I100×100). We set the first 5 dimensions of the ground-
truth v⋆ as 1, and the rest dimensions as 0. We always initialize with v[0] = 1. We use a constant
learning rate 0.01 for all the experiments except for label noise. For label noise, we start from 0.01
and then decay the learning rate by a factor of 10 after 1×105 and 2×105 iterations. For “full batch”
experiment, we run full batch gradient descent without noise. For “small batch” experiment, in order
to fully disentangle the effect of learning rate and mini-batch sgd noise (i.e., to avoid implicit biases
from large lr rather than noise), we add small batch noise to full gradient via the following sampling
method: for each iteration, we randomly sample two data i and j from [n], and add δ(∇ℓ(i)(v) −
∇ℓ(j)(v)) to the full gradient (we set δ = 1.0 in our experiment). For label noise, we randomly
sample i ∈ [n] and s ∈ {δ,−δ} (we set δ = 1.0 in our experiment), and add noise ∇ℓ̃(i)(v) −
∇ℓ(i)(v) to full gradient, where ℓ̃(i)(v) ≜ 1

4 (fv(x
(i))− y(i) − s)2. For Gaussian noise experiments,

we add noise ξ ∼ N (0, σ2Id×d) to full gradient every iteration, where the values of σ are shown
in Figure 1. For experiments except for Gaussian noises, we train a total of 3 × 105 iterations. For
a more generous comparison, we run all the Gaussian noise experiments for 4 times longer (i.e.,
1.2 × 106 iterations) while plotting them in the same figure after scaling the x-axis by a factor of 4.
The test error is measured by the square of ℓ2 distance between v⊙2 and v⋆⊙2, which is the same as
the expectation of loss on a freshly randomly sampled data. The trianing and test error are plotted
in Figure 1.

A.2 EXPERIMENTAL DETAILS FOR DEEP NEURAL NETWORKS ON CIFAR100

We train a VGG19 model (Simonyan and Zisserman, 2014) on CIFAR100, using a small and large
batch baseline. We also experiment with adding Gaussian noise to the parameters after every gradi-
ent update as well as adding label noise in the following manner: with some probability that depends
on the current iteration count, we replace the original label with a randomly chosen one.

To add additional mean-zero noise to the gradient which simulates the effect of label noise in the
regression setting, we compute a noisy gradient of the cross-entropy loss ℓce with respect to model
output f(x) as follows:

∇̃f(x)ℓce(f(x), y) = ∇f(x)ℓce(f(x), y) + σlnz (12)

where z is a 100-dimensional vector (corresponding to each class) distributed according to
N (0, I100×100), and y is the (possibly flipped) label. We backpropagate using this noisy gradi-
ent when we compute the gradient of loss w.r.t. parameters for the updates. After tuning, we choose
the initial label-flipping probability as 0.1, and reduce it by a factor of 0.5 every time the learning
rate is annealed. We choose σln such that σln

√
E[∥z∥22] = 0.1, and also decrease σln by a factor of

0.5 every time the learning rate is annealed.

To add spherical Gaussian noise to the parameter every update, we simply set W ← W + σz after
every gradient update, where z is a mean-zero Gaussian whose coordinates are drawn independently
from N (0, 1). We tune this σ over the values shown in Figure 1.

We turn off weight decay and BatchNorm to isolate the regularization effects of just the noise alone.
Standard data augmentation is still present in our runs. Our small batch baseline uses a batch size of
26, and our large batch baseline uses a batch size of 256. In runs where we add noise, the batch size
is always 256. For all runs, we use an initial learning rate of 0.004. We train for 410550 iterations
(i.e., minibatches), annealing the learning rate by a factor of 0.1 at the 175950-th and 293250-th
iteration. Our models take around 20 hours to train on a single NVIDIA TitanXp GPU when the
batch size is 256. The final performance gap between label noise or small minibatch training v.s.
large batch or Gaussian noise is around 13% accuracy.
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A.3 ADDITIONAL PLOTS

Here we show empirical evidence that training with Gaussian noise fails to converge to a stationary
distribution. We train VGG19 network on CIFAR100, and plot the norm of model weight along the
training trajectory. As shown in Figure 2, the weigth norm of large batch (LB) and large batch with
label noise (LB+LN) both converge to some finite value, while the weight norm of large batch with
Gaussian noise (LB+GN) keeps increasing and fails to converge.
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Figure 2: The norm of model weight along training trajectory. We demonstrate that the model
weight fails to converge when training with Gaussian noise. In contrast, the weigth norm converges
for training with label noise or without noise.
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B PROOF OF THEOREM 3.1

In this section, we will first prove several lemmas on which the proof of Theorem 3.1 is built upon.
Then we will provide a proof of Theorem 3.1.
Definition B.1. (b-bounded coupling) Let v[0], v[1], · · · , v[T ] be a trajectory of label noise gradient
descent with initialization v[0]. We call the following random sequence ṽ[t] a b-bounded coupling of
v[t]: starting from ṽ[0] = v[0], for each time t < T , if

∥∥ṽ[t]∥∥
1
≤ b, we let ṽ[t+1] ≜ v[t+1]; otherwise

if
∥∥ṽ[t]∥∥

1
> b we don’t update, i.e., ṽ[t+1] ≜ ṽ[t].

Lemma B.2. In the setting of Theorem 3.1, assume
∥∥x(i)

∥∥
∞ ≤ bx for any i ∈ [n]. Let η ≤

ρ
6Tb2x(b

2
0+r)

, where b0 = 6τd
ρ . Let ṽ[t] be the b0-bounded coupling of v[t]. If ṽ[t] is always positive on

each dimension, then with probability at least 1− ρ
3 , there is∥∥∥ṽ[T ]

∥∥∥
1
≤ b0. (13)

Proof of Lemma B.2. Recall the update at t-th iteration is:

v[t+1] = v[t] − η((v[t]
⊙2
− v⋆⊙2)⊤x(it))x(it) ⊙ v[t] − ηstx

(it) ⊙ v[t]. (14)

We first bound the increase of
∥∥ṽ[t]∥∥

1
in expectation. When

∥∥ṽ[t]∥∥
1
≤ b0, there is:

E
[
ṽ
[t+1]
k

]
= ṽ

[t]
k − ηE[((ṽ[t]

⊙2
− v⋆⊙2)⊤x(i))xi

kṽ
[t]
k ] (15)

≤ ṽ
[t]
k + η(

∥∥∥ṽ[t]⊙2
∥∥∥
1
+
∥∥∥v⋆⊙2

∥∥∥
1
)b2xṽ

[t]
k (16)

≤ ṽ
[t]
k + η(b20 + r)b2xṽ

[t]
k (17)

where the first inequality is because we can separate the last term into v[t]
⊙2

part and v⋆⊙2 part and
bound them with

∥∥∥v[t]⊙2
∥∥∥
1

and
∥∥v⋆⊙2

∥∥
1

respectively, the second inequality is by
∥∥v[t]∥∥2

2
≤
∥∥v[t]∥∥2

1

and sparsity of v⋆. So summing over all dimensions we have E
[∥∥ṽ[t+1]

∥∥
1

]
≤
∥∥ṽ[t]∥∥

1
+ ηb0bx(b

2
0 +

r). This bound is obviously also true when
∥∥ṽ[t]∥∥

1
> b0, in which case ṽ[t+1] = ṽ[t].

We then bound the probability of
∥∥ṽ[T ]

∥∥
1

being too large:

Pr
(∥∥∥ṽ[T ]

∥∥∥
1
> b0

)
≤
E
[∥∥ṽ[T ]

∥∥
1

]
b0

(18)

≤τd+ Tηb0b
2
x(b

2
0 + r)

b0
(19)

≤ρ

3
, (20)

where the first inequality is Markov Inequality, the second is by the previous equation, and the third
is by assumption of η and the definition of b0.

Proof of Lemma 3.2. Notice that when
∥∥ṽ[T ]

∥∥
1
≤ b0, there is v[T ] = ṽ[T ], Lemma 3.2 naturally

follows from Lemma B.2.

Definition B.3. (b-bounded potential function) For a vector v that is positive on each dimension, we
define the b-bounded potential function Φ(v) as follows: if ∥v∥1 ≤ b, we let Φ(v) ≜

∑d
k=1

√
vk;

otherwise Φ(v) ≜ 0.

Lemma B.4. In the setting of Theorem 3.1, let ϵ0 = 1/d. Assume
∥∥x(i)

∥∥
∞ ≤ bx for i ∈ [n] with

some bx > 0, Ei[(x
(i)
k )2] ≥ 2

3 for all k ∈ [d]. Let b0 = 6τd
ρ . Assume ηδbx + η(b20 + r)b2x ≤ 1

16 ,

ηδ2 ≥ 32(b20 + r)b2x and T = ⌈ 32
η2δ2 log(

ρ
√
ϵ0

3d
√
τ
)⌉. Let ṽ[t] be the b0-bounded coupling of v[t], and

Φ(·) is the b0-bounded potential function. If ṽ[t] is always positive on each dimension, then with
probability at least 1− ρ

3 , there is

Φ(ṽ[T ]) ≤
√
ϵ0. (21)

15
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Proof of Lemma B.4. We first show Φ(ṽ[t]) decreases exponentially in expectation. If
∥∥ṽ[t]∥∥

1
≤ b0,

we have:

E
[
Φ(ṽ[t+1])

]
≤

d∑
k=1

E
[√

ṽ
[t+1]
k

]
(22)

=

d∑
k=1

Est,it

[√
ṽ
[t]
k − ηstx

(it)
k ṽ

[t]
k − η((ṽ[t]

⊙2 − v⋆⊙2)⊤x(it))x
(it)
k ṽ

[t]
k

]
(23)

≤
d∑

k=1

√
ṽ
[t]
k Est,it

[√
1 + ηstx

(it)
k + η(b20 + r)b2x

]
(24)

(25)

where the second inequality is because
∥∥ṽ[t]∥∥2

2
=
∥∥ṽ[t]∥∥2

1
≤ b20. Toward bounding the expectation,

we notice that by Taylor expansion theorem, there is for any general function g(x) =
√
1 + x, there

is

g(1 + x) ≤ g(1) + g′(1)x+
1

2
g′′(1)x2 +

M

6
|x|3, (26)

where M is upper bound on |g′′′(1 + x′)| for x′ in 0 to x, which is less than 3 if |x| ≤ 1
2 . So in our

theorem if ∆ ≜ ηstx
(it)
k + η(b20 + r)b2x ∈ [− 1

2 ,
1
2 ], we have√

1 + ηstx
(it)
k + η(b20 + r)b2x ≤ 1 +

1

2
∆− 1

8
∆2 +

1

2
|∆|3. (27)

Also since Est,it [∆] = η(b20 + r)b2x, Est,it [∆
2] ≥ η2δ2Eit [(x

(it)
k )2] ≥ 2

3η
2δ2, we have when

|∆| ≤ 1
16 and ηδ2 ≥ 32(b20 + r)b2x, we have Est,it [

√
1 + ∆] ≤ 1−Est,it [1− 1

16∆
2] ≤ 1− 1

32η
2δ2.

So

E
[
Φ(ṽ[t+1])

]
≤ (1− 1

32
η2δ2)Φ(ṽ[t]). (28)

Also notice that when
∥∥ṽ[t]∥∥

1
> b0, there is Φ(ṽ[t+1]) = Φ(ṽ[t]) = 0, so obviously we have

E[Φ(ṽ[t+1])] ≤ (1− 1
32η

2δ2)Φ(ṽ[t]) always true.

Next we prove that Φ(ṽ[T ]) ≤ √ϵ0 with probability more than 1− ρ
2 . This is because:

Pr
(
Φ(ṽ[T ]) >

√
ϵ0

)
≤

E
[
Φ(ṽ[T ])

]
√
ϵ0

(29)

≤
(1− 1

32η
2δ2)T d

√
τ

√
ϵ0

(30)

≤ ρ

3
. (31)

where the first inequality if by Markov Inequaltiy, the second inequality is by the previous inequality,
and the last inequality is because T = ⌈ 32

η2δ2 log(
3d

√
τ

ρ
√
ϵ0
)⌉.

Proof of Theorem 3.1. Let ρ = 0.01, ϵ0 = 1/d. By Lemma G.1, and Lemma G.2, when n ≥
Θ(log d), with probability at least 1 − ρ

3 there is
∥∥x(i)

∥∥
∞ ≤ bx for all i ∈ [n] with some bx =

Θ(
√
log(nd)), and Ei[(x

(i)
k )2] ≥ 2

3 for all k ∈ [d].

Let b0 = 6τd
ρ . We try to define η and δ such that when T = ⌈ 32

η2δ2 log(
3d

√
τ

ρ
√
ϵ0
)⌉, the assumptions η ≤

ρ
6Tb2x(b

2
0+r)

and ṽ[t] always being positive in Lemma B.2 and assumptions ηδbx + η(b20 + r)b2x ≤ 1
16

and ηδ2 ≥ 32(b20 + r)b2x in Lemma B.4 are satisfied.

Assume δ ≥ 6×322b3x
(b20+r)

ρ log( 3d
√
τ

ρ
√
ϵ0
), then we only need η ∈

[
6×32b2x

ρδ2 (b20 + r) log( 3d
√
τ

ρ
√
ϵ0
), 1

32δbx

]
,

and then all the above assumptions are satisfied.

16
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Let ṽ[t] be the b0-bounded coupling of v[t]. According to Lemma B.4, we know with probability

at least 1 − ρ
3 , Φ(ṽ[T ]) ≤ √ϵ0, which means that either

∑d
k=1

√
ṽ
[T ]
k ≤ √ϵ0 or

∥∥ṽ[T ]
∥∥
1
> b0.

According to Lemma B.2, we know with probability at most ρ
3 ,
∥∥ṽ[T ]

∥∥
1
> b0. Combining these

two statements, we know with probability at least 1 − 2ρ
3 ,
∥∥ṽ[T ]

∥∥
1
≤ b0 and

∑d
k=1

√
ṽ
[T ]
k ≤ √ϵ0.

Notice that
∥∥ṽ[T ]

∥∥
1
≤ b0 implies v[T ] = ṽ[T ], while

∑d
k=1

√
ṽ
[T ]
k ≤ √ϵ0 implies ṽ[T ]

k ≤ ϵ0 for all
dimension k, so we’ve finished the proof for the upper bound.

We then give a lower bound for each dimension of ṽ[T ]. We can bound the decrease of any dimension
k at time t:

ṽ
[t+1]
k ≥ (1− ηδ − η(b20 + r))ṽ

[t]
k (32)

≥ (1− 2ηδ)ṽ
[t]
k . (33)

where the first inequality is by update rule and the second is because δ > (b20 + r). Putting in the
value of T , we have

ṽ
[T ]
k ≥ (1− 2ηδ)T τ (34)

> exp

(
−64

ηδ
log(

3d
√
τ

ρ
√
ϵ0

)

)
. (35)

17
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C PROOF OF THEOREM 3.3

In this section, we will first prove several lemmas on which the proof of Theorem 3.3 is built upon.
Then we will provide a proof of Theorem 3.3.

Definition C.1. ((b, ϵ)-bounded coupling) Let v[0], v[1], · · · , v[T ] be a trajectory of label noise gra-
dient descent with initialization v[0]. Recall S ⊂ [d] is the support set of v⋆, we notate ṽ

[t]
S a

r-dimensional vector composed with those dimensions in S of ṽ[t], and ṽ
[t]

S̄
the other d − r dimen-

sions. We call the following random sequence ṽ[t] a (b, ϵ)-bounded coupling of v[t]: starting from

ṽ[0] = v[0], for each time t < T , if
∥∥∥ṽ[t]S̄

∥∥∥
1
≤ ϵ and

∥∥∥ṽ[t]S

∥∥∥
∞
≤ b, we let ṽ[t+1] ≜ v[t+1]; otherwise

ṽ[t+1] ≜ ṽ[t].
Lemma C.2. In the setting of Theorem 3.3, let ρ ≜ 1

100 , c1 ≜ 1
10 , ϵ̃1 ≜ 12

ρ , Cx ≜
maxj ̸=k |Ei[x

(i)
j x

(i)
k ]|. Assume

∥∥x(i)
∥∥
∞ ≤ bx for i ∈ [n] for some bx > 0, and Ei[(x

(i)
k )2] ≥ 2

3

for k ∈ [d]. Let ṽ[t] be a (1 + c1, ϵ̃1)-bounded coupling of v[t]. Assume c21
8ηδ2b2x

≥ log 6rT 2

ρ ,
(ϵ̃21 + r)Cxb

2
x ≤ c1

20 and δ ≥ bx(ϵ̃
2
1 + r). Then, with probability at least 1 − ρ

6 , there is∥∥∥ṽ[T ]
S

∥∥∥
∞
≤ 1 + c1.

Proof of Lemma C.2. For any fixed 1 ≤ t1 < t2 ≤ T and dimension k ∈ S, we consider the event
that ṽ[t1] ∈ [1+ c1

3 , 1+
c1
2 ], and at time t2 it is the first time in the trajectory such that ṽ[t2] > 1+ c1.

We first bound the probability of this event happens, i.e., the following quantity:

Pr
(
ṽ
[t2]
k > 1 + c1 ∧ ṽ

[t1]
k ≤ 1 +

c1
2
∧ ṽ

[t1:t2]
k ∈ [1 +

c1
3
, 1 + c1]

)
, (36)

where ṽ
[t1:t2]
k ∈ [1 + c1

3 , 1 + c1] means that for all t such that t1 ≤ t < t2, there is 1 + c1
3 ≤ ṽ

[t]
k ≤

1 + c1.

Notice that when
∥∥∥ṽ[t]S̄

∥∥∥
1
≤ ϵ̃1 and

∥∥∥ṽ[t]S

∥∥∥
∞
≤ 1 + c1 and ṽ

[t1:t+1]
k ∈ [1 + c1

3 , 1 + c1], there is

E[ṽ[t+1]
k − 1] =Est,it

[(
1 + ηstx

it
k − η((ṽ[t]

⊙2
− v⋆⊙2)⊤x(it))x

(it)
k

)
ṽ
[t]
k − 1

]
(37)

≤(ṽ[t]k − 1)− 2

3
ηṽ

[t]
k (ṽ

[t]
k + 1)(ṽ

[t]
k − 1) + η(ϵ̃21Cx + rCx)b

2
xṽ

[t]
k (38)

≤(1− η)(ṽ
[t]
k − 1). (39)

where the first inequality is because
∥∥∥ṽ[t]S̄

∥∥∥2
2
≤ ϵ̃21 and Eit [(x

(i)
k )2] ≥ 1

2 , the second inequality is

because (ϵ̃21 + r)b2xCx ≤ c1
20 . Also, we can bound the variance of this martingale as

Var
[
ṽ
[t+1]
k − 1 | ṽ[t] − 1

]
= Var

[
ηstx

(it)
k ṽ

[t]
k

]
+Var

[
η((ṽ[t]

⊙2
− v⋆⊙2)⊤x(it))x

(it)
k ṽ

[t]
k

]
(40)

≤ (ηδbx(1 + c1))
2
+ η2(ϵ̃21 + r)2b4x(1 + c1)

2 (41)

≤ 4η2δ2b2x, (42)

where the first inequality is because ηstx
(it)
k ṽ

[t]
k is mean-zero, the second inequality is by

∥∥x(i)
∥∥
∞ ≤

bx, the third inequality is by δ ≥ bx(ϵ̃
2
1 + r).

By Lemma G.3, we have

Pr(ṽ
[t2]
k − 1 > c1) (43)

≤e
−c21

8η2δ2b2x
∑t2−t1−1

t=0 (1−η)2t (44)

≤e
−c21

8ηδ2b2x , (45)

where the first inequality is by Lemma G.3, the second inequality is by taking the sum of denomina-
tor.
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Finally, we finish the proof with a union bound. Since if
∥∥∥ṽ[T ]

S

∥∥∥
∞

> 1+c1, the event in Equation 36
has to happen for some k ∈ S and 1 ≤ t1 < t2 ≤ T , so we have

Pr
(∥∥∥ṽ[T ]

S

∥∥∥
∞

> 1 + c1

)
(46)

≤
∑
k∈S

∑
1≤t1<t2≤T

Pr
(
ṽ
[t2]
k > 1 + c1 ∧ ṽ

[t1]
k ≤ 1 +

c1
2
∧ ṽ

[t1:t2]
k ∈ [1 +

c1
3
, 1 + c1]

)
(47)

≤ rT 2e
−c21

8ηδ2b2x (48)

≤ ρ

6
, (49)

where the last inequality is by assumption.

Lemma C.3. In the setting of Lemma C.2, assume (ϵ̃21 + r)Cx ≤ ρ
12Tηb2x

. Then, with probability at

least 1− ρ
6 , there is

∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ ϵ̃1.

Proof of Lemma C.3. We first bound the increase of
∥∥∥ṽ[t]S̄

∥∥∥
1

in expectation. When
∥∥∥ṽ[t]S

∥∥∥
∞
≤ 1+ c1

and
∥∥∥ṽ[t]S̄

∥∥∥
1
≤ ϵ̃1, for any k /∈ S, there is:

E
[
ṽ
[t+1]
k

]
= ṽ

[t]
k − ηEi

[
((ṽ[t]

⊙2
− v⋆⊙2)⊤x(i))x

(i)
k ṽ

[t]
k

]
(50)

≤ ṽ
[t]
k + η(ϵ̃21 + r)Cxb

2
xṽ

[t]
k . (51)

because we can bound the dimensions in S and those not in S respectively. So summing over all
dimensions not in S we have E

[∥∥∥ṽ[t+1]

S̄

∥∥∥
1

]
≤
∥∥∥ṽ[t]S̄

∥∥∥
1
+ η(ϵ̃21 + r)Cxb

2
xϵ̃1. This bound is obviously

also true when
∥∥∥ṽ[t]S

∥∥∥
∞

> 1 + c1 and
∥∥∥ṽ[t]S̄

∥∥∥
1
> ϵ̃1.

We then bound the probability of
∥∥∥ṽ[T ]

S̄

∥∥∥
1

being too large:

Pr
(∥∥∥ṽ[T ]

S̄

∥∥∥
1
> ϵ̃1

)
≤
E
[∥∥∥ṽ[T ]

S̄

∥∥∥
1

]
ϵ̃1

(52)

≤1 + Tηϵ̃1(ϵ̃
2
1 + r)Cxb

2
x

ϵ̃1
(53)

≤ρ

6
. (54)

where the first inequality is Markov Inequality, the second is by
∥∥∥ṽ[0]S̄

∥∥∥
1
≤ 1 since every dimension

is less than 1/d, the third inequality is because ϵ̃1 = 12
ρ and (ϵ̃21 + r)Cx ≤ ρ

12Tηb2x
.

Lemma C.4. In the setting of Lemma C.2, assume (ϵ̃21 + r)Cxb
2
x < c1

12 −
c21
4 , ηδ2 ≤ c1

8 , Tη ≥
16
c1

log 1
ϵmin

and T
δ2 ≥

29

c21
log 6r

ρ . Then, for any k ∈ S, with probability at least 1 − ρ
6r , either

maxt≤T ṽ
[t]
k ≥ 1− c1

2 , or
∥∥∥ṽ[T ]

S

∥∥∥
∞

> 1 + c1, or
∥∥∥ṽ[T ]

S̄

∥∥∥
1
> ϵ̃1.

Proof of Lemma C.4. Fix k ∈ S. Let v̂[t] be the following coupling of ṽ[t]: starting from v̂[0] = ṽ[0],
for each time t < T , if

∥∥∥ṽ[t]S̄

∥∥∥
1
≤ ϵ̃1 and

∥∥∥ṽ[t]S

∥∥∥
∞
≤ 1+ c1 and ṽ

[t]
k ≤ 1− c1

2 , we let v̂[t+1] ≜ ṽ[t+1];

otherwise v̂[t+1] ≜ (1+ c1
2 η)v̂

[t]. Intuitively, whenever ṽ[t] exceeds the proper range, we only times
v̂[t] by 1 + c1

2 η afterwards, otherwise we let it be the same as ṽ[t].
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We first show that −t log(1+ c1
2 η) + log v̂

[t]
k is a supermartingale, i.e., E[log v̂[t+1]

k | v̂[t]] ≥ log(1+
c1
2 η) + log v̂

[t]
k . This is obviously true if

∥∥∥ṽ[t]S̄

∥∥∥
1
> ϵ̃1 or

∥∥∥ṽ[t]S

∥∥∥
∞

> 1 + c1 or ṽ
[t]
k > 1 − c1

2 .
Otherwise, there is

E[log v̂[t+1]
k | v̂[t]] = E[log ṽ[t+1]

k | ṽ[t]] (55)

= Est,it

[
log
(
1 + ηst − η(ṽ[t]

⊙2
− v⋆⊙2)⊤x(it)x

(it)
k

)]
+ log ṽ

[t]
k (56)

≥ Est

[
log

(
1 + ηst +

2

3
η(1− (ṽ

[t]
k )2)− η(ϵ̃21 + r)Cxb

2
x

)]
+ log ṽ

[t]
k (57)

≥ log(1 +
c1
4
η) + log ṽ

[t]
k , (58)

where the first inequality is by the update rule, the second inequality is because (ϵ̃21 + r)Cxb
2
x <

c1
12 −

c21
4 and 4ηδ2 ≤ c1

2 and δ ≥ ϵ̃21 + r. So by Azuma inequality, we have

Pr
(
v̂
[T ]
k < 1− c1

2

)
(59)

≤e−
2(T log (1+

c1
4

η)+log ϵmin−log(1− c1
2

))
2

T (2ηδ)2 (60)

≤e−
( 1
2
T log (1+

c1
4

η))2

2Tη2δ2 (61)

≤e−
Tc21
29δ2 (62)

≤ ρ

6r
. (63)

where the first inequality is because Azuma inequality and Var[log v̂
[t+1]
k | v̂[t]] ≤ (2ηδ)2, and the

second inequality is because T log(1 + c1
4 η) ≥ 2 log 1

ϵmin
which is true because Tη ≥ 16

c1
log 1

ϵmin
,

the third inequality is because log(1+ c1
4 η) ≥

c1
8 η, the last inequality is because T

δ2 ≥
29

c21
log 6r

ρ .

Lemma C.5. In the setting of Lemma C.2, assume (ϵ̃21 + r)Cxb
2
x ≤ c1

20 and c21
8ηδ2 ≥ log 6rT 2

ρ . Then,

for any k ∈ S, with probability at least 1− ρ
6r , either maxt<T ṽ

[t]
k < 1− c1

2 or ṽ[T ]
k ≥ 1− c1 .

Proof of Lemma C.5. For any fixed 1 ≤ t1 < t2 ≤ T and dimension k ∈ S, we consider the event
that ṽ[t1] ∈ [1− c1

2 , 1−
c1
3 ], and at time t2 it is the first time in the trajectory such that ṽ[t2] > 1 < c1.

We first bound the probability of this event happens, i.e., the following quantity:

Pr
(
ṽ
[t2]
k < 1− c1 ∧ ṽ

[t1]
k ≥ 1− c1

2
∧ ṽ

[t1:t2]
k ∈ [1− c1, 1−

c1
3
]
)
, (64)

where ṽ
[t1:t2]
k ∈ [1− c1, 1− c1

3 ] means that for all t such that t1 ≤ t < t2, there is 1− c1 ≤ ṽ
[t]
k ≤

1− c1
3 .

Notice that when
∥∥∥ṽ[t]S̄

∥∥∥
1
≤ ϵ̃1 and

∥∥∥ṽ[t]S

∥∥∥
∞
≤ 1 + c1 and ṽ

[t1:t+1]
k ∈ [1− c1, 1− c1

3 ],

E[1− ṽ
[t+1]
k ] =Est,it

[
1− (1 + ηstx

it
k − η(ṽ[t]

⊙2
− v⋆⊙2)⊤x(it)x

(it)
k )ṽ

[t]
k

]
(65)

≤(1− ṽ
[t]
k )− 2

3
ηṽ

[t]
k (ṽ

[t]
k + 1)(1− ṽ

[t]
k ) + η(ϵ̃21 + r)Cxb

2
xṽ

[t]
k (66)

≤(1− η)(1− ṽ
[t]
k ). (67)

where the first inequality is because
∥∥∥ṽ[t]S̄

∥∥∥2
2
≤ ϵ̃21, the second inequality is because (ϵ̃21 + r)Cxb

2
x ≤

c1
20 . Also, we can bound the variance of this martingale as

Var
[
1− ṽ

[t]
k | ṽ

[t]
k

]
≤ (2ηδ)

2
. (68)
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By Lemma G.3, we have

Pr(1− ṽ
[t2]
k > c1) (69)

≤e
−c21

8η2δ2
∑t2−t1−1

t=0 (1−η)2t (70)

≤e
−c21
8ηδ2 , (71)

where the first inequality is by Lemma G.3, the second inequality is by taking the sum of denomina-
tor.

Finally, we finish the proof with a union bound. Since if maxt<T ṽ
[t]
k > 1 − c1

2 but ṽ[T ]
k < 1 − c1,

the event in Equation 64 has to happen for some 1 ≤ t1 < t2 ≤ T , so we have

Pr

(
max
t<T

ṽ
[t]
k > 1− c1

2
∧ ṽ

[T ]
k < 1− c1

)
(72)

≤
∑

1≤t1<t2≤T

Pr
(
ṽ
[t2]
k < 1− c1 ∧ ṽ

[t1]
k ≥ 1− c1

2
∧ ṽ

[t1:t2]
k ∈ [1− c1, 1−

c1
3
]
)

(73)

≤T 2e
−c21
8ηδ2 (74)

≤ ρ

6r
. (75)

Definition C.6. ((b, ϵ)-bounded potential function) For a vector v that is positive on each dimension,
we define the (b, ϵ)-bounded potential function Φ(v) as follows: if ∥vS̄∥1 ≤ ϵ and ∥vS∥∞ ≤ b, we
let Φ(v) ≜

∑
k/∈S

√
vk; otherwise Φ(v) ≜ 0.

Lemma C.7. In the setting of Lemma C.2, assume 2
3ηδ

2 > 32(ϵ̃21 + r)Cxb
2
x and Tη2δ2 ≥

16 log
(

6
√
d

ρ
√
ϵ1

)
. Then, with probability at least 1− ρ

6 , there is Φ(ṽ[T ]) ≤ √ϵ1.

Proof of Lemma C.7. We first show Φ(ṽ[t]) decreases exponentially in expectation. For any 0 ≤
t ≤ T , if

∥∥∥ṽ[t]S

∥∥∥
∞
≤ 1 + c1 and

∥∥∥ṽ[t]S̄

∥∥∥
1
] ≤ ϵ̃1, we have:

E
[
Φ(ṽ[t+1])

]
≤
∑
k/∈S

E
[√

ṽ
[t+1]
k

]
(76)

=

d∑
k/∈S

Est,it

[√
ṽ
[t]
k + ηstx

it
k ṽ

[t]
k − η(ṽ[t]

⊙2 − v⋆⊙2)⊤x(it)x
(it)
k ṽ

[t]
k

]
(77)

≤
∑
k/∈S

√
ṽ
[t]
k Est,it

[√
1 + ηstx

(it)
k + η(ϵ̃21 + r)Cxb2x

]
(78)

≤ (1− 1

16
η2δ2)Φ(ṽ[t]), (79)

where the second inequality is because
∥∥ṽ[t]∥∥2

2
≤ ϵ̃21, the last inequality is by Taylor expansion

and 2
3ηδ

2 > 32(ϵ̃21 + r)Cxb
2
x. Also notice that when

∥∥∥ṽ[t]S

∥∥∥
∞

> 1 + c1 or
∥∥∥ṽ[t]S̄

∥∥∥
1
> ϵ̃1, there is

Φ(ṽ[t+1]) = p(ṽ[t]) = 0, so obviously we have E[Φ(ṽ[t+1])] ≤ (1− 1
16η

2δ2)Φ(ṽ[t]) always true.
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Next we bound the probability of Φ(ṽ[T ]) ≤ √ϵ1:

Pr(Φ(ṽ[T ]) >
√
ϵ1) ≤

E[Φ(ṽ[T ])]
√
ϵ1

(80)

≤
(1− 1

16η
2δ2)T

√
d

√
ϵ1

(81)

≤ e−
1
16Tη2δ2

√
d

√
ϵ1

(82)

≤ ρ

6
. (83)

where the first inequality if by Markov Inequaltiy, the second inequality is by the previous inequality
and initially Φ(v[0]) ≤

√
d, the third is by 1− x ≤ e−x for any x ∈ R, and the last inequality is by

Tη2δ2 ≥ 16 log
(

6
√
d

ρ
√
ϵ1

)
.

Proof of Theorem 3.3. Let ρ = 0.01, c1 = 0.1, ϵ̃1 ≜ 12
ρ , Cx ≜ maxj ̸=k |Ei[x

(i)
j x

(i)
k ]|. Let bx =√

2 log 30d2

ρ = Θ̃(1). According to Lemma G.1, when n ≤ d, there is with probability at least

1− ρ
15 we have

∥∥x(i)
∥∥
∞ ≤ bx for i ∈ [d].

Assume δ be positive number such that 16
δ2 log

6
√
d

ρϵmin
√
ϵ1
≤ 1 and δ ≥ bx(ϵ̃

2
1 + r). (since ϵmin ≥

exp(−Õ(1)) this means δ ≥ Θ̃(r + log(1/ϵ1)) .) Let P =
c21

32δ2b2x log 5r
ρ

, Q = 2 log 1
P , η =

min{PQ , 16
δ2 } = Θ̃( 1

δ2 ), T = 16
η2δ2 log

6
√
d

ρϵmin
√
ϵ1

= Θ̃(log(1/ϵ1)/η). Assume Cxb
2
x(ϵ̃

2
1 + r) ≤

min
{

ηδ2

48 , ρ
12Tη

}
= Θ̃(ρ/ log(1/ϵ1)). (this means Cx ≤ Θ̃( ρ

r log(1/ϵ1)
).)

We show the assumptions in the previous lemmas are all satisfied. The assumption c21
8ηδ2b2x

≥
log 6rT 2

ρ in Lemma C.2 is satisfied by

c21
8ηδ2b2x

≥ log
6rT 2

ρ
(84)

⇐ c21
8ηδ2b2x

≥ log
6r

ρ
+ 4 log

1

η
(85)

⇐ η log
1

η
≤ c21

32δ2b2x log
6r
ρ

= P, (86)

where the first is by T ≤ 1
η2 , the second is by log 6r

ρ + 4 log 1
η ≤ 4 log 6r

ρ log 1
η , and the last line is

true because

η log
1

η
≤ P

Q
log

Q

P
(87)

= P (
logQ

Q
+

log 1/P

Q
) (88)

≤ P. (89)

The assumption δ ≥ bx(ϵ̃
2
1 + r) in Lemma C.2 is satisfied by definition of δ. The assumption

(ϵ̃21 + r)Cxb
2
x ≤ c1

20 in Lemma C.2 is satisfied by

Cxb
2
x(ϵ̃

2
1 + r) ≤ ηδ2

48
≤ c21

96
≤ c1

20
, (90)

where we use

ηδ2 ≤ δ2
P

Q
≤ c21

2
. (91)
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The assumption (ϵ̃21 + r)Cxb
2
x ≤

ρ
12Tη in Lemma C.3 is satisfied by assumption of Cx.

The assumption T
δ2 ≥

29

c21
log 6r

ρ in Lemma C.4 is satisfied by

T

δ2
≥ 16

η2δ4
log

6r

ρ
≥ 26

c41
log

6r

ρ
≥ 29

c21
log

6r

ρ
. (92)

The other two assumptions (ϵ̃21 + r)Cxb
2
x < c1

12 −
c21
4 and ηδ2 ≤ c1

8 in Lemma C.4 follows from

Cxb
2
x(ϵ̃

2
1 + r) < ηδ2

48 and ηδ2 ≤ c21
2 . The assumption Tη ≥ 16

c1
log 1

ϵmin
in Lemma C.4 is satisfied by

the definition of T .

The assumptions (ϵ̃21 + r)Cx ≤ c1
20 and c21

8ηδ2 ≥ log 6rT 2

ρ in Lemma C.5 are satisfied by the same

reason as that of Lemma C.2. The assumption Tη2δ2 ≥ 16 log
(

6
√
d

ρ
√
ϵ1

)
in Lemma C.7 is satisfied

by the definition of T , the assumption 2
3ηδ

2 > 32(ϵ̃21 + r)Cxb
2
x in Lemma C.7 is satisfied by the

definition of Cx.

Since data are randomly from N (0, I), with n ≥ Θ̃(( r log(1/ϵ1)
ρ )2) data, there is with probability at

least 1− ρ
18 there is Cxb

2
x(ϵ̃

2
1 + r) ≤ min

{
ηδ2

48 , ρ
12Tη

}
= Θ̃(log(1/ϵ1)/η). Meanwhile, according

to Lemma G.2, with n ≥ Θ̃(1) data with probability at least 1 − ρ
18 there is Ei[(x

(i)
k )2] ≥ 2

3 for
all k ∈ [d]. According to definition of bx, we know when n ≤ d, with probability at least 1 − ρ

18

there is also
∥∥x(i)

∥∥
∞ ≤ bx for all i ∈ [n]. In summary, with d ≥ n ≥ Θ̃(( r log(1/ϵ1)

ρ )2) data, with

probability at least 1 − ρ
6 there is Cxb

2
x(ϵ̃

2
1 + r) ≤ min

{
ηδ2

48 , ρ
12Tη

}
and Ei[(x

(i)
k )2] ≥ 2

3 for all

k ∈ [d] and
∥∥x(i)

∥∥
∞ ≤ bx for all i ∈ [n].

Now we use these lemmas to finish the proof of the theorem. Let ṽ[t] be a (1 + c1, ϵ̃1)-bounded
coupling of v[t], we only need to prove with probability at least 1 − ρ, there is

∥∥∥ṽ[T ]
S − 1

∥∥∥
∞
≤ c1

and
∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ ϵ1, which follows from a union bound of the previous propositions. In particular,

Lemma C.2 and Lemma C.3 tell us that probability of
∥∥∥ṽ[T ]

S

∥∥∥
∞

> 1 + c1 or
∥∥∥ṽ[T ]

S̄

∥∥∥
1
> ϵ̃1 is

at most ρ
3 . Lemma C.4 and Lemma C.5 tell us for any k ∈ S, probability of ṽ

[T ]
k < 1 − c1

and
∥∥∥ṽ[T ]

S

∥∥∥
∞
≤ 1 + c1 and

∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ ϵ̃1 is at most ρ

3r . Lemma C.7 tells us the probability of∥∥∥ṽ[T ]

S̄

∥∥∥
1
> ϵ1 and

∥∥∥ṽ[T ]
S

∥∥∥
∞
≤ 1 + c1 and

∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ ϵ̃1 is at most ρ

6 . Combining them together tells

us that probability of
∥∥∥ṽ[T ]

S − 1
∥∥∥
∞

> c1 or
∥∥∥ṽ[T ]

S̄

∥∥∥
1
> ϵ1 is at most ρ.
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D PROOF OF CONVERGENCE TO GROUND TRUTH

The conclusion of Theorem 3.3 still allows constant error in the support, namely, ∥vS − v⋆S∥∞ ≤
1/10. The following theorem shows that further annealing the learning rate will let the algorithm
fully converge to v⋆ with any target error. The end-to-end proof of the convergence to ground truth
can be found in the next section (Section E).
Theorem D.1. Let s ≥ 2 be the index of the current round of bootstrapping. Let constant c0 = 1/10.
In the setting of Theorem 2.1, assume v[0] is an initial parameter satisfying ∥v[0]S − v⋆S∥∞ ≤ cs−1

and ∥v[0]
S̄
− v⋆

S̄
∥1 ≤ ϵs−1, where 0 < ϵs−1 ≤ cs−1 ≤ c0. Given a failure rate ρ > 0. Assume

n ≥ Θ̃(r2). Suppose we run SGD with label noise with noise level δ ≥ 0 and learning rate
η ≤ Θ̃(c2s/(δ

2 + r2)) for T = log(4/c0)/η iterations. Then, with probability at least 1− ρ over the
randomness of the algorithm and data, there is ∥v[T ]

S − v⋆S∥∞ ≤ cs ≜ cs−1c0 and ∥v[T ]

S̄
− v⋆

S̄
∥1 ≤

ϵs ≜ (4/c0)
2cs−1ϵs−1. Here Θ̃(·) omits poly logarithmic dependency on ρ.

In the rest of this section, we will first prove several lemmas on which the proof of Theorem D.1 is
built upon. Then we will provide a proof of Theorem D.1.

Definition D.2. ((b, ϵ)-to-v⋆ coupling) Let v[0], v[1], · · · , v[T ] be a trajectory of label noise gradient
descent with initialization v[0]. Recall S ⊂ [d] is the support set of v⋆. We call the following random
sequence ṽ[t] a (b, ϵ)-to-v⋆ coupling of v[t]: starting from ṽ[0] = v[0], for each time t < T , if∥∥∥ṽ[t]S̄

∥∥∥
1
≤ ϵ and

∥∥∥ṽ[t]S − 1
∥∥∥
∞
≤ b, we let ṽ[t+1] ≜ v[t+1]; otherwise ṽ[t+1] ≜ ṽ[t].

Lemma D.3. In the setting of Theorem D.1, let Cx ≜ maxj ̸=k |Ei[x
(i)
j x

(i)
k ]|. Assume

∥∥x(i)
∥∥
∞ ≤ bx

for i ∈ [n] for some bx > 0, and Ei[(x
(i)
k )2] ≥ 2

3 for k ∈ [d]. Let ṽ[t] be a (2cs−1, ϵs)-to-v⋆

coupling of v[t]. Assume c2s−1

2ηb2x(δ
2+b2x(ϵ

2
s+r)2) ≥ log 10rT 2

ρ and (ϵ2s + 4rcs−1)Cxb
2
x ≤

cs−1

10 . Then,

with probability at least 1− ρ
5 , there is

∥∥∥ṽ[T ]
S − 1

∥∥∥
∞
≤ 2cs−1.

Proof of Lemma D.3. For any fixed 1 ≤ t1 < t2 ≤ T and dimension k ∈ S, we consider the
event that ṽ[t1] ∈ [1 + 2

3cs−1, 1 + cs−1], and at time t2 it is the first time in the trajectory such that
ṽ[t2] > 1 + 2cs−1. We first bound the probability of this event happens, i.e., the following quantity:

Pr

(
ṽ
[t2]
k − 1 > 2cs−1 ∧ ṽ

[t1]
k − 1 ≤ cs−1 ∧ ṽ

[t1:t2]
k ∈ [1 +

2

3
cs−1, 1 + 2cs−1]

)
, (93)

where ṽ[t1:t2]k ∈ [1+ 2
3cs−1, 1+2cs−1] means that for all t such that t1 ≤ t < t2, there is 1+ 2

3cs−1 ≤
ṽ
[t]
k ≤ 1 + 2cs−1.

Notice that when
∥∥∥ṽ[t]S̄

∥∥∥
1
≤ ϵs and

∥∥∥ṽ[t]S − 1
∥∥∥
∞
≤ 2cs−1 and ṽ

[t1:t+1]
k ∈ [1 + 2

3cs−1, 1 + 2cs−1],
there is

E[ṽ[t+1]
k − 1] =Est,it

[
(1 + ηstx

it
k − η(ṽ[t]

⊙2
− v⋆⊙2)⊤x(it)x

(it)
k )ṽ

[t]
k − 1

]
(94)

≤(ṽ[t]k − 1)− 2

3
ηṽ

[t]
k (ṽ

[t]
k + 1)(ṽ

[t]
k − 1) + η(ϵ2s + 4rcs−1)Cxb

2
xṽ

[t]
k (95)

≤(1− η)(ṽ
[t]
k − 1). (96)

where the first inequality is because
∥∥∥ṽ[t]S̄

∥∥∥2
2
≤ ϵ2s and properties of the data, the second inequality is

because (ϵ2s + 4rcs−1)b
2
xCx ≤ cs−1

10 . Also, we can bound the variance of this martingale as

Var
[
ṽ
[t+1]
k − 1 | ṽ[t] − 1

]
= Var

[
ηstx

(it)
k ṽ

[t]
k

]
+Var

[
η((ṽ[t]

⊙2
− v⋆⊙2)⊤x(it))x

(it)
k ṽ

[t]
k

]
(97)

≤ (ηδbx(1 + 2cs−1))
2
+ η2(ϵ2s + r)2b4x(1 + 2cs−1)

2 (98)

≤ 4η2b2x(δ
2 + b2x(ϵ

2
s + r)2), (99)
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By Lemma G.3, we have

Pr(ṽ
[t2]
k − 1 > 2cs−1 ∧ ṽ

[t1]
k − 1 ≤ cs−1 ∧ ṽ

[t1:t2]
k ∈ [1 +

2

3
cs−1, 1 + 2cs−1]) (100)

≤e
−c2s−1

2η2b2x(δ2+b2x(ϵ2s+r)2)
∑t2−t1−1

t=0 (1−η)2t (101)

≤e
−c2s−1

2ηb2x(δ2+b2x(ϵ2s+r)2) , (102)

where the first inequality is by Lemma G.3, the second inequality is by taking the sum of denomina-
tor.

Similarly, we bound

Pr

(
1− ṽ

[t2]
k > 2cs−1 ∧ 1− ṽ

[t1]
k ≤ cs−1 ∧ ṽ

[t1:t2]
k ∈ [1− 2cs−1, 1−

2

3
cs−1]

)
. (103)

Notice that when
∥∥∥ṽ[t]S̄

∥∥∥
1
≤ ϵs and

∥∥∥ṽ[t]S − 1
∥∥∥
∞
≤ 2cs−1 and ṽ

[t1:t+1]
k ∈ [1 − 2cs−1, 1 − 2

3cs−1],
there is

E[1− ṽ
[t+1]
k ] =Est,it

[
1− (1 + ηstx

it
k − η(ṽ[t]

⊙2
− v⋆⊙2)⊤x(it))x

(it)
k )ṽ

[t]
k

]
(104)

≤(1− ṽ
[t]
k )− 2

3
ηṽ

[t]
k (ṽ

[t]
k + 1)(1− ṽ

[t]
k ) + η(ϵ2s + 4rcs−1)Cxb

2
xṽ

[t]
k (105)

≤(1− η)(1− ṽ
[t]
k ). (106)

where the first inequality is because
∥∥∥ṽ[t]S̄

∥∥∥2
2
≤ ϵ2s and the properties of data, the second inequality is

because (ϵ2s + 4rcs−1)Cxb
2
x ≤

cs−1

10 . So

Pr(1− ṽ
[t2]
k > 2cs−1 ∧ 1− ṽ

[t1]
k ≤ cs−1 ∧ ṽ

[t1:t2]
k ∈ [1− 2cs−1, 1−

2

3
cs−1]) (107)

≤e
−c2s−1

2η2b2x(δ2+b2x(ϵ2s+r)2)
∑t2−t1−1

t=0 (1−η)2t (108)

≤e
−c2s−1

2ηb2x(δ2+b2x(ϵ2s+r)2) , (109)

where the first inequality is by Lemma G.3, the second inequality is by taking the sum of denomina-
tor.

Finally, we finish the proof with a union bound. Since if
∥∥∥ṽ[T ]

S − 1
∥∥∥
∞

> 2cs−1, either event in
Equation 93 or in Equation 103 has to happen for some k ∈ S and 1 ≤ t1 < t2 ≤ T , so we have

Pr
(∥∥∥ṽ[T ]

S − 1
∥∥∥
∞

> 2cs−1

)
(110)

≤
∑
k∈S

∑
1≤t1<t2≤T
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ṽ
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k − 1 ≤ cs−1 ∧ ṽ
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2

3
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)
(111)

+
∑
k∈S

∑
1≤t1<t2≤T

Pr

(
1− ṽ

[t2]
k > 2cs−1 ∧ 1− ṽ

[t1]
k ≤ cs−1 ∧ ṽ

[t1:t2]
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2

3
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)
(112)

≤2rT 2e
−c2s−1

2ηb2x(δ2+b2x(ϵ2s+r)2) (113)

≤ρ

5
, (114)

where the first inequality is by union bound, the second inequality is by previous results, the third
inequality is by assumption of this lemma.

25



Under review as a conference paper at ICLR 2021

Lemma D.4. In the setting of Lemma D.3, assume (ϵ2s + 4cs−1r)Cxb
2
x ≤ cs−1, ϵs > (1 +

ηcs−1)
T ϵs−1 and ((1+ηcs−1)

−T ϵs−ϵs−1)
2

2Tη2b2x(δ
2+b2x(ϵ

2
s+r)2)ϵ2s

≥ log 5
ρ . Then, with probability at least 1 − ρ

5 , there

is
∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ ϵs.

Proof of Lemma D.4. When
∥∥∥ṽ[t]S − 1

∥∥∥
∞
≤ 2cs−1 and

∥∥∥ṽ[t]S̄

∥∥∥
1
≤ ϵs, for any k /∈ S, there is:

E
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[t]
k

]
(115)

≤ ṽ
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2
xṽ

[t]
k (117)

≤ (1 + ηcs−1)ṽ
[t]
k . (118)

where the first inequality is because we can bound the dimensions in S and those not in S with∥∥∥ṽ[t]S̄

⊙2
∥∥∥
1
Cxb

2
x and 4cs−1rCxb

2
x respectively, the second inequality is by

∥∥∥ṽ[t]S̄

∥∥∥2
2
≤
∥∥∥ṽ[t]S̄

∥∥∥2
1
, the

third is because (ϵ2s + 4cs−1r)Cxb
2
x ≤ cs−1. Summing over all k /∈ S we have E[

∥∥∥ṽ[t+1]

S̄

∥∥∥
1
] ≤

(1 + ηcs−1)
∥∥∥ṽ[t]S̄

∥∥∥
1
. This bound is obviously also true when

∥∥∥ṽ[t]S − 1
∥∥∥
∞

> 2cs−1 or
∥∥∥ṽ[t]S̄
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1
> ϵs,

in which case ṽ[t+1] = ṽ[t].

Therefore we know (1 + ηcs−1)
−t
∥∥ṽ[t]∥∥

1
is a supermartingale. Also notice |

∥∥∥ṽ[t+1]

S̄

∥∥∥
1
−

E[
∥∥∥ṽ[t+1]

S̄

∥∥∥
1
]| ≤ ηδϵs, By Azuma Inequality,

Pr
(∥∥∥ṽ[T ]

S̄

∥∥∥
1
> ϵs

)
(119)

≤e−
((1+ηcs−1)−T ϵs−ϵs−1)2

2Tη2b2x(δ2+b2x(ϵ2s+r)2)ϵ2s , (120)

≤ρ

4
. (121)

here we are using ϵs > (1 + ηcs−1)
T ϵs−1 by assumption and the last step is by assumption.

Lemma D.5. In the setting of Lemma D.3, assume (1 − η)T 2cs−1 < cs
2 , c2s−1

2ηδ2 ≥ log 5r
ρ , and

(ϵ2s+4cs−1r)Cxb
2
x ≤ cs

10 . Then, for any k ∈ S, with probability at least 1− ρ
5r , either mint≤T |ṽ[t]k −

1| ≥ cs
2 , or

∥∥∥ṽ[T ]
S − 1

∥∥∥
∞

> 2cs−1, or
∥∥∥ṽ[T ]

S̄

∥∥∥
1
> ϵs.

Proof of Lemma D.5. We first consider when ṽ
[t]
k ∈ [1 + cs

2 , 1 + 2cs−1]. For some t < T2, if∥∥∥ṽ[t]S − 1
∥∥∥
∞
≤ cs−1 and

∥∥∥ṽ[t]S̄

∥∥∥
1
≤ ϵs, there is

E[ṽ[t+1]
k − 1] (122)

=ṽ
[t]
k − ηEit [((ṽ

[t]⊙2
− v⋆⊙2)⊤x(it))x

(it)
k ]ṽ

[t]
k − 1 (123)

≤(ṽ[t]k − 1)− 2

3
ηṽ

[t]
k (ṽ

[t]
k + 1)(ṽ

[t]
k − 1) + η(ϵ2s + 4cs−1r)Cxb

2
xv

[t]
k (124)

≤(1− η)(v
[t]
k − 1). (125)

Here the first inequality is by assumption, the second inequality is because (ϵ2s + 4cs−1r)Cxb
2
x ≤

1
10cs and cs−1 ≤ 1

10 .
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We define the event Et as
∥∥∥ṽ[t]S − 1

∥∥∥
∞

> 2cs−1 or
∥∥∥ṽ[t]S̄

∥∥∥
1
> ϵs. Since (1 − η)T22cs−1 < cs

2 by

assumption, if ṽ[0]k ∈ [1 + cs
2 , 1 + 2cs−1], by Lemma G.4 we know:

Pr

(
min
t≤T

ṽ
[t]
k > 1 +

cs
2
∧
∥∥∥ṽ[T ]

S − 1
∥∥∥
∞
≤ 2cs−1 ∧

∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ ϵs

)
(126)

≤ e
− ( 1

2
cs(1−η)−T −cs−1)

2

2ηb2x(δ2+b2x(ϵ2s+r)2) (127)

≤ e
−

c2s−1

2ηb2x(δ2+b2x(ϵ2s+r)2) (128)

≤ ρ

5r
, (129)

where the second inequality is because of assumption.

Similarly, when ṽ
[0]
k ∈ [1− 2cs−1, 1− cs

2 ], there is

Pr

(
max
t≤T

ṽ
[t]
k < 1− cs

2
∧
∥∥∥ṽ[T2]

S − 1
∥∥∥
∞
≤ 2cs−1 ∧

∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ ϵs

)
(130)

≤ e
−

c2s−1

2ηb2x(δ2+b2x(ϵ2s+r)2) (131)

≤ ρ

5r
. (132)

Since |ṽ[0]k − 1| ≤ cs−1 by assumption of Theorem D.1, by bounding the probability for ṽ[0]k ∈
[1 + cs

2 , 1 + 2cs−1] and [1− 2cs−1, 1− cs
2 ] repectively we finished the proof.

Lemma D.6. In the setting of Lemma D.3, assume c2s
8ηb2x(δ

2+b2x(ϵ
2
s+r)2) ≥ log 5rT 2

ρ and (ϵ2s +

2rcs)Cxb
2
x ≤ cs

20 . Then, for any dimension k ∈ S, with probability at most ρ
5r , there is

mint≤T |ṽ[t]k − 1| ≤ 1
2cs and |ṽ[T ]

k − 1| > cs and
∥∥∥ṽ[T ]

S − 1
∥∥∥
∞
≤ 2cs−1 and

∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ ϵs.

Proof of Lemma D.6. For any fixed 1 ≤ t1 < t2 ≤ T , we consider the event that ṽ[t1] ∈ [1 +
1
3cs, 1 + 1

2cs], and at time t2 it is the first time in the trajectory such that ṽ[t2] > 1 + cs. We first
bound the probability of this event happens, i.e., the following quantity:

Pr

(
ṽ
[t2]
k − 1 > cs ∧ ṽ

[t1]
k − 1 ≤ 1

2
cs ∧ ṽ

[t1:t2]
k ∈ [1 +

1

3
cs, 1 + cs]

)
. (133)

Notice that when
∥∥∥ṽ[t]S̄

∥∥∥
1
≤ ϵs and

∥∥∥ṽ[t]S − 1
∥∥∥
∞
≤ 2cs−1 and ṽ

[t1:t+1]
k ∈ [1 + 1

3cs, 1 + cs], there is

E[ṽ[t+1]
k − 1] =Est,it

[
(1 + ηstx

it
k − ηEit [(ṽ

[t]⊙2
− v⋆⊙2)⊤x(it))x

(it)
k ])ṽ

[t]
k − 1

]
(134)

≤(ṽ[t]k − 1)− 2

3
ηṽ

[t]
k (ṽ

[t]
k + 1)(ṽ

[t]
k − 1) + η(ϵ2s + 2rcs)Cxb

2
xṽ

[t]
k (135)

≤(1− η)(ṽ
[t]
k − 1). (136)

where the first inequality is because
∥∥∥ṽ[t]S̄

∥∥∥2
2
≤ ϵ2s, the second inequality is because (ϵ2s +

2rcs)Cxb
2
x ≤ cs

20 . Also, we can bound the variance of this martingale as

Var
[
ṽ
[t+1]
k − 1 | ṽ[t] − 1

]
= Var

[
ηstx

(it)
k ṽ

[t]
k

]
+Var

[
η((ṽ[t]

⊙2
− v⋆⊙2)⊤x(it))x

(it)
k ṽ

[t]
k

]
(137)

≤ (ηδbx(1 + cs))
2
+ η2(ϵ2s + r)2b4x(1 + cs)

2 (138)

≤ 4η2b2x(δ
2 + b2x(ϵ

2
s + r)2), (139)
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By Lemma G.3, we have

Pr(ṽ
[t2]
k − 1 > cs ∧ ṽ

[t1]
k − 1 ≤ 1

2
cs ∧ ṽ

[t1:t2]
k ∈ [1 +

1

3
cs, 1 + cs]) (140)

≤e
−c2s

8η2b2x(δ2+b2x(ϵ2s+r)2)
∑T−1

t=0 (1−η)2t (141)

≤e
−c2s

8ηb2x(δ2+b2x(ϵ2s+r)2) (142)

where the first inequality is by Lemma G.3, the second inequality is by taking the sum of denomina-
tor.

Similarly, we bound

Pr(1− ṽ
[t2]
k > cs ∧ 1− ṽ

[t1]
k ≤ 1

2
cs ∧ ṽ

[t1:t2]
k ∈ [1− cs, 1−

1

3
cs]) (143)

≤ e
−c2s

8ηb2x(δ2+b2x(ϵ2s+r)2) . (144)

Finally, we finish the proof with a union bound:

Pr

(
min
t≤T
|ṽ[t]k − 1| ≤ 1

2
cs ∧ |ṽ[T ]

k − 1| > cs ∧
∥∥∥ṽ[T ]

S − 1
∥∥∥
∞
≤ 2cs−1 ∧

∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ ϵs

)
(145)

≤
∑

1≤t1<t2≤T

Pr(ṽ
[t2]
k − 1 > cs ∧ ṽ

[t1]
k − 1 ≤ 1

2
cs ∧ ṽ

[t1:t2]
k ∈ [1 +

1

3
cs, 1 + cs]) (146)

+
∑

1≤t1<t2≤T

Pr(1− ṽ
[t2]
k > cs ∧ 1− ṽ

[t1]
k ≤ 1

2
cs ∧ ṽ

[t1:t2]
k ∈ [1− cs, 1−

1

3
cs]) (147)

≤ T 2e
−c2s

8ηb2x(δ2+b2x(ϵ2s+r)2) (148)

≤ ρ

5r
, (149)

where the first inequality is by union bound, the second inequality is by previous results, the third
inequality is by assumption of this lemma.

Proof of Theorem D.1. Let Cx ≜ maxj≠k |Ei[x
(i)
j x

(i)
k ]|, bx =

√
2 log 30d2

ρ = Θ̃(1). According to

Lemma G.1, when n ≤ d, there is with probability at least 1− ρ
15 we have

∥∥x(i)
∥∥
∞ ≤ bx for i ∈ [d].

Set η small enough such that c2s
8ηb2x(δ

2+b2x(ϵ
2
s+r)2) ≥ log 10rT 2

ρ . Obviously we only need η ≤

Θ̃(
c2s

δ2+r2 ), where Θ̃(·) omits poly logarithmic dependency on d and ρ. Assume (ϵ2s+4cs−1r)Cxb
2
x ≤

cs
10 , which can be represented as Cx ≤ Θ̃( 1r ). Recall T = 1

η log 4
c0

, ϵs = e2cs−1 log 4
c0 ϵs−1.

We first show that the additional assumptions in the previous lemmas are satisfied. There is

(1 + ηcs−1)
T = (1 + ηcs−1)

1
η log 4

c0 (150)

≤ ecs−1 log 4
c0 ≜ P. (151)

The assumption ϵs > (1+ ηcs−1)
T ϵs−1 in Lemma D.4 is therefore satisfied by definition of ϵs. The

assumption ((1+ηcs−1)
−T ϵs−ϵs−1)

2

2Tη2b2x(δ
2+b2x(ϵ

2
s+r)2)ϵ2s

≥ log 5
ρ in Lemma D.4 is satisfied because:

((1 + ηcs−1)
−T ϵs − ϵs−1)

2

2Tη2b2x(δ
2 + b2x(ϵ

2
s + r)2)ϵ2s

≥ ϵ2s(P
−1 − P−2)2

2Tη2b2x(δ
2 + b2x(ϵ

2
s + r)2)ϵ2s

(152)

≥ (P − 1)2

2Tη2b2x(δ
2 + b2x(ϵ

2
s + r)2)

(153)

≥
c2s−1

2ηb2x(δ
2 + b2x(ϵ

2
s + r)2)

, (154)
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which is larger than log 5
ρ by the definition of η. The assumption (1−η)T 2cs−1 ≤ cs

2 in Lemma D.5

is satisfied because (1−η)T 2cs−1 ≤ ( 1e )
log 4

c0 2cs−1 = cs
2 . All the other assumptions in Lemma D.3,

Lemma D.4, Lemma D.5and Lemma D.6 naturally follows from the definition of η and the require-
ment of Cx.

Since data are randomly fromN (0, I), with n ≥ Θ̃(r2) data, there is with probability at least 1− ρ
15

there is (ϵ2s + 4cs−1r)Cxb
2
x ≤ cs

10 . Meanwhile, according to Lemma G.2 with n ≥ Θ̃(1) data with
probability at least 1− ρ

15 there is Ei[(x
(i)
k )2] ≥ 2

3 for all k ∈ [d]. According to definition of bx, we
know when n ≤ d, with probability at least 1 − ρ

15 there is also
∥∥x(i)

∥∥
∞ ≤ bx for all i ∈ [n]. In

summary, with d ≥ n ≥ Θ̃(r2) data, with probability at least 1− ρ
5 there is (ϵ2s+4cs−1r)Cxb

2
x ≤ cs

10

and Ei[(x
(i)
k )2] ≥ 2

3 for all k ∈ [d] and
∥∥x(i)

∥∥
∞ ≤ bx for all i ∈ [n].

Now we finish the proof with the above lemmas. Lemma D.3 and Lemma D.4 together tell us that
with probability at least 1 − 2ρ

5 , there is
∥∥∥ṽ[T ]

S − 1
∥∥∥
∞
≤ 2cs−1 and

∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ ϵs, in which case

there is also v[T ] = ṽ[T ] by the definition of ṽ[T ]. Lemma D.5 and Lemma D.6 together tell us
the probability of

∥∥∥ṽ[T ]
S − 1

∥∥∥
∞
≤ 2cs−1 and

∥∥∥ṽ[T ]

S̄

∥∥∥
1
≤ ϵs and

∥∥∥ṽ[T ]
S − 1

∥∥∥
∞

> cs is no more

than 2ρ
5 . So together we know with probability at least 1 − ρ, there is

∥∥∥v[T ]
S − 1

∥∥∥
∞
≤ cs and∥∥∥v[T ]

S̄

∥∥∥
1
≤ ϵs.
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E PROOF OF THEOREM 2.1

Proof of Theorem 2.1. Starting from initialization τ · 1, by Theorem 3.1, running SGD with label
noise with noise level δ > Õ( τ

2d2

ρ3 ) and η0 = Θ̃( 1δ ) for T0 = Θ̃(1) iterations gives us that with

probability at least 0.99, ϵmin ≤ v
[T0]
k ≤ 1

d where ϵmin = exp(−Θ̃(1)). Now v[T0] satisfies the
initial condition of Theorem 3.3.

Recall the final target precision is ϵ, set ϵ1 = 1
403 ϵ. By Theorem 3.3, with n ≥ Θ̃(r2 log2(1/ϵ)) data,

after running SGD with label noise with learning rate η1 = Θ̃( 1
δ2 ) for T1 = Θ̃( log(1/ϵ)η1

) iterations,
with probability at least 0.99, there is,∥∥∥v[T0+T1]

S − v⋆S

∥∥∥
∞
≤ c1 ≜ 1

10
, (155)

and ∥∥∥v[T0+T1]

S̄
− v⋆S̄

∥∥∥
1
≤ ϵ1. (156)

So we have v[T0+T1] satisfies the initial condition of Theorem D.1.

Finally, set ρ = 0.01/⌈log10(1/ϵ)⌉, and apply Theorem D.1 for ns = ⌈log10(1/ϵ)⌉ = Θ̃(1) rounds.
Since cs gets smaller by 1/10 for each round, the final cns satisfies 1

10ϵ ≤ cns ≤ ϵ. Since the

requirement of η for round s is η ≤ Θ̃(
c2s

δ2+r2 ), we can set η2 ≤ Θ̃( ϵ
2

δ2 ) to satisfy all the rounds at
the same time. Set T2 be the total number of iterations in all of these rounds, obviously T2 = Θ̃( 1

η2
).

Notice that ϵs ≤ e
∑∞

s=2 2cs−1 log 4
c0 ϵ1 ≤ 403ϵ1 = ϵ, we have with probability at least 0.99,∥∥∥v[T0+T1+T2]

S − v⋆S

∥∥∥
∞
≤ c1 ≜ ϵ, (157)

and ∥∥∥v[T0+T1+T2]

S̄
− v⋆S̄

∥∥∥
1
≤ ϵ. (158)

The total failure rate of above three stages is 0.03, so with probability at least 0.97, there is∥∥v[T0+T1+T2] − v⋆
∥∥
∞ ≤ ϵ, which finishes the proof.
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F PROOF OF THEOREM 2.2

Lemma F.1. Assume n ≤ d
2 − 9

√
d. Let C ⊂ Rd be the convex cone where each coordinate is

positive, K be a random subspace of dimension d−n. Then with probability at least 0.999, there is
K ∩ C ̸= {0}

Proof of Lemma F.1. By Theorem 1 of Amelunxen et al. (2014), we only need to prove

δ(C) + δ(K) ≥ d+ 9
√
d, (159)

where δ(·) is the statistical dimension of a set. By equation (2.1) of Amelunxen et al. (2014), there
is

δ(K) = d− n. (160)

To calculate δ(C), we use Proposition 2.4 from Amelunxen et al. (2014),

δ(C) = E[∥ΠC(g)∥2], (161)

where g is a standard random vector, ΠC is projection of g to C, the expectation is over g. Since C
is the set of all points with element-wise positive coordinate, ΠC(g) is simply setting all the negative
dimension of g to 0 and keep the positive ones. Therefore,

δ(C) = E[∥ΠC(g)∥2] =
d

2
. (162)

Therefore we have

δ(C) + δ(K) =
3

2
d− n ≥ d+ 9

√
d. (163)

Proof of Theorem 2.2. Let X⊥ be the subspace that is orthogonal to the subspace X spanned by
data. Since data is random, with probability 1 the random subspace X is of n dimension. Therefore,
according to the previous lemma, with probability at least 0.999, there is X⊥ ∩ C ̸= {0}, where C
is the coordinate-wise positive cone. Let µ ∈ X⊥ be such a vector such that µi > 0 for ∀i ∈ [d],
and we scale it such that ∥µ∥2 = 1. We can construct the following orthonormal matrix

A = [a1, · · · , ad] ∈ Rd×d, (164)

such that span{a1, · · · an} = X and an+1 = µ. Consider the following transformation

Aũ = u = v⊙2, (165)

since only the projection of u to the span of data influences L(v), we can write L(v) = L̃(ũ1:n) as
a function of the first n dimensions of ũ.

We can lower bound the partition function with∫
v∈Rd

e−λL(v)dv ≥
∫
v>0

e−λL(v)dv (166)

=

∫
Aũ>0

e−λL̃(ũ1:n) det
∂v

∂u
det

∂u

∂ũ
dũ (167)

=
1

2d

∫
e−λL̃(ũ1:n)

(∫
Aũ>0

d∏
i=1

1
√
ui

dũn+1:d

)
dũ1:n. (168)

Here the inner loop is integrating over the last d − n dimensions of ũ in the set such that Aũ is
coordinate-wise positive. Now we prove that for each ũ1:n such that S = {ũn+1;d|Aũ > 0} is not
empty set, the inner loop integral is always +∞.

Fix ũ1:n, let ũ∗
n+1:d be one possible solution such that u∗ = Aũ > 0. Define constant

c = min
i≤[1:d]

max
j∈[n+2:d]

an+1
i

(d− n− 1)|aji |
, (169)
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we can define the following set

S′ = {ũn+1:d|ũn+1 ≥ ũ∗
n+1 ∧ |ũj − ũ∗

j | ≤ c(ũn+1 − ũ∗
n+1),∀j ∈ [n+ 2, d]} (170)

In other words, this is a convex cone where constraint of ũj is linear in ũn+1 for j ∈ [n+ 2 : d]. By
definition of c, it is easy to verify that S′ is a subset of S. Also, for every ũn+1:d ∈ S′, ui is upper
bounded by (

A

[
ũ1:n

ũn+1:d

])
i

= u∗
i + an+1

i (ũn+1 − ũ∗
n+1) +

d∑
j=n+2

aji (ũj − ũ∗
j ) (171)

≤ u∗
i + 2an+1

i (ũn+1 − ũ∗
n+1). (172)

Here the inequality is because of the definition of c.

Let z = ũn+1 − ũ∗
n+1 we have∫

ũn+1:d∈S′

d∏
i=1

1
√
ui

dũn+1:d (173)

≥
∫
z≥0

(2cz)d−n−1
d∏

i=1

1√
u∗
i + 2an+1

i z
dz (174)

=+∞. (175)

Here the last step is because n < d/2, so the integrand is essentially a polynomial of z with degree
larger than −1, so integrating it over all positive z has to be +∞. So we finish the proof that∫
v∈Rd e

−λL(v)dv = +∞.
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G EXTRA LEMMAS

Lemma G.1. Suppose x(i) ∼ N (0, Id×d) where i ∈ [n] are random data. Then with probability at
least 1− ρ, for every i ∈ [n] there is ∥∥∥x(i)

∥∥∥
∞
≤

√
2 log

2nd

ρ
(176)

Proof. By Gaussian tail bound, there is Pr
(
|x(i)

k | > bx

)
≤ 2e−

b2x
2 . So by union bound we have

Pr
(
maxi,k |x(i)

k | > bx

)
≤ 2nde−

b2x
2 . Let bx =

√
2 log 2nd

ρ we finished the proof.

Lemma G.2. Suppose x(i) ∼ N (0, Id×d) where i ∈ [n] are random data. Then when n > 24 log d
ρ ,

with probability at least 1− ρ, for every k ∈ [d] there is

Ei[x
(i)
k

2
] ≥ 2

3
. (177)

Proof. Since Ex[xk
2] = 1, Ex[xk

4] = 3, by Hoeffding inequality we have

Pr

(
1

n

n∑
i=1

x
(i)
k

2
<

2

3

)
≤ e

−n
24 . (178)

Therefore, when n ≥ 24 log d
ρ , by union bound we finish the proof.

Lemma G.3. Let c > 0, 1 > γ > 0 be real constants. Let A[0], A[1], · · · , A[T ], be a series of ran-
dom variables, such that given A[0], · · · , A[t] for some t < T with A[t] ∈ [ c3 , c], there is either A[t] =

A[t+1] = · · · = A[T ], or E[A[t+1]] ≤ (1 − γ)A[t] with variance Var[A[t+1] | A[0], · · · , A[t]] ≤ a.
Then there is

Pr
(
A[T ] > c ∧A[0] ≤ c

2
∧A[0:T ] ∈

[ c
3
, c
])
≤ e

−c2

2a
∑T−1

t=0 (1−γ)2t . (179)

where A[0:T ] ∈
[
c
3 , c
]

means for any 0 ≤ t < T , A[t] ∈
[
c
3 , c
]
.

Proof of Lemma G.3. We only need to consider when A[0] ≤ c
2 . Let Â[t] be the following coupling

of A[t]: starting from Â[0] = A[0], for each time t < T , if A[t] = A[t+1] = · · · = A[T ] or there is
t′ ≤ t such that A[t′] /∈ [ c3 , c], we let Â[t+1] ≜ (1−γ)Â[t+1]; otherwise Â[t+1] = A[t+1]. Intuitively,
whenever A[t] stops updating or exceeds proper range, we only times Â[t] by 1 − γ afterwards,
otherwise we let it be the same as A[t]. Notice that if the event in Equation 179 happens, there has
to be Â[T ] = A[T ] (otherwise A[t] stops updating or exceeds range at some time, contradicting the
event). So we only need to bound Pr

(
Â[T ] > c

)
.

We notice that (1 − γ)−tÂ[t] for t = 0 · · ·T is a supermartingale, i.e., given history there is
E[Â[t+1]|Â[t]] ≤ (1 − γ)Â[t]. This is obviously true when v̂[t+1] = (1 − γ)Â[t], and also true
otherwise by assumption of the lemma. So we have

Pr(Â[T ] > c) (180)

=Pr((1− γ)−T Â[T ] > (1− γ)−T c) (181)

≤e
−

2(c(1−γ)−T −Â[0])
2

∑T−1
t=0 (1−γ)−2ta (182)

≤e
− c2(1−γ)−2T

2
∑T−1

t=0 (1−γ)−2(t+1)a (183)

=e
− c2

2a
∑T−1

t=0 (1−γ)2t . (184)
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where the first inequality is because of Azuma Inequality and Var
[
(1− γ)−t+1Â[t+1] | Â[t]

]
≤

(1− γ)−2(t+1)a. , the second inequality is because Â[0] ≤ c
2 . Since the event in Equation 179 only

happens when Â[T ] > c, we’ve finished the proof.

Lemma G.4. Let 0 < c1 < c2 be real constants. Let A[0], A[1], · · · , A[T ], be a series of random
variables, such that given A[0], · · · , A[t] for some t < T with A[t] ∈ [c1, c2], there is either event Et

happens, or E[A[t+1]] ≤ (1 − γ)A[t] with variance Var[A[t+1] | A[0], · · · , A[t]] ≤ a. Then when
A[0] ∈ [c1, c2] and (1− γ)T c2 < c1 there is

Pr

(
min
t≤T

A[t] > c1 ∧max
t≤T

A[t] ≤ c2 ∧ ¬E[0:T ]

)
≤ e

−
2(c1(1−γ)−T −A[0])

2

1
γ

a . (185)

where ¬E[0:T ] means for any 0 ≤ t < T , Et doesn’t happen.

Proof of Lemma G.4. Let Â[t] be the following coupling of A[t]: starting from Â[0] = A[0], for
each time t < T , if exists t′ ≤ tsuch that Et′ happens or A[t′] /∈ [c1, c2], we let Â[t+1] ≜ (1 −
γ)Â[t+1]; otherwise Â[t+1] = A[t+1]. Intuitively, whenever A[t] exceeds proper range, we only
times Â[t] by 1 − γ afterwards, otherwise we let it be the same as A[t]. Notice that if the event in
Equation 185 happens, there has to be Â[T ] = A[T ] (otherwise Et happens sometimes or A[t] /∈
[c1, c2], contradicting the event). So we only need to bound Pr

(
Â[T ] > c1

)
.

We notice that (1 − γ)−tÂ[t] for t = 0 · · ·T is a supermartingale, i.e., given history there is
E[Â[t+1]|Â[t]] ≤ (1 − γ)Â[t]. This is obviously true when v̂[t+1] = (1 − γ)Â[t], and also true
otherwise by assumption of the lemma. So we have

Pr(Â[T ] > c1) (186)

=Pr((1− γ)−T Â[T ] > (1− γ)−T c1) (187)

≤e
−

2(c1(1−γ)−T −A[0])
2

∑T−1
t=0 (1−γ)−2ta (188)

≤e
−

2(c1(1−γ)−T −A[0])
2

1
γ

a (189)

where the first inequality is because of Azuma Inequality and Var
[
(1− γ)−t+1Â[t+1] | Â[t]

]
≤

(1−γ)−2(t+1)a and Â[0] ≤ c2 ≤ e
−

2(c1(1−γ)−T −c2)
2

∑T−1
t=0 (1−γ)−2ta . Since the event in Equation 185 only happens

when Â[T ] > c1, we’ve finished the proof.
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