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ABSTRACT

Clustering is a fundamental learning task widely used as a first step in data analysis.
For example, biologists use cluster assignments to analyze genome sequences,
medical records, or images. Since downstream analysis is typically performed at
the cluster level, practitioners seek reliable and interpretable clustering models. We
propose a new deep-learning framework for tabular data that predicts interpretable
cluster assignments at the instance and cluster levels. First, we present a self-
supervised procedure to identify the subset of the most informative features from
each data point. Then, we design a model that predicts cluster assignments and
a gate matrix that provides cluster-level feature selection. Overall, our model
provides cluster assignments with an indication of the driving feature for each
sample and each cluster. We show that the proposed method can reliably predict
cluster assignments in synthetic and tabular biological datasets. Furthermore, using
previously proposed metrics, we verify that our model leads to interpretable results
at a sample and cluster level.

1 INTRODUCTION

Clustering is an essential task in data science that enables researchers to discover and analyze latent
structures in complex data. By grouping related data points into clusters, researchers can gain
insights into the underlying characteristics of the data and identify relationships between samples
and variables. Clustering is used in various scientific fields, including biology (Reddy et al., 2018),
physics (Mikuni & Canelli, 2021), and social sciences (Varghese et al., 2010). For example, in
biology, clustering can identify different disease subtypes based on molecular or genetic data. In
psychology, based on survey data, clustering can identify different types of behavior or personality
traits.

One of the most common applications of clustering in bio-medicine is the analysis of gene expression
data, where clustering can be used to identify groups of genes with similar expression patterns
across different samples (Armingol et al., 2021). Scientists are often interested in clustering the
high-dimensional points corresponding to individual cells, ideally recovering known cell populations
while discovering new and perhaps rare cell types (Deprez et al., 2020). Bio-med gene expression
data is generally represented in tabular high-dimensional format, thus making it difficult to obtain
accurate clusters with meaningful structures. In addition, interpretability is a crucial requirement
for real-world bio-med datasets where it is vital to understand the biological meaning behind the
identified clusters (Yang et al., 2021). Therefore, there is an increasing demand in biomedicine for
clustering models that offer interpretability for tabular data.

In recent years, there has been a growing interest in deep learning models for clustering (Shen et al.,
2021; Li et al., 2022; Cai et al., 2022; Niu et al., 2021). The neural network offers an improved
embedding of data points, thus raising the bar of clustering capabilities. However, most existing
schemes focus on image data, require domain-specific augmentations, and are not interpretable.
Interpretability has also been gaining attention in deep learning, but most models focus on supervised
learning Alvarez Melis & Jaakkola (2018); Yoon et al. (2019); Yang et al. (2022). We aim to
generalize these ideas to unsupervised learning by designing a deep clustering model for tabular
(biomedical) data that is interpretable by design. Here, we consider interpretability as the ability to
identify variables that drive the formation of clusters in the data (Bertsimas et al., 2021).

This work presents Interpretable Deep Clustering (IDC), an unsupervised two-stage clustering
method for tabular data that first selects samples-specific features that are informative for reliable data
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Figure 1: Illustration of the proposed model. The first step involves self-supervision for learning
a meaningful latent representation and sample-level informative features. During this stage, we
optimize the parameters of the Gating Network (green) and the autoencoder (blue) that reconstructs
x̂ from latent embedding h. The gating Network learns a sample-specific sparse gate vector z for
input sample x such that x⊙ z is sufficient for reconstruction via an autoencoder. During the second
stage, we train a clustering head (orange) to predict cluster assignments ŷ from the latent embedding
h by minimizing the mean cluster coding rate loss (see Eq. 6). This loss is designed to push clusters
apart while making each cluster more compact. The Auxiliary Classifier (yellow) is trained on sparse
representations x⊙ z ⊙ZG to predict cluster labels and optimizes the cluster level gating matrix ZG.

reconstruction– a task that is known to be correlated with clustering capabilities (Song et al., 2013;
Han et al., 2018). Then, using the sparsified data, we learn the cluster assignments by optimizing
neural network parameters subject to a clustering objective function Yu et al. (2020). In addition, the
method provides both instance-level and cluster-level explanations represented by the selected feature
set. The model learns instance-level local gates that select a subset of features using an autoencoder
(AE) trained to reconstruct the original sample. The global gates for cluster-level interpretability
are derived from the cluster label assignments learned by the model. To enforce sample-level
interpretations, the gates are encouraged by the recently proposed discrimination constraint denoted
as the total coding rate. Using synthetic data and MNIST we demonstrate the interpretability quality
of our model. Then, using real-world tabular data we demonstrate that our model can find reliable
clusters while using only on a small subset of informative features. In the following sections, we
provide a detailed description of our approach.

2 RELATED WORK

Unsupervised Feature Selection The problem of unsupervised feature selection (UFS) involves
identifying variables useful for downstream tasks such as data clustering. Towards this goal, several
works have exploited regularized AE (Han et al., 2018; Lee et al., 2022; Sokar et al., 2022; Balın
et al., 2019) that identify a global subset of features sufficient for data reconstruction. Another line of
UFS schemes relies on the graph Laplacian to identify subsets of smooth features with respect to the
core structure in the data (He et al., 2005; Zhao & Liu, 2012; Lindenbaum et al., 2021; Shaham et al.,
2022). Both types of UFS frameworks can help improve downstream clustering capabilities; however,
existing global schemes do not provide sample-level or cluster-level interpretability. While there are
recent works on supervised local feature selection (Yoon et al., 2019; Yang et al., 2022) that provide
interpretability, we are not aware of any sample-level unsupervised feature selection schemes. Here,
we present an end-to-end clustering scheme with local feature selection capabilities for the first time.

Interpretable clustering Guan et al. (2011) presented a pioneering work for applying unsupervised
feature selection and clustering. The authors proposed a probabilistic model that performs feature
selection by using beta-Bernoulli prior in the context of a Dirichlet process mixture for clustering. The
method can only select cluster-level and dataset-level informative features; in contrast, our method
provides interpretability for sample-level granularity. In (Frost et al., 2020), the authors proposed
tree-based K-means clustering. However, the explanations are static for a given dataset and rely on
the whole set of points. In contrast, our approach learns local gates for each sample in the dataset by
optimizing the neural network as a gate selector, thus producing sample-level interpretations. Since
our method is fully parametric, it also offers generalization capabilities compared to existing schemes.
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Specifically, our model can predict cluster assignments and informative features for samples not seen
during training.

Deep clustering Recently, several methods were proposed for NN-based clustering, to name a few:
(Gao et al., 2020; Niu et al., 2021; Li et al., 2022; Shaham et al., 2018; Cai et al., 2022; Lv et al.,
2021; Shen et al., 2021; Peng et al., 2022). However, the primary domain of these works is vision,
and they rely on domain-specific augmentations and, therefore, can not be applied to tabular datasets.
Here, we introduce an interpretable NN model for general high-dimensional datasets such as bio-med
tabular data. Li et al. (2022) have generalized the maximum coding rate reduction loss (MCR2) (Yu
et al., 2020) for embedding and clustering. The model seeks to push clusters apart while making
them denser. One caveat of the approach is that it requires dataset-specific augmentation for learning
a latent embedding using a contrastive loss. While such augmentations could be efficiently designed
for the visual domain, semantic preserving augmentations of tabular data remain an open challenge
(Qian et al., 2023). To overcome this limitation, we propose to learn the sparse representation of a
sample to retain essential feature variables for clustering via a two-step procedure. The first involves
self-supervision with locally sparse reconstruction, and the second adapts the MCR2 (Li et al., 2022)
for identifying clusters based on diverse features.

3 PROBLEM SETUP

We are interested in clustering data points X = {xi}Ni=1 into matching clusters Y = {yi}Ni=1,
where xi ∈ RD are D-dimensional vector-valued observations of general type, i.e., tabular that
do not obey a particular feature structure. Our goal is to learn an interpretable clustering model
defined by the tuple ⟨fΘ,Sglob⟩ such that fΘ(xi) = {ŷi,Sloc

i } where ŷi ∈ {1, 2, ...,K} is an
accurate clustering assignment, and Sloc

i is a local feature importance set for sample i and defined
by Sloc

i = {sji ∈ [0, 1]}Dj=1. Sglob ∈ [0, 1]K×D is a global feature importance matrix where each
gating vector of size D is learned for K clusters. By forcing |Sloc

i | << D, we can attenuate
nuisance features and identify (sample-specific) subsets of informative features, thus improving the
interpretability of the clustering model.

Our work is motivated by the vital task in biomedicine of cell clustering with marker gene identifica-
tion (Kiselev et al., 2017). The task involves unsupervised clustering of a high-dimensional dataset
while identifying genes with unique patterns in each cluster. Therefore, we aim to design an inter-
pretable model that performs well in the clustering task, i.e., can identify groups with semantically
related samples while focusing on local subsets of features. We note that in the supervised setting,
this type of local feature selection was tied to interpretability by several authors (Alvarez Melis &
Jaakkola, 2018; Yoon et al., 2019; Yang et al., 2022).

We generalize these ideas of supervised interpretability to the unsupervised setting and propose
a novel model that performs clustering and local feature selection. The model learns to exclude
nuisance input features that do not contribute to the clustering learning task. In addition, local feature
selection produces unique explanations for each sample in addition to cluster-level interpretations,
which are meaningful for understanding the model predictions. We use several metrics to demonstrate
that our model improves interpretability while leading to accurate clustering results.

Our model is trained without access to any labeled data. In the evaluation step, we only use labels
to evaluate the quality of our model in terms of feature selection and clustering by measuring the
clustering Accuracy (ACC) based on ground truth categories yi (labels).

4 METHOD

4.1 INTUITION

We propose a two-step framework that first learns sample-level gates and latent representation by
self-supervised training. The model learns both local gates for interpretable input space representation
and latent embedding to better discriminate between samples. In the second step, we learn the cluster
assignments and global gates, highlighting cluster-level driving features. The global gates are learned
based on the clustering assignments, which are recovered by maximizing the sum of coding rate
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for each cluster. Finally, the method produces clustering assignments for each sample, local gates
for sample-level interpretation, and global gates for the cluster-level explanation. In the following
subsection, we present the proposed framework and architecture design.

4.2 LOCAL SELF SUPERVISED FEATURE SELECTION

Given unlabeled observations {xi}Ni=1 we want to learn a prediction function fθ (parametrized using
a NN) and sets of indicator vectors si ∈ {0, 1}D that will “highlight” which subset of variables
the model should rely on for clustering each sample xi. This will enable the model to attain fewer
features for each sample and reduce overfitting when predicting the clusters of unseen samples.

Towards this goal, we extend the recently proposed stochastic gates (Lindenbaum et al., 2021;
Yamada et al., 2020) to learn the indicator vector. Stochastic gates are continuously relaxed Bernoulli
variablesdefined here (for feature d and sample i) based on the following hard thresholding function

zi = max(0,min(1, 0.5 + µi + ϵi)), (1)

where ϵi is drawn from N (0, σ2), and µi are the network output logits before the hard thresholding
function (in Eq. 1), σ is fixed throughout training to 0.5 in our model as suggested in (Yamada
et al., 2020) and controls the injected noise. The role of the injected noise is to push the converged
values of zi towards 0 or 1; see (Yamada et al., 2020; Yang et al., 2022) for further details. The
sample-specific parameters zi ∈ RD, i = 1, ..., N are predicted based on a gating network fθ1 such
that µi = f(xi|θ1), where θ1 are the weights of the gating network. These weights are learned
simultaneously with the weights of the prediction network θ2 by minimizing the following loss:

Lsparse = E
[
L(fθ2(xi ⊙ zi)) + λt · Lreg(zi)

]
, (2)

where L is a desired prediction loss, e.g., clustering objective function or reconstruction error. The
Hadamard product (element-wise multiplication) is denoted by, and we compute the empirical
expectation over xi and zi, for i in a dataset of size N . The term Lreg(zi) is a regularizer that is
designed to sparsify the gates and is defined by: Lreg = ∥zi∥0. After taking the expectation (over
zi and the samples xi), E[Lreg] can be rewritten using a double sum in terms of the Gaussian error
function (erf):

E[Lreg] =
1

N

N∑
i=1

D∑
d=1

(
1

2
− 1

2
erf

(
−µd

i + 0.5√
2σ

))
, (3)

here, we take the expectation using the parametric definition of zi.

We pick a denoising autoencoder (Vincent et al., 2008) as our prediction network to select only
informative features for clustering and disregard nuisance features. By training with self-supervision
using a reconstruction loss with augmentation, the network learns a latent embedding of the input
sample and drives the gating network to open gates only for features required to reconstruct data. The
model consists of the following:

• Gating Network: fθG(xi) = zi, is a hypernetwork that predicts the gates zi vector for sample
xi, where zi ∈ [0, 1]D.

• Encoder: fθE (x
′
i) = hi, is a mapping function that learns an embedding hi based on the

element-wise gated sample x′
i = xi ⊙ zi.

• Decoder: fθD (hi) = x̂i, that reconstructs xi based on the embedding hi.

We train autoencoder parametrized by θ2 = θE ∪ θD with gated input reconstruction loss
Lrecon(fθ2(fθ1(xi)⊙ xi),xi), which measures the deviation of estimated x̂i = fθ2(fθ1(xi)⊙ xi)
from the input sample xi. We introduce input (Vincent et al., 2008) and latent (Doi et al., 2007) data
augmentations to learn semantically informative features. Additional details about the augmentations
appear in Appendix S7. In addition, we introduce an additional gates total coding loss, Lgtcr(zi),
that encourages the model to select unique gates for each sample and is defined by the equation:

Lgtcr = −EZ
[1
2
· logdet(I+ λ1 · (zT

i zi))
]
, (4)

which is approximately the negative Shannon coding rate of a multivariate Gaussian distribution (Yu
et al., 2020), and is defined for a vector of local gates zi. This component, inspired by (Li et al.,
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2022), is designed to push the model to increase the amount of information represented in a zi. λ1 is
a constant; we describe how it is tuned in the appendix.

The final sparse prediction loss is Lsparse = Lrecon + Lgtcr + λ(t) · Lreg , where the regularization
weight term λ(t) is increased during the training using a cosine function scheduler. The weights of
the autoencoder are initialized by first training with an || · ||1 reconstruction loss between xi and
x̂i = fθ2(xi). In the ablation study presented in Section 6.2.5, we corroborate the importance of
each component of our loss.

Equipped with this loss, our model sparsifies the input samples to the minimum number of features
that contain the required information for the data reconstruction. While input denoising reconstruction
loss applies a random mask during the learning, the gated input reconstruction loss enables learning
local masks, or gates, that attenuate noisy features and improve the interpretability of the model. The
gates’ total coding loss encourages the selected gates to be more diverse, thus providing unique gates
for each sample.

4.3 CLUSTER ASSIGNMENTS WITH GLOBAL INTERPRETATIONS

Clustering Head In the clustering phase, we aim to compress the learned representations of gated
samples of X into K clusters and predict cluster-level gates. To achieve that, we train a clustering
head fθ3(hi) = ŷi, which learns cluster one-hot assignments ŷi ⊂ {1, ...,K}. The model outputs
logits values {πk

i }Kk=1 for each sample which are converted to cluster assignment probabilities ŷi by
the Gumbel-Softmax (Jang et al., 2016) reparameterization:

ŷki =
exp((log(πk

i ) + gki )/τ)∑K
j=1 exp((log(πk

i ) + gki )/τ)
, for k = 1, ...,K. (5)

where {gki }Kk=1 are i.i.d. samples drawn from a Gumbel(0, 1) distribution, and τ is a temperature hyper
parameter. High values of τ produce a uniform distribution of ŷ while decreasing the temperature
yields one-hot vectors. This neural network is optimized with the following loss

Lhead =

K∑
k=1

1

2
· logdet

[
I+ λ2 · Ehi∈Hk

(hT
i hi)

]
, (6)

where Hk = {fθE (xi ⊙ zi) = hi}B
k

i=1 are embedding vectors for all samples xi’s which were
assigned to cluster k = argmaxK(ŷi), and Bk is the size of the cluster. In contrast to 7, here
we would like to decrease the coding rate on average for each cluster of embeddings Hk to make
the clusters more compact. The embeddings are not optimized during this step but only cluster
assignments.

Global Interpretations We propose an extension to the model that provides cluster-level inter-
pretations by training a Global Gates Matrix, ZG ∈ {0, 1}K×D where each row zk

G corresponds
to a cluster and each column to an input variable. To train this gate matrix, we utilize an Auxiliary
Classifier, fθ4 , that accepts a gated representation of xi which is defined by xi ⊙ zi ⊙ zk

G, and zk
G is

a global gates vector learned for cluster k = argmax1,...,K ŷi. The locally sparse samples xi ⊙ zi

learned with autoencoder are multiplied by global gates ZG and fed into the single-hidden-layer
classifier. The classifier is trained to output cluster assignments ŷi identical to those predicted with
clustering head fθ4 and is optimized with a cross-entropy loss. During the inference, only ZG is used
and fθ4 is discarded.

Finally, similarly to the local gates optimization, we use regularization loss term Lreg with increasing
weight λg

t , which sparsifies the gates in the global gates matrix: Lclust = Lhead + LCE + λg
t · Lreg .

To summarize, we train the clustering head to predict assignments jointly with global gates. An
auxiliary classifier optimizes the global gates while being trained in a self-supervised fashion on the
pseudo labels predicted by the clustering head.

5 INTERPRETABILITY

Practitioners may require interpretability at different levels of granularity. At the coarser level, it
is interesting to identify which features are common to a group of semantically related samples
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(or clusters) (Guan et al., 2011). At the finer level, we seek unique explanations for each data
point, namely what features drive the model to make specific predictions (Alvarez Melis & Jaakkola,
2018;?). While the model’s internal functionality may remain a black box to the practitioner, the
correlation between the input space of feature values and model predictions sheds some light on the
model’s interpretability. Several criteria were recently proposed to evaluate the interpretability of
supervised models (Alvarez Melis & Jaakkola, 2018; Yang et al., 2022). We present them in the
following paragraphs and discuss their modifications to our unsupervised setting.

Diversity We expect a good interpretability model to identify different sets of variables as driving
factors for explaining distinct clusters. The diversity metric measures this quantity and is computed by
negative mean Jaccard similarity between cluster-level informative features across all pairs of clusters.
Given a set of indices Sci ⊂ 1, ..., D indicating the selected informative variables of ci, i = 1, ...,K,

the diversity is defined as 1−
∑

i ̸=j

J(Sci
,Scj

)

K·(K−1)/2 . Here, J is the Jaccard similarity between two sets,
and perfect diversity is obtained at 1, indicating no overlap between cluster-level features.

Faithfulness An interpretation is faithful if it accurately represents the reasoning behind the model’s
prediction function. To evaluate this quantity, faithfulness measures the correlation between the
predictivity of the model and the feature importance. Specifically, we first compute a feature’s
importance value, for instance, the value of our corresponding predicted gate averaged over all
samples. Then, we sort the vector of importance values, remove features individually (from most to
least important), and measure the performance of the clustering model. If the model’s performance
drops monotonically with feature importance, we will obtain a high correlation, indicating that the
prediction model is faithful to the learned feature importance values. An example of this metric is
presented in Fig. 3.

Uniqueness The motivation for uniqueness is opposite to the stability metric proposed in (Yang
et al., 2022; Alvarez Melis & Jaakkola, 2018), which requires the selected features to be consistent
between close samples. Since we are interested in sample-level interpretation, we extend the diversity
to a metric that compares samples instead of clusters. Specifically, we propose to measure the
uniqueness of the selected features for similar samples, or in other words, how granular are our
explanations. We define uniqueness of the explanations by: min

xi,xk≤ϵ

∥wi−wk∥2

∥xi−xk∥2
, where wi, wk are

feature sets for samples xi, xk. The smaller this value is, the less sample-specific the interpretation of
the model is. Therefore, we want our model to obtain high uniqueness values.

6 EXPERIMENTS

We conducted six types of experiments. First, we verify our method’s clustering and local feature
selection capabilities on a synthetic dataset. Then, we verify that the sparsity constraint preserves
or even improves clustering quality for two commonly used clustering benchmarks, MNIST and
FashionMNIST. To test the model’s generalization capability, we test the trained model on an unseen
test set from the MNIST dataset. In the fourth experiment, we evaluate our method on small sample
size high dimensional real-world tabular datasets. Next, we evaluate the interpretability of the model
on an MNIST subset of size 10, 000 samples and present the quality of the selected features. Finally,
we test the proposed method on a more challenging CIFAR10 dataset with a convolutional neural
network (CNN) backbone without additional augmentations. The datasets used in the experiments
are summarized in Table S6 in the Appendix. We note that the real-world datasets are still considered
challenging by several studies on clustering with tabular data (Shaham et al., 2022; Xu et al., 2023).
In addition, we compare the interpretability metrics measured for our method against other popular
feature explanation schemes.

6.1 EVALUATION

Interpretability quality To evaluate the interpretability of the proposed model, we train it on the
MNIST10K images, 1K images for each class. We measure diversity, uniqueness, and faithfulness
described in Section 5. The evaluation is done on subsets of 1K images by taking the mean value after
ten iterations. We compare the interpretability of our method to the popular SHAP feature importance
detection method (Lundberg & Lee, 2017) implemented here 1 and trained on K-Means outputs. In

1https://github.com/slundberg/shap

6



Under review as a conference paper at ICLR 2024

Table 1: Evaluating the interpretability quality of our model on the MNIST10K data. Our IDC model
improved clustering accuracy. We use it to compare (i) the top features explained by SHAP trained
based on a K-means model, (ii) Integrated Gradients, and (iii) Gradient SHAP applied as explainers
to our model. Our local gating network selects faithful (0.96) and unique (0.69) features while
providing comparable diversity values (94.8).

Method ACC ↑ |S| ↓ Uniqueness ↑ Diversity ↑ Faithfulness ↑
K-means + SHAP 53.34 15 0.12 100.0 0.79
TELL (Peng et al., 2022) + IntegGrads 74.79 15 0.03 89.1 0.67
TELL (Peng et al., 2022) + GradSHAP 74.79 15 0.15 92.5 0.63
IDC w/o gates + IntegGrads 82.32 15 0.02 95.8 0.78
IDC w/o gates + GradSHAP 82.32 15 0.08 100.0 0.86
IDC + IntegGrads 83.45 15 0.01 95.3 0.94
IDC + GradSHAP 83.45 15 0.02 97.0 0.93
IDC 83.45 15 0.69 94.8 0.96

addition we compare interpretability of our method against Gradient SHAP 2 and Integrated Gradients
(Sundararajan et al., 2017). Both are trained on IDC clustering model predictions inside Label-free
XAI framework (Crabbé & van der Schaar, 2022).

Clustering accuracy We use three popular clustering evaluation metrics: Clustering Accuracy
(ACC), The adjusted Rand index score (ARI), and Normalized Mutual Information (NMI).

6.2 RESULTS

6.2.1 SYNTHETIC DATASET

Table 2: Results on the Synthetic dataset with three infor-
mative features and ten nuisance features. Our model is
accurate and achieves the highest F1-score regarding its
ability to select the correct informative features.

Method ACC ↑ F1-score ↑
IDC 99.91 88.95
K-means+SHAP 25.72 49.65

We verify our method first on the synthetic dataset. Inspired by (Armanfard et al., 2015), the dataset
consists of three informative features xi[j] ∈ [−1, 1], j = 1, .., 3 for each sample xi, in which
we generate three Gaussian blobs 3. The detailed description of the dataset generation could be
found in I. We add ten nuisance background features, resulting in 13 total features. The samples
are equally distributed between 4 clusters, with ∼ 800 samples in each cluster. Given the first two
dimensions {x[1], x[2]}, only 3 clusters are separable, and the same property holds for dimensions
pair {x[1], x[3]}. We expect the interpretable clustering model to be able to select the correct support
features for each cluster. In Table 2, we present the accuracy of the clustering where K-means was
run 20 times, and the F1-score was measured on the selected features. We expect clusters with purple
and blue labels to be explained by features {x[1], x[2]} and clusters with green and yellow labels
by {x[1], x[3]}. To evaluate the model’s effectiveness, we calculate both clustering accuracy (ACC)
and F1-score that measures the quality feature selection. Since for each sample, we know what
the informative features are, we can calculate precision and recall for gate-level feature selection.
While K-means fails to produce accurate clustering, our method achieves 99.91% clustering accuracy.
Additionally, it has an excellent ability to select the relevant features. The results are presented in
Table 2.

6.2.2 INTERPRETABILITY RESULTS ON MNIST10K DATASET

As a baseline for interpretability, we exploit the SHAP values model, which is trained on the K-
means model predictions. First we train K-means on MNIST10K dataset. Since SHAP requires a
set of samples used as a background during SHAP training, we select an additional 100 random
MNIST images that are not in the train set. Once the SHAP model is trained, we take 15 top feature
importance indices, the number of selected gates by our model. As indicated in Table 1, our method
produces more expressive features as sample-level explanations with the highest uniqueness score. In
addition, our model outperforms SHAP in faithfulness, as presented in Fig. 3. It is easy to see that
the accuracy drop correlates with feature importance. Additionally, Fig. 3 presents the active gates
selected for each sample. It can be seen that IDC selects more informative features that are local for
each sample.

2https://captum.ai/api/gradient_shap.html
3https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
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Figure 2: Visualization of Synthetic dataset. To separate between clusters, the model should select
one of the pairs {x[1], x[2]} or {x[1], x[3]} of non-background features.

Figure 3: Left: Faithfulness plot of the proposed method (green) and K-Means+SHAP (blue) on
MNIST10K subset. Accuracy drop and feature importance are well correlated for our approach 0.96
(see green dots) while less correlated for SHAP features with K-means clustering 0.79 (see blue
dots). Furthermore, notice that K-means accuracy only reaches 53% while our method - 83%. Right:
Features selected by different explainers on MNIST10K . The features are learned during clustering
training as proposed by our approach (top), features selected by SHAP explainer with K-means
predictor (KM-SHAP), features obtained from the Gradient-SHAP explainer with trained clustering
model (GradSHAP) and features predicted by Integrated Gradients explainer (bottom).

6.2.3 CLUSTERING IMAGE BENCHMARKS

MLP architecture In this experiment, we train two versions of our model for each dataset. The
first version learns clustering assignments without local gates, so the AE is fed raw input samples
with D = 784. The second version is our full model with a gating network that reduces the number
of non-zero gates to the minimum. Both models are trained on MNIST60K dataset samples with the
same hyperparameters. The Encoder consists of 4 linear layers with batch normalization and ReLu
non-linearity with hidden layers of sizes [512, 512, 2048]. The Decoder has the same but reversed
structure. In addition, the clustering head has a single hidden layer of size 2048. Table 3 demonstrates
how the gating network contributes to accurate clustering and selects a small subset of features.

CNN architecture We conducted an additional experiment on the CIFAR10 dataset. The data has
3× 32× 32 features, 60K samples, and 10 clusters. We modified the AE module to be a mirrored
ResNet18 model with convolutions. We do not apply any additional augmentations during the training.
The results are presented in Table 4. Despite not being designed for vision (avoiding domain-specific
augmentations), our model leads to competitive results while using much fewer features. We run
the experiment 10 times for fair comparison and pick the results with the lowest training loss as
suggested in the compared works (Peng et al., 2022; Jiang et al., 2016) and results of other models
borrowed from (Peng et al., 2022).

6.2.4 REAL WORLD DATA

This section evaluates our method using six real tabular datasets commonly used for evaluating
feature selection schemes. The datasets are collected from different biological domains and often
contain more features than samples. Such a regime of high dimensions and a low sample size is
highly challenging for supervised (Singh et al., 2023; Liu et al., 2017) or unsupervised models (Abid
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Table 3: Clustering evaluation and the num-
ber of features selected (last column) by using
our method on MNIST60K and FashionMNIST
datasets. The proposed model improves clustering
accuracy by using only about 16 features out of
784 on MNIST60K and about 69 features on Fash-
ionMNIST datasets. At the first row we present
clustering evaluation of IDC on the non-seen test
set. The model is trained on the MNIST60K and
tested on unseen MNIST test (10K samples)

Dataset Method ACC ↑ ARI ↑ NMI ↑ |S| ↓
MNIST (test) IDC 83.6 77.0 80.3 14.9
MNIST60K IDC (w/o gates) 81.1 75.9 80.3 784

IDC 87.9 82.8 85.1 15.81
FashionMNIST IDC (w/o gates) 61.0 49.3 62.7 784

IDC 61.9 49.1 63.3 68.6

Table 4: Clustering performance on CIFAR10
dataset. IDC model selects 586 features (on aver-
age) out of 3,072.

Model ACC ↑ ARI ↑ NMI ↑
IDC 25.01 6.16 11.96
TELL(Peng et al., 2022) 25.65 5.96 10.41
VaDE(Jiang et al., 2016) 20.87 3.95 7.20
NMF(Cai et al., 2010) 19.68 3.21 6.20

Table 5: Ablation study on MNIST60K dataset
Model ACC ↑ ARI ↑ NMI ↑
IDC 87.9 82.8 85.1
IDC w/o Lreg 85.9 (-2.0) 81.2(-1.6) 84.7 (-0.4)
IDC w/o latent denoising 86.5 (-1.4) 80.9 (-1.9) 83.2 (-1.9)
IDC w/o input denoising 84.3 (-3.6) 80.0 (-2.8) 83.9 (-1.2)
IDC features + K-Means 65.5 (-22.4) 49.3 (-33.5) 57.6 (-27.5)
IDC w/o Lrecon 18.0 (-69.9) 2.6 (-80.2) 4.3 (-80.8)

Table 6: Clustering Accuracy on Real Datasets. K-means (KM) accuracy is borrowed from (Linden-
baum et al., 2021). |S| is calculated by taking the median on a batch of gates produced by LSTG and
the mean value across ten experiments.

Method / Dataset TOX-171 ALLAML PROSTATE SRBCT BIASE INTESTINE PBMC-2

KM 41.5 ± 2 67.3 ± 3 58.1 ± 0 39.6 ± 3 41.8 ± 8 54.8 ± 3 52.37 ± 0
LS+KM 47.5 ± 1 73.2 ± 0 58.6 ± 0 41.1 ± 3 83.8 ± 0 43.2 ± 3 -

MCFS+KM 42.5 ± 3 72.9 ± 2 57.3 ± 0 43.7 ± 3 95.5 ± 3 48.2 ± 4 -
SRCFS+KM 45.8 ± 6 67.7 ± 6 60.6 ± 2 33.5 ± 5 50.8 ± 5 58.1 ± 10 -

CAE+KM 47.7 ± 1 73.5 ± 0 56.9 ± 0 62.6 ± 7 85.1 ± 2 51.9 ± 3 59.11 ± 6
DUFS+KM 49.1 ± 3 74.5 ± 1 64.7 ± 0 51.7 ± 1 100 ± 0 71.9 ± 7 -

IDC 50.6 ± 3 72.2 ± 3 65.3 ± 3 55.4 ± 5 95.7 ± 1 74.2 ± 2 61.56 ± 9

|S| 49.6 ± 8 307.6 ± 2 170.9 ± 3 46.7 ± 2 210 ± 0 65 ± 0 137.8 ± 2
D / N / K 5748 / 171 / 4 7192 / 72 / 2 5966 / 102 / 2 2308 / 83 / 4 25683 / 56 / 4 3775 / 238 / 13 17126 / 20742 / 2

et al., 2019). Specifically, standard clustering models fail to model the cluster assignments accurately.
Table 6 presents clustering accuracy of different methods: K-means4 on the full set of features, (KM),
SRCFS feature selector (Huang et al., 2019) with K-means (SRCFS+KM), Concrete Autoencoders
feature selector with K-means clustering on the selected features (CAE+KM) (Abid et al., 2019),
DUFS feature selector (Lindenbaum et al., 2021) with K-means clustering (DUFS+KM), our model
where the best checkpoint chosen by Silhouette score and our best model in terms of accuracy. In
addition, we present the number of selected features for each dataset by our model (|S| ≤ D). Our
model produces comparable clustering accuracy to the feature selection methods integrated with
K-means and even outperforms them on three datasets. To highlight the potential of our model
in bio-informatics we consider BIASE data as a use case. The data comprise of single-cell RNA
sequencing (scRNA-seq). Most analysis in this domain are initiated by cell clustering using K-means.
In this example, we dramatically improve the accuracy compared to K-means while identifying 210
informative genes our of more than 25K.

6.2.5 ABLATION STUDY

We run an ablation study to test if all reconstruction loss components are essential for model
convergence. The experiment was conducted on the MNIST60K dataset. We run each experiment 10
times and present the results in the Table 4. As indicated by our results all of the proposed components
contribute to the performance of our model.

7 CONCLUSIONS

We propose a deep clustering model that produces accurate cluster assignments on tabular data and
predicts the informative feature set for interpretability. We evaluate the model on a synthetic dataset,
commonly used deep clustering image benchmarks, and high-dimensional low sample size bio-med
tabular datasets. The gating network enables built-in interpretability of our model such that the
clustering is done on the sparse input but is still informative for the task. A main limitation of our
scheme is dealing with correlated variables. This is a known caveat of the reconstruction loss (Abid
et al., 2019) and could be alleviated by incorporating a group sparsity loss as presented by (Imrie
et al., 2022). We hope our work will benefit scientists in the bio-med domain.

4Implemented here: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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A IMPLEMENTATION DETAILS

We implement our model in Pytorch and run experiments on a Linux server with NVIDIA GeForce
GTX 1080 Ti and Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz. We share our code on Github5.
Our model has two main versions: the first includes only the autoencoder and clustering head and a
learnable global gating matrix, denoted in the experiments by IDC (w/o gates). The second version
adds a gating network to the first one, which is the complete proposed model. Every part presented in
Fig. 1 is trained with a separate optimizer and learning rate.

B MODEL ARCHITECTURE

The model is trained with a single hidden layer in the Clustering Head and in the Gating NN. For
Encoder we use hidden layers of sizes [512,512,2048] and the output dimension equals to the number
of clusters. The Decoder is a mirrored version of encoder.

C TRAINING SETUP

We train all models with a two-stage approach - we train Encoder, Decoder, and Gating NN in the
first stage and then train Clustering Head in the second stage. We use Adam optimizer for modules
(Encoder, Decoder, Gating NN) with learning rate 1e − 3 and learning rate 1e − 2 for Clustering
Head. To train global gates matrix with use SGD optimizer with learning rate 1e − 1. For small
sample size datasets we increase the number of epochs.

For interpretabiltiy experiments, we train K-means 6 and TELL (Peng et al., 2022) 7. Both methods
are trained without additional augmentations for fair comparison to our method with the provided
default experimental parameters.

Table 7: The number of epochs and batch size for different datasets.
Dataset Epochs Stage 1 Epochs Stage 2 Batch size
Synthetic 50 2000 800
MNIST60K 300 600 256
MNIST10K 300 700 100
FashionMNIST 100 500 256
TOX-171 10000 2000 171 (full)
ALLAML 10000 1000 72 (full)
PROSTATE 10000 1000 102 (full)
SRBCT 2000 1000 83 (full)
BIASE 2000 4000 301 (full)
INTESTINE 4000 2000 238 (full)
PBMC-2 100 200 256

D MAXIMUM CODING RATE MODIFICATION

For simplicity in the presentation of our work, we slightly modify the original formula of the
Coding Reduction Rate. As presented in the paper we use the next formula for the gating network
optimization:

Lgtcr = −EZ
[1
2
· logdet(I+ λ1 · zTi zi)

]
(7)

where is defined by λ1 = dinput · (B ∗ ϵ), where ϵ is the the coding error hyper parameter, B is a
batch size and dinput is the dimension of the input sample. Similarly, for the clustering loss term
represented by:

Lhead =

K∑
k=1

1

2
· logdet

[
I+ λ2 · Ehi∈Hk

(hT
i hi)

]
, (8)

5the files are in the supplementary material for this submission and will be shared on Github later
6https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
7The implementation was found here: https://github.com/XLearning-SCU/2022-JMLR-TELL/tree/main,

accessed on 2023-09-28.
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we use λ2 = demb · (B ∗ ϵ) where the demb is the dimension of the embedding vector for each sample.
We use the same ϵ for both loss terms in our experiments.

E REGULARIZATION TERM

Figure 4: The value of ∂
∂µEZ ||Z||0|µ=0.5 = 1√

2πσ2
e−

1
8σ2 for σ = [0.001, 2].

The leading term in our regularizer is expressed by :

EZ ||Z||0 =

D∑
d=1

P[zd > 0] =

D∑
d=1

P[µd + σϵd + 0.5 > 0]

=

D∑
d=1

{1− P[µd + σϵd + 0.5 ≤ 0]}

=

D∑
d=1

{1− Φ(
−µd − 0.5

σ
)}

=

D∑
d=1

Φ

(
µd + 0.5

σ

)

=

D∑
d=1

(
1

2
− 1

2
erf

(
−µd + 0.5√

2σ

))

To tune σ, we follow the suggestion in Yamada et al. (2020). Specifically, the effect of σ can be
understood by looking at the value of ∂

∂µd
EZ ||Z||0. In the first training step, µd is 0. Therefore,

at initial training phase, ∂
∂µd

EZ ||Z||0 is close to 1√
2πσ2

d

e
− 1

8σ2
d . To enable sparsification, this term

(multiplied by the regularization parameter λ) has to be greater than the derivative of the loss with
respect to µd because otherwise µd is updated in the incorrect direction. To encourage such behavior,
we tune σ to the value that maximizes the gradient of the regularization term. As demonstrated in
Fig. 4 this is obtained when σ = 0.5. Therefore, we keep σ = 0.5 throughout our experiments unless
specifically noted.

F DATASETS PROPERTIES AND REFERENCES

In Table F we add the references of the datasets used in the experiments.

G TRAIN LOSS AUGMENTATIONS

In addition to the loss presented in Section 4.2 we exploit the next dataset-agnostic augmentations
during model training. The first one is the standard reconstruction loss that is calculated between
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Table 8: Properties and references for the dataset used in the experiments.
Dataset Features Samples Clusters Reference
MNIST10K 784 10,000 10 lec
MNIST60K 784 60,000 10 lec
FashionMNIST60K 784 60,000 10 git
TOX-171 5,748 171 4 jun
ALLAML 7,192 72 2 jun
PROSTATE 5,966 102 2 jun
SRBCT 2,308 83 4 Khan et al. (2001)
BIASE 25,683 56 4 Biase et al. (2014); Fan et al. (2015); Sato et al. (2009); Pollen et al. (2014)
INTESTINE 3,775 238 13 Biase et al. (2014); Fan et al. (2015); Sato et al. (2009); Pollen et al. (2014)
PBMC-2 17,126 20,742 2 Zheng et al. (2017)
CIFAR10 3,072 60,000 10 Krizhevsky et al. (2009)

input samples and reconstructed samples. Input denoising is based on Vincent et al. (2008) and latent
denoising on Doi et al. (2007):

• Clean reconstruction loss, ||fθ3 ◦ fθ2(xi)− xi||1, which measures the deviation of estimated x̂i

from the input sample xi.
• Denoising reconstruction loss Vincent et al. (2008), ||fθ3 ◦ fθ2(xi ⊙ mrand) − xi||1, where
mrand ∈ {0, 1}D is a random binary mask generated for each sample xi. We generate a mask
such that about 90%− 99% of the input features are multiplied by zero value, which indicates that
the gate is closed. The loss pushes the method to pay less attention to unnecessary features for the
reconstruction.

• Latent denoising reconstruction loss, ||fθ3(hi · hnoise) − xi||1, where hnoise ∼ N (1, σh) is a
noise generated from a normal distribution with mean one and scale σh which is a dataset-specific
hyperparameter Doi et al. (2007). This term aims to improve latent embedding representation by
small perturbation augmentation to treat small sample-size datasets.

H MODEL TRAINING SCALABILITY

In Figure H we show the training time as a function of number of data samples. It could be seen that
training time scales linearly with an increase in dataset length.

Figure 5: Training time in seconds measured for different numbers of samples.

I SYNTHETIC DATASET GENERATION

The dataset consists of three informative features xi[j] ∈ [−1, 1], j = 1, .., 3 for each sample xi and
is generated as isotropic Gaussian blobs 8 with standard deviation of each cluster of 0.5. The detailed

8https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
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description of the dataset generation could be found in I. Then we add ten nuisance background
features with values drawn from N (0, σ2

n) (with σn = 0.1) resulting in 13 total features. The samples
are equally distributed between 4 clusters, with ∼ 800 samples in each cluster. Given the first two
dimensions {x[1], x[2]}, only 3 clusters are separable, and the same property holds for dimensions
pair {x[1], x[3]}.
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