
Chip Placement with Diffusion Models

Vint Lee 1 Minh Nguyen 1 Leena Elzeiny 2 Chun Deng 3 Pieter Abbeel 1 John Wawrzynek 1

Abstract
Macro placement is a vital step in digital circuit
design that defines the physical location of large
collections of components, known as macros, on
a 2D chip. Because key performance metrics of
the chip are determined by the placement, op-
timizing it is crucial. Existing learning-based
methods typically fall short because of their re-
liance on reinforcement learning (RL), which is
slow and struggles to generalize, requiring on-
line training on each new circuit. Instead, we
train a diffusion model capable of placing new
circuits zero-shot, using guided sampling in lieu
of RL to optimize placement quality. To enable
such models to train at scale, we designed a ca-
pable yet efficient architecture for the denoising
model, and propose a novel algorithm to gener-
ate large synthetic datasets for pre-training. To
allow zero-shot transfer to real circuits, we em-
pirically study the design decisions of our dataset
generation algorithm, and identify several key fac-
tors enabling generalization. When trained on our
synthetic data, our models generate high-quality
placements on unseen, realistic circuits, achiev-
ing competitive performance on placement bench-
marks compared to state-of-the-art methods.

1. Introduction
Placement is an important step of digital hardware design
where collections of small components, such as logic gates
(standard cells), and large design blocks, such as memories,
(macros) are arranged on a 2-dimensional physical chip
based on a connectivity graph (netlist) of the components.
Because the physical layout of objects determines the length
of wires (and where they can be routed), this step has a sig-
nificant impact on key metrics, such as power consumption,

1Department of EECS, UC Berkeley, CA, USA 2SambaNova
Systems Inc., Palo Alto, CA, USA 3Computer Science Depart-
ment, Stanford University, CA, USA. Correspondence to: Vint Lee
<vint@berkeley.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

performance, and area of the produced chip. In particular,
the placement of macros, which is the focus of our work,
is especially important because of their large size and high
connectivity relative to standard cells.

Traditionally, macro placement is done with commercial
tools such as Innovus from Cadence, which requires input
from human experts. The process is also time-consuming
and expensive. On the other hand, the use of ML techniques
shows promise in automating this process, as well as cre-
ating better-optimized placements than commercial tools,
which rely heavily on heuristics.

Even so, existing works mostly rely on reinforcement learn-
ing (RL) (Mirhoseini et al., 2020; Cheng & Yan, 2021; Lai
et al., 2022; 2023; Gu et al., 2024), an approach with sev-
eral key limitations. First, RL is challenging to scale —
it is sample-inefficient, and has difficulty generalizing to
new problems. Many of these methods, for instance, treat
each new circuit as a separate task, training a new agent
from scratch for every new netlist (Cheng & Yan, 2021;
Lai et al., 2022; Gu et al., 2024). Despite efforts to miti-
gate this by incorporating offline pre-training, the scarcity
of publicly-available data means that such methods strug-
gle to generalize, and still require a significant amount of
additional training for each new netlist (Mirhoseini et al.,
2020; Lai et al., 2023). Second, by casting placement as
a Markov Decision Process (MDP), these works require
agents to learn a sequential placement of objects (standard
cells or macros), which creates challenges when suboptimal
choices near the start of the trajectory cannot be reversed.

To circumvent these issues, we instead adopt a different ap-
proach: leveraging powerful generative models, in particular
diffusion models, to produce near-optimal chip placements
for a given netlist. Diffusion models address the weaknesses
of RL approaches because they can be trained offline at
scale, then used zero-shot on new netlists, simultaneously
placing all objects as shown in Figure 1. Moreover, our
approach takes advantage of the great strides made in tech-
niques for training and sampling diffusion models, such as
guided sampling (Dhariwal & Nichol, 2021; Bansal et al.,
2023), to achieve better results.

Training a large and generalizable diffusion model, how-
ever, comes with its own challenges. First, the vast majority
of circuit designs and netlists of interest are proprietary,

1

Chip Placement with Diffusion Models

severely limiting the quality and quantity of available train-
ing data. Second, many of these circuits are large, con-
taining hundreds of thousands of macros and cells. The
denoising model used must therefore be computationally
efficient and scalable, in addition to working well within the
noise-prediction framework.

Our work addresses these challenges, and we summarize
our main contributions as follows:

Synthetic Data Generation We present a method for eas-
ily generating large amounts of synthetic netlist and place-
ment data. Our insight is that the inverse problem — pro-
ducing a plausible netlist such that a given placement is
near-optimal — is much simpler to solve. This allows us
to produce data without the need for commercial tools or
higher-level design specifications.

Dataset Design We conduct an extensive empirical study
investigating the generalization properties of models trained
on synthetic data, identifying several factors, such as the
scale parameter, that cause models to generalize poorly. We
use these insights to design synthetic datasets that allow for
effective zero-shot transfer to real circuits.

Model Architecture We propose a novel neural network
architecture with interleaved graph convolutions and atten-
tion layers to obtain a model that is both computationally
efficient and expressive.

By combining these ingredients, our method can gener-
ate placements for unseen netlists in a zero-shot manner,
achieving results competitive with state-of-the-art on the IC-
CAD04 (or IBM) (Adya et al., 2004) and ISPD2005 (Nam
et al., 2005b) benchmarks. Remarkably, our model accom-
plishes this without ever having trained on real circuit data.

2. Related Work
Google’s RL-based approach, CircuitTraining (Mirhoseini
et al., 2021; Yue et al., 2022), employs a graph neural net-
work (GNN) to generate netlist embeddings for multiple RL
agents. While this method demonstrated state-of-the-art re-
sults, it requires computationally expensive online training
on new circuits. Several RL approaches follow to improve
on runtime (Cheng & Yan, 2021; Lai et al., 2022; Gu et al.,
2024), macro ordering (Chen et al., 2023a), and proxy cost
predictions (Zheng et al., 2023a;b; Wang et al., 2022; Ghose
et al., 2021).

Several recent works have focused on reducing the long
runtimes of RL methods. ChiPFormer (Lai et al., 2023)
uses offline RL to reduce the amount of online training
required. Despite strong results on several benchmarks,
their method is constrained by the diversity and quantity of

data available, requiring hours of online training on each
new netlist for good results, even on in-distribution circuits.
EfficientPlace (Geng et al., 2024) reduces the exploration
needed by combining global tree search with a local policy.
Although this improved efficiency, their method still relies
on online training for the local policy, leading to runtimes
of several hours per placement.

In contrast, Flora (Liu et al., 2022a) and GraphPlanner
(Liu et al., 2022b) deviate from sequential placement for-
mulations by leveraging a variational autoencoder (VAE)
(Kingma & Welling, 2022) to generate placements. Flora
further introduces a synthetic data generation scheme; how-
ever, it lacks variation in object sizes and restricts con-
nections to only the nearest neighbors, which, as our ex-
periments indicate, limits generalization to realistic circuit
layouts (see Section 5.1 and Table 4). Furthermore, their
models struggle to learn the underlying distribution of legal
placements, frequently producing overlapping results.

Other approaches avoid the use of machine learning alto-
gether. WireMask-BBO (Shi et al., 2023) utilizes black-box
optimization algorithms to find optimal macro placements
over continuous coordinates, while legalizing and evaluat-
ing the solution quality on a discrete grid. However, their
usage of black-box optimization, such as evolutionary algo-
rithms, leads to lengthy search times that must be started
from scratch for each new circuit.

3. Background
3.1. Problem Statement

Our goal is to train a diffusion model to sample from f(x|c),
where the placement x is a set of 2D coordinates for each
object and the netlist c describes how the objects are con-
nected in a graph, as well as the size of each object. We
normalize the coordinates to the chip boundaries, so that
they are within [−1, 1].

We represent the netlist as a graph (V,E) with node and
edge attributes {pi}i∈V and {qij}(i,j)∈E . We define pi to be
a 2D vector describing the normalized height and width of
the object, while qij is a 4D vector containing the positions
of the source and destination pins, relative to the center of
their parent object. We convert the netlist hypergraph into
this representation by connecting the driving pin of each
netlist to the others with undirected edges. This compact
representation contains all the geometric information needed
for placement, and allows us to leverage the rich body of
existing GNN methods.

3.2. Evaluation Metrics

To evaluate generated placements, we use legality, which
measures how easily the placement can be used for down-

2

Chip Placement with Diffusion Models

Figure 1. Denoising process for generating placements. In contrast to RL approaches, our method places all objects simultaneously. The
middle 4 panels show the predicted output x̂0 at intervals of 200 steps, while the first and last panels are xT (Gaussian noise) and x0

(generated placement).

stream tasks (eg. routing); and half-perimeter wire length
(HPWL), which serves as a proxy for chip performance.

While a legal placement has to satisfy other criteria, in this
work we focus on a simpler, commonly used constraint
(Mirhoseini et al., 2020; Lai et al., 2023): the objects cannot
overlap one another, and must be within the bounds of the
canvas. We can therefore define legality score as Au/As,
where Au is the area, within the circuit boundary, of the
union of all placed objects, and As is the sum of areas
of all individual objects. A legality of 1 indicates that all
constraints are satisfied.

Routed wirelength influences critical metrics because long
wires create delay between components, influencing timing
and power consumption. HPWL is used as an approxima-
tion to evaluate placements prior to routing (Chen et al.,
2006; Kahng & Reda, 2006). Because the scale of HPWL
varies greatly between circuits, for our experiments on syn-
thetic data we report the HPWL ratio, defined for a given
netlist as Wgen/Wdata, where Wgen is the HPWL for the
model-generated placement, while Wdata is the HPWL of
the placement in the dataset.

Our objective is therefore to generate legal placements with
minimal HPWL.

3.3. Diffusion Models

Diffusion models (Song et al., 2021; Ho et al., 2020) are
a class of generative models whose outputs are produced
by iteratively denoising samples using a process known as
Langevin Dynamics. In this work we use the Denoising
Diffusion Probabilistic Model (DDPM) formulation (Ho
et al., 2020), where starting with Gaussian noise xT , we
perform T denoising steps to obtain xT−1, xT−2, . . . , x0,
with the fully denoised output x0 as our generated sample.
In DDPMs, each denoising step is performed according to

xt−1 = αt · xt + βt · ϵ̂θ(xt, t, c) + σt · z, (1)

where αt, βt, σt are constants defined by the noise sched-
ule, z ∼ N (0, I) is injected noise, and ϵ̂θ is the learned
denoising model taking xt, t and context c as inputs. By

training ϵ̂θ to predict the noise added to samples from the
dataset, DDPMs are able to model arbitrarily complex data
distributions.

4. Methods
4.1. Generating Synthetic Data

We obtain datasets (Table 1) consisting of tuples (x, c) using
the method outlined below.

First, we randomly generate objects by sampling sizes uni-
formly and placing them at random within the circuit bound-
ary, ensuring legality by retrying if objects overlap. Follow-
ing Rent’s Rule (Lanzerotti et al., 2005), we then sample a
number of pins for each object using a power law.

To generate edges, we start by computing the distance l
for each pair of pins on different objects, then sample in-
dependently from Bernoulli(p(l)), where p(l) ∈ [0, 1] is a
distance-dependent probability which we refer to as the edge
distribution1. To approximate the structure of real circuits
and bias the model towards lower HPWL placements, we
choose p ∝ exp(−l/s), so that the probability of generating
edges decays exponentially with L1 distance l normalized
by a scale parameter s.

This simple algorithm, depicted in Figure 2, allows us to
efficiently generate large numbers of training examples for
our models without the using any commercial tools or design
specifications. Using 32 CPUs, we are able to produce 100k
“circuits” each containing approximately 200 objects in a
day.

Our algorithm is also highly flexible, allowing many choices
for the distributions of the number of objects, their sizes, the
edges, scale parameters, and so on. To better understand the
design space of synthetic datasets, we conduct an extensive
empirical study in Section 5.1, identifying several factors
that are vital for training models that transfer zero-shot to
real circuits.

1p is not, however, a probability distribution

3

Chip Placement with Diffusion Models

Figure 2. Visualization of the steps involved in generating synthetic
data.

Based on our results, we designed 2 synthetic datasets, v1
and v2, with parameters listed in Table 1.

4.2. Model Architecture

We developed a novel architecture for the denoising model,
shown in Figure 3. We highlight below several key ele-
ments of our design that we empirically determined (see
Section 5.2) to be important for the placement task:

Interleaved GNN and Attention Layers We use the
message-passing GNN layers for their computational ef-
ficiency in capturing node neighborhood information, while
the interleaved attention (Vaswani et al., 2017) layers ad-
dress the oversmoothing problem in GNNs by allowing
information transfer between nodes that are distant in the
netlist graph, but close on the 2D canvas. We find that com-
bining the two types of layers is critical, and significantly
outperforms using either type alone.

MLP Blocks We found that inserting residual 2-layer
MLP blocks between each GNN and Attention block im-
proved performance significantly for a negligible increase
in computation time.

Sinusoidal 2D Encodings The model receives 2D sinu-
soidal position encodings, in addition to the original (x, y)
coordinates, as input. This method improves the precision
with which the model places small objects, leading to place-
ments with better legality.

In this work, we use 3 sizes of models: Small, Medium, and
Large, with 233k, 1.23M, and 6.29M parameters respec-
tively. A full list of model hyperparameters can be found in
Appendix A.

4.3. Guided Sampling

One key advantage of using diffusion models is the ease of
optimizing for downstream objectives through guided sam-
pling. We use backwards universal guidance (Bansal et al.,
2023) with easily computed potential functions to optimize
the generated HPWL and legality without training additional
reward models or classifiers. The guidance potential φ(x) is
defined as the weighted sum wlegality ·φlegality +whpwl ·φhpwl

of potentials for each of our optimization objectives.

The legality potential φlegality(x) for a netlist with objects V
is given by:

φlegality(x) =
∑
i,j∈V

min(0, dij(x))2 (2)

where dij is the signed distance between objects i and j,
which we can compute easily for rectangular objects. Note
that the summand is 0 for any pair of non-overlapping ob-
jects, and increases as overlap increases.

We define φhpwl(x) simply as the HPWL of the placement
x. We compute this in a parallelized, differentiable manner
by casting HPWL computation in terms of the message-
passing framework used in GNNs (Gilmer et al., 2017)
and implementing a custom GNN layer with no learnable
parameters in PyG (Fey & Lenssen, 2019).

Instead of gradients from a classifier (Dhariwal & Nichol,
2021), we use the backwards universal guidance force
g(xt) = ∆φx̂0. Here, x̂0 is the prediction of x0 based
on the denoising model’s output at time step t, and ∆φ is
the φ-optimal change in x̂0-space, computed using gradient
descent. The combined diffusion score is then given by
fθ(xt) + wg · g(xt). We refer the reader to Bansal et al.
(2023) for more details.

In the simple implementation, wlegality and whpwl are set as
constant hyperparameters. However, the optimal weights
can vary depending on the circuit’s connectivity properties.
Instead, we take inspiration from constrained optimization
to automatically tune the weights. To solve

min
x

φhpwl(x) s.t. φlegality(x) = 0, (3)

we optimize the Lagrangian L(λ, x) = φhpwl(x) + λ ·
φlegality(x) simultaneously with respect to x and the La-
grange multiplier λ. We instantiate this idea during guid-
ance by performing interleaved gradient descent steps of
φhpwl(x) + wlegality · φlegality(x) with respect to x, and
wlegality · (φlegality(x)− ε) with respect to wlegality.

4.4. Training and Evaluation

Due to the lack of real placement data, we train our models
entirely on synthetic data (see Section 4.1). For placing real
circuit netlists, we train our models in two stages: we first
train on our v1 dataset of smaller circuits, then fine-tune on
v2 which contains larger circuits. Details on dataset design
are provided in Section 5.1.

We evaluate the performance of our model on circuits in the
publicly available ICCAD04 (Adya et al., 2004) (also known
as IBM) and ISPD2005 (Nam et al., 2005a) benchmarks.
Because these circuits contain hundreds of thousands of

4

Chip Placement with Diffusion Models

MLP
2 layers

MLP
2 layers

Encoder

Block (×N)

ResGNN block AttGNN block

G
N

N

G
N

N

G
N

N

G
N

N

A
tte

n
tio

n

A
tte

n
tio

n

+

Linear

Sinusoidal

Encodings

Figure 3. Diagram of our denoising model. Residual connections, edge feature inputs, nonlinearities, and normalization layers have been
ommitted for clarity.

small standard cells, we follow prior work (Mirhoseini et al.,
2020) and cluster the standard cells into 512 partitions using
hMetis (Karypis et al., 1997). Each cluster is assigned to
the nets of its constituent standard cells (nets within a single
cluster are removed) with pins located at the cluster center,
while the size of each cluster is the total area of its standard
cells.

4.5. Implementation

Our models are implemented using Pytorch (Paszke et al.,
2019) and Pytorch-Geometric (Fey & Lenssen, 2019), and
trained on machines with Intel Xeon Gold 6326 CPUs, using
a single Nvidia A5000 GPU. We train our models using the
Adam optimizer (Kingma & Ba, 2014) for 3M steps, with
250k steps of fine-tuning where applicable.

5. Experiments
5.1. Designing Synthetic Data

To generate synthetic datasets that allow for zero-shot trans-
fer, we first have to understand which parameters are impor-
tant for generalization, and which ones are not. We there-
fore investigate the generalization capabilities of our model
along several axes by evaluating a single trained model on
datasets generated using various parameters. By identifying
parameters that the model struggles to generalize across,
we can design our synthetic dataset to facilitate zero-shot
transfer by ensuring that for such parameters, the synthetic
distribution covers that of real circuits (see Section 5.1.4).

In this section, we evaluate a model trained on a dataset with
a narrow distribution, with key parameters listed in Table 1.
The full set of parameters is listed in Appendix A.

5.1.1. NUMBER OF EDGES AND VERTICES

Figure 4 shows how legality changes with the number of
edges in the test dataset. The model generalizes remarkably
well to datasets with more edges than it was trained on, while
performance degrades quickly when fewer edges are present.
We hypothesize that an increased number of edges allows

100 1000 10000
Edges

0.96

0.98

1.00

Le
ga

lit
y

Tr
ai

n
Se

t

Figure 4. Legality decreases on
circuits with fewer edges, while
adding edges does not degrade
performance. The training data
has 1740 edges on average.

100 500 1000
Vertices

0.94

0.96

0.98

1.00

Le
ga

lit
y

Tr
ai

n
Se

t

Figure 5. Legality decreases on
circuits with more vertices, indi-
cating poor generalization. The
training data has 230 edges on
average.

the GNN layers to propagate information more efficiently,
improving or maintaining the model’s performance.

In contrast, Figure 5 shows that the model struggles to gen-
eralize to larger circuits than it was trained on, with legality
decreasing as the number of vertices increases.

5.1.2. SCALE PARAMETER

In our data generation algorithm, the scale parameter s de-
termines the expected length of generated edges. A larger
s means that distant pins are more likely to be connected,
while a small value of s means that only nearby pins are
connected. Thus, the scale parameter has a significant im-
pact on the properties of the graph generated, such as the
number of neighbors per vertex, as well as the optimality
of the corresponding placement. To understand how these
effects influence the placements generated by the model, we
evaluate our model, trained on data with a fixed value of s,
on datasets with different scale parameters.

Figure 6 shows that the model performs well at longer scale
parameters up to s = 0.4, with legality dropping sharply
past it. Meanwhile, lowering s causes HPWL to worsen
significantly, with the model generating placements more
than 1.5× worse than the dataset.

This could be because for small s, the presence of edges

5

Chip Placement with Diffusion Models

Table 1. Parameters of datasets used. For v1 and v2, we sample s for each circuit from a log-uniform distribution, then compute a
scale-dependent multiplier γ(s) to control the number of edges in each circuit.

Name Circuits Vertices Edges Scale Parameter (s) p(l)

v0 40000 230 1740 0.2 γ · exp (−l/s)
v1 40000 230 1600 ∼ logU(0.05, 1.6) γ(s) · exp (−l/s)
v2 5000 960 9510 ∼ logU(0.025, 0.8) γ(s) · exp (−l/s)

0.0 0.6 1.2
Scale Parameter

0.7

0.8

0.9

1.0

Le
ga

lit
y

Tr
ai

n
Se

t

0.0 0.6 1.2
Scale Parameter

0.75

1.25

1.75
HP

W
L

Ra
tio

Tr
ai

n
Se

t

Figure 6. Legality drops sharply when increasing scale parameter
past a certain point, while scale parameters smaller than the train-
ing data causes HPWL to worsen significantly. The training data
is generated using a scale of 0.2.

between objects means that they are very likely near each
other in the dataset placement, providing the model with
a lot of information on where objects should be placed. If
the model is then evaluated on circuits with larger s, the
increased number of neighbors causes the model to place
too many objects in the same vicinity, leading to clumps
forming (see Figure 7) and poor legality. Conversely, when
evaluated on circuits with smaller s, the model’s inductive
biases are not strong enough to place connected objects as
close together as possible, leading to longer, worse, HPWL.

(a) s = 0.2 (b) s = 0.6 (c) s = 1.2

Figure 7. Increasing scale parameter causes the diffusion model,
trained only on circuits with s = 0.2, to clump objects together.

5.1.3. DISTRIBUTION OF EDGES

To bias the model towards generating placements with low
HPWL, we sample edges with probability p(l) that expo-
nentially decays with edge length l. However, there is no
guarantee that optimal placements for real circuits follow
such a distribution. We therefore investigate how this choice
of l affects generalization to other edge distributions p(l).

Table 2. Test performance is near-identical to training performance
on datasets using various p(l). σ is the sigmoid function, and s
is the scale parameter, which we choose such that the mean edge
length matches that of training data.

Exponential Sigmoid Linear
p(l) ∝ e(−l/s) σ(l − s) max(s−x

s , 0)

Legality 0.982 0.983 0.982
HPWL Ratio 1.003 1.012 1.003

In Table 2, we see that our model performs well, both in le-
gality and HPWL, on circuits where edges are sampled from
different distributions. This is a promising indication that
our training data can allow models to generalize zero-shot
to unseen circuits that lie outside the training distribution.

5.1.4. ZERO-SHOT TRANSFER TO REAL CIRCUITS

These results allow us to design new datasets, which we
refer to as v1 and v2, that better enable zero-shot transfer to
real circuits. Because our models generalize poorly to larger
circuits, they require training on circuits similar in size to
real (clustered) circuits, which contain ∼1000 components.
To satisfy this while maintaining computational efficiency,
we pre-train on a large set of smaller circuits (v1) before
fine-tuning on a small set of larger circuits (v2), keeping
the number of edges low in both datasets. To ensure model
performance across different length scales, we also train on
a broad distribution of scale parameters. Finally, since an
exponentially decaying p generalizes well to other distribu-
tions without sacrificing HPWL, we continue using it in our
new datasets.

The parameters for generating the v1 and v2 datasets are
summarized in Table 1, with a full list provided in Table 8.

We find in Table 4 that training on these broad-distribution
datasets allow for effective zero-shot transfer to the real-
world circuits in the IBM benchmark, with legality increas-
ing significantly when training on v1 and v2, compared to
the narrower v0 dataset.

Moreover, models trained on our synthetic dataset far outper-
form those trained on the existing data generation algorithm
proposed by Flora (Liu et al., 2022a;b). We see in Table 4

6

Chip Placement with Diffusion Models

that our v1 dataset achieves a legality of 0.821, far higher
than Flora’s 0.264, demonstrating that our dataset allows
for much better zero-shot generalization.

Thus, although our simple data generation algorithm does
not capture all the nuances of real circuits, such as the
multimodal distributions of both edges and object sizes, it
covers the important features well enough for our model
to learn to produce reasonable placements on IBM circuits,
some of which are shown in Figure 8.

5.2. Model Architecture

We demonstrate the importance of several components of
our model architecture through ablations, shown in Table 3.
When either the sinusoidal encodings or MLP blocks are
removed, the model performs substantially worse in both
legality and HPWL. Replacing attention layers with graph
convolutions also causes sample quality to plummet, as
evidenced by poor legality scores.

Table 3. Legality and HPWL of various models on the v1 dataset
after 1M steps. Our models scale favorably, and our ablations
validate the importance of several components of our model.

Model #Param. Legality HPWL Ratio

Small 0.233M 0.948 1.072
Medium 1.23M 0.960 1.039

– No attention 1.42M 0.799 1.035
– No MLP 0.698M 0.946 1.060
– No encodings 1.21M 0.949 1.061

Large 6.29M 0.976 1.032

Our model also exhibits favorable scaling properties, with
Table 3 showing significant and monotonic improvements
in model performance (both legality and HPWL) with in-
creasing model size. This suggests scaling up models as an
attractive strategy for improving performance on more com-
plex datasets, particularly since synthetic data is unlimited.

5.3. Guided Sampling on Real Circuits

To determine the effectiveness of guidance in improving
sample quality, we used our model to generate placements
for the IBM benchmark with standard cells clustered.

As shown in Table 4, guidance dramatically improves legal-
ity and HPWL during zero-shot sampling, with legality in-
creasing to nearly 1 while simultaneously shortening HPWL
by 7.1%. This result shows that our guidance method is ef-
fective in optimizing generated samples without requiring
additional training. An example of the generated placements
with and without guidance is shown in Figure 8.

Moreover, we find that our placements are significantly

Table 4. Average HPWL and legality achieved by our models on
the clustered IBM benchmark. DREAMPlace figures, and results
for a model trained on Flora’s dataset are included for comparison.

Model Legality HPWL (107)

DREAMPlace - 3.724
Large+Flora 0.2640 3.740
Large+v0 0.7794 3.252
Large+v1 0.8213 3.281
Large+v2 0.8835 3.203
Large+v2 (Guided) 0.9970 2.976

(a) Large+v0 (b) Large+v2 (c) Large+v2 Guided

Figure 8. While our Large model, when trained on v2 data, can
produce reasonable placements, guided sampling improves quality
significantly. ibm04 is shown here, with macros in yellow, while
standard cell clusters are colored blue.

better than those produced by the state-of-the-art DREAM-
Place (Lin et al., 2019; Chen et al., 2023b), with 20% lower
HPWL on average. While we note that DREAMPlace, a
mixed-size placer, is not optimized for placing clustered
circuits, this result is nevertheless a strong indication of our
method’s ability to generate high-quality placements for real
circuits. This is especially remarkable, showing that models
trained entirely on synthetic data can transfer effectively
to real circuits in a zero-shot manner.

5.4. Macro-only Placement of Real Circuits

To compare our method to existing macro placement tech-
niques, we also generated placements in the macro-only
setting by removing all standard cells from the IBM and
ISPD circuit netlists. For brevity, we present only aver-
ages for each benchmark in this section, with results for
individual circuits found in Appendix B.

We see from Table 5 that our method outperforms existing
macro placers by a large margin, reducing average HPWL
by over 50% compared to prior works in both the IBM and
ISPD benchmarks.

Moreover, Table 5 also shows that placements generated by
our method have far lower congestion that those produced
by existing methods. Here, we measure the RUDY conges-
tion (Spindler & Johannes, 2007) using the method in Shi
et al. (2023). The strong performance of our method on the

7

Chip Placement with Diffusion Models

congestion metric, despite not explicitly optimizing for it, is
consistent with Shi et al. (2023)’s observation that RUDY
congestion and HPWL are positively correlated.

Table 5. Average HPWL and RUDY congestion of our model com-
pared to various baselines on the IBM and ISPD benchmarks in the
macro-only setting. Our model significantly outperforms existing
methods, achieving much lower HPWL and congestion.

Method HPWL (105) Congestion

IBM Average
MaskPlace 8.72 345
WireMask-BBO 7.43 324
ChiPFormer 7.33 336
EfficientPlace 8.32 367
Diffusion (Ours) 2.49 196

ISPD Average
MaskPlace Timeout on 2/8 circuits.
WireMask-BBO 154 1485
ChiPFormer 116 836
Diffusion (Ours) 45.9 546

5.5. Mixed-Size Placement of Real Circuits

While our results (Table 4 and Table 5) have shown that
our method can produce high-quality macro placements for
clustered and macro-only circuits, we also wish to investi-
gate if these macro placements are useful for downstream
tasks, particularly for mixed-size placement.

(a) Diffusion model
placement.

(b) Initialize and fix
macros.

(c) Place standard
cells.

Figure 9. Our model can be used for mixed-size placement by first
placing macros and clusters, then using our placements as inputs
to a standard cell placer. ibm03 is shown here.

To perform mixed-size placement (which requires placing
all standard cells and macros) using our method, we first
use our diffusion models to place clusters and macros (Fig-
ure 9a). We then initialize the position of each standard
cell to the position of the corresponding cluster, and copy
the positions of the macros (Figure 9b). Finally, we use
DREAMPlace 4.1 (Chen et al., 2023b) to place the stan-
dard cells, thus obtaining a full placement of standard cells
and macros (Figure 9c). To elucidate the impact of our
macro placements on the final placement quality, we keep

the macro positions fixed during standard cell placement.
This is in line with earlier works (Lai et al., 2022; Shi et al.,
2023; Mirhoseini et al., 2020; Cheng & Yan, 2021) but
contrasts with Lai et al. (2023), where the contribution of
the macro placement technique is not as clear because the
macros move significantly during standard cell placement.

In Table 6, we compare results from our method to other
macro placement baselines, as well as DREAMPlace. The
baselines include both the learning-based ChiPFormer (Lai
et al., 2023) and MaskPlace (Lai et al., 2022), as well as
the learning-free WireMask-BBO2 (Shi et al., 2023). All of
these baselines use DREAMPlace for standard cell place-
ment. We find that our method outperforms prior macro
placement methods by a wide margin, while improving over
DREAMPlace by 4% on average. This indicates that the
strong performance of our model on clustered macro place-
ment transfers well to mixed-size placements. Moreover,
our method, by design, can be easily applied zero-shot to
new circuits and takes minutes to run (see Table 13), while
other methods require RL fine-tuning or black box optimiza-
tion, spending hours on each new circuit.

6. Conclusion
In this work, we explored an approach that departs from
many existing methods for tackling macro placement: using
diffusion models to generate placements. To train and apply
such models at scale, we developed a novel data generation
algorithm, designed synthetic datasets that enable zero-shot
transfer to real circuits, and designed a neural network archi-
tecture that performs and scales well. We show that when
trained on our synthetic data, our models generalize to new
circuits, and when combined with guided sampling, can
generate optimized placements even on large, real-world
circuit benchmarks.

Even so, our work is not without limitations. RL methods,
while slow, provide a means of trading test-time compute
for better sample quality. We believe applying such meth-
ods, through DDPO (Black et al., 2024) for instance, could
combine the strengths of generative modeling and RL fine-
tuning. We also note that our synthetic data does not capture
all the nuances of real data, such as multimodal edge dis-
tributions, and believe this is an interesting area for further
study.

In conclusion, we find that training diffusion models on
synthetic data is a promising approach, with our models
generating competitive placements despite never having
trained on realistic circuit data. We hope that our results
inspire further work in this area.

2WireMask-BBO fails to place ibm12 and ibm15 so a lower-
bound average is computed by substituting the smallest HPWL in
the corresponding rows

8

Chip Placement with Diffusion Models

Table 6. Comparison of HPWL (106) averaged over 5 seeds, using various techniques for mixed-size placement, on the IBM benchmark.

Circuit MaskPlace + DP WireMask-BBO + DP ChiPFormer + DP DREAMPlace Diffusion (Ours)

ibm01 3.33 2.84 3.35 2.23 2.09
ibm02 7.30 6.87 6.24 5.79 4.43
ibm03 10.1 9.81 10.9 10.4 7.30
ibm04 10.4 9.65 10.1 9.13 8.00
ibm05 7.67 7.67 7.67 7.60 7.79
ibm06 7.62 8.41 7.76 6.15 8.31
ibm07 13.3 13.0 13.4 11.1 9.60
ibm08 15.5 15.9 15.7 12.3 13.3
ibm09 16.2 15.4 16.9 12.8 12.6
ibm10 46.8 45.2 45.4 44.8 30.2
ibm11 23.5 24.6 23.6 16.6 17.3
ibm12 46.1 Failed 48.8 31.0 34.0
ibm13 28.2 28.0 28.4 23.2 23.0
ibm14 45.4 48.2 46.5 31.3 34.5
ibm15 53.4 Failed 55.8 51.3 45.0
ibm16 65.9 63.2 67.3 53.0 52.7
ibm17 72.9 69.7 71.4 57.9 60.4
ibm18 42.2 41.6 41.1 37.6 38.6

Average 28.7 27.0 28.9 23.6 22.7

Acknowledgements
This work was supported in part by an ONR DURIP grant
and the BAIR Industrial Consortium. Pieter Abbeel holds
concurrent appointments as a Professor at UC Berkeley
and as an Amazon Scholar. This paper describes work per-
formed at UC Berkeley and is not associated with Amazon.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Adya, S., Chaturvedi, S., Roy, J., Papa, D., and Markov, I.

Unification of partitioning, placement and floorplanning.
In IEEE/ACM International Conference on Computer
Aided Design, 2004. ICCAD-2004., pp. 550–557, 2004.
doi: 10.1109/ICCAD.2004.1382639.

Bansal, A., Chu, H.-M., Schwarzschild, A., Sengupta, S.,
Goldblum, M., Geiping, J., and Goldstein, T. Universal
guidance for diffusion models, 2023.

Black, K., Janner, M., Du, Y., Kostrikov, I., and Levine, S.
Training diffusion models with reinforcement learning,
2024.

Brody, S., Alon, U., and Yahav, E. How attentive are graph
attention networks?, 2022.

Chen, T.-c., Jiang, Z.-w., Hsu, T.-c., Chen, H.-c., and
Chang, Y.-w. A high-quality mixed-size analytical
placer considering preplaced blocks and density con-
straints. In 2006 IEEE/ACM International Conference
on Computer Aided Design, pp. 187–192, 2006. doi:
10.1109/ICCAD.2006.320084.

Chen, Y., Mai, J., Gao, X., Zhang, M., and Lin,
Y. Macrorank: Ranking macro placement solutions
leveraging translation equivariancy. In Proceedings
of the 28th Asia and South Pacific Design Automa-
tion Conference, ASPDAC ’23, pp. 258–263, New
York, NY, USA, 2023a. Association for Computing
Machinery. ISBN 9781450397834. doi: 10.1145/
3566097.3567899. URL https://doi.org/10.
1145/3566097.3567899.

Chen, Y., Wen, Z., Liang, Y., and Lin, Y. Stronger mixed-
size placement backbone considering second-order infor-
mation. In 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pp. 1–9, 2023b. doi:
10.1109/ICCAD57390.2023.10323700.

Cheng, R. and Yan, J. On joint learning for solving place-
ment and routing in chip design, 2021.

Dhariwal, P. and Nichol, A. Diffusion models beat gans

9

https://doi.org/10.1145/3566097.3567899
https://doi.org/10.1145/3566097.3567899

Chip Placement with Diffusion Models

on image synthesis. CoRR, abs/2105.05233, 2021. URL
https://arxiv.org/abs/2105.05233.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Repre-
sentation Learning on Graphs and Manifolds, 2019.

Geng, Z., Wang, J., Liu, Z., Xu, S., Tang, Z., Yuan, M.,
HAO, J., Zhang, Y., and Wu, F. Reinforcement learning
within tree search for fast macro placement. In Forty-
first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?
id=AJGwSx0RUV.

Ghose, A., Zhang, V., Zhang, Y., Li, D., Liu, W., and Coates,
M. Generalizable cross-graph embedding for gnn-based
congestion prediction. In 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), pp.
1–9. IEEE, 2021.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry, 2017.

Gu, H., Gu, J., Peng, K., Zhu, Z., Xu, N., Geng, X., and
Yang, J. Lamplace: Legalization-aided reinforcement
learning based macro placement for mixed-size designs
with preplaced blocks. IEEE Transactions on Circuits
and Systems II: Express Briefs, pp. 1–1, 2024. doi: 10.
1109/TCSII.2024.3375068.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models, 2020.

Kahng, A. B. and Reda, S. A tale of two nets: Studies of
wirelength progression in physical design. In Proceed-
ings of the 2006 international workshop on System-level
interconnect prediction, pp. 17–24, 2006.

Karypis, G., Aggarwal, R., Kumar, V., and Shekhar, S.
Multilevel hypergraph partitioning: application in vlsi
domain. In Proceedings of the 34th Annual Design Au-
tomation Conference, DAC ’97, pp. 526–529, New York,
NY, USA, 1997. Association for Computing Machinery.
ISBN 0897919203. doi: 10.1145/266021.266273. URL
https://doi.org/10.1145/266021.266273.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes, 2022.

Lai, Y., Mu, Y., and Luo, P. Maskplace: Fast chip place-
ment via reinforced visual representation learning. In
Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D.,

Cho, K., and Oh, A. (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 24019–
24030. Curran Associates, Inc., 2022. URL https:
//arxiv.org/pdf/2211.13382.

Lai, Y., Liu, J., Tang, Z., Wang, B., Hao, J., and Luo,
P. Chipformer: Transferable chip placement via of-
fline decision transformer. In International Conference
on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings of
Machine Learning Research, pp. 18346–18364. PMLR,
2023. URL https://proceedings.mlr.press/
v202/lai23c.html.

Lanzerotti, M. Y., Fiorenza, G., and Rand, R. A. Micro-
miniature packaging and integrated circuitry: The work
of e. f. rent, with an application to on-chip interconnection
requirements. IBM Journal of Research and Development,
49(4.5):777–803, 2005. doi: 10.1147/rd.494.0777.

Lin, Y., Dhar, S., Li, W., Ren, H., Khailany, B., and Pan,
D. Z. Dreampiace: Deep learning toolkit-enabled gpu
acceleration for modern vlsi placement. In 2019 56th
ACM/IEEE Design Automation Conference (DAC), pp.
1–6, 2019.

Liu, Y., Ju, Z., Li, Z., Dong, M., Zhou, H., Wang, J., Yang,
F., Zeng, X., and Shang, L. Floorplanning with graph
attention. In Proceedings of the 59th ACM/IEEE De-
sign Automation Conference, DAC ’22, pp. 1303–1308,
New York, NY, USA, 2022a. Association for Com-
puting Machinery. ISBN 9781450391429. doi: 10.
1145/3489517.3530484. URL https://doi.org/
10.1145/3489517.3530484.

Liu, Y., Ju, Z., Li, Z., Dong, M., Zhou, H., Wang, J., Yang,
F., Zeng, X., and Shang, L. Graphplanner: Floorplan-
ning with graph neural network. ACM Trans. Des. Au-
tom. Electron. Syst., 28(2), dec 2022b. ISSN 1084-4309.
doi: 10.1145/3555804. URL https://doi.org/10.
1145/3555804.

Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J. W. J.,
Songhori, E. M., Wang, S., Lee, Y., Johnson, E., Pathak,
O., Bae, S., Nazi, A., Pak, J., Tong, A., Srinivasa, K.,
Hang, W., Tuncer, E., Babu, A., Le, Q. V., Laudon, J., Ho,
R., Carpenter, R., and Dean, J. Chip placement with deep
reinforcement learning. CoRR, abs/2004.10746, 2020.
URL https://arxiv.org/abs/2004.10746.

Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J. W.,
Songhori, E., Wang, S., Lee, Y.-J., Johnson, E., Pathak,
O., Nazi, A., et al. A graph placement methodology for
fast chip design. Nature, 594(7862):207–212, 2021.

Nam, G.-J., Alpert, C., Villarrubia, P., Winter, B., and Yildiz,
M. The ispd2005 placement contest and benchmark suite.
pp. 216–220, 04 2005a. doi: 10.1145/1055137.1055182.

10

https://arxiv.org/abs/2105.05233
https://openreview.net/forum?id=AJGwSx0RUV
https://openreview.net/forum?id=AJGwSx0RUV
https://doi.org/10.1145/266021.266273
https://arxiv.org/pdf/2211.13382
https://arxiv.org/pdf/2211.13382
https://proceedings.mlr.press/v202/lai23c.html
https://proceedings.mlr.press/v202/lai23c.html
https://doi.org/10.1145/3489517.3530484
https://doi.org/10.1145/3489517.3530484
https://doi.org/10.1145/3555804
https://doi.org/10.1145/3555804
https://arxiv.org/abs/2004.10746

Chip Placement with Diffusion Models

Nam, G.-J., Alpert, C. J., Villarrubia, P., Winter, B.,
and Yildiz, M. The ispd2005 placement contest and
benchmark suite. In Proceedings of the 2005 Inter-
national Symposium on Physical Design, ISPD ’05,
pp. 216–220, New York, NY, USA, 2005b. Associa-
tion for Computing Machinery. ISBN 1595930213.
doi: 10.1145/1055137.1055182. URL https://doi.
org/10.1145/1055137.1055182.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Shi, Y., Xue, K., Song, L., and Qian, C. Macro placement
by wire-mask-guided black-box optimization, 2023. URL
https://arxiv.org/abs/2306.16844.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations, 2021.

Spindler, P. and Johannes, F. M. Fast and accurate rout-
ing demand estimation for efficient routability-driven
placement. In 2007 Design, Automation & Test in Eu-
rope Conference & Exhibition, pp. 1–6, 2007. doi:
10.1109/DATE.2007.364463.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, B., Shen, G., Li, D., Hao, J., Liu, W., Huang, Y.,
Wu, H., Lin, Y., Chen, G., and Heng, P. A. Lhnn: Lattice
hypergraph neural network for vlsi congestion prediction.
In Proceedings of the 59th ACM/IEEE Design Automation
Conference, pp. 1297–1302, 2022.

Yue, S., Songhori, E. M., Jiang, J. W., Boyd, T., Goldie,
A., Mirhoseini, A., and Guadarrama, S. Scalability
and generalization of circuit training for chip floor-
planning. In Proceedings of the 2022 International
Symposium on Physical Design, ISPD ’22, pp. 65–70,
New York, NY, USA, 2022. Association for Comput-
ing Machinery. ISBN 9781450392105. doi: 10.1145/
3505170.3511478. URL https://doi.org/10.
1145/3505170.3511478.

Zheng, S., Zou, L., Liu, S., Lin, Y., Yu, B., and Wong, M.
Mitigating distribution shift for congestion optimization
in global placement. In 2023 60th ACM/IEEE Design
Automation Conference (DAC), pp. 1–6, 2023a. doi: 10.
1109/DAC56929.2023.10247660.

Zheng, S., Zou, L., Xu, P., Liu, S., Yu, B., and Wong,
M. Lay-net: Grafting netlist knowledge on layout-based
congestion prediction. In 2023 IEEE/ACM International
Conference on Computer Aided Design (ICCAD), pp. 1–9.
IEEE, 2023b.

11

https://doi.org/10.1145/1055137.1055182
https://doi.org/10.1145/1055137.1055182
https://arxiv.org/abs/2306.16844
https://doi.org/10.1145/3505170.3511478
https://doi.org/10.1145/3505170.3511478

Chip Placement with Diffusion Models

A. Implementation Details
Hyperparameters for our model are listed in Table 7. We used the DDPM formulation found in Ho et al. (2020) with a
cosine noise schedule over 1000 steps. We also list parameters for generating our synthetic datasets in Table 8.

Table 7. Hyperparameters for our models. We refer the reader to our code for more details.

Small Medium Large

Model Dimensions
Model size 64 128 256
Blocks 2 2 3
Layers per block 2
AttGNN size 32 32 256
ResGNN size 64 256 256
MLP size factor 4
MLP layers per block 2

Input Encodings
Timestep encoding dimension 32
Input encoding dimension 32

GNN Layers
Type GATv2 (Brody et al., 2022)
Heads 4

Guidance Parameters
wHPWL 0.0001
x̂0 optimizer SGD
x̂0 optimizer learning rate 0.008
wlegality optimizer Adam
wlegality optimizer learning rate 0.0005
wlegality initial value 0
Gradient descent steps 10
ε 0.0001

12

Chip Placement with Diffusion Models

Table 8. Parameters for generating our synthetic data. Unless otherwise stated, v1 and v2 use the same parameters as v0. We refer the
reader to our code for more details. Sizes and distances are normalized so that a value of 2 corresponds to the width of the canvas.

v0 v1 v2

Stop Density Distribution
Distribution type Uniform
Low 0.75
High 0.9

Aspect Ratio Distribution
Distribution type Uniform
Low 0.25
High 1.0

Object Size Distribution
Distribution type Clipped Exponential
Scale 0.08 0.04
Max 1.0 0.5
Min 0.02 0.01

Edge Distribution
Distribution p(l) γ · exp (−l/s)
Scale s 0.2 ∼ logU(0.05, 1.6) ∼ logU(0.025, 0.8)
Max p 0.9
γ 0.21 0.212 · s−1.42 0.00792 · s−1.42

13

Chip Placement with Diffusion Models

B. Additional Results
We present results for macro placements for each circuit in the IBM and ISPD benchmarks below. HPWL figures are shown
in Table 9 and Table 10, congestion in Table 11 and Table 12, and runtime in Table 13 and Table 14.

In some cases, our values differ from those in the original papers because some baselines select and place only a subset of
the macros, with differing selection criteria among baselines, while we place all macros for all baselines to ensure a fair
comparison.

Table 9. Comparison of HPWL (105) for macro-only placements on the IBM benchmark. ibm05 has been omitted because it contains no
macros.

Circuit MaskPlace WireMask-BBO ChiPFormer EfficientPlace Diffusion (Ours)

ibm01 4.30 2.78 3.88 3.66 1.16
ibm02 5.54 4.19 5.05 4.42 2.68
ibm03 3.31 3.30 3.74 3.87 1.07
ibm04 6.91 5.43 5.96 6.10 2.40
ibm06 0.93 0.85 0.87 0.84 0.32
ibm07 2.67 2.66 2.36 3.42 0.78
ibm08 20.6 19.2 19.9 19.3 9.32
ibm09 2.45 1.76 1.77 2.57 0.44
ibm10 23.8 18.2 18.2 20.6 5.28
ibm11 4.15 3.75 3.25 4.70 0.78
ibm12 14.9 11.8 13.0 12.1 2.85
ibm13 4.58 4.41 4.02 5.37 1.05
ibm14 8.43 9.80 7.44 11.7 2.42
ibm15 4.68 7.77 2.67 5.98 1.06
ibm16 18.3 14.8 15.5 15.2 6.11
ibm17 16.8 12.2 13.7 17.9 3.20
ibm18 5.98 3.44 4.19 3.64 1.52

Average 8.72 7.43 7.33 8.32 2.49

Table 10. Comparison of HPWL (105) for macro-only placements on the ISPD benchmark.

Circuit MaskPlace WireMask-BBO ChiPFormer Diffusion (Ours)

adaptec1 8.57 5.81 6.75 9.19
adaptec2 77.7 54.5 63.8 31.0
adaptec3 108 59.2 73.2 54.4
adaptec4 91.9 62.7 85.8 54.5
bigblue1 3.11 2.12 3.05 2.64
bigblue2 Timeout 186 85.8 38.8
bigblue3 84.0 66.2 79.2 35.9
bigblue4 Timeout 798 548 141

Average — 154 116 45.9

14

Chip Placement with Diffusion Models

Table 11. Comparison of congestion (RUDY estimator) for macro-only placements on the IBM benchmark. ibm05 has been omitted
because it contains no macros.

Circuit MaskPlace WireMask-BBO ChiPFormer EfficientPlace Diffusion (Ours)

ibm01 289 253 266 316 160
ibm02 228 243 205 257 178
ibm03 176 173 173 214 117
ibm04 449 483 490 480 260
ibm06 79.2 77.1 76.9 76.7 42.8
ibm07 154 164 160 177 83.0
ibm08 1232 1198 1261 1288 776
ibm09 127 119 111 153 49.1
ibm10 480 463 466 538 362
ibm11 180 183 172 240 69.2
ibm12 392 212 357 360 190
ibm13 163 202 177 209 86.0
ibm14 378 375 378 418 232
ibm15 162 173 173 227 69.2
ibm16 574 497 528 534 334
ibm17 531 464 488 483 204
ibm18 271 221 229 266 111

Average 345 324 336 367 196

Table 12. Comparison of congestion (RUDY estimator) for macro-only placements on the ISPD benchmark.

Circuit MaskPlace WireMask-BBO ChiPFormer Diffusion (Ours)

adaptec1 312 139 140 149
adaptec2 1068 1084 1180 668
adaptec3 990 672 677 579
adaptec4 945 793 779 584
bigblue1 98.5 25.1 19.0 23.4
bigblue2 Timeout 1924 500 523
bigblue3 970 955 956 391
bigblue4 Timeout 6290 2436 1451

Average — 1485 836 546

15

Chip Placement with Diffusion Models

Table 13. Comparison of runtime (minutes) on the IBM benchmark. ibm05 has been omitted because it contains no macros.

Circuit MaskPlace WireMask-BBO ChiPFormer EfficientPlace DREAMPlace Diffusion (Ours)

ibm01 154 209 98 54 0.308 1.85
ibm02 165 204 87 61 0.411 2.25
ibm03 123 217 75 61 0.393 2.17
ibm04 63 208 82 61 0.401 2.21
ibm06 34 224 80 29 0.229 2.38
ibm07 58 223 80 63 0.261 2.87
ibm08 75 207 105 79 0.260 3.38
ibm09 50 221 71 46 0.257 3.08
ibm10 516 228 236 268 0.455 4.50
ibm11 79 224 106 80 0.303 3.40
ibm12 390 253 196 206 0.469 5.24
ibm13 93 225 127 95 0.613 4.19
ibm14 393 266 187 216 0.760 5.95
ibm15 83 254 113 86 0.923 6.81
ibm16 107 217 137 130 0.784 7.88
ibm17 489 266 250 358 0.839 10.33
ibm18 60 216 93 58 0.742 8.06

Average 172 227 124 114 0.475 4.39

Table 14. Comparison of runtime (minutes) on the ISPD benchmark.

Circuit MaskPlace WireMask-BBO ChiPFormer DREAMPlace Diffusion (Ours)

adaptec1 139 211 223 1.07 4.78
adaptec2 195 209 234 1.34 4.53
adaptec3 224 207 284 2.06 4.73
adaptec4 718 212 467 2.43 4.94
bigblue1 274 204 256 1.30 4.83
bigblue2 Timeout 1396 5220 3.80 122
bigblue3 648 233 494 3.14 5.13
bigblue4 Timeout 596 1210 8.86 18.9

Average — 408.5 1049 3.00 21.2

16

