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Emotion Recognition in HMDs: A Multi-task Approach Using
Physiological Signals and Occluded Faces

Anonymous Authors
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(b) Unimodal facial expression recognition (c) Multimodal facial expression recognition(a) Original facial expression

Face

Figure 1: The examples of difficulty in facial expression recognition under partial occlusion that human in (a) after wearing a
Head-mounted displays (HMDs) to become (b). (c) shows the multimodal fusion between occluded facial and physiological
information. The photographs of human are from the Karolinska Directed Emotional Faces [28].

ABSTRACT
Prior research on emotion recognition in extended reality (XR)
has faced challenges due to the occlusion of facial expressions by
Head-Mounted Displays (HMDs). This limitation hinders accurate
Facial Expression Recognition (FER), which is crucial for immer-
sive user experiences. This study aims to overcome the occlusion
challenge by integrating physiological signals with partially visible
facial expressions to enhance emotion recognition in XR environ-
ments. We employed a multi-task approach, utilizing a feature-level
fusion to fuse Electroencephalography (EEG) and Galvanic Skin
Response (GSR) signals with occluded facial expressions. The model
predicts valence and arousal simultaneously from both macro-and
micro-expression. Our method demonstrated improved accuracy
in emotion recognition under partial occlusion conditions. The in-
tegration of temporal physiological signals with other modalities
significantly enhanced performance, particularly for half-face emo-
tion recognition. The study presents a novel approach to emotion
recognition in XR, addressing the limitations of facial occlusion by
HMDs. The findings suggest that physiological signals are vital for
interpreting emotions in occluded scenarios, offering potential for
real-time applications and advancing social XR applications.
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CCS CONCEPTS
• Human-centered computing→ Interaction paradigms.
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1 INTRODUCTION
Head-mounted displays (HMDs) are essential for experiencing ex-
tended reality (XR), which includes Augmented Reality (AR), Virtual
Reality (VR), and Mixed Reality (MR). In this context, people’s emo-
tions are naturally and immediately stimulated due to the high
immersion and realism of XR. For instance, Virtual Reality Ther-
apy studies human emotional reactions to explore treatments for
mental health disorders such as phobic disorders [18], obsessive-
compulsive disorder [41], and eating disorders [6], or for social cog-
nition training [31]. Moreover, VR content is adapted to the user’s
emotional state for relaxation in the virtual world [14]. However,
HMDs pose a challenge to external recording techniques as they
cover the user’s upper face [11] (see Figure 1 (b)). This limitation
greatly affects social XR applications, especially Facial Expression
Recognition (FER), a key method for studying and differentiating
human emotions. In these applications, facial features play a critical
role in creating an immersive user experience [5]. The accuracy
of FER decreases if the upper face information is discarded [5].
Another difficulty in FER in an immersive XR context is that con-
ventional FER methods rely on public databases, which contain
complete facial information. To adapt these datasets to the XR con-
text, some studies have made adjustments, such as placing a “VR

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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patch” on a detected face [15, 33] and processing images of peo-
ple wearing VR headsets into their corresponding Grad-CAM [37]
explanation masks [10].

Apart from the issue of HMDs obscuring the face, the brief dura-
tion of facial expressions, whether they are facial macro-expressions
that are voluntary muscle movements covering a large area of the
face and lasting between 0.5 and 4 seconds [9], or facial micro-
expressions that are brief, involuntary facial changes like nose
wrinkling over a short time frame of between 65 and 500 ms [45],
and their subtle movements make them difficult for humans to iden-
tify [36]. Human facial expressions may be a mix of facial micro-
expressions and macro-expressions. For example, both the surprise
from micro-expression and macro-expression involve raised eye-
brows and opened eyes [44]. Micro-expressions are almost impos-
sible to fake [39]. On the contrary, macro-expressions may not
convey hidden emotions that determine true human feelings and
state-of-mind [44], and can be easily controlled and manipulated.

Physiological responses, which are difficult to fake, provide a
deeper understanding of underlying emotions [36]. These responses
originate from the central (brain stem) and autonomic nervous sys-
tems, which regulate body functions like heart rate, respiration,
blood pressure, swallowing, and pupillary movement [22]. Elec-
troencephalography (EEG) can effectively reflect the electrical ac-
tivity of the central nervous system and is associated with emotion
[1, 25]. EEG is commonly used in emotional recognition studies
in immersive virtual environments [47]. Peripheral physiological
signals such as Galvanic Skin Response (GSR), photoplethysmo-
gram (PPG), or Heart Rate Variability (HRV) can also be used to
reliably measure emotional state and have been widely used in
emotional engagement studies in immersive virtual environments
[3, 16]. Although physiological signals cannot be deliberately con-
trolled or concealed [43], they are suitable for real-time emotion
recognition [27]. However, these signals can be very weak and
easily contaminated by noise like artifacts [40].

Thus, recognizing emotions using only physiological signals or
incomplete facial expressions can be quite challenging.

A few studies have used incomplete facial expressions and phys-
iological signals instead of only incomplete facial expressions [10],
but this area still requires further research and exploration. This pa-
per combines various modalities (incomplete facial expressions and
physiological signals) to address the limitations of each individual
modality.

The contributions of this paper include:

• Emotion Recognition in XR Scenarios. We built a multi-
task model for emotion recognition in XR scenarios. This
model integrates physiological signals (EEG and GSR) and
partial facial expressions to simultaneously predict both va-
lence and arousal.

• Integration of Temporal Physiological Signals. Our re-
search indicates that physiological signals enhance emo-
tion recognition with occluded faces, especially for micro-
expressions. Moreover, by concentrating on the lower face
during training, we enhanced performance.

• Validation on Datasets and Real-World Scenarios. We
tested our multi-modal, multi-task method on DEAP, AMI-
GOS datasets, and real-world situations. Results show that

multi-tasking boosts accuracy and reduces prediction time,
proving its effectiveness for HMD-based emotion recogni-
tion tasks.

2 RELATEDWORK
2.1 Discrete and Dimensional Emotion Model
Emotion models are primarily divided into two categories: discrete
and dimensional [13]. The discrete model includes six universally
recognized emotions: anger, happiness, fear, surprise, disgust, and
sadness [7, 8]. However, Saffaryazdi et al. [36] argue that categoriz-
ing emotional states into discrete emotions is incorrect as human
emotions are often a blend of several feelings. For instance, reported
happiness may be a mix of positive feelings. In situations of posi-
tive and negative smiles, brain patterns and physiological signals
differ, leading to misclassification when grouped into a single class.
The dimensional model, in contrast, views emotions as a combina-
tion of three psychological dimensions: arousal, valence, and either
dominance or intensity [36]. Russel’s Circumplex Model, proposed
by Posner et al. [34], uses only valence and arousal to represent
emotions, with valence indicating a range from negative to posi-
tive emotions, and arousal representing a spectrum from passive
to active emotions. Most neurophysiological emotion recognition
research [32] and benchmark datasets use the Circumplex Model
for assessment. Our study uses the Circumplex Model to evaluate
our method of detecting emotions using neurophysiological cues
and facial expressions on two multimodal datasets.

2.2 Multimodal Datasets for Emotion
Recognition

Multimodal datasets for emotion recognition have garnered signifi-
cant interest among researchers [36]. A few such datasets, including
facial video, EEG, and physiological signals, are available. The AMI-
GOS [21] and DEAP [30] datasets are popular for macro-expression
and micro-expression studies, respectively.

Facial macro-expression dataset. The AMIGOS dataset [21]
includes neuro-physiological signals (EEG, ECG, GSR), frontal HD
video, and full-body RGB and depth videos from 37 participants. It
uses a variety of videos to elicit affective responses in individual
and group settings. The EEG data, collected using a state-of-the-art
device, along with self-assessment manikins (SAM) [2], provide a
comprehensive study of affective responses.

Facial micro-expression dataset. The DEAP dataset [30] con-
tains neuro-physiological signals (EEG, peripheral physiological
signals) from 22 participants watching music video excerpts. It uses
a wide range of music videos to induce affective responses. The
EEG data, collected using a cutting-edge device, and participant
ratings on arousal, valence, like/dislike, dominance, and familiarity,
provide an extensive analysis of affective responses.

2.3 The Relationship and Fusion Between
Modalities

Relationship between modalities. Some studies have explored
the relationship between behavioral responses and physiological
changes in multimodal emotion recognition. Saffaryazdi [36] sug-
gested using facial micro-expressions in conjunction with brain
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Table 1: Uni/Multi-modal Full/Half Face Micro-/Macro-expression Recognition. Note: Partially occluded face (POFace), full face
(FFace) macro-expression (MaE), Micro-expression (ME), dual-eye infrared images (DeIIs), functional near-infrared spectroscopy
(fNIRS), electroencephalography (EEG), photoplethysmogram (PPG), and galvanic skin response (GSR).

Author Modalities Emotion Model MaE/ME Dataset Multimodal Fusion Method Single/Multi-task

Houshmand et al. [15] POFace Discrete MaE: FER+, AffectNet, RAF-DB - Single-task
Georgescu et al. [10] POFace Discrete MaE: FER+, AffectNet - Single-task
Chen et al. [5] POFace, DeIIs Discrete MaE: Custom dataset Concatenation (feature level) Single-task
Sun et al. [38] fNIRS, EEG Discrete MaE: Custom dataset Concatenation (feature level) Single-task
Saffaryazdi et al. [36] FFace, EEG, PPG, and GSR Dimensional ME: DEAP, MaE: Custom dataset Vote fusion (decision level) Single-task
Ours POFace, EEG, and GSR Dimensional MaE: AMIGOS, ME: DEAP Cross-attention (feature level) Multi-task

and physiological signals for more reliable detection of underlying
emotions. Sun et al. [38] found a strong correlation in emotional
valence between spontaneous facial expressions and brain activi-
ties measured by EEG. Liu et al. [26] discovered that EEG signals,
reflecting brain activity, and GSR signals, linked to the autonomic
nervous system, offer unique benefits in emotion recognition.

Fusion between modalities. Some methods fuse modalities at
the feature level. Sun et al. [38] extracted discrete features from func-
tional near-infrared spectroscopy (fNIRS) and electroencephalogra-
phy (EEG), and simply concatenated these discrete features from
both modalities for fusion. Zhang et al. [48] used a cross-attention
mechanism to align the relationship between PPG and GSR modali-
ties, highlighted important information within a single modality
using a self-attention mechanism, and finally used a predictor to
perform stress recognition on the representations of both modali-
ties. Pan et al. [32] proposed an online emotion recognition method
based on multimodal physiological signals (such as ECG, EEG, GSR,
etc.), using hypergraph learning techniques to fuse multimodal
information and capture complex and nonlinear relationships be-
tween data. Other methods fuse modalities at the decision level.
Saffaryazdi et al. [36] fed preprocessed sequences into two 3D CNN
models to extract features for classifying arousal and valence sepa-
rately, used a Dense layer with Adam optimizer [20] to classify the
physiological data for arousal and valence labels separately, and
fused the classification results at the decision level.

2.4 Facial Expression Recognition Methods in
XR Context

Emotion recognition on occluded faces. Current half-face emo-
tion recognition is mainly divided into two categories. One uses the
half-face as input for emotion modeling, which requires a simple
network structure and has low training time overhead. However,
due to the absence of important information from the upper face,
such as eyes, eyebrows, and nose [5], the recognition accuracy is
lower [10, 15]. The other category uses additional devices to supple-
ment the occluded facial information, which helps improve recog-
nition accuracy [5]. However, additional devices, such as cameras,
may disrupt immersion and increase head load. Table 1 presents
the related work on Uni/Multi-modal Full/Half Face Micro-/Macro-
expression Recognition.

Face reconstruction on occluded faces. Somework uses meth-
ods like generative adversarial network (GAN) to “repair” the oc-
cluded part. For example, Zhao et al. [50] collected pre-recorded

sequences to reconstruct a 3D head, and Wang et al. [42] used
GAN to repair incomplete facial information. These works may
help achieve higher emotion recognition accuracy. However, these
methods may not meet the real-time or low-latency requirements
of XR (Mixed Reality) [24].

Single-task learning vs multi-task learning. Emotion recog-
nition tasks for HMD XR applications may require real-time pro-
cessing of multiple tasks, such as simultaneously predicting valence,
arousal, etc. [4, 35]. Compared to training models for each task sep-
arately, building a multi-task learning model to simultaneously
predict valence and arousal is more efficient. For example, Priyasad
et al. [35] showed that multi-task learning can achieve fewer pa-
rameters, faster convergence, and higher performance for emotion
recognition with EEG signals. Similarly, the multi-modal multi-task
(M3T) approach [49] fused both visual features from facial videos
and acoustic features from the audio tracks to estimate the valence
and arousal simultaneously.

3 METHODOLOGY
3.1 Data Processing Module
3.1.1 Samples with both Face Videos and Physical Signals.

AMIGOS Dataset. Out of 40 participants, 37 (excluding partici-
pants 8, 24, and 28) took part in both short and long video experi-
ments designed to evoke emotional responses. Their facial videos,
EEG, and peripheral physiological signals were fully recorded.

DEAP dataset. For the first 22 out of 32 participants, complete
facial videos, EEG, and peripheral physiological signals were pre-
served. However, due to technical issues, some of the last trials for
participants 3, 5, 11, and 14 are missing.

3.1.2 Face Video Processing.
Segmentation based on annotations. In the AMIGOS dataset,

videos capturing participants’ faces were divided into multiple 20-
second segments. The first 5 seconds before the stimuli presentation
were extracted as the initial clip. Subsequently, starting from the 5-
second mark (when the stimuli began), non-overlapping 20-second
segments were extracted, with the number of segments depending
on the duration of the stimuli video. The final clip included the last
segment of the video, which was less than 20 seconds. To ensure
uniform segment length, the first and last segments shorter than
20 seconds were discarded. Three annotators provided external
annotations of valence and arousal for the 20-second segments of
the face videos in both experiments. In the DEAP dataset, each face
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(a) Obtain 68 facial landmarks and 10 region blocks (b) Alignment (c) Cropping (d) Artificial Occlusion

Figure 2: The face video processing.

video lasted approximately 60 seconds and was not segmented due
to only one annotation within that duration.

Apex frame finding. We used an open-source facial toolkit1 to
obtain 68 facial landmarks (red points) in each frame of the facial
expression sequence (See Figure 2(a)). However, due to factors like
poor video quality and dim lighting, faces were not detected in
some videos, with successful detection in approximately 70% of the
videos. Following previous research, we defined 10 regions on the
face based on the detected landmarks (yellow boxes), representing
areas where muscle movements frequently occur. The size of each
region was estimated to be half the width of the mouth. These
regions are depicted in Figure 2(a). A facial video sequence starts
with the Onset frame (whenmuscle movements occur in response to
emotional stimuli) and ends with the Offset frame (when emotional
reactions disappear and the face returns to a relaxed state). The
Apex frame is the one with the most significant change in intensity
within the sequence. To identify the apex frame, we calculated the
absolute pixel differences between the current frame and the onset
and offset frames in the ten regions. To minimize environmental
noise, we normalized the sum of the differences by dividing it by the
difference between the considered frame and its consecutive frame.
We then obtained the per-pixel average value for each frame in the
micro-expression (ME) sequence. The apex frame should indicate
the peak of intensity differences with the onset and offset frames.
Thus, we selected the frame with the highest per-pixel value of
intensity differences as the apex frame:

𝑆𝑖 = 𝑓 (Frame𝑖 , Frameonset) + 𝑓 (Frame𝑖 , Frameoffset)
𝐼𝑛𝑑𝑒𝑥𝑎𝑝𝑒𝑥 = 𝑖𝑚𝑎𝑥 = argmax

𝑖

(𝑆𝑖 ) (1)

where

𝑓 (Frame𝑛, Frame𝑚) = |Frame𝑛 − Frame𝑚 | + 1
|Frame𝑛 − Frame𝑛−𝜖 | + 1

(2)

Function (f ) measures the absolute pixel differences between two
frames, normalized by the difference between the current frame
and its third preceding frame to reduce noise. We calculate the
absolute pixel differences in 10 region blocks generated by facial
toolkit between the current frame and the onset frame, and the
offset frame, respectively. To reduce the impact of environmental
noise, divide the difference by the absolute pixel difference between
the current frame and the continuous frame with a deviation of
𝜖 . Sum the normalized pixel differences to represent the change
1https://github.com/ageitgey/face recognition/

intensity value of the current frame, denoted as 𝑆𝑖 . 𝑖𝑚𝑎𝑥 identifies
the apex frame showing the peak intensity of the facial expression.
This frame is crucial for facial expression recognition tasks.

3.1.3 Finding the Region of Interest (ROI).
Considering the two datasets have frame rates of 25fps and 50fps,

we reduced any video with a frame rate above 25fps to 25fps for
consistency (100 frames collected in 4s).We then selected 100 frames
(4s) surrounding the peak frame as the region of interest (ROI). If
the peak frame is at least 2s away from the video segment’s edge,
we included 2s (50 frames) on either side of it. But if the peak frame
is less than 2s from any edge, we added frames from the opposite
side until we had a total of 100 frames.

3.1.4 Alignment and Cropping.
After detecting facial key points, we align the face by rotating

the image based on the eye key points [19] (See Figure 2(b)). For
example, we calculate the center coordinates of the left and right
eyes ((𝑥left, 𝑦left) and (𝑥right, 𝑦right)), and compute the angle 𝜃 be-
tween the line connecting the centers of the left and right eyes and
the horizontal direction (arctan

(
𝑦right−𝑦left
𝑥right−𝑥left

)
). We then rotate the

image counterclockwise by 𝜃 with the center coordinates of the
two eyes as the base point.

After the image is rotated, the landmark coordinates in the image
also need to be rotated accordingly so that the landmark can match
the rotated image. The rotation transformation can be represented
as:

[
𝑥 ′

𝑦′

]
=

[
cos(𝜃 ) − sin(𝜃 )
sin(𝜃 ) cos(𝜃 )

] [
𝑥 − 𝑥center
𝑦 − 𝑦center

]
+
[
𝑥center
𝑦center

]
(3)

where (𝑥 ′, 𝑦′) are the coordinates after rotation, (𝑥,𝑦) are the
original coordinates, and (𝑥center, 𝑦center) are the center coordinates
of the two eyes.

After aligning the face, we crop the face to a fixed size based on
the landmark [19]. For instance, the vertical direction is divided
into three parts: the middle part, which is the pixel distance from
the center of the two eye landmarks to the center of the mouth land-
mark, accounts for 35% of the vertical direction of the cropped face
image; the bottom part accounts for 35%; and the top part accounts
for 30%. The horizontal direction is centered on the midpoint of the
leftmost and rightmost landmarks. After cropping the face, the size
becomes 320 × 320.
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We define a landmark transformation function. Since the image
is cropped, the landmark coordinates need to be transformed again.
The transformation can be represented as:[

𝑥 ′

𝑦′

]
=

[
𝑥 − 𝑥crop
𝑦 − 𝑦crop

]
(4)

where (𝑥 ′, 𝑦′) are the coordinates after cropping, (𝑥,𝑦) are the
original coordinates, and (𝑥crop, 𝑦crop) are the top-left coordinates
of the cropping rectangle. After transforming the landmark coordi-
nates, we obtain aligned face images.

3.1.5 Artificial Occlusion.
In an extended reality setting, the upper face is partially occluded

by a Head-Mounted Display (HMD). Since there are no standard
occlusion face image databases containing persons wearing HMDs,
we established XR-occluded images by masking the upper region
on the standard facial micro- and macro-expression images, based
on the "VR patch" method [15]. We simulated facial occlusion based
on the 68 landmarks detected in the apex frame. We initialized XR
dimensions to an aspect ratio of approximately 2:1, based on the
Hololens 2 headset. To uniformly scale the XR patch on the training
images, we used the distance between the two temporal bones
of the facial landmarks as a reference length. We then generated
the polygonal occluding patch by setting the midpoint of the line
passing through the eye center points as the center coordinate
of the XR headset. To account for face rotations, we aligned the
resized patch with the axis running through the eye centers. We
obtained the angle of incline by determining the inverse tangent
function of changes in y-coordinates to changes in x-coordinates
of eye center points, and then we utilized the rotation matrix to
rotate corner points of the blocking patch about its central pivot
point on the coordinate plane accordingly. This geometric model
provides a more realistic occlusion resulting from wearing an XR
headset, rather than simply covering the upper half of the face, as
done in [15]. The same operation was performed for both datasets.

3.1.6 EEG and peripheral physiological signals. Downsampling
and Filtering. The physiological data in two datasets were down-
sampled to 128Hz. A bandpass frequency filter from 4.0-45.0Hz was
applied for EEG. GSR was calculated and low-pass filtered with a
60Hz cut-off frequency in the AMIGOS dataset. In the DEAP dataset,
no filter was processed for GSR.

Region of Interest Finding. In two datasets, the physiological
signal’s ROI corresponds to the ROI in the related face video, i.e., we
take the physiological signal within 4s adjacent to the apex frame.

3.1.7 Imbalanced Data Balancing.
AMIGOS Dataset. We relabeled the valence and arousal scores

greater than 0 as high, and scores less than 0 as low. The total
number of low and high classes for all participants’ trials for valence
were 1784 and 510, and for arousal, 1980 and 314 in the short video
experiment, and the total number of low and high classes for all
participants’ trials for valence were 3097 and 949, and for arousal,
3312 and 734 in the long video experiment. As can be seen, both
datasets were not balanced among classes. To solve the long tail
effect, we finally selected 1706 samples that could satisfy the total
number of low and high classes for all participants’ trials for valence
and arousal were equal.

DEAP Dataset. We relabeled the valence and arousal scores
greater than 5 as high, and scores less than or equal to 5 as low.
The total number of low and high classes for all participants’ trials
for valence were 409 and 471, and for arousal, 367 and 513 in the
experiment. As can be seen, both datasets were not balanced among
classes. To solve the long tail effect, we finally selected 680 samples
that could satisfy the total number of low and high classes for all
participants’ trials for valence and arousal were equal.

3.2 Feature Encoding Modules
3.2.1 Half Face Encoding Module.

As depicted in Figure 3, we used a 3D VGG-like backbone to
extract spatial-temporal features for every frame from 100 input
frames (size: 320 × 320) around each apex frame. The 3D VGG-like
backbone consists of five layers. It takes the 100 frames from the
ROI as input and outputs 𝐹ℎ𝑎𝑙 𝑓 −𝑓 𝑎𝑐𝑒 ∈ R61×128.

3.2.2 Physiological Signal-Aware Module.
To enhance emotion recognition operations for affective com-

puting tasks applied to physiological signals, the multi-modal Emo-
tionNet model has been introduced [26] (see Figure 3). This model
is designed to capture both the heterogeneity and interactivity be-
tween EEG and GSR signals. It features a dual-stream transformer
structure and an Interactivity-based Modal Fusion (IMF) module.

The dual-stream transformer structure comprises two convo-
lutional blocks (EEG Filter and GSR Filter) followed by transformer
encoders (TEs). These TEs employ a multi-head attention mecha-
nism to capture dependencies between elements of the input feature
maps. The mechanism is defined as:

Multi-Head(𝑄,𝐾,𝑉 ) = Concat(head1, . . . , headℎ) (5)
where 𝑄 , 𝐾 , and 𝑉 are the query, key, and value matrices, and

hh is the number of heads. Each head is computed as:

head𝑖 = Attention(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖 ,𝑉𝑊
𝑉
𝑖 ) (6)

where𝑊𝑖 represent the weights matrices of 𝑄 , 𝐾 , and 𝑉 , respec-
tively. The output is then concatenated and projected back to the
original dimensionality.

The Interactivity-based Modal Fusion Module fuses features
from both modalities based on interactivity scores. It is defined as:

IMF𝑂𝑢𝑡𝑝𝑢𝑡 = IE1 (𝑋1) ⊕ IE2 (𝑋2) (7)
where𝑋1 and𝑋2 are the input features from different modalities,

and ⊕ denotes element-wise summation. The Interactivity Extractor
(IE) generates interactivity scores from the concatenated features of
different modalities. The interactivity extraction module achieves
the following:

IE𝑂𝑢𝑡𝑝𝑢𝑡 = ReLU(FC2 (ReLU(FC1 (IE𝑖𝑛𝑝𝑢𝑡 )))) ⊙ IE𝑖𝑛𝑝𝑢𝑡 (8)

where FC1 and FC2 are fully connected layers, ReLU is the recti-
fied linear unit activation function, and ⊙ denotes the Hadamard
product (element-wise multiplication) between the interactivity
score and the input feature 𝐼𝐸𝑖𝑛𝑝𝑢𝑡 .

The result obtained after merging EEG and GSR is 𝐹𝑝ℎ𝑦𝑠𝑖𝑜 ∈
R61×128.
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Figure 3: The proposed method’s architecture uses facial frames around the apex frame and time series data from two
physiological signals (EEG and GSR) as input. These inputs are processed by a physiological signal-aware module and a
half face-encoding module to extract comprehensive semantic features from different modalities. A multi-modal fusion and
multi-task module is then employed to integrate these multi-branch features, ultimately predicting valence and arousal.

3.3 Multi-Modal Fusion and Multi-task Module
We concatenate the half-face features 𝐹ℎ𝑎𝑙 𝑓 −𝑓 𝑎𝑐𝑒 and the physio-
logical features 𝐹𝑝ℎ𝑦𝑠𝑖𝑜 . The concatenated output is then sent to
two classification layers, which predict the emotional dimensions
of valence and arousal (See Figure 3).

3.4 Loss Function
In multitask learning, we simultaneously predict the binary clas-
sification problem of valence and arousal. For each task, we use
the cross-entropy loss function to measure the difference between
the model’s predictions and the true labels. Specifically, the loss
functions 𝐿𝑉 and 𝐿𝐴 for valence and arousal can be defined as
follows:

𝐿𝑉 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑦𝑉𝑖 log(𝑝𝑉𝑖 ) + (1 − 𝑦𝑉𝑖 ) log(1 − 𝑝𝑉𝑖 )

𝐿𝐴 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑦𝐴𝑖
log(𝑝𝐴𝑖

) + (1 − 𝑦𝐴𝑖
) log(1 − 𝑝𝐴𝑖

)

(9)

where 𝑁 is the number of samples,𝑦𝑉𝑖 and𝑦𝐴𝑖
are the true labels

of the 𝑖-th sample for valence and arousal, respectively, and 𝑝𝑉𝑖 and
𝑝𝐴𝑖

are the predicted probabilities of the 𝑖-th sample being in the
positive class for valence and arousal, respectively.

During training, the model tries to minimize the total loss 𝐿 =

𝐿𝑉 + 𝐿𝐴 , which is the sum of the cross-entropy losses for each task.
Note that this is a simple example, and in a real-world scenario,
you might want to consider weighting the losses based on the
importance of each task.

3.5 Test Set
To evaluate the effectiveness of our method, we conducted a real-
world test set by inviting 10 participants complete experiments for
the facial expression recognition task under partial occlusion from
XR headsets. This section outlines the test set creation process.

(b) 3D VR videos
Flowering Rhododendron Park Walking area Costa Firenze Cádiz Terminator: Dark Fate High Dive Coaster

Hololens 2

BrainCo OxyzenShimmer 3 GSR+ Unit

(a) Hardware configuration and annotation

Va
le

nc
e

Ar
ou

sa
l

SAM scale

1 92 3 4 5 6 7 8

1 92 3 4 5 6 7 8

Figure 4: Generation procedure of real-world test set.

The test set creation process, shown in Figure 4, includes six
components divided into hardware and software categories, and
two questions from the SAM questionnaire [2] on valence and
arousal.

3.5.1 Hardware.
The BrainCo Oxyzen portable EEG device2 records EEG data

at a sampling rate of 256Hz. It’s designed based on the voltage
difference between two forehead electrodes and weighs about 57g.

The Shimmer 3 GSR+ Unit Sensing device3 aptures GSR
signals at 128Hz and weighs about 30g.

The Hololens 2 MR HMD4 displays the AR environment and
allows interactions. It offers a resolution of 1440 × 936 per eye, a
refresh rate of 60 FPS, and a FoV of 29°/43° (vertical/horizontal). It
weighs about 566g and is compatible with the BrainCo Oxyzen EEG
device, which we attach to the inside of the HoloLens lens.

2https://www.brainco-hz.com/
3https://www.shimmersensing.com/
4https://www.microsoft.com/en-us/hololens/buy
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Methods
Dataset Modality Accuracy F1-score Inference Time (ms)

A D FF HF P Valence Arousal Valence Arousal Valence Arousal

Face Input Comparison: Apex and adjacent frames vs Apex frame only

ResNet50 [15] (Single frame) ! % % ! % 87.39 87.97 86.43 87.14 7.45 7.45

Ours (Continuous frames) ! % % ! ! 92.37 92.08 91.92 91.74 11.73

ResNet50 [15] (Single frame) % ! % ! % 53.67 60.29 46.15 60.29 7.37 7.37

Ours (Continuous frames) % ! % ! ! 56.61 66.91 62.42 62.18 12.36

Face Input Comparison: Full face vs Half face & Physiological data

Full face ! % ! % % 92.08 92.96 91.64 92.81 2.18

Ours ! % % ! ! 92.37 92.08 91.92 91.74 11.73

Full Face % ! ! % % 57.35 65.44 63.75 60.50 2.85

Ours % ! % ! ! 56.61 66.91 62.42 62.18 12.36

Ablation study

FERPOℎ𝑎𝑙 𝑓 −𝑓 𝑎𝑐𝑒−𝑜𝑛𝑙𝑦 ! % % ! % 87.68 90.61 87.71 90.06 2.46

FERPO𝑝ℎ𝑦𝑠𝑖𝑜−𝑜𝑛𝑙𝑦 ! % % % ! 74.78 73.60 72.61 75.54 10.57

FERPO𝑓 𝑢𝑙𝑙 (Ours) ! % % ! ! 92.37 92.08 91.92 91.74 11.73

FERPOℎ𝑎𝑙 𝑓 −𝑓 𝑎𝑐𝑒−𝑜𝑛𝑙𝑦 % ! % ! % 52.20 61.76 51.12 59.37 2.54

FERPO𝑝ℎ𝑦𝑠𝑖𝑜−𝑜𝑛𝑙𝑦 % ! % % ! 52.20 52.94 50.38 40.74 10.78

FERPO𝑓 𝑢𝑙𝑙 (Ours) % ! % ! ! 56.61 66.91 62.42 62.18 12.36

Test set

FERPO𝑓 𝑢𝑙𝑙 (Ours) % % % ! ! 61.33 54.67 65.06 66.00 11.70

Table 2: Comparasion of facial expression recognition performances on AMIGOS (A) and DEAP (D) dataset. Note: Full Face (FF),
half Face (HF), physiological signal (P), and facial expression recognition performance under partial occlusion (FERPO).

We use the camera of Lenovo Legion R7000P to capture the
occluded face when wearing the HMD Hololens 2. The camera
operates at a resolution of 1280 × 720 and a frame rate of 30 fps.

3.5.2 Software.
The Python application for BrainCo Oxyzen streams and

collects EEG data. The complete code is available in the official
open-source GitHub repositories of BrainCo 5.

The Python application for Shimmer streams and collects
GSR data. The full code will be open-sourced.

3.5.3 3D Emotional Inducing.
Emotions and senses induced by 2D displaymay differ from those

by the three-dimensional (3D) real world [17, 29, 46, 47]. Therefore,
to verify the generalizability of our method, we use 3D video as
mood induction procedures (MIPs).

3.5.4 Data collection.
We invited 10 participants (age: 22-29, 2 females) to watch four

3D VR videos from DEO VR 6 each lasting about 3 minutes. While
watching the videos, we asked the participants to avoid large head

5https://github.com/BrainCoTech/oxyzen-example
6https://deovr.com/

movements. At the same time, we used BrainCo Oxyzen and Shim-
mer 3 GSR+ Unit to synchronously collect the participants’ EEG
and GSR signals. We eventually obtained about 1 hours of data.

3.5.5 Annotation.
We use two questions in the SAM questionnaire of valence and

arousal, and ask participants to complete the questions to annotate
their valence and arousal after watching the 3D videos. We finally
obtained about 150 test set samples.

4 EXPERIMENT
4.1 Dataset Split
In our experimental evaluation, we conduct tests on the AMIGOS
(macro-expression) [30] and DEAP (micro-expression) [21] datasets.
Following the data preprocessing guidance [21, 30] and a similar
protocol to [36], we split the dataset into training and validation
sets in an 8:2 ratio Each sample includes consecutive frames around
the apex frame, as well as EEG and GSR signals.
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4.2 Baseline
We carefully establish the baselines by comparing our novel method
with state-of-the-art methods on the facial expression recognition
task under partial occlusion from XR headsets. Experiments are
performed with the Pytorch framework on an NVIDIA 4090 GPU.

4.3 Metric
Following the standard evaluationmetric for facial expression recog-
nition tasks, we employ three commonly used metrics, namely ac-
curacy, F1-score, and Prediction time to measure the performance
of our method for both valence prediction and arousal prediction.
Additionally, we report the “time cost of prediction in the validation
set” as the model may be applied to real-time emotion recognition
of HMD in XR applications.

4.4 Experiment on the Validation Set
4.4.1 Apex and adjacent frames vs Apex frame only.

Our method’s accuracy, F1-score surpass the method [15] of fa-
cial expression under partial occlusion, which uses a single frame
as input, by 5.69%, and 6.35% on AMIGOS dataset and 5.47%, and
10.98% on DEAP dataset, respectively, (see Table 2). Moreover, the
inference time is suitable for real-time tasks. This is attributed to our
method’s superior handling of occluded face information and the in-
corporation of physiological signals. The continuous signal frames
capture more temporal information, mitigating the impact of single
frame noise or detail loss. Our approach not only enhances facial ex-
pression recognition performance under partial occlusion (FERPO)
for XR HMDs but also reduces prediction time, making it ideal for
real-time XR applications. Furthermore, our multi-task approach
offers benefits over single-task methods, including fewer parame-
ters, faster convergence, and improved performance. Additionally,
Micro-expression datasets underperformed in tests compared to
macro-expressions, likely due to their subtler facial changes. Thus,
for HMD users, merging physiological signals with facial data en-
hances emotion recognition when micro-expressions occur.

4.4.2 Full face vs Half face and physiological data.
Using half-face images and physiological data for simultaneous

valence and arousal prediction yields higher accuracy, improved F1-
score, and faster results than full-face images. This implies that the
fusion of half-face and physiological signals achieves comparable
emotion prediction accuracy to full-face images.

4.5 Ablation Study
In this subsection, we aim to conduct a detailed analysis of the con-
tributions of visual and physiological modalities in our proposed
approach. Table 2 shows that FERPO𝑝ℎ𝑦𝑠𝑖𝑜−𝑜𝑛𝑙𝑦 performs signifi-
cantly worse than both FERPOℎ𝑎𝑙 𝑓 −𝑓 𝑎𝑐𝑒−𝑜𝑛𝑙𝑦 and FERPO𝑓 𝑢𝑙𝑙 on
the AMIGOS andDEAP datasets. This is because FERPO𝑝ℎ𝑦𝑠𝑖𝑜−𝑜𝑛𝑙𝑦
only uses physiological data and ignores facial information that
provides details about the subject’s emotional expressions. As a
result, when physiological signals alone may not accurately deter-
mine the emotional state, it leads to inaccurate valence and arousal
outcomes. This highlights the importance of facial information
in improving the accuracy of emotional state prediction. Further-
more, FERPOℎ𝑎𝑙 𝑓 −𝑓 𝑎𝑐𝑒−𝑜𝑛𝑙𝑦 also performs significantly worse than

FERPO𝑓 𝑢𝑙𝑙 . This is because FERPOℎ𝑎𝑙 𝑓 −𝑓 𝑎𝑐𝑒−𝑜𝑛𝑙𝑦 only uses half-
face details and ignores the spatial relationship of the complete
facial key points. Consequently, this greatly increases the difficulty
of predicting positive emotions, negative emotions, and arousal
levels, leading to more imprecise valence and arousal outcomes.

This underlines the importance of supplementing additional
physiological modalities for resolving the incomplete information
problem caused by partial occlusion. The inclusion of physiologi-
cal information greatly enhances the model’s ability to accurately
identify complex emotional states.

4.6 Experiment on the Real-world Test Set
The test set experiment demonstrates the effectiveness of ourmethod
in handling complex real-world scenarios where participants use
actual HMDs, and has a extremely low inference time. This implies
that our method may be able to fulfill the task of real-time emo-
tion recognition under the use of HMDs, such as in VR Therapy
[6, 18, 31, 41], VR Relaxation [14], AR education [12, 23].

5 LIMITATIONS AND FUTUREWORK
The datasets we used, AMIGOS and DEAP, use non-immersive
two-dimensional (2D) videos or images as mood induction proce-
dures (MIPs), such as images, audios, and videos. However, the
emotion and sense induced by 2D display are different from that by
the three-dimensional (3D) real world; for example, the 2D display
lacks the sense of presence and depth information [47]. Moreover,
considering the known differences in EEG dynamics between 2D
and 3D presentations [17], there may be a gap between the exper-
imental studies based on 2D display and real-world applications
[17]. Therefore, we plan to introduce 3D extended reality (XR) MIPs,
which enable researchers to simulate real-world conditions in a
controlled laboratory environment, and are gaining popularity in
studying emotion.

Additionally, the facial images collected after the subject wears
an HMD may be affected by interference factors such as lighting,
head shaking or deflection. The facial detection algorithm currently
used is sensitive to disturbances such as blurred images and weak
lighting. In the future, we will explore more robust and stable facial
detection algorithms.

6 CONCLUSION
We’ve introduced a novel multi-task method for emotion recogni-
tion in XR, using physiological signals and occluded facial expres-
sions. Our approach integrates EEG and GSR data with half-face
expressions via a feature-level fusion, enabling simultaneous pre-
diction of valence and arousal. Our approach notably enhances
emotion recognition accuracy under partial occlusion. This im-
provement is evident in AMIGOS and DEAP datasets, as well as in
real-world situations, and it’s validated for use in emotion recogni-
tion tasks in HMD-based XR. Future enhancements will focus on
robustness against disturbances like lighting and head movements,
and the application of 3D XRmood induction procedures for a more
immersive experience. Our work significantly advances emotion
recognition in XR, setting the stage for more responsive virtual
environments.
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