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Abstract

In the past few years, transformers have achieved promising performance on
various computer vision tasks. Unfortunately, the immense inference overhead
of most existing vision transformers withholds them from being deployed on
edge devices such as cell phones and smart watches. Knowledge distillation is a
widely used paradigm for compressing cumbersome architectures into compact
students via transferring information. However, most of them are designed for
convolutional neural networks (CNNs), which do not fully investigate the character
of vision transformers. In this paper, we fully utilize the patch-level information
and propose a fine-grained manifold distillation method for transformer-based
networks. Specifically, we train a tiny student model to match a pre-trained teacher
model in the patch-level manifold space. Then, we decouple the manifold matching
loss into three terms with careful design to further reduce the computational costs
for the patch relationship. Equipped with the proposed method, a DeiT-Tiny model
containing 5M parameters achieves 76.5% top-1 accuracy on ImageNet-1k, which
is +2.0% higher than previous distillation approaches. Transfer learning results on
other classification benchmarks and downstream vision tasks also demonstrate the
superiority of our method over the state-of-the-art algorithms.

1 Introduction
The past decade has witnessed the rise of attention-based models in the field of natural language
processing (NLP) [1, 2]. Such models belonging to the transformer family [3] can effortlessly build
long-range dependencies and have achieved remarkable performance. Inspired by the success in
NLP, researchers have made great efforts introducing the transformer-based architectures to vision
domain and achieved promising results. In an early attempt, Dosovitskiy et al. [4] proposed a
transformer-based vision model termed ViT, which takes split image patches as the input. ViT
obtains comparable performance when compared to the state-of-the-art convolutional neural networks
(CNNs), demonstrating the immense potential of applying transformers to vision tasks. Inspired by
the design of splitting the whole image into patches as input, various vision transformers have been
proposed, including Swin [5], T2T [6], Twins [7], and TNT [8].

Although transformers have shown the excellent capability for various vision tasks, they require large
amounts of parameters, resulting in heavy computational burden. For example, ViT-B [4] with 86M
parameters pretrained on JFT-300M can only achieve comparable performance with CNN-based
EfficientNet [9], while the latter is trained on ImageNet and contains only 5M parameters.
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(a) Image-level manifold space (b) Patch-level manifold space

Figure 1: Comparison between (a) image-level manifold space and (b) patch-level manifold space.
The patch-level manifold space containing fine-grained information facilitates knowledge transfer.
The requirement for inordinate computing resource and storage prevents them from being deployed
on memory-bounded edge devices such as cell phones and smart watches. To facilitate the challenges
above, a series of methods have been proposed to investigate compact deep neural networks, such as
network pruning [10, 11], low-bit quantization [12, 13] and knowledge distillation [14, 15].

However, smaller models usually lead to performance degradation. Knowledge distillation (KD) [14]
is a promising approach for inheriting information from a high-performance teacher to a compact
student and maintaining the strong performance.

Touvron et al. [16] first proposed a KD-based compression approach for vision transformers. They
trained the student transformer to match hard labels provided by a pre-trained CNN teacher. Although
this approach obtains satisfying results, they ignore the intermediate-layer information inherited
in vision transformers. There have been works [17, 18] proving the effectiveness of learning from
intermediate layers for transformers in NLP, but these methods require teachers and students to have
exactly the same embedding dimension at corresponding layers, which is a fairly tight constraint and
cannot always be satisfied. Manifold learning-based KD [19, 20] can support layers with mismatching
dimensions and make use of inter-sample information concurrently. However, existing manifold
distillation approaches are designed for CNNs and cannot utilize the patch-level information of vision
transformers. As shown in Figure 1, patches depict a manifold space in a more fine-grained way.
Such information can facilitate knowledge transfer remarkably.

Based on this consideration, we propose a fine-grained manifold distillation method in both patch-
level and batch-level. In particular, we regard vision transformers as projectors mapping inputs into
multiple manifold spaces layer by layer. At each layer, we collect embeddings of patches to build
their manifold relation map and train the student to match the relation map of the teacher. Since the
computational complexity is high, we decouple the relation maps into three parts, which reduces the
complexity by two orders of magnitude approximately. We evaluate the proposed method on the
ImageNet-1k classification task. The proposed manifold KD outperforms the distillation method
in [16] by +2.0% top-1 accuracy on DeiT-Tiny. We also conduct transfer learning experiments on
CIFAR-10/100 and evaluate our method on downstream tasks such as object detection and semantic
segmentation. The proposed method outperforms its counterparts on both tasks. Our contributions
are summarized as follows:

• We propose a fine-grained manifold distillation method, which transfers patch-level and
batch-level manifold information between vision transformers.

• We use three decoupled terms to describe the manifold space and simplify the computational
complexity significantly.

• We conduct extensive experiments to verify the effectiveness of the proposed method. The
results also demonstrate the importance of soft-label distillation and fixed-depth students.

2 Related works
Vision transformer. Transformer is originally designed for NLP tasks [21]. Inspired by its remarkable
performance, researchers have made efforts to adopt transformer-based models in CV tasks [22, 23].
Among them, Dosovitskiy et al. [4] proposed to divide an image into patches and used embeddings
of the patches as model input. Based on their proposed input processing scheme for images, many
variants of vision transformers have been proposed. For example, Han et al. [8] proposed TNT to
model in-patch attention, Zhou et al. [24] and Touvron et al. [25] built deeper vision transformers,
and some researchers [26, 5, 27] adopted the experience in CNN to guide the design of vision
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transformers. However, Most well-performed vision transformers are extremely resource-consuming
and should be compressed for deployment.

Knowledge distillation. KD is a model compression method proposed by Hinton et al. [14], which
trains a lightweight student model to match soft labels given by a large pre-trained teacher model
[28]. Moreover, there are also works using structure of a information flow in the teacher model
as knowledge [29, 30, 31], combining self-supervised training with KD [32], or training a student
with only a few samples [11]. Due to its excellent performance, KD has been adopted in various
research fields, such as CV [11, 32], NLP [17], and recommendation systems [33]. To compress
vision transformers, Touvron et al. [16] proposed a KD-based method termed DeiT. They added a
distillation token into the student and trained the student with hard labels provided by the teacher.
Although DeiT has achieved remarkable performance, KD for vision transformers has not been well
explored yet.

Manifold learning. Manifold learning is an approach for non-linear dimensionality reduction. It
learns a smooth manifold embedded in the original feature space to construct low-dimensional
features [34, 35]. Recently, several works introduce manifold learning to KD [19, 20]. These methods
train the student to preserve the relationships among samples learned by the teacher. For vision
transformers, these primary attempts are coarse and can be further improved because the basic input
elements are patches not images.

3 Method

3.1 Preliminaries

Vision transformer. Vision transformers are attention-based models inherited from NLP, and each
layer of transformer consists of a multi-head self-attention (MSA) block and a multi-layer perceptron
(MLP) block. These models take split images as input, i.e., the patches. In particular, assuming the
patch is of size P × P , an input image x ∈ RH×W×C of size H ×W and channel number C is
reshaped into flattened patches xp ∈ RN×(P 2·C) for processing, where N = HW/P 2. The patches
are then projected into a D-dimension embedding space and added to positional embeddings. We
denote the summation result as xe ∈ RN×D. Each model layer works as follows:

xe ←MSA(LN(xe)) + xe, (1)
xe ←MLP(LN(xe)) + xe, (2)

where LN denotes the layer normalization operation.

Knowledge Distillation. KD is a widely used model compression method, where we use predictions
of a large pre-trained teacher model as the learning target of a tiny student model. Given a sample x
corresponding to a label y, representing the prediction of the student and the teacher as fs(x) and
ft(x), respectively, the loss function of KD can be formulated as:

Lkd = (1− λ)HCE(fs(x), y) + λτ2HKL(fs(x)/τ, ft(x)/τ), (3)

whereHCE is the cross-entropy function,HKL is the Kullback-Leibler divergence function, τ is a
label smoothing hyper-parameter termed temperature, and λ is a balancing hyper-parameter.

Sometimes the intermediate features of the teacher can also be used for knowledge transfer. For
example, Romero et al. [36] trained the student to output features similar to the teacher at intermediate
layers. However, such methods require the teacher and the student to have the same embedding
dimension. Otherwise, additional mapping layers are required for aligning, making the distillation
process non-transparent. Manifold learning-based KD methods [20, 19] support mismatched embed-
ding dimensions. They train the student to learn sample relationships predicted by the teacher but
ignore patch-level information in vision transformers.

3.2 Fine-grained manifold distillation

To utilize the batch-level and patch-level information, we propose a fine-grained manifold distillation
method. Unlike existing KD methods [16] for vision transformer only distilling with logits, our
method distills batch and patch level manifolds at intermediate layers. Figure 2 provides an overview
of the proposed method.

3



Image

Patches

P
at

ch
 E

m
b

ed
d

in
g

B
lo

ck
 1

B
lo

ck
 𝑛

B
lo

ck
 𝑁

C
la

ss
if

ie
r

⋯ ⋯

Teacher

(fixed)

P
at

ch
 E

m
b

ed
d

in
g

B
lo

ck
 1

B
lo

ck
 𝑚

B
lo

ck
 𝑀

C
la

ss
if

ie
r

⋯ ⋯

Student

KD

loss

Teacher Block 𝑛

MHA

&

LN

MLP

&

LN

MHA

&

LN

MLP

&

LN

Student Block 𝑚

Matching in Manifold Space

MD loss

(a)  Overview (b)  MD loss illustration

Manifold Distillation (MD) loss

Figure 2: The fine-grained manifold distillation method. (a) An overview of the method. When
transferring knowledge from the teacher to the student, a manifold distillation loss is adopted together
with the orignal KD loss. (b) Computing of the manifold distillation loss. The loss is computed by
matching feature relationships between each pair of selected teacher-student layers in manifold space.

In the fine-grained manifold distillation method, we regard a vision transformer as a feature projector
that embeds image patches into a series of smooth manifold space layer by layer. At each pair of
manually selected teacher-student layers, we aim to teach the student layer to output features having
the same patch-level manifold structure as the teacher layer. In particular, given samples of batch
size B, we denote the feature of the student layer and the teacher layer as FS ∈ RB×N×DS and
FT ∈ RB×N×DT , respectively, where DS and DT are embedding dimensions. We first normalize
the feature at the last dimension and then compute the manifold structure, or manifold relation map,
as follows:

M(ψ(FS)) = ψ(FS)ψ(FS)
T , (4)

where ψ : RD1×D2×D3 → RD1D2×D3 is a tensor reshape operation. The manifold relation map of
FT can be obtained in a similar way. After that, we train the student to minimize the gap between
M(ψ(FT )) andM(ψ(FS)) with the following loss:

Lmf = ‖M(ψ(FS))−M(ψ(FT ))‖2F . (5)

However, the computation of manifold relation maps is resource-consuming. Its computational
complexity is O(B2N2D) and a memory space of B2N2 size is required to save the result. Taking
the settings B = 128, N = 196 and D = 192 in the DeiT-Tiny model [16] as an example, it requires
more than 240GFLOPs to compute and 2.5GB of memory space to save a single manifold relation
map. The remarkable resource consumption limits the fine-grained manifold distillation method
scaling up to multiple layers. Hence we must simplify the computation.

Inspired by the orthogonal decomposition of matrices, we decouple a manifold relation map into three
parts: an intra-image relation map, an inter-image relation map, and a randomly sampled relation map.
Figure 3 illustrates the decoupling. We compute the intra-image patch-level manifold distillation loss
as follows:

Lintra =
1

B

B∑
i=0

||M(FS [i, :, :])−M(FT [i, :, :])||2F . (6)

Similarly, the inter-image patch-level manifold distillation loss is computed by:

Linter =
1

N

N∑
j=0

||M(FS [:, j, :])−M(FT [:, j, :])||2F . (7)

Moreover, to relieve the information loss caused by the decoupling, we relate the intra-image and the
inter-image manifolds via a relation map computed across randomly sampled patches. Specifically,
we sample K rows in the reshaped feature ψ(F ) to obtain F r ∈ RK×D, and compute the randomly
sampled patch-level manifold distillation loss as follows:

Lrandom = ||M(F r
S)−M(F r

T )||2F . (8)
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Figure 3: Illustration of the decoupled manifold relation map (4 images with 4 patches in each image):
(a) intra-image relation map; (b) inter-image relation map; and (c) randomly sampled relation map.
Manifold relation maps are computed across each group of patches filled with the same color.

Hence, the overall loss function of our proposed method is:

L = Lkd +
∑
l

Lmf−decouple, (9)

Lmf−decouple = αLintra + βLinter + γLrandom, (10)

where α, β, and γ are hyper-parameters. The summation over l means that the manifold relation map
matching is performed on multiple pairs of teacher-student layers. We will discuss the layer selecting
scheme in Section 4.3.

Complexity analysis. The computational complexity of the decoupled manifold relation map is
O(BN2D+B2ND+K2D), and the memory space requirement isBN2+NB2+K2, where each
one is reduced by nearly BN/(B +N) times when ignoring the lower order terms. Still taking DeiT-
Tiny as an example, the floating-point operations and memory space requirement reduce to 3GFLOPs
and 32MB, respectively. The sampling number K is set to 192, the same as our experiments. With
the decoupling scheme, fine-grained manifold distillation across multiple layers becomes feasible.

3.3 Optimization

Patch merging. Although the decoupling reduces the computation and memory space remarkably,
the computing and storing overhead is still unaffordable when the patch size is too small. For instance,
the patch size at the first stage of SwinTransformer [5] is 4, indicating that the total patch number
N is 3136 under the input size of 224×224. Such a large patch number significantly increases the
computational complexity and memory space requirement of the intra-image patch-level manifold
loss Lintra. To remedy this drawback, we merge adjacent patches and view them as a single patch to
further simplify the computation. In particular, given a feature map F ∈ RN×D, we first reshape it
into F r ∈ RH×W×D, where the height H and the width W are obtained following the original patch
splitting operation. Then we adopt a merging setting (H ′,W ′) to merge every (H/H ′)× (W/W ′)
adjacent patches in a non-overlapping manner. Zero-padding is adopted when H/H ′ or W/W ′ is not
an integer. After merging, the feature map becomes F rm ∈ RH′×W ′×(HWD/H′W ′) and is finally
reshaped into Fm ∈ R(H′W ′)×(HWD/H′W ′). By adjusting the merging setting (H ′,W ′), we can
easily strike the trade-off between the complexity and the granularity of manifold relation maps.

Soft distillation. Previous work [16] adds an additional distillation token into the student, and uses
this token to learn hard labels provided by a CNN teacher. However, when teacher and student are
both vision transformers, we propose that it is better to teach the student only with soft labels of the
teacher. This design is based on the assumption that a larger model can learn more knowledge than a
smaller one, and models of the same family share the same knowledge pattern, i.e., a student can
learn most knowledge of a teacher. In our work, unless the student is larger than the teacher, we set
the hyper-parameter λ in Equation 3 to 1.

Fixed depth. Stochastic depth [37] is a regularization method that has becomes an infrastructure in
training vision transformers [16, 5]. We propose that the student should not adopt this regularization
when the teacher is trained with stochastic depth, since the soft labels already contain knowledge
about this regularization. Otherwise, the repeated regularizations may harm the student performance.
Hence, we adopt a fix-depth student in our method, i.e., the stochastic depth regularization is not used
for training the student.
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Table 1: Details of used teacher and student models. The input resolution is set to 224×224.
Model Embedding Heads Layers #params FLOPs Throughput(im/s)

RegNetY-16GF [38] - - - 84M 15.9G 334.7
CaiT-S24 [25] 384 8 24 47M 9.4G 573.6
CaiT-XXS24 [25] 192 4 24 12M 2.5G 1012.8
DeiT-Small [16] 384 6 12 22M 4.6G 940.4
DeiT-Tiny [16] 192 3 12 5M 1.3G 2536.5
Swin-Small [5] 96 3 24 50M 8.7G 436.9
Swin-Tiny [5] 96 3 12 29M 4.5G 755.2

4 Experiments
We evaluate our fine-grained manifold distillation method on ImageNet-1k [39] classification task,
CIFAR-10/100 [40] transfer learning task, COCO [41] object detection task, and ADE20K [42]
semantic segmentation task. Our implementation is based on Pytorch framework [43] and the
MindSpore 2 Lite tool [44].

4.1 Setup
Datasets. We evaluate the proposed method mainly on the ImageNet-1k image classification task.
ImageNet-1k is a subset of the ImageNet dataset [39], which consists of more than 1.2M training
images and 50K validation images from 1000 classes. we conduct transfer learning experiments on
CIFAR-10 and CIFAR-100 datasets [40] to test the generalization performance of student models.
These two datasets both contain 50K training images and 10K testing images, which are categorized
into 10 classes and 100 classes, respectively. Moreover, we conduct experiments on the object
detection downstream task with COCO dataset [41]. We use the COCO 2017 split, which consists of
118K training images and 5K validation images containing objects from 80 categories.

Baselines and models. We compare the proposed method with DeiT [16], which adds an additional
distillation token in the student model to learn hard labels from the teacher. SwinTransformer students
containing no distillation token, so we compare with the original KD method [14] on these models.
Table 1 summarizes the used models in our experiments.

4.2 Distillation results on ImageNet-1k
Implementation details. On the ImageNet-1k image classification task, we train DeiT students with
CaiT teachers and SwinTransformer students with SwinTransformer teachers. We slightly modify
the architecture of DeiT students by removing the distillation token and only using the class token.
The hyper-parameter λ in the KD loss is set to 1, i.e., the real label is not used to train the student.
When the teacher is smaller than the student, to prevent the performance degradation caused by the
weak teacher, we set λ to 0.5. In the fine-grained manifold distillation loss, hyper-parameters α,
β, and γ are set to 4, 0.1, and 0.2, respectively. The sampling number K in loss term Lrandom is
set to 192. We set the above hyper-parameters one by one with the grid search method, indicating
that their combination may not be optimal. We select the first 4 layers and the last 4 layers of the
student and the teacher to conduct manifold distillation. Note that the class token in DeiT is ignored
when computing manifold relation maps. Moreover, to train SwinTransformer students efficiently,
we adopt a patch merging setting of (14, 14). Other training settings follow those in DeiT [16] and
SwinTransformer [5], except the stochastic depth regularization, which is not used in our experiments.
Each student is trained for 300 epochs with 8 Tesla-V100 GPUs.

Results. Table 2 presents classification results on ImageNet-1k. When compared with the hard
logits distillation proposed in DeiT [16], our manifold method achieves remarkable performance
improvements. For example, Deit-Tiny distilled via manifold method outperforms Deit by +2.0%
top-1 accuracy, and Deit-Small outperforms Deit by +0.9% with the CaiT-S24 teacher. Although the
“soft logits distillation" can boost the result by 0.4% compared to the “hard logits distillation", our
proposed manifold still obtains better performance by +0.6%. When the teacher is CaiT-XXS24, a
much weaker architecture, the corresponding improvements are +1.6% on DeiT-Tiny and +1.2%
on DeiT-Small, respectively. Note that we report the RegNetY-16GF teacher results in DeiT for
comparison, but do not conduct fine-grained manifold distillation experiments with this CNN model
because the proposed method is designed for distillation between vision transformers.

2Mindspore: https://mindspore.cn/resources/hub. Pytorch code: https://github.com/Hao840/manifold-
distillation and https://github.com/huawei-noah/Efficient-Computing.
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Table 2: Distillation results on ImageNet-1k with 224×224 input. In the first column, “Hard” indicates
the hard-label distillation strategy, “Soft” indicates the soft-label based KD method.

Distillation method Teacher Top-1(%) Student Top-1(%)

- - - DeiT-Tiny 72.2
Hard [16] RegNetY-16GF 82.9 DeiT-Tiny 74.5
Hard [16] CaiT-XXS24 78.5 DeiT-Tiny 73.9
Hard [16] CaiT-S24 83.4 DeiT-Tiny 74.5
Soft [14] CaiT-S24 83.4 DeiT-Tiny 74.9
Manifold (ours) CaiT-XXS24 78.5 DeiT-Tiny 75.5
Manifold (ours) CaiT-S24 83.4 DeiT-Tiny 76.5

- - - DeiT-Small 79.9
Hard [16] RegNetY-16GF 82.9 DeiT-Small 81.2
Hard [16] CaiT-XXS24 78.5 DeiT-Small 80.1
Hard [16] CaiT-S24 83.4 DeiT-Small 81.3
Manifold (ours) CaiT-XXS24 78.5 DeiT-Small 81.3
Manifold (ours) CaiT-S24 83.4 DeiT-Small 82.2

- - - Swin-Tiny 81.2
Soft [14] Swin-Small 83.2 Swin-Tiny 81.7
Manifold (ours) Swin-Small 83.2 Swin-Tiny 82.2

Table 3: Ablation study of main components. The “X” mark indicates whether we adopt the
corresponding training strategy. The “Hard" logits label is the hard-label distillation scheme in DeiT.
We adopt a CaiT-S24 teacher and a DeiT-Tiny student.

Manifold Distillation Logits label Fixed Depth Top-1(%)

× Hard × 74.5
× Soft × 74.9
× Hard X 75.5
× Soft X 75.8
X Hard X 75.9
X Soft X 76.5

Moreover, we conduct experiments based on Swin Transformer, one of the state-of-the-art vision
transformer architecture. When the teacher is Swin-Small and the student is Swin-Tiny, our proposed
method surpasses the original student by +1.0% and achieves +0.5% performance improvement
compared with the original soft logits label based KD method, demonstrating the effectiveness of our
fine-grained manifold distillation.

4.3 Ablation and parameter comparison
Ablation of main components. We design experiments to verify the effectiveness of our proposed
fine-grained manifold distillation method, the fixed student depth, together with the “hard" and “soft"
logits label in previous distillation methods. As shown in Table 3, soft logits label can bring +0.5%
top-1 accuracy compared to hard logits label, and fixed depth can improve the baseline by +0.8-1.0%,
which is a practical strategy to distill transformer. Moreover, when combined with the fine-grained
manifold distillation, student performance can be further improved by +0.7%.

Table 4: Ablation study on different selected layer
numbers. We denote the indices of layers se-
lected from a L-layer model as {1, 2, ..., k, L−k+
1, ..., L−1, L}, and conduct experiments with the
CaiT-small teacher (L = 24) and the DeiT-Tiny
(L = 12) student to compare different k setting.

Num. of selected layers Top-1(%)

2 (k=1) 76.3
4 (k=2) 76.4
8 (k=4) 76.5

12 (k=6) 76.5

Layers for fine-grained manifold distillation.
To study the impact of different layer selections
in manifold relation map matching, we evaluate
5 layer selecting schemes and compare their per-
formance. In particular, we take CaiT-S24 as
the teacher model and DeiT-Tiny as the student
model. The number of selected layers is set to 6.

From the results reported in Table 5, conducting
fine-grained manifold distillation at the head and
the tail of student models are both crucial. Hence,
we speculate that the “Shallow/Deep” layer se-
lecting scheme is the best because of its outstand-
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Table 5: Distillation results with different layer selecting schemes. We use a CaiT-S24 teacher and a
DeiT-Tiny student to perform fine-grained manifold distillation. A total of 6 layers are selected from
the “Shallow”, “Medium”, or “Deep” part of a model. “Uniform” refers to selecting layers across the
whole model uniformly. Note that the number of select layers is different from other experiments.

Scheme Teacher layers Student layers Top-1(%)

Shallow {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6} 75.8
Deep {19, 20, 21, 22, 23, 24} {7, 8, 9, 10, 11, 12} 75.5
Shallow/Deep {1, 2, 3, 22, 23, 24} {1, 2, 3, 10, 11, 12} 76.3
Shallow/Medium/Deep {1, 2, 12, 13, 23, 24} {1, 2, 6, 7, 11, 12} 76.2
Uniform {4, 8, 12, 16, 20, 24} {2, 4, 6, 8, 10, 12} 76.2

Table 6: Ablation study results of decoupled
manifold loss terms. The teacher is CaiT-S24
and the student is DeiT-Tiny. ‡ indicates that
we use the full precision training instead of
mixed precision training for the result.

Loss term Top-1(%)
Lintra Linter Lrandom

× × × 75.8
X × × 76.0
× X × 75.8‡

× × X 76.2
× X X 76.1
X × X 76.4
X X × 76.0
X X X 76.5

Table 7: Comparison of different hyper-
parameter settings. The teacher is CaiT-S24
and the student is DeiT-Tiny.

Hyper-parameter Top-1(%)
α β γ K

2.0 0.1 0.2 192 76.1
8.0 0.1 0.2 192 76.1

4.0 0.05 0.2 192 76.2
4.0 0.2 0.2 192 76.2

4.0 0.1 0.1 192 76.2
4.0 0.1 0.4 192 76.2

4.0 0.1 0.2 96 76.0
4.0 0.1 0.2 384 76.3

4.0 0.1 0.2 192 76.5

ing performance and ease of use. Following this selecting strategy, we further ablate the influence
of the number of selected layers. We denote the indices of layers selected from a L-layer model as
{1, 2, ..., k, L− k + 1, ..., L− 1, L}, and conduct experiments with the CaiT-small teacher (L = 24)
and the DeiT-Tiny (L = 12) student to compare different k setting. The corresponding are shown
in Table 4. We can find that our method is robust with various layer numbers, selecting 4 layers
(k = 2) obtains 76.4 top-1 accuracy, and selecting 8 (k = 4) and 12 (k = 6) layers achieve 76.5 top-1
accuracy, respectively.

Ablation of decoupled manifold loss terms. The decoupled fine-grained manifold distillation loss
consists of three terms. We study their effectiveness and report the results in Table 6. The results
show that each component in the decoupled fine-grained manifold distillation loss contributes to
improving the final performance. In particular, only transferring inter-image relation maps leads to an
unstable training process (mixed precision training will corrupt the student model, leading to a NAN
loss), we speculate that these relations are highly related to the randomly sampled image batches.
When equipped with intra-image and random-image maps, the inter-image relation maps can further
improve the accuracy by +0.1%.

Parameters in decoupled manifold distillation loss. There are 4 hyper-parameters in decoupled
manifold distillation loss: the weight of inter-image loss α, the weight of intra-image loss β, the
weight of randomly sampled loss γ, and the sampling number K. We compare different settings
of these parameters and report the results in Table 7. Our default setting outperforms those either
increasing or reducing one of the parameters. However, due to our coarse parameter searching
scheme, we believe that the performance can be further improved by setting these hyper-parameters
more carefully.

4.4 Transfer learning
To measure the generalization ability of the proposed method, we conduct transfer learning ex-
periments. We fine-tune a DeiT-Tiny student trained with a CaiT-S24 teacher on CIFAR-10 and
CIFAR-100 datasets for 1000 epochs. We adopt a batch size of 768 and an AdamW optimizer with a
learning rate of 5× 10−6. Other settings follow DeiT [16].
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Table 8: Transfer learning results on CIFAR-10/100. Each student is fine-tuned for 1000 epochs.
Dataset Teacher Student Distillation Top-1(%)

CIFAR-10
- DeiT-Tiny - 98.19
CaiT-S24 DeiT-Tiny Hard 98.23
CaiT-S24 DeiT-Tiny Manifold 98.48

CIFAR-100
- DeiT-Tiny - 86.61
CaiT-S24 DeiT-Tiny Hard 87.34
CaiT-S24 DeiT-Tiny Manifold 88.05

Table 9: Object detection results on COCO 2017. Backbones are pre-trained on ImageNet-1k. The
teacher is trained for 36 epochs and each student is trained for 12 epochs.

Model #params FLOPs APbox APbox
50 APbox

75

(Teacher) Swin-S + Mask R-CNN 69M 365G 48.5 70.2 53.5
(Student) Swin-T + Mask R-CNN 48M 272G 43.7 66.6 47.7
(Manifold distilled) Swin-T + Mask R-CNN 48M 272G 44.7 67.1 48.6

Table 8 reports the transfer learning results. Students trained with the fine-grained manifold dis-
tillation method generalize better than others (+0.25% on CIFAR-10 and +0.71% on CIFAR-100),
demonstrating a favorable generalization ability of the proposed method.

4.5 Downstream task
To further evaluate the effectiveness of our proposed method, we adopt the fine-grained manifold
distillation to train object detection models on COCO 2017 dataset and semantic segmentation models
on ADE20K dataset.

Implementation details on COCO. We adopt Mask R-CNN [45] as the detection framework. The
teacher backbone is Swin-Small and the student backbone is Swin-Tiny. All used backbones are
pretrined on ImageNet-1k. The teacher is trained for 36 epochs and each student is trained for 12
epochs. When training students with fine-grained manifold distillation, we adopt the distillation loss
on outputs of the last two backbone stages and outputs of the feature pyramid network neck [46].

Results on COCO. Table 9 presents the detection results. Our manifold distilled student outperforms
the student trained without distillation (+1.0% box AP), demonstrating that the proposed method
benefits the object detection downstream task.

Table 10: Semantic segmentation results on ADE20K. The
student is trained for 160K iterations.
Model #params FLOPs mIoU

(Teacher) Swin-S + UPerNet 81M 1038G 47.64
(Student) Swin-T + UPerNet 60M 945G 44.51
(FitNet distilled) Swin-T + UPerNet 60M 945G 44.85
(Manifold distilled) Swin-T + UPerNet 60M 945G 45.66

Implementation details on ADE20K.
We adopt UPerNet [47] as the segmenta-
tion framework. The student is trained
for 160K iterations following [5]. Other
settings follow experiments on COCO.

Results on ADE20K. Table 10 presents
the segmentation results. The proposed
method outperforms the ditect training
method and FitNet [48], an intermediate feature distilling approach, indicating that the manifold
distillation approach can also help train a semantic segmentation model.

5 Conclusion
This paper proposes a fine-grained manifold distillation method for vision transformers. We match
patch and batch level features of student and teacher in a manifold space, and decouple the matching
loss into three terms to reduce the computational complexity. Moreover, we adopt a patch merging
scheme to further simplify the computation. Different from previous works, the student is distilled
with soft labels and fixed depth. Experiments are conducted on ImageNet-1k, CIFAR-10/100,
MS COCO, and ADE20K. Corresponding results demonstrate that our manifold KD consistently
outperforms existing methods. The large search space of hyper-parameters is one of the most serious
drawbacks of the proposed method. In the future, we will study to further simplify the proposed
method and help it be more parameter insensitive.
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