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Abstract
Sparse Mixture of Experts (MoE) models are001
popular for training large language models due002
to their computational efficiency. However, the003
commonly used top-k routing mechanism suf-004
fers from redundancy computation and memory005
costs due to the unbalanced routing. Some ex-006
perts are overflow, where the exceeding tokens007
are dropped. While some experts are empty,008
which are padded with zeros, negatively im-009
pacting model performance. To address the010
dropped tokens and padding, we propose the011
Rectify-Router, comprising the Intra-GPU Rec-012
tification and the Fill-in Rectification. The013
Intra-GPU Rectification handles dropped to-014
kens, efficiently routing them to experts within015
the GPU where they are located to avoid inter-016
GPU communication. The Fill-in Rectifica-017
tion addresses padding by replacing padding018
tokens with the tokens that have high routing019
scores. Our experimental results demonstrate020
that the Intra-GPU Rectification and the Fill-in021
Rectification effectively handle dropped tokens022
and padding, respectively. Furthermore, the023
combination of them achieves superior perfor-024
mance, surpassing the accuracy of the vanilla025
top-1 router by 4.7%.026

1 Introduction027

Sparse Mixture of Experts (MoE) is gaining pop-028

ularity as a model architecture for training large029

language models (Fedus et al., 2022; Du et al.,030

2022; Zoph et al., 2022; Jiang et al., 2024; Dai031

et al., 2024) owing to its computational efficiency.032

In a sparse MoE model, each token is assigned to033

one or more experts based on a routing mechanism.034

The top-k router is currently the most widely used035

routing mechanism, where tokens are directed to036

the experts with the top-k scores.037

However, top-k router is unbalanced, where the038

number of tokens routed to different GPUs is not039

the same. In order to achieve a balanced workload040

across GPUs, the top-k routing imposes a maxi-041

mum limit on the number of tokens that each expert042

Figure 1: The illustration of dropped token and padding
in top-k router of MoE. Queue i represents the queue
of tokens to be sent to expert i. The capacity of each
expert is fixed to 3.

can process, resulting in any tokens that exceed this 043

limit being dropped and empty experts being filled 044

with zeros, which negatively affects overall model 045

performance (Gale et al., 2022). 046

Previous studies have attempted to address the 047

balance issue in routing by introducing auxiliary 048

loss mechanisms (Shazeer et al., 2017; Lepikhin 049

et al., 2021; Zoph et al., 2022). But there are 050

drawbacks to the way, the performance degrada- 051

tion due to dropped tokens is still significant (Zhou 052

et al., 2022; Gale et al., 2022). Even some meth- 053

ods have made improvements to propose absolutely 054

balanced routers, but they have been found to un- 055

derperform the original top-k routing methodol- 056

ogy (Yu et al., 2022). 057

Rather than focusing on improving the balance 058

of the top-k router, We propose an alternative ap- 059

proach called the Rectify-Router, which rectifies 060

top-k router by post-processing the dropped tokens 061

and padding from the top-k router. We propose two 062

Rectify-Routers: the Intra-GPU Rectification and 063

the Fill-in Rectification. The Intra-GPU Rectifica- 064

tion is designed to handle the dropped tokens, while 065
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the Fill-in Rectification specifically addresses the066

padding issue.067

Post-processing the dropped tokens with another068

router may bring expensive communication cost.069

Therefore, we propose the Intra-GPU Rectifica-070

tion which routes the dropped tokens to the ex-071

perts within the GPU where they are located, elim-072

inating the need for inter-GPU communication.073

Our empirical experiments have demonstrated that074

the Intra-GPU Rectification effectively handles the075

post-processing of dropped tokens and is more effi-076

cient than the commonly used routers, in terms of077

communication.078

To address the padding issue, we present the079

Fill-in Rectification, which replace padding tokens080

with the tokens that have high routing scores. Fill-081

in Rectification first identifies the optimal expert082

for each token based on the routing scores and083

subsequently selects the tokens with the highest084

routing score to replace the padding for each expert.085

By employing Fill-in Rectification, tokens with the086

higher routing scores receive more computational087

allocation.088

The Intra-GPU Rectification and Fill-in Rectifi-089

cation are orthogonal approaches that can be seam-090

lessly combined. Our experiments have demon-091

strated their effectiveness in handling dropped to-092

kens and padding. Furthermore, combing the Intra-093

GPU Rectification and Fill-in Rectification yield094

improved performance compared to using them095

individually.096

Contributions The contributions of our work can097

be summarized as follows:098

1. We introduce the concept of Rectify-Router099

to handle the dropped tokens and padding in100

MoE models. Specifically, the dropped tokens101

are efficiently processed using the Intra-GPU102

Rectification, while the padding tokens are103

optimally managed using the Fill-in Rectifica-104

tion.105

2. Our experiments validate that both the Intra-106

GPU Rectification and the Fill-in Rectification107

significantly improve the performance of the108

top-k routing, even without additional train-109

ing.110

3. Experiments present that our methods are ro-111

bust to various settings of expert capacity and112

that Intra-GPU Rectification can be used for113

accelerating MoE by reducing expert capaci-114

ties.115

2 Related Works 116

The routing of MoE can be classified into two cat- 117

egories: balanced and unbalanced. The balanced 118

routing assigns the same number of tokens to each 119

expert, while the unbalanced routing does not make 120

sure that the number of tokens received by each ex- 121

pert is the same. 122

Unbalanced Routing Top-k routing was the 123

most commonly used unbalanced routing proposed 124

by Shazeer et al. (2017), which greedily assigns 125

tokens to experts, according to the token-expert 126

assignment scores. Numerous MoE models have 127

adopted top-k routing, including Switch Trans- 128

former (Fedus et al., 2022), Glam (Du et al., 2022), 129

ST-MoE (Zoph et al., 2022), Flan-MoE (Shen et al., 130

2023), and NLLB (Koishekenov et al., 2022), to 131

name just a few. 132

It is worth noting that many unbalanced rout- 133

ing methods are variations or derivatives of top-k 134

routing. For example, Switch Transformer (Fedus 135

et al., 2022) argues in favor of using top-1 routing 136

instead of top-2 routing for improved efficiency. 137

ST-MoE (Zoph et al., 2022) and LIMoE (Mustafa 138

et al., 2022) propose auxiliary loss functions to 139

enhance the stability of MoE during training. Ad- 140

ditionally, SCoMoE (Zeng and Xiong, 2023) and 141

Gating-Dropout (Liu et al., 2022) improve the effi- 142

ciency of top-k routing by designing hierarchical 143

routing systems based on the hierarchical structure 144

of the communication topology. 145

The routing method proposed in this paper is 146

also a variation of top-k routing. However, unlike 147

the aforementioned approaches, our objective is to 148

address the issues of dropped tokens and padding 149

that arise from unbalanced routing. Switch Trans- 150

former (Fedus et al., 2022) tackles the problem 151

of dropped tokens by increasing the capacity of 152

experts, allowing each expert to handle more to- 153

kens. While this approach reduces the number of 154

dropped tokens, it introduces additional overhead 155

in terms of both speed and memory. On the other 156

hand, Megablocks (Gale et al., 2022) addresses 157

the challenges of padding and dropped tokens by 158

gathering all experts onto the same GPU and em- 159

ploying model parallelism rather than expert paral- 160

lelism. However, the model parallelism is shown 161

to be more expensive than the expert parallelism 162

by Tutel (Hwang et al., 2022). 163

Balanced Routing In response to the imbalance 164

issue inherent in top-k routing, several balanced 165
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Figure 2: Left: Post-processing of dropped tokens at GPU 0 with Intra-GPU Rectification. Right: Post-processing
of padding at GPU 0 with Fill-in Rectification.

routing methods have been proposed. For in-166

stance, the Base Layer approach (Lewis et al.,167

2021) employs a balanced assignment algorithm168

to evenly distribute tokens among experts. How-169

ever, their assumption that tokens within the same170

batch can be evenly clustered may not hold true171

in all cases, which can potentially result in poorer172

performance (Yu et al., 2022). Another alterna-173

tive to balanced routing is random routing (Zuo174

et al., 2022), which assigns tokens to experts in a175

random manner. While random routing achieves176

balance and efficiency, it lacks any specialization177

or optimization in the routing process. Another178

approach called expert choices (Zhou et al., 2022)179

allows each expert to select a fixed number of to-180

kens, rather than relying on tokens to determine181

their target experts. This approach helps to avoid182

padding issues but still results in dropped tokens.183

Soft routing (Puigcerver et al., 2023) is a method184

that compresses tokens by applying a linear trans-185

formation to generate fixed-size hidden states for186

each expert. However, this method is only suitable187

for encoder models with fixed input lengths and188

may not be applicable to autoregressive decoder189

models.190

3 Preliminary191

In this section, we will introduce expert parallelism,192

top-k routing, and two prevalent challenges that193

emerge while employing top-k routing: padding 194

and dropped tokens. 195

Expert Parallelism and Top-k Routing In ex- 196

pert parallelism, experts are distributed across 197

GPUs uniformly. If there are n experts and k GPUs, 198

each GPU contains k/n experts. The process of 199

transmitting tokens to the respective experts entails 200

inter-GPU communication. 201

Top-k routing greedily assigns tokens to experts 202

according to the routing score: 203

Ri = argtopkj∈[m]{aij |aij = wT
j xi} (1) 204

where aij is the score of assigning the ith token to 205

the jth expert, wj denotes the embedding vector 206

of the jth expert, xi corresponds to the hidden 207

states of the i token. The index set Ri signifies the 208

target experts of the ith token. Given the scores 209

of assigning token xi to m experts, denoted as 210

ai0, ai1, ..., aim, Ri contains the indices of experts 211

with top-k scores. 212

Since each token undergoes processing by mul- 213

tiple experts, the outputs of these experts for the 214

same token are consolidated through linear combi- 215

nation. The combining weights are determined by 216

the normalized routing scores, as defined in Eq. (1): 217

oi =
∑
j∈Ri

eaij∑
j∈Ri

eaij
Ej(xi). (2) 218
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Here, oi represents the combined result of token xi.219

The term eaij∑k
j eaij

denotes the normalized routing220

scores, while Ej(xi) refers to the outputs of the jth221

expert with token xi as its input.222

The top-k routing approach exhibits an inher-
ent imbalance, wherein the distribution of tokens
among different experts is not uniform. However,
the current distributed framework exclusively sup-
ports balanced computation across GPUs. Con-
sequently, there exists a limitation on the maxi-
mum number of tokens that each expert can receive,
which is referred to as the capacity. The capacity
is determined by the capacity factor, which is typ-
ically set to k for top-k routing (Lepikhin et al.,
2021; Rajbhandari et al., 2022). Mathematically,
the capacity can be expressed as:

capacity = capacity factor × number of tokens
number of experts

.

Dropped Tokens and Padding The issue of223

dropped tokens and padding arises naturally when224

dealing with the expert capacity setting, as depicted225

in Figure 1. With a fixed expert capacity, overflow226

experts are compelled to drop tokens with the low-227

est routing scores and directly pass them to the228

next layer through residual connections, as high-229

lighted in red in Figure 1. Consequently, due to the230

dropped tokens, the set Ri defined in Eq. (1) only231

includes the successfully routed experts, i.e., |Ri|232

<= k.233

Conversely, certain experts may receive fewer234

tokens than the capacity limitation, leading to re-235

dundant computation in the form of padding. These236

padding instances are illustrated in yellow in Fig-237

ure 1.238

If the capacity factor for top-k routing is set to k,239

the number of dropped tokens and padding tokens240

will be equal. However, this equality does not hold241

if we modify the capacity factor. Increasing the242

capacity factor results in fewer dropped tokens but243

more padding. Conversely, reducing the capacity244

factor reduces padding tokens but increases the245

number of dropped tokens.246

4 Method247

In this paper, we introduce a novel approach to248

address both the dropped tokens and padding as-249

sociated with top-k routing by utilizing Rectify-250

Routers. Specifically, we propose two Rectify-251

Routers: the Intra-GPU Rectification and the Fill-in252

Rectification, which are visualized in Figure 2. The253

Intra-GPU Rectification is designed to efficiently 254

post-process the dropped tokens, while the Fill-in 255

Rectification is dedicated to addressing the padding 256

problem. 257

4.1 Rectify-Router for Dropped Tokens: 258

Intra-GPU Rectification 259

We expect to post-process the dropped tokens by 260

evenly routing them across GPUs. But sending to- 261

kens among GPUs requires expensive communica- 262

tion cost. Furthermore, the dropped tokens have the 263

lower routing scores than the other tokens routed 264

to the same expert, which may be less important. 265

Therefore, we propose an efficient Rectify-Router 266

for the dropped tokens: Intra-GPU Rectification, 267

which dispatch the dropped tokens to the experts 268

inside GPU, which does not require any communi- 269

cation among GPUs. This process is visualized in 270

the left part of Figure 2, where the dropped tokens 271

from GPU 0 are routed to the expert 0 or expert 1 272

at GPU 0. 273

Given the input token xi, the Intra-GPU Rectifi- 274

cation greedily assigns token xi to the optimal ex- 275

pert within the same GPU according to the routing 276

scores. The Intra-GPU Rectification can be seen 277

as a variant of the top-k routing. If all experts are 278

distributed in the same GPU, then the Intra-GPU 279

Rectification is exactly the top-1 routing. 280

In top-k routing, the same token may be dropped 281

by multiple times. Take the top-2 routing as an 282

example, if a token xi is dropped at both the first 283

and second routing, it should be sent to two experts 284

at Intra-GPU Rectification. To simplify the prob- 285

lem, we only send xi to one expert, although it is 286

dropped twice. In another example, the token xi 287

is dropped only at the second routing, while the 288

first routing is successful. In this case, we have to 289

combine the results of top-k routing and Intra-GPU 290

Rectification. We combine them linearly according 291

to the routing scores: 292

oi =

∑
j∈Ri

eaijEj(xi) + (k − |Ri|)eaihEh(xi)

(
∑

j∈Ri
eaij ) + (k − |Ri|)eaih

,

(3) 293

where Ej(xi) represents the expert outputs ob- 294

tained through top-k routing, while Eh(xi) denotes 295

the expert outputs from Intra-GPU Rectification. 296

We normalize the routing scores aij and aih as 297

the combining weights of Ej(xi) and Eh(xi) re- 298

spectively. Specifically, we scale the combining 299

weights of Eh(xi) with a constant factor (k− |Ri|) 300

, because a token is dropped (k − |Ri|) times but 301
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only processed by one expert in the Intra-GPU Rec-302

tification.303

Similar to the top-k router, the Intra-GPU Rec-304

tification also exhibits imbalance. However, this305

imbalance does not affect the computational fair-306

ness among GPUs. In Intra-GPU Rectification, the307

computation cost of a GPU is solely determined308

by the number of dropped tokens at that particular309

GPU, rather than the routing outcomes. Since the310

data is independently and identically distributed311

across devices, the number of dropped tokens on312

different GPUs is approximately the same.313

4.2 Rectify-Router for Padding: Fill-in314

Rectification315

Fill-in Rectification aims to replace the unneces-316

sary padding with the tokens that have high routing317

scores, which is visualized in the right part of Fig-318

ure 2. This process is divided into two separate319

stages. Firstly, we identify the most suitable ex-320

pert for each token, and subsequently, we select the321

optimal tokens for each expert.322

During the initial stage, each token will choose323

the expert ranked as the k+1th highest score as the324

optimal expert. This decision is based on the fact325

that the top-k experts have already been assigned,326

and the k + 1th expert is considered the most suit-327

able among the remaining experts. Furthermore,328

each token is only allowed to select one expert,329

which avoids the same token being processed by330

multiple experts during the second stage.331

Upon completion of the first stage, we transition332

to the second stage. It is worth noting that multiple333

tokens may select the same expert. Consequently,334

it is possible that the number of tokens choosing a335

particular expert surpasses the number of padding336

tokens of that expert. In such scenarios, we pri-337

oritize the tokens with higher routing scores for338

replacing the padding tokens.339

Indeed, implementing this algorithm can be340

achieved by extending the top-k router to a top-341

k + 1 router while ensuring the expert capacity342

remains unchanged. As the expert capacity is fixed,343

introducing the Fill-in Rectification incurs minimal344

additional overhead. Alternatively, we can view345

this approach as reducing the capacity factor of346

the top-k + 1 routing from k + 1 to k to avoid the347

padding.348

The Fill-in Rectification has a potential issue re-349

lated to the normalization of routing scores, where350

the gradient of routing scores may vanish due to351

the invalid normalization. We address this issue 352

in Appendix A with straight-through trick (Bengio 353

et al., 2013). 354

5 Experiments 355

5.1 Experiment Settings 356

Model We follow previous work (Komatsuzaki 357

et al., 2023) to train MoE models from a pretrained 358

dense model. We initialize all experts in the same 359

layer of MoE as the FFN parameters of the cor- 360

responding layer in the Dense model. We use the 361

LLama2-7b (Touvron et al., 2023) to initialize MoE 362

models. In most of our experiments, we employ 363

eight experts per layer in the MoE models. But 364

in Appendix B, we explore the extension of the 365

number of experts to 32. Our experiments are con- 366

ducted using the MoE implementation of Deep- 367

Speed (Rajbhandari et al., 2022) and the training 368

framework of gpt-neox (Andonian et al., 2021). 369

For simplicity, we denote our Intra-GPU Recti- 370

fication as IR, and the Fill-in Rectification as FR. 371

The top-k router, depending on whether it uses the 372

Intra-GPU Rectification or the Fill-in Rectification, 373

will be denoted as Top-k +IR or Top-k+FR, re- 374

spectively. 375

Training During the training phase, we utilize 376

the OpenOrca dataset (Lian et al., 2023) with 1.78B 377

tokens, which is an open-source reimplementation 378

of Orca dataset (Mukherjee et al., 2023). It aug- 379

ments the instructions from flan data (Longpre 380

et al., 2023) by adding complex system prompts 381

and generate the step-by-step reasoning or explana- 382

tion using chatgpt (OpenAI et al., 2023). 383

We conduct our model training on a cluster of 384

32 GPUs (80GB). The training process consists of 385

10k steps with a global batch size of 256 and a mi- 386

cro batch size of 8. Following Mukherjee et al. 387

(2023), we construct training examples by con- 388

catenating instructions with their corresponding 389

responses: “[instruct][response]”. However, only 390

the tokens in the response are utilized for the next- 391

token-prediction loss. For optimization, we use the 392

Adam optimizer (Kingma and Ba, 2015) with an 393

initial learning rate of 1e-5, which is decayed to 1e- 394

6 using a cosine learning rate scheduler. Regarding 395

the load-balance loss for the top-k router, we set 396

the weights to 1e-2, following Fedus et al. (2022). 397

Evaluation We evaluated our models on mul- 398

tiple benchmarks, including MMLU (Li et al., 399
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Model Router CF Train Speed MMLU SuperGLUE TruthfulQA LogiQA Avg

LLama2-raw - - 3.2k 25.85 59.06 25.21 25.03 33.78
LLama2 - - 3.2k 35.01 63.74 30.23 27.64 39.15

LLama-MoE
(Top-1)

Top-1 1.0 2.4k 33.05 64.34 29.49 28.11 38.74
Top-1+IR 1.0 2.3k 36.27 64.52 30.35 30.56 40.42
Top-1+FR 1.0 2.3k 34.66 63.97 28.51 29.18 39.08
Top-1+FR+IR 1.0 2.2k 35.81 65.08 30.84 30.56 40.57

LLama-MoE
(Top-2)

Top-2 2.0 1.7k 35.39 64.58 29.98 29.33 39.82
Top-2+IR 2.0 1.6k 35.92 65.11 29.98 29.03 40.01
Top-2 + FR 2.0 1.6k 35.90 64.35 31.08 29.80 40.28
Top-2 +FR+IR 2.0 1.5k 36.01 65.60 30.72 29.95 40.57

Table 1: The performance of LLama2-7b and MoE models on MMLU, SuperGLUE, TruthfulQA and LogiQA. CF
denotes the capacity factor defined in Eq. (3). Avg represents the average accuracy. The training speed is measured
as the number of tokens that each GPU can process per second. All models were trained on OpenOrca except
for LLama2-raw. Top-k+FR and Top-k+IR represents the top-k router using Fill-in Rectification and Intra-GPU
Rectification respectively. Top-k+FR+IR combines both the Fill-in Rectification and the Intra-GPU Rectification.

2023), SuperGLUE (Wang et al., 2019), Truth-400

fulQA (Lin et al., 2022) and LogiQA (Liu et al.,401

2020), which covers the evaluation in knowledge,402

natural language understanding, safety, and logical403

reasoning respectively. All evaluations were con-404

ducted in a zero-shot setting. Our evaluation metric405

was accuracy, and we utilized the lm-evaluation-406

harness (Gao et al., 2023) framework for conduct-407

ing the evaluations.408

5.2 Main Results409

We trained both LLama2-7b and LLama-based410

MoE on OpenOrca and evaluated them on MMLU411

(knowledge), SuperGLUE (NLU), TruthfulQA412

(Safety) and LogiQA (Reasoning), the results of413

which are shown in Table 1. Comparing the perfor-414

mance of LLama2-raw (pretrained) and LLama2415

(trained on OpenOrca), we observed that the416

LLama2 outperforms LLama2-raw substantially,417

which demonstrates the effectiveness of finetuning418

on openorca. To evaluate the effectiveness of our419

methods, we applied our Intra-GPU Rectification420

(IR) and Fill-in Rectification (FR) to both the top-1421

router and top-2 router. These configurations are422

grouped as LLama-MoE (Top-1) and LLama-MoE423

(Top-2) in Table 1.424

LLama-MoE (Top-1) We conducted 4 top-1425

based MoE models (Top-1, Top-1+FR, Top-1+IR,426

Top-1+FR+IR). The performance of the vanilla427

top-1 router is subpar, and it is even inferior to428

the dense model (LLama2-FT) on both MMLU429

and TruthfulQA. But after incorporating our pro-430

posed Intra-GPU Rectification (Top-1+IR), the per-431

formance of the top-1 router are significantly im- 432

proved on all benchmarks, especially on MMLU 433

and LogiQA. This indicates that the dropped to- 434

kens have a substantial impact on model perfor- 435

mance, and the Intra-GPU Rectification effectively 436

handles these dropped tokens. Our Fill-in Rectifi- 437

cation (Top-1+FR) also significantly improves the 438

performance of the model on MMLU and LogiQA 439

tasks. But it is worth noting that the performance 440

of the model declined on the other two benchmarks. 441

Therefore, it can be concluded that the primary is- 442

sue with top-1 routing lies in dropped tokens rather 443

than padding. Combing the Intra-GPU Rectifica- 444

tion and Fill-in Rectification resulted in the best 445

top-1-based router (Top-1+FR+IR), which outper- 446

forms the vanilla top-1 router by 1.83 (4.7%) in 447

terms of the average accuracy across benchmarks. 448

LLama-MoE (Top-2) Top-2 based routers also 449

encompass 4 routers (Top-2, Top-2-FR, Top-2-IR, 450

Top-2-FR+IR). Both the Intra-GPU Rectification 451

and Fill-in Rectification significantly enhance the 452

performance of Top-2 router on at least 2 bench- 453

marks, which demonstrate that our methods are 454

effective for the top-2 router as well. Just as we 455

observed with the top-1 routing results, combining 456

the Intra-GPU Rectification and the Fill-in Recti- 457

fication in the top-2 router yielded the best perfor- 458

mance on all benchmarks. Specifically, the Top- 459

2+FR+IR outperformed the vanilla top-2 router by 460

a margin of 0.75 (1.8%) in terms of the average 461

accuracy across benchmarks. 462

Interestingly, we observed that the top-1 router 463

outperformed the top-2 router in some bench- 464
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Train Router Test Router Test CF Test Speed MMLU SuperGLUE TruthfulQA LogiQA Avg

Top-1

Top-1

1.0

9.4k 33.05 64.34 29.49 28.11 38.74
Expert Choices 9.4k 30.27 64.50 27.66 28.87 37.82
Megablocks -1 36.39 64.09 29.98 30.41 40.21
Top-1+IR 9.2k 36.21 64.64 29.86 29.18 39.97
Top-1+FR 8.9k 33.28 62.76 28.51 29.49 38.51
Top-1+FR+IR 8.6k 36.40 63.94 29.98 29.80 40.03

Top-2

Top-2

2.0

6.2k 35.39 64.58 29.98 29.33 39.82
Expert Choices 6.2k 32.80 61.76 26.80 28.57 37.48
Megablocks - 35.95 64.59 30.47 30.26 40.31
Top-2+IR 6.0k 35.70 64.40 30.47 29.95 40.13
Top-2+FR 5.8k 35.96 65.37 30.35 30.26 40.48
Top-2+FR+IR 5.5k 36.14 65.16 30.35 31.49 40.78

Table 2: The performance of applying Intra-GPU Rectification and Fill-in Rectification only at inference. All
models are trained with the vanilla top-1 router and top-2 router (referred to as the train router), but they were
evaluated with Intra-GPU Rectification or Fill-in Rectification at inference (referred to as the test router). Test CF
denotes the capacity factor set during inference. Test speed represents the number of tokens processed per second
on each GPU during inference.

marks. For example, Top-1+FR+IR outperforms465

Top-1+FR+IR on both TruthfulQA and LogiQA,466

which raises concerns about potential overfitting in467

the top-2 router. Finally, it is important to note that468

that both the Intra-GPU Rectification and Fill-in469

Rectification do not alter the capacity of experts,470

hence they do not significantly influence the train-471

ing speed.472

5.3 Improve Top-k Routing at Inference473

In this experiment, we conducted a study to evalu-474

ate the effectiveness of applying Rectify-Routers at475

the inference stage of MoE models. The results are476

presented in Table 2. We found that both the Intra-477

GPU Rectification and Fill-in Rectification can im-478

prove the performance of top-1 and top-2 routers479

at inference, even they are not applied at training.480

Similar to the results in Table 1, combining Intra-481

GPU Rectification and Fill-in Rectification yielded482

better results than using either method alone. More-483

over, both the Intra-GPU Rectification and Fill-in484

Rectification only slightly slows down (<10%) the485

inference speed of top-k routers. For top-2 based486

models, the application of Rectify-Routers solely487

during the inference stage proves to be sufficient, as488

it demonstrates comparable performance to using489

them during both training and inference.490

We also compared our methods with Expert491

Choices and Megablocks. Expert Choices ad-492

dressed the issue of padding but still suffers from493

the problem of dropped tokens. According to the494

results presented in Table 2, incorporating expert495

choices during the model inference phase reduces496

the model’s performance. This suggests that ex- 497

pert choices need to be trained to perform well, 498

whereas our method can be applied directly dur- 499

ing the inference phase of MoE trained with a 500

Top-k router. Megablocks overcomes both the is- 501

sues of dropped tokens and padding by switching 502

from expert parallelism to model parallelism. Al- 503

though the performance of Megablocks is compara- 504

ble to our method, the communication complexity 505

of Megablocks (O(Cg ·W )) is much higher than 506

that of expert parallelism (O(Cg)) (Hwang et al., 507

2022), where Cg denotes the token capacity per 508

GPU and W denotes the world size of communi- 509

cation. As Tutel (Hwang et al., 2022) suggests, it 510

is better to combine model parallelism with expert 511

parallelism for greater efficiency. Therefore, our 512

method and Megablocks are complementary. 513

5.4 Capacity Factor Variation 514

In the previous experiments, we maintained a fixed 515

capacity factor of k for top-k routing. However, 516

there are instances where it may be beneficial to ad- 517

just the capacity factor for improved efficiency or 518

performance. Therefore, in this section, we exam- 519

ine the performance of our Rectify-Routers under 520

different capacity factors. 521

To minimize training costs, we train MoE mod- 522

els using the vanilla top-k router with a capacity 523

factor of k, and evaluate models with different ca- 524

1We did not report the speed of the Megablocks as it de-
pends on the CUDA operator proposed by Gale et al. (2022),
which has not been integrated into the commonly used code-
base like transformers and deepspeed.
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Train Router Test Router Test CF Test Speed Avg

Top-1

Top-1
1.0

9.4k 38.74
Top-1+IR 9.2k 39.97

Top-1
0.75

12.1k 37.83
Top-1+IR 9.9k 40.06

Top-1
0.5

16k 34.84
Top-1+IR 10.6k 40.40

Top-2

Top-2
2.0

6.2k 39.82
Top-2+IR 6.0k 40.13

Top-2
1.5

7.4k 39.50
Top-2+IR 6.6k 39.60

Top-2
1.0

8.9k 38.51
Top-2+IR 7.3k 40.01

Table 3: Performance of top-k routers and their variants
with low capacity factors (<= k).

pacity factors. We only present the average ac-525

curacy of models in Table 3 and Table 4. The526

complete results are shown in Appendix D527

Post Routing with Low Capacity From Table 4,528

we can see that decreasing the capacity factor im-529

proves the efficiency of both top-1 and top-2 based530

models. However, It also leads to noticeable de-531

crease in the model performance on benchmarks. It532

is interesting that the top-2 router is more robust to533

the decrease in capacity factor. Specifically, reduc-534

ing the capacity factor of the vanilla top-2 router535

from 2 to 1.5 only results in a slight performance536

decline (0.32).537

In contrast to the vanilla top-1 or top-2 routers,538

the MoE models incorporating our Intra-GPU Rec-539

tification (Top-1+IR and Top-2+IR) are robust to540

the decrease of capacity factor. We even observed541

that the lower capacity factor leads to a better per-542

formance for both Top-1+IR and Top-2+IR, which543

suggests that the Intra-GPU Rectification acts as544

a form of regularization for the MoE models by545

constraining the choices made by the experts. The546

similar results are also observed in Zeng and Xiong547

(2023); Liu et al. (2022). By setting the capacity548

factor of Top-1+IR to 0.5 and that of Top-2-IR to549

1.0, we observed that they are faster than the vanilla550

top-1 (1.13x) and top-2 routers (1.18x) respectively,551

while maintaining comparable or superior perfor-552

mance.553

Fill-in Rectification with High Capacity In-554

creasing the capacity factor of MoE models has555

been widely suggested in previous research stud-556

ies (Fedus et al., 2022; Zoph et al., 2022). In align-557

ment with these findings, we have also observed558

Train Router Test Router Test CF Test Speed Avg

Top-1

Top-1
1.0

9.4k 38.74
Top-1+FR 8.9k 38.51

Top-1
1.25

8.6k 39.59
Top-1+FR 8.1k 40.10

Top-1
1.5

7.9k 39.86
Top-1+FR 7.3k 40.33

Top-2

Top-2
2.0

6.2k 39.82
Top-2+FR 5.8k 40.48

Top-2
2.5

5.4k 39.89
Top-2+FR 5.1k 40.51

Top-2
3.0

4.9k 40.03
Top-2+FR 4.5k 40.44

Table 4: Performance of top-k routers and their variants
with high capacity factors (>= k).

the benefits of increasing the capacity factor in 559

terms of improving model performance, as demon- 560

strated in Table 4. Notably, we have found that 561

increasing the capacity factor of the top-1 router 562

leads to a more substantial improvement in model 563

performance than that of the top-2 router. 564

Our Fill-in Rectification introduces a more sig- 565

nificant and consistent improvement with the in- 566

crease in capacity factor. Top-1+FR and Top-2+FR 567

consistently outperform Top-1 and Top-2, respec- 568

tively, across various capacity factor settings. 569

Other Experiments 1) We scale the number of 570

experts from 8 to 32 in Appendix B; 2) We ana- 571

lyze the impact of experts-GPUs distribution on our 572

Intra-GPU Rectification in Appendix C.1; 3) We 573

validate the importance of straight-through trick in 574

Appendix C.2; 4) We explore whether our meth- 575

ods is still effective without load-balance loss in 576

Appendix C.3. 577

6 Conclusion 578

In this paper, we present the Rectify-Router, a 579

method to tackle dropped tokens and padding in 580

MoE models. By introducing the Intra-GPU Recti- 581

fication and the Fill-in Rectification, we effectively 582

handle the issues of dropped tokens and padding, 583

respectively. Experimental results demonstrate the 584

individual effectiveness of both techniques and the 585

synergistic performance improvement when they 586

are combined. Furthermore, our methods prove to 587

be effective in diverse settings, including varying 588

numbers of experts, different expert capacities, and 589

even without the load-balance loss. 590
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7 Limitation591

1. The MoE models were initialized from a592

dense model (LLama2-7b). Due to the high593

costs, we have not validated our methods by594

training from scratch. But our experimen-595

tal results in Table 1 demonstrate that fine-596

tuning the pre-trained LLama2-7b into an597

MoE model can bring significant performance598

improvements.599

2. Our experiments were conducted using600

LLama2-7b, while other configurations, such601

as LLama2-70B, were not explored due to602

high costs. But we have validated the scalabil-603

ity of our method by increasing the number of604

experts, which is presented in Appendix B.605

These limitations highlight potential areas for606

future research and expansion of our work.607
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A Gradient Issues in Fill-in Rectification 938

There is a potential issue in the Fill-in Rectification, 939

which stems from the implementation of the top-k 940

routing. According to Eq. (1), the routing scores 941

of top-k routing are normalized on the selected ex- 942

perts Ri, rather than considering all expert choices. 943

Several implementations like deepspeed-moe (Ra- 944

jbhandari et al., 2022) and fairseq-moe (Ott et al., 945

2019) first normalize the routing scores on all ex- 946

perts and then re-normalize the scores specifically 947

for the selected experts: 948

gij =
eaij∑m
j eaij

(4) 949

oi =
∑
j∈Ri

gij∑
j gij

Ej(xi), 950

where gij represents the routing scores that are 951

initially normalized across all experts and then fur- 952

ther normalized specifically on the selected experts 953

(Ri). However, their implementation is equivalent 954

to directly normalizing the routing scores on Ri. 955

There are two potential issue of normalizing rout- 956

ing scores on Ri: 1) the routing scores of activated 957

experts can not influence those of inactivated ex- 958

perts. For example, the increase of aij(j ∈ Ri) 959

does not lead to the decrease of ail(l /∈ Ri) . 2) In 960

the case of top-2 routing, if the first routing of xi is 961

successful while the second routing fails due to the 962

expert overflow, the gradients of all routing scores 963

of xi will be zero ( ∂L
∂aij

= 0). This is because 964

that there is only one available expert choice for 965

xi (|Ri| = 1). Normalizing on |Ri| would always 966

yield a value of 1, regardless of the actual value of 967

aij , leading to invalid gradients. 968

This problem is more prominent for the Fill-in 969

Rectification, since it brings more dropped tokens, 970

i.e., more unsuccessful routing. To address this 971

problem, we utilize the straight-through trick to 972

stop the gradient of normalization item in Eq. (4), 973

which ensures that the gradient of routing scores 974

remain valid: 975

∂L

∂aij
≡ ∂L∑

j gij∂
gij∑
j gij

∂gij
∂aij

(5) 976

No modifications have been made to the forward 977

stage. But at the backward stage, the gradient of 978

the routing score ∂L
∂gij

is calculated as ∂L∑
j gij∂

gij∑
j gij

979

rather than 0, where the normalization item
∑

j gij 980

is taken as a constant number without gradient. 981
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Figure 3: The performance of 8-experts and 32-experts MoEs on MMLU, SuperGLUE, TruthfulQA and LogiQA.

B Scaling to 32 Experts982

In this experiment, we aimed to investigate the ef-983

fectiveness of our methods when applied to a larger984

number of experts. We expanded the number of985

experts from 8 to 32. To reduce training costs,986

we only applied the Rectify-Routers (Intra-GPU987

Rectification and Fill-in Rectification) during eval-988

uation. The results of this experiment are presented989

in Figure 3.990

Interestingly, our findings indicate that increas-991

ing the number of experts from 8 to 32 does not992

necessarily result in improved model performance.993

In fact, in certain benchmarks, such as SuperGLUE,994

the performance of the model even declined. This995

observation aligns with previous research (Komat-996

suzaki et al., 2023), suggesting that increasing the997

number of experts can potentially be detrimental.998

One plausible explanation for this phenomenon is999

that a larger number of experts may lead to overfit- 1000

ting of the model. We believe that increasing the 1001

number of experts is helpful with enough training 1002

data. Notably, scaling from 8 to 32 experts only 1003

yielded notable benefits in the case of TruthfulQA. 1004

Despite the lack of consistent improvement 1005

when increasing the number of experts, our meth- 1006

ods (Intra-GPU Rectification and Fill-in Rectifica- 1007

tion) still demonstrated significant enhancements 1008

compared to the vanilla top-k routing approach 1009

in the context of 32 experts. For instance, while 1010

the vanilla top-1 and top-2 routers with 32 experts 1011

underperformed those with 8 experts on MMLU, 1012

our methods (Top-2+FR+IR) enabled the 32-expert 1013

models to outperform their 8-expert counterparts. 1014
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Router Experts/GPU MMLU SuperGLUE TruthfulQA LogiQA Avg

Top-1+IR
1 36.21 64.64 29.86 29.18 39.97
2 36.17 64.38 30.23 29.03 39.95
4 36.47 64.37 29.62 28.87 39.83

Top-2+IR
1 35.70 64.40 30.47 29.95 40.13
2 35.79 64.73 30.35 29.18 40.01
4 35.79 65.38 30.35 29.18 40.17

Table 5: The performance of Intra-GPU Rectification evaluated under various settings of the number of experts per
GPU.

Model ST MMLU SuperGLUETruthfulQA LogiQA Avg

Top-1+FR Yes 34.66 63.97 28.51 29.18 39.08
Top-1+FR No 33.96 62.75 29.25 28.57 38.63

Top-2 Yes 35.39 64.58 29.98 29.33 39.82
Top-2 No 35.86 64.73 29.98 28.26 39.70

Table 6: The performance of Top-1+FR and Top-2 router with and without straight-through trick. The second
column (ST) denotes whether the straight-through trick is used.

C Analysis1015

C.1 Impact of Expert Distribution1016

Our Intra-GPU Rectification is a variant of the top-1017

1 router, where tokens are assigned to the top-11018

expert within GPU. When all experts are situated1019

in the same GPU, the Intra-GPU Rectification es-1020

sentially functions as the top-1 router. Therefore,1021

the distribution of experts across GPUs can poten-1022

tially influence the performance of the Intra-GPU1023

Rectification. We conducted an investigation to1024

explore this aspect and present the results in Table1025

5.1026

Interestingly, we found that increasing the num-1027

ber of experts per GPU did not yield significant1028

improvements for either the top-1 router or the1029

top-2 router. This suggests that the Intra-GPU Rec-1030

tification demonstrates robustness to variations in1031

the number of experts per GPU.1032

C.2 Impact of Straight-through Trick1033

In Appendix A, we propose a solution to address1034

the gradient issue associated with the Fill-in Recti-1035

fication by utilizing the straight-through trick. To1036

evaluate the effectiveness of this technique, we con-1037

ducted an experiment comparing the performance1038

of the Fill-in Rectification with versus without the1039

straight-through trick. The results of this compari-1040

son are presented in Table 6.1041

Our findings indicate that the straight-through1042

trick proves to be beneficial in improving the perfor- 1043

mance of the Fill-in Rectification (Top-1+FR). This 1044

suggests that the straight-through trick is neces- 1045

sary for the Fill-in Rectification to achieve optimal 1046

results. However, the application of the straight- 1047

through trick does not yield a significant improve- 1048

ment in the performance of the top-2 router. This 1049

can be attributed to the fact that the proportion of 1050

unsuccessful routing is relatively small (5%) for the 1051

top-2 router, while it is considerably large (50%) 1052

when employing the Fill-in Rectification. 1053

C.3 Impact of Load-Balance Loss 1054

The Rectify-Routers proposed in this paper were 1055

designed to address the issues of dropped tokens 1056

and padding resulting from unbalanced routing. 1057

In our previous experiments, we utilized the load- 1058

balanced loss introduced by Lepikhin et al. (2021) 1059

to enhance the balance of routing for all models, 1060

including those utilizing the Rectify-Routers. How- 1061

ever, it is intriguing to investigate whether the 1062

Rectify-Routers remain effective in the absence 1063

of the load-balance loss. The results of this explo- 1064

ration are presented in Table 7. 1065

Upon analyzing the results in Table 7, we ob- 1066

served a notable disparity in the performance of 1067

the vanilla top-1 router with and without the load- 1068

balance loss, particularly in the case of SuperGLUE 1069

and TruthfulQA. This discrepancy suggests that the 1070

load-balance loss plays a crucial role in improving 1071
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Model Aux-loss MMLU SuperGLUE TruthfulQA LogiQA Avg

Top-1 yes 33.05 64.34 29.49 28.11 38.74
Top-1 no 33.88 61.60 27.41 29.95 38.21

Top-1+FR+IR yes 36.40 63.94 29.98 29.80 40.03
Top-1+FR+IR no 36.09 64.05 31.21 28.57 39.98

Table 7: The performance comparison of using vs. not using load-balance loss. Aux-loss represents whether
load-balance loss is used.

the performance of the vanilla top-1 router. How-1072

ever, when considering our Rectify-Routers (Top-1073

1+FR+IR), removing the load-balance loss does1074

not result in a significant loss of performance. This1075

finding indicates that our Rectify-Routers enhance1076

the resilience of the top-1 router against the load-1077

balance loss. Nevertheless, as a general trend, it is1078

still preferable to employ a load-balance loss, even1079

when utilizing the Rectify-Routers.1080

D Complete Results of Capacity Factor1081

Variation1082

In Section 5.4, we have discussed the performance1083

of MoE models across various capacity factor set-1084

tings. However, it is worth noting that only the1085

average accuracy are reported in Table 3 and Table1086

4. For a comprehensive overview, we present the1087

complete results in Table 8 and Table 9, which en-1088

compass the evaluation outcomes across all bench-1089

marks.1090
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Train Router Test Router Test CF Test Speed MMLU SuperGLUE TruthfulQA LogiQA Avg

Top-1

Top-1
1.0

9.4k 33.05 64.34 29.49 28.11 38.74
Top-1+IR 9.2k 36.21 64.64 29.86 29.18 39.97

Top-1
0.75

12.1k 30.88 62.68 29.37 28.41 37.83
Top-1+IR 9.9k 36.12 64.61 29.74 29.80 40.06

Top-1
0.5

16k 26.43 59.71 26.68 26.57 34.84
Top-1+IR 10.6k 36.32 65.23 29.98 30.10 40.40

Top-2

Top-2
2.0

6.2k 35.39 64.58 29.98 29.33 39.82
Top-2+IR 6.0k 35.70 64.40 30.47 29.95 40.13

Top-2
1.5

7.4k 35.22 65.00 30.47 27.34 39.50
Top-2+IR 6.6k 35.71 64.47 29.98 28.26 39.60

Top-2
1.0

8.9k 33.28 62.76 28.51 29.49 38.51
Top-2+IR 7.3k 35.93 64.40 29.62 30.10 40.01

Table 8: Performance of top-k routers and their variants with low capacity factors (<= k). The difference between
this table and Table 3 is that the evaluation results on all benchmarks are reported in this table, but only the average
accuracy is reported in Table 3

Train Router Test Router Test CF Test Speed MMLU SuperGLUE TruthfulQA LogiQA Avg

Top-1

Top-1
1.0

9.4k 33.05 64.34 29.49 28.11 38.74
Top-1+FR 8.9k 33.28 62.76 28.51 29.49 38.51

Top-1
1.25

8.6k 34.51 62.94 29.13 31.79 39.59
Top-1+FR 8.1k 35.01 65.22 30.23 29.95 40.10

Top-1
1.5

7.9k 36.40 64.21 28.88 29.95 39.86
Top-1+FR 7.3k 36.10 64.89 30.23 30.10 40.33

Top-2

Top-2
2.0

6.2k 35.39 64.58 29.98 29.33 39.82
Top-2+FR 5.8k 35.96 65.37 30.35 30.26 40.48

Top-2
2.5

5.4k 35.96 64.53 30.23 28.87 39.89
Top-2+FR 5.1k 36.00 64.92 30.59 30.56 40.51

Top-2
3.0

4.9k 35.72 64.65 30.59 29.18 40.03
Top-2+FR 4.5k 35.98 65.31 30.23 30.26 40.44

Table 9: Performance of top-k routers and their variants with high capacity factors (>= k). The difference between
this table and Table 4 is that the evaluation results on all benchmarks are reported in this table, but only the average
accuracy is reported in Table 4
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