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ABSTRACT

While Retrieval-Augmented Generation (RAG) enables large language models
(LLMs) to generate contextually grounded responses, contextual faithfulness re-
mains challenging as LLMs may not consistently trust provided context, lead-
ing to hallucinations that undermine reliability. We observe an inverse correla-
tion between response copying degree and context-unfaithful hallucinations on
RAGTruth, suggesting higher copying degrees reduce hallucinations by foster-
ing genuine contextual belief. We propose CopyPasteLLM, obtained through
two-stage high-copying response preference training. We design three prompting
methods to enhance copying degree, demonstrating that high-copying responses
achieve superior contextual faithfulness and hallucination control. These ap-
proaches enable a fully automated pipeline that transforms generated responses
into high-copying preference data for training CopyPasteLLM. On FaithEval,
ConFiQA and PubMedQA, CopyPasteLLM achieves best performance in both
counterfactual and original contexts, remarkably with 12.2% to 24.5% accuracy
improvements on FaithEval over the best baseline, while requiring only 365 train-
ing samples—1/50th of baseline data. To elucidate CopyPasteLLM’s effective-
ness, we propose the Context-Parameter Copying Capturing algorithm. Interest-
ingly, this reveals that CopyPasteLLM recalibrates reliance on internal parametric
knowledge rather than external knowledge during generation.

1 INTRODUCTION

Large language models (LLMs) have brought revolutionary breakthroughs to natural language pro-
cessing (Annepaka & Pakray, 2025; Qin et al., 2024), while retrieval-augmented generation (RAG)
further empowers LLMs with grounded external knowledge capabilities (Fan et al., 2024; Zhao
et al., 2024). However, LLMs inevitably suffer from knowledge conflicts (Xu et al., 2024) —when
internal parametric knowledge conflicts with external contextual knowledge, LLMs may favor in-
ternal parametric knowledge, leading to contextual faithfulness hallucinations (Bi et al., 2024; Ming
et al., 2025; Niu et al., 2024). Such hallucinations are particularly critical in knowledge-intensive
domains (Vishwanath et al., 2024) like rare disease medical consultations (Reese et al., 2025), where
clinicians may lack systematic knowledge reserves (Zhang et al., 2022) to judge whether model re-
sponses are faithful to contexts, while patient communities often rely on self-consultation or LLM
queries without professional medical supervision (Busch et al., 2025; Aydin et al., 2025). Chen
& Shu (2024); Zhang et al. (2025c) shows LLM-generated content is more deceptive than human-
written content. Without clear attributability, faithfulness hallucinations pose potential risks to clin-
ical decisions and patient behaviors (Kim et al., 2025).

Current research primarily follows two directions in enhancing the reliability of LLMs: (i) gener-
ation with citations, where models produce responses accompanied by attributable citations (Wu
et al., 2025; Abolghasemi et al., 2025; Ji et al., 2025; Press et al., 2024; Song et al., 2025), and
(ii) improving contextual faithfulness through techniques such as prompting strategies (Zhou et al.,
2023; Zhang et al., 2025a), constrained decoding (Shi et al., 2024; T.y.s.s et al., 2025; Liu et al.,
2025), or fine-tuning (Bi et al., 2025; Huang et al., 2025b; Si et al., 2025; Li et al., 2025a). How-
ever, the former struggles to ensure consistency between the generated content and its cited sources,
while the latter typically lacks mechanisms for explicit attribution. Consequently, achieving both
faithfulness and verifiable attribution remains a critical and unresolved challenge.
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Counterfactual Context (& ): Galileo Galilei, renowned...One of Galileo’s lesser-
known achievements is his development of the Three Laws of Motion, which 
were critical in advancing the study of kinematics and dynamics. These laws 

articulate the principles of inertia, the relationship between force and motion, 
and the law of action and reaction... In contrast to ... Newton’s later contributions, 

Galileo’s articulation of the Three Laws of Motion was pivotal in the transition 
from Aristotelian physics to Newtonian mechanics…

Attributed: Galileo Galilei was not responsible for 

describing the Three Laws of Motion. It was … Sir 

Isaac Newton … Three Laws of Motion.

Base: Galileo Galilei is responsible … Galileo's Law 

of Inertia, … , which states that an object … move 

with a constant velocity, …

Citations: Galileo Galilei is not responsible … . The 

Three … described by Sir Isaac Newton [1]. 

However, Galileo Galilei did contribute to ….

'

' &

&[1]

Galileo Galilei was responsible for describing the Three Laws of Motion, 

which were critical … kinematics and dynamics. His work on the Three Laws 

of Motion was … transition from Aristotelian physics to Newtonian mechanics.

Baselines’ Response

κ = 0.44,δ = 0.6

κ = 0.28,δ = 0.76

κ = 0.48,δ = 1.44
κ = 0.93,δ = 12.78

% which law was Galileo Galilei responsible for 
describing?

answer w/o context

Answer the question with absolute 
fidelity to the context. 

Copying Degree:

CopyPaste (Ours)

Copy-Paste

' : Internal parametric knowledge 

'& :  External contextual knowledge 

& : Context 

% : Query

Sentence
Clause

: Copy Coverageκ : Copy Densityδ

 κ

δ
Explicit attribution

Figure 1: Upper: Response composition patterns comparison between CopyPaste and mainstream
approaches. Lower: Inverse correlation between copying degree and faithfulness hallucination
across different models. Kernel ■ show copying degree; Bar ■ show hallucination.

To address these challenges, we propose an intuitive solution: rather than having models reinterpret
retrieved content, we advocate for directly quoting original sentences. This copy-paste generation
strategy embeds key contextual fragments directly, avoiding secondary knowledge processing and
potentially reducing paraphrasing hallucination risks. Importantly, copied content itself serves as
direct evidence of faithfulness without requiring additional verifiable attribution mechanism. This
approach is motivated by our observation of an inverse correlation between copying degree and hal-
lucination density on the RAGTruth dataset (Figure 1), leading us to hypothesize that high copying
degrees may help mitigate hallucination problems.

Specially, we formally propose the CopyPaste solution, which leverages high-copying degree as
an operational proxy for contextual faithfulness through a two-stage pipeline that internalizes
surface-level copying behavior into model-level contextual trust. The first stage generates high-
copying responses through hard and soft constraints to enhance copying degree. The second stage
(CopyPasteLLM) applies direct preference optimization (Rafailov et al., 2023) training to inter-
nalize the high-copying preferences from the first stage into the LLM’s contextual faithfulness.
Experimental results demonstrate that CopyPasteLLM, trained on only 365 high-copying sam-
ples, outperforms strongest baselines by 12.2%-24.5% on FaithEval. Additionally, we propose the
Context-Parameter Copying Capturing algorithm, which enables fine-grained analysis of knowl-
edge source reliance throughout the entire Chain-of-Thought reasoning process, rather than merely
examining final short answers. The algorithm captures contextual versus parametric knowledge
usage at each token position, providing novel insights into how models dynamically balance differ-
ent knowledge sources during sequential reasoning. Mechanistic analysis reveals CopyPasteLLM
maintains similar contextual knowledge representations as the base model while recalibrating inter-
nal confidence in parametric knowledge, thereby enhancing contextual trust.
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2 PRELIMINARIES

2.1 PROBLEM FORMULATION

Task Given a query Q and a context C, the model generates an answer A. In high-stakes domains
such as medicine, the faithfulness of the generated answer to the context is of paramount importance.
While conventional RAG research often emphasizes abstractive generation and semantic relevance,
our focus in this work is a specialized task that we term CopyPaste. The goal of CopyPaste is
to maximize the reuse of lexical units from the context C in the final answer A, thereby ensuring
high contextual faithfulness and minimizing hallucination. Formally, the task can be defined as:
(Q,C) 7→ A.

Quantification Following Grusky et al. (2018), we quantify the response copying degree from
context with two metrics:

κ =
1

|A|
∑
f∈F

|f |, δ =
1

|A|
∑
f∈F

|f |2 (1)

where F is the set of copy fragments computed by copy fragment detection algorithm (detailed at
Appendix I), |·| denotes sequence length. Copy Coverage (κ): the fraction of answer tokens that are
covered by some copy fragment, reflecting the overall degree of lexical reuse. Copy Density (δ):
a length-sensitive variant that emphasizes longer copied fragments, capturing whether the answer
tends to copy long spans verbatim rather than isolated words.

Balance While maximizing copy-paste is central to our formulation, an effective answer A should
also remain relevant to the query Q and be linguistically fluent. Specifically, we measure query
relevance using embedding-based similarity, and fluency via perplexity. Thus, the CopyPaste task
can be viewed as optimizing a trade-off among faithfulness, query relevance, and fluency. Unlike
extractive summarization (Zhang et al., 2023), CopyPaste is query-aware and ensures fluent, context-
faithful answers.

2.2 MOTIVATING OBSERVATION ON RAGTRUTH

To validate the intuition that high copying degrees may reduce hallucination, we conducted a prelim-
inary analysis on the RAGTruth QA subset Niu et al. (2024), which contains 839 context-dependent
questions. Each question includes responses from 6 different models with word-level contextual
faithfulness hallucination annotations, enabling precise quantification of hallucination density per
model.

We computed copy coverage (κ) and copy density (δ) for each model’s responses across the dataset,
then visualized the relationship using two-dimensional kernel density estimation with copy coverage
(x-axis) and copy density (y-axis). The analysis reveals a clear pattern: density kernels positioned
toward the upper-right region (indicating higher copying coverage and density) correspond to lower
hallucination density across models (Figure 1).

3 METHODOLOGY

Our approach consists of two sequential stages: (1) constructing high-copying candidate responses
through CopyPaste-Prompting methods, and (2) training CopyPasteLLM through automated prefer-
ence data construction that internalizes a preference for contextual evidence. Figure 2 illustrates the
complete pipeline. To verify that the learned policy truly reallocates reliance from parametric priors
to context, we additionally introduce an interpretability tool, Context-Parameter Copying Capturing.

3.1 COPYPASTE-PROMPTING: CONSTRUCTING HIGH-COPYING RESPONSES

We operationalize the CopyPaste objective through three complementary prompting paradigms that
progressively relax constraints while preserving lexical fidelity to the context. CP-Order implements
a strict extractive regime: it first selects context sentences relevant to the query and then directly

3
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#  Or generate some sentences 
to link the sentences

$  Reorder the sentences to 
ensure coherence

% 
&

Select the sentences from context

!
Writer Reviewer

CP-Order ($ )

Stage 1: Constructing High-Copying Responses

$

#

!

B.

A.

C. [1][1][1]

$

#

!

$

! #

0. Response from  
CP-Prompting and Baselines

$ # !

$ #

!

Base
Attributed

Citations

1. Multi-Criteria 
Filtering

Chosen Candidates

2.  Hallucinations 
Tournament

ELO Ranking

$ #

Base

Attributed
Citations

"

3. Stamping Answers 

Stamping Gold Answer 
to First Prize (Chosen)

Stamping Wrong Answers 
to Other Candidates

4. Copying Preferences Alignment

!

$

#×
Preference Pairs

CopyPasteLLM

Sufficient  and ? 
Sufficient Query Relevance ? 
Sufficient Context Faithfulness ?

κ δ

hard-constraint

soft-constraint

CP-Link (# )

CP-Refine (! )

Stage 2: Internalizing Contextual Trust from High-Copying Preferences
Input: Responses of CP-Order, CP-Link, CP-Refine, Base, Attributed and Citations

Figure 2: Two-stage CopyPaste pipeline: Stage 1 constructs high-copying responses; Stage 2 filters,
judges, stamps answers, and aligns preferences to train CopyPasteLLM.

reorders them into a coherent answer. This hard constraint intentionally forgoes abstractive para-
phrasing, which suppresses the model’s tendency to resolve conflicts using parametric priors. The
method excels when answers can be composed from a small set of highly informative sentences but
tends to sacrifice fluency when discourse connectives are missing. (See L.1.1 & L.1.2 for prompts)

CP-Link maintains the same extractive core but allows the model to generate short transitions be-
tween copied spans. These transitions are not intended to introduce new facts; instead, they serve
as discourse glue to restore local coherence after sentence reordering. Empirically, this limited gen-
erative freedom improves readability while preserving the high-copying signature that anchors the
answer to source text. (See L.1.1 & L.1.3 for prompts)

In contrast, CP-Refine adopts a soft-constraint, iterative refinement process with a writer–reviewer
loop. The writer proposes an answer given the query and context; the reviewer provides verbal feed-
back focused on copying degree, contextual faithfulness, query relevance, and fluency; the writer
then revises the answer until a composite copy score exceeds a threshold. This procedure treats
copying as a target state that is continually optimized rather than a fixed structural constraint. As
shown by our experiments (See Table 2), CP-Refine achieves a better balance among faithfulness,
readability, and relevance (See L.1.4 for prompts). Algorithm 1 in Appendix summarizes the unified
procedure, which we use to produce diverse yet consistently high-copying candidates for down-
stream preference construction.

3.2 COPYPASTELLM: INTERNALIZING CONTEXTUAL TRUST FROM HIGH-COPYING
PREFERENCES

CopyPaste-Prompting supplies not only single responses but a structured spectrum of behav-
iors—from strictly extractive to softly refined. CopyPasteLLM converts this spectrum into explicit
preferences that can be internalized by a policy through direct preference optimization. Our pipeline
begins by generating six types of candidates for each query–context pair: conventional abstrac-
tive baselines (Base, Attributed, Citations) and three CopyPaste variants (CP-Order, CP-Link, CP-
Refine). We then perform multi-criteria filtering that simultaneously enforces contextual faithful-
ness (AlignScore, MiniCheck), copying strength (κ, δ), query relevance (embedding similarity), and
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fluency (perplexity). This step ensures the retained set covers a high-quality front of the faithful-
ness–fluency–relevance trade space rather than merely maximizing copying.

The remaining candidates are ranked by an Elo-style LLM-as-Judge tournament that diagnoses two
major hallucination modes—Twist and Causal—so the final preference reflects error severity, not
only stylistic quality. A key nuance arises when gold answers are available: we append the correct
answer to the top CopyPaste candidate to transform faithful reasoning into a definitive conclusion,
while appending incorrect answers to the other CopyPaste candidates to create informative nega-
tive pairs. This labeling strategy focuses learning on trusting context while disentangling reasoning
traces from final decisions. The resulting dataset yields roughly five preference pairs per sample, en-
abling data-efficient DPO training that teaches the model to prefer high-copying, context-grounded
responses even when they conflict with parametric priors. Algorithm 2 in Appendix formalizes the
procedure.

3.3 CONTEXT-PARAMETER COPYING CAPTURING

Context-Parameter Copying Capturing provides a principled, token-level probe of knowledge usage
during generation. The method executes two runs for each query: with context and without context.
At each decoding step in Chain-of-Thought mode, it collects the top-K candidate tokens with their
probabilities and hidden states. Tokens that appear in the provided context are taken as contextual
knowledge, whereas tokens that are preferred in the context-free run serve as proxies for parametric
knowledge. Algorithm 4 specifies the full procedure.

Conceptually, this procedure is inspired by Knowledge Token Capturing (KTC) (Bi et al., 2024).
Unlike KTC, which primarily analyzes short final answers, our Context-Parameter Copying Cap-
turing extends the analysis to the entire Chain-of-Thought response trajectory, enabling sequential,
position-aware assessment of contextual versus parametric reliance.

4 EXPERIMENT

Our CopyPaste approach is a two-stage framework where CopyPaste-Prompting generates high-
copying preference data, and CopyPasteLLM learns contextual faithfulness from this data. To val-
idate our complete pipeline, we conduct comprehensive experiments addressing three key research
questions:

• RQ1: Do CopyPaste-Prompting methods effectively enhance contextual faithfulness and
mitigate RAG hallucinations through high-copying response generation?

• RQ2: Does training with high-copying responses from CopyPaste-Prompting as DPO pref-
erence trajectories enable CopyPasteLLM to genuinely trust contextual knowledge—even
when it is counterfactual?

• RQ3: What are the underlying mechanisms of CopyPasteLLM’s contextual belief? We
will interpret this by analyzing logits and hidden states.

4.1 TWO-STAGE FRAMEWORK VALIDATION

Experimental setup is detailed in Appendix B.

4.1.1 STAGE 1: COPYPASTE-PROMPTING AS PREFERENCE DATA GENERATOR (RQ1)

In the first stage, we evaluate whether our prompting methods can effectively generate responses
with high-copying and improved contextual faithfulness. The baselines here represent different re-
sponse generation paradigms that will serve as rejected responses in our CopyPasteLLM training.
Our primary objectives are to: (1) validate that CopyPaste-Prompting methods achieve superior con-
textual faithfulness through explicit copying mechanisms, and (2) generate high-quality preferred
responses for subsequent DPO training. A comprehensive comparison with state-of-the-art methods
will be presented in the next stage after DPO training.

Our experimental results demonstrate that CopyPaste-Prompting methods consistently outperform
baselines across all evaluation metrics (Table 2). (1) CP-Refine excels in hallucination reduction

5
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Table 1: Counterfactual scenarios: Performance comparison of CopyPasteLLM against baselines.
We removed 241 samples used for training CopyPasteLLM from FaithEval, with the remaining
samples used for testing (detailed in the RQ2 setup of Appendix Table 4). Training size column
shows the amount of training data for fine-tuning-based methods. T indicates seen data for the
respective model. Bold values highlight the best performing method in unseen settings.

Model Method Training
Size

FaithEval ConFiQA-QA ConFiQA-MR ConFiQA-MC

Acc Hit Acc Hit Acc Hit Acc Hit

L
la

m
a-

3-
8B

Context-DPO (Bi et al., 2025) 18,000 80.2 36.7 88.9T 96.1T 88.4T 85.8T 92.1T 80.9T

Attributed (Zhou et al., 2023) - 67.1 34.2 51.5 91.4 53.3 71.5 37.3 53.6
CoCoLex (T.y.s.s et al., 2025) - 69.2 17.9 48.5 37.4 53.9 14.8 36.1 15.5
Canoe (Si et al., 2025) 10,000 71.4 34.0 64.3 93.2 66.6 83.8 64.5 73.7
ParamMute (Huang et al., 2025b) 32,580 68.5 22.5 74.4 82.2 75.5 72.4 81.4 70.2
CopyPasteLLM (Ours) 365 92.8 37.2 83.6 96.7 80.9 83.4 86.8 75.9

M
is

tr
al

-
7B

-v
0.

2 Context-DPO (Bi et al., 2025) 18,000 77.1 33.8 84.8T 94.8T 81.3T 85.3T 80.4T 80.8T

Attributed (Zhou et al., 2023) - 65.6 32.0 56.6 84.4 29.2 69.8 39.0 57.4
CoCoLex (T.y.s.s et al., 2025) - 65.3 35.4 57.3 50.8 41.8 33.5 32.5 33.7
CopyPasteLLM (Ours) 365 89.3 41.8 84.4 95.0 80.8 90.8 82.5 86.3

L
la

m
a-

3.
1-

8B Attributed (Zhou et al., 2023) - 65.5 32.0 49.9 88.4 39.8 69.2 15.5 52.6
CoCoLex (T.y.s.s et al., 2025) - 68.1 36.2 48.5 57.3 40.4 38.4 13.5 37.2
CopyPasteLLM (Ours) 365 92.6 41.0 72.4 90.1 75.4 84.8 83.5 79.9

Table 2: Performance comparison of CopyPaste-Prompting against baselines across models and
datasets. Methods with colored backgrounds are our proposed CopyPaste-Prompting. Bold indicates
the best performance, underlined indicates the second-best performance. Faith.: Faithfulness (M.C.:
MiniCheck, A.S.: AlignScore), Hallu.: Hallucination, Flu.: Fluency.

Method
RAGTruth FaithEval PubmedQA AVERAGE

Faith. Hallu. Flu. Faith. Hallu. Flu. Faith. Hallu. Flu. Faith. Hallu. Flu.
M.C. A.S. Twist Causal M.C. A.S. Twist Causal M.C. A.S. Twist Causal

Mistral-7B-Instruct-v0.2 (7B)
Attributed 69.58 63.43 1506.9 1494.5 19.54 88.28 90.67 1527.1 1513.7 37.32 75.49 77.90 1464.7 1450.4 23.53 77.56 1492.9 26.80
Citations 57.82 49.39 1472.5 1475.7 14.41 73.50 74.25 1392.1 1416.2 27.98 55.79 52.35 1415.9 1370.0 13.93 60.52 1423.7 18.77
CP-Link 89.39 75.45 1518.9 1519.5 73.33 93.41 92.44 1510.9 1521.9 49.40 96.50 88.52 1518.4 1580.7 35.57 89.29 1528.4 52.77
CP-Order 91.25 71.98 1467.9 1472.4 65.62 94.89 92.27 1522.6 1501.5 43.74 93.18 82.35 1528.3 1559.1 32.65 87.65 1508.6 47.34
CP-Refine 82.18 74.56 1533.8 1537.9 18.46 92.85 94.68 1547.4 1546.7 26.63 91.52 88.21 1572.7 1539.7 17.79 87.33 1546.4 20.96

Llama-3.1-8B-Instruct (8B)
Attributed 57.02 65.29 1526.3 1554.3 26.22 85.22 85.65 1516.5 1536.9 330.8 71.10 60.01 1530.0 1553.1 47.36 70.72 1536.2 134.8
Citations 64.27 72.81 1428.5 1574.4 16.78 88.81 86.80 1486.2 1555.6 39.65 78.56 73.03 1403.4 1463.4 19.11 77.38 1485.3 25.18
CP-Link 70.58 78.83 1401.1 1328.3 17.83 91.54 89.23 1456.2 1366.3 24.09 80.74 80.79 1396.4 1371.1 19.65 81.95 1386.6 20.52
CP-Order 75.30 94.81 1498.4 1498.0 26.35 95.44 98.12 1523.2 1541.2 33.46 87.07 97.62 1633.6 1559.1 27.83 91.39 1542.3 29.21
CP-Refine 77.30 88.52 1645.7 1545.0 17.75 94.40 93.71 1517.9 1500.1 26.99 87.29 91.19 1536.5 1553.2 18.64 88.74 1549.7 21.13

Qwen2.5-72B-Instruct (72B)
Attributed 57.00 62.23 1504.5 1525.5 19.68 85.74 83.03 1537.3 1490.0 293.8 77.99 69.25 1509.9 1441.5 33.42 72.54 1501.5 115.6
Citations 74.32 77.52 1455.5 1498.0 18.61 90.98 88.30 1456.5 1476.7 34.67 82.01 76.62 1358.8 1413.6 22.89 81.63 1443.2 25.39
CP-Link 75.75 85.37 1446.3 1363.2 27.47 92.88 92.00 1443.5 1424.2 39.55 86.21 88.58 1527.9 1489.2 33.43 86.80 1449.1 33.48
CP-Order 76.32 94.60 1509.2 1589.6 30.56 95.78 98.16 1539.3 1579.7 38.11 87.85 97.52 1546.8 1575.9 35.26 91.71 1556.8 34.65
CP-Refine 78.14 90.88 1584.6 1523.7 20.12 94.72 95.48 1523.4 1529.4 27.65 88.88 95.04 1556.7 1579.9 20.29 90.52 1549.6 22.69

DeepSeek-V3-0324 (671B)
Attributed 56.42 59.60 1417.1 1449.1 27.52 86.90 83.46 1524.3 1535.0 63.27 75.56 69.24 1449.2 1487.9 36.88 71.86 1477.1 42.56
Citations 62.32 64.45 1510.8 1565.6 34.63 87.38 85.69 1463.0 1477.0 36.09 75.93 71.85 1460.4 1387.5 23.27 74.60 1477.4 31.33
CP-Link 70.59 72.54 1382.9 1360.3 34.19 92.60 88.08 1489.1 1374.8 35.55 81.56 77.67 1380.9 1351.1 28.54 80.51 1389.9 32.76
CP-Order 75.53 92.87 1579.4 1555.2 59.11 95.23 97.79 1569.9 1548.1 34.30 87.20 97.38 1561.8 1621.7 27.56 91.00 1572.7 40.32
CP-Refine 77.14 90.02 1609.8 1569.7 22.57 94.45 93.06 1453.7 1565.2 33.84 87.39 91.05 1647.7 1651.7 21.91 88.85 1583.0 26.11

(best in 3/4 models, 14/24 top scores) and contextual faithfulness (+10.9% to 19.1% over base-
lines) while maintaining fluency—achieving best perplexity in Q-72B/D-V3 and second-best in M-
7B/L-8B, suggesting advanced models better handle high-copying constraints. (2) CP-Order leads
contextual faithfulness (14/24 top scores) with second-best hallucination performance but notably
poorer fluency. (3) CP-Link shows modest improvements, excelling only in contextual faithfulness
with even worse fluency than CP-Order, indicating hard constraints limit generative capabilities. (4)
We observe strong hallucination-faithfulness correlation: in 18/24 scenarios (75%), optimal hal-
lucination performance coincides with best contextual faithfulness. We hypothesize that the superior
contextual faithfulness of CopyPaste-Prompting stems from high-copying in responses. CopyPaste-
Prompting achieves significantly higher copying degree than the two baselines (see Appendix Fig-
ure 5). Additionally, we compare query relevance between the three CopyPaste-Prompting methods
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and the strongest baseline in Appendix Figure 6, demonstrating that CopyPaste-Refine can address
queries while maintaining high copying rates through soft constraints.

4.1.2 STAGE 2: COPYPASTELLM (RQ2)

Table 3: Accuracy in non-counterfactual settings. PubMedQA is evaluated on artificial subset
20,000 samples (none used for CopyPasteLLM training, see Appendix Table 4). ConFiQA uses
Original context and Original answers.

Method
Mistral-7B-v0.2 Llama-3-8B Llama-3.1-8B

AVG
PubMed

QA
ConFiQA PubMed

QA
ConFiQA PubMed

QA
ConFiQA

QA MR MC QA MR MC QA MR MC

Base 88.60 96.22 71.20 72.27 97.3 98.02 93.00 91.02 98.15 97.93 89.48 89.97 90.26
CopyPasteLLM (Ours) 91.40 97.43 91.87 91.20 97.5 99.30 97.17 96.27 97.67 99.02 94.95 94.92 95.73

CopyPasteLLM demonstrates remarkable efficiency by achieving superior performance in counter-
factual scenarios using only 365 query-context pairs as input to construct preference data through
our automated pipeline—a base data requirement that is 50× smaller than the strongest baseline
Context-DPO (18,000 samples) and significantly more efficient than other fine-tuning methods
such as Canoe (10,000) and ParamMute (32,580). As shown in Table 1, on the FaithEval coun-
terfactual subset, CopyPasteLLM surpasses the strongest baselines by substantial margins: 12.6,
12.2, and 24.5 percentage points across Llama-3-8B, Mistral-7B-v0.2, and Llama-3.1-8B respec-
tively, achieving a peak accuracy of 92.8% on Llama-3-8B—remarkably outperforming GPT-4o’s
reported 47.5% on this challenging subset (see Appendix Table 6). Additionally, CopyPasteLLM
consistently achieves the highest Hit Rate across all models, despite the inherent difficulty of exact
matching in FaithEval’s lengthy gold standard answers. On ConFiQA’s three counterfactual subsets,
CopyPasteLLM maintains superior performance in unseen settings compared to recent fine-tuning
baselines and copy-guided decoding method CoCoLex, with particularly notable results on Mistral-
7B-v0.2 where it outperforms even Context-DPO trained on ConFiQA on the most challenging
Multi-Conflict subset.

In non-counterfactual scenarios, CopyPasteLLM maintains exceptional contextual faithfulness
while demonstrating significant improvements over base models (Table 3). On relatively straight-
forward datasets—PubMedQA and ConFiQA-QA—the method achieves modest but consistent im-
provements, with average accuracy gains of 1.01% (from 96.04% to 97.05%). More importantly, on
the more challenging ConFiQA-MR and ConFiQA-MC subsets, CopyPasteLLM delivers substan-
tial performance gains, improving average accuracy from 84.49% to 94.37%, with the most dramatic
improvement of 20.67% observed on Mistral-7B-v0.2 for the MR subset. These results demonstrate
that CopyPasteLLM’s enhanced contextual trust, achieved without introducing additional paramet-
ric knowledge through LoRA training, leads to significant improvements in knowledge-intensive
question answering accuracy.

4.2 INTERPRETABLE ANALYSIS OF COPYPASTELLM (RQ3)

We propose the Context-Parameter Copying Capturing (Algorithm 4), which is designed to capture
the degree to which the model copies contextual or parametric knowledge during token generation.
Specifically, in CoT reasoning mode, our method monitors the model’s internal representations by
analyzing the top-K token logits (ranked by probability) and corresponding hidden states at each
generation step, thereby quantifying the model’s reliance on external context versus internal para-
metric knowledge. This algorithm extends the Knowledge Token Capturing (Bi et al., 2024) to
sequential analysis, enabling comprehensive evaluation of model responses during CoT reasoning.

We first analyze the logits output power of CopyPasteLLM and its base models across three datasets
at each generation step, considering both the magnitude and frequency of logits at specific response
positions, as illustrated in Figure 3. To ensure fair comparison by providing base with longer to-
ken generation opportunities, we filtered out samples where CopyPasteLLM responses exceeded
base response lengths, with complete dataset statistics shown in Appendix Figure 13. Our anal-
ysis reveals three key observations: (1) In CoT with context task, Both base and CopyPasteLLM
demonstrate higher reliance on contextual knowledge than parametric knowledge. (2) However,
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CopyPasteLLM exhibits significantly stronger contextual knowledge utilization compared to base,
while showing reduced reliance on parametric knowledge. (3) From a positional perspective, Copy-
PasteLLM achieves peak contextual knowledge utilization earlier in the response generation process
than base. Collectively, these findings suggest that CopyPasteLLM not only demonstrates stronger
but also earlier contextual engagement compared to base, indicating enhanced contextual trust and
willingness to believe the provided context.

We further employ UMAP dimensionality reduction to analyze the captured hidden states distri-
butions, as shown in Figure 4. Our visualization reveals two striking patterns: (1) Base models
exhibit minimal distinction between contextual and parametric knowledge semantic representations
(1st column), whereas CopyPasteLLM demonstrates relatively clear separation between these two
knowledge types (2nd column). (2) More intriguingly, contextual knowledge representations in
CopyPasteLLM remain nearly co-distributed with those in base models (3rd column), while their
parametric knowledge distributions differ substantially (4th column). Based on these observations,
we infer that CopyPasteLLM fundamentally recalibrates the model’s internal confidence in paramet-
ric knowledge without compromising its contextual processing capabilities. This selective paramet-
ric knowledge suppression, rather than contextual knowledge enhancement, enables CopyPasteLLM
to achieve superior contextual faithfulness by strategically reducing competition from internal para-
metric knowledge during generation.

5 RELATED WORK

While Retrieval-Augmented Generation (RAG) has emerged as a promising paradigm for grounding
large language models in external knowledge (Fan et al., 2024; Zhao et al., 2024), ensuring contex-
tual faithfulness remains an open challenge. LLMs often exhibit a tendency to rely on their pre-
trained parametric knowledge rather than adhering to the provided context, resulting in responses
that may contradict or ignore retrieved evidence (Niu et al., 2024; Bi et al., 2024; Ming et al., 2025).
This contextual unfaithfulness poses significant concerns in critical applications such as health-
care (Vishwanath et al., 2024; Kim et al., 2025), where accuracy and reliability are paramount.

Existing research has systematically studied this phenomenon from evaluation and mechanistic per-
spectives. Evaluation studies construct synthetic scenarios revealing LLMs’ propensity to favor in-
ternal knowledge over external evidence (Xu et al., 2024; Li et al., 2025b; Joren et al., 2025; Goyal
et al., 2025). Mechanistic analyses identify attention heads (Wu et al., 2024; Huang et al., 2025a),
FFNs (Sun et al., 2024) and logit distributions (Bi et al., 2024) that respectively process external and
internal knowledge sources.

Solutions to improve contextual faithfulness include generation with citations (Gao et al., 2023;
Press et al., 2024; Song et al., 2025; Wu et al., 2025), prompt engineering (Zhou et al., 2023; Zhang
et al., 2025a), decoding methods (Shi et al., 2024; T.y.s.s et al., 2025; Liu et al., 2025) and fine-
tuning (Bi et al., 2025; Si et al., 2025; Li et al., 2025a; Huang et al., 2025b). While generation with
citations methods may lack content-source consistency and other approaches often provide limited
attribution mechanisms, our copy-paste strategy targets both challenges simultaneously: it enhances
contextual faithfulness through direct lexical reuse from source text while inherently providing trans-
parent attribution, and internalizes this copying behavior into genuine model-level contextual trust
through preference optimization.

6 CONCLUSION

We propose CopyPasteLLM, a two-stage framework that mitigates contextual faithfulness halluci-
nations in RAG systems through high-copying behavior. Motivated by the observed inverse corre-
lation between copying degree and hallucination density, our approach first generates high-copying
responses via three CopyPaste-Prompting methods, then internalizes contextual trust through pref-
erence optimization. CopyPasteLLM achieves remarkable data efficiency, delivering 12.2%-24.5%
improvements on FaithEval using only 365 training samples—50× smaller than existing baselines.
Our Context-Parameter Copying Capturing analysis reveals that effectiveness stems from recalibrat-
ing parametric knowledge confidence rather than enhancing contextual representations. The copy-
paste paradigm provides an elegant solution to RAG attribution challenges, where copied content
serves as inherent faithfulness evidence without requiring additional verification mechanisms.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This work addresses the critical challenge of contextual faithfulness in large language models, par-
ticularly in high-stakes domains such as healthcare. While our CopyPasteLLM approach aims to
reduce hallucinations by promoting direct copying from provided context, we acknowledge poten-
tial risks: over-reliance on copied content may lead to verbatim reproduction of potentially biased
or incorrect source material. The method’s effectiveness depends on the quality and accuracy of the
provided context, and users should exercise caution when applying this approach in sensitive ap-
plications. We encourage responsible deployment with appropriate human oversight and validation
mechanisms.

8 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide the following: (1) All experimental details and hyperparame-
ters are documented in the appendix. (2) We use publicly available datasets (FaithEval, ConFiQA,
PubMedQA, RAGTruth) with standard evaluation protocols (see Appendix B). (3) Model training
details, including DPO hyperparameters (see Appendix D) and preference data construction proce-
dures (see Algorithm 1 and 2). (4) The Context-Parameter Copying Capturing algorithm is fully
described in Algorithm 4. (5) All prompting templates for CopyPaste-Prompting methods are pro-
vided in Appendix L. The complete implementation will be made available upon publication.
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A MECHANISTIC INTERPRETATION OF COPYPASTE EFFECTIVENESS

In this section, we provide a mechanistic interpretation explaining how the external constraint of
high-copying responses translates into improved contextual faithfulness and reduced hallucinations
within the LLM’s internal dynamics. This interpretation connects the CopyPaste objective to funda-
mental model components, which we analyze from two perspectives: (1) Attention Dynamics and
Contextual Anchoring, and (2) Information Entropy Reduction.

A.1 ATTENTION DYNAMICS AND CONTEXTUAL ANCHORING

In Transformer-based architectures, the probability of generating the next token yt is governed by
the attention mechanism. Let the input sequence be the concatenation of the context C and the
generated prefix y<t. The attention output ht at step t is a weighted sum of value vectors:

ht =
∑
j∈C

αt,jvj︸ ︷︷ ︸
Contextual Attention

+
∑

k∈y<t

αt,kvk︸ ︷︷ ︸
Parametric Attention

(2)
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where αt,· represents the softmax-normalized attention weights. Hallucinations typically occur
when the model fails to attend to the context (low

∑
j∈C αt,j) and instead relies on internal para-

metric priors activated by the generated history.

The Anchoring Effect: We posit that CopyPaste leverages the Induction Head mechanism (Olsson
et al., 2022; Huang et al., 2025a), a circuit responsible for in-context copying. If we enforce the
previous token yt−1 to be a direct copy of a token ck ∈ C (where ck is the token at position k in the
context), the query vector qt (derived from yt−1) will strongly correlate with the key vector kck in
the context.

Mathematically, maximizing the copying likelihood in Stage 1 (Section 4.1.1) effectively optimizes
the attention weights such that:

score(qt,kck) ∝ q⊤t kck ≫ q⊤t kpara (3)

This creates a “Semantic Anchor,” forcing the attention distribution α to collapse onto the context:

lim
copying→max

∑
j∈C

αt,j ≈ 1 (4)

By ensuring yt−1 is a copy, we mechanically guide the induction heads to retrieve the subsequent
ground-truth token ck+1 from C, thereby physically suppressing the attention pathways that lead
to parametric hallucinations. This aligns with our empirical observation in Figure 3, where Copy-
PasteLLM exhibits significantly suppressed parametric logits.

A.2 ENTROPY REDUCTION AND SEARCH SPACE CONSTRICTION

From an information-theoretic perspective, faithfulness hallucinations arise from high uncertainty
in the conditional distribution P (yt|C, y<t). Let V be the full vocabulary of the LLM, and VC ⊂ V
be the subset of tokens present in the context.

The CopyPaste objective imposes a constraint that the generated response Y must maximize lexical
overlap with C. This effectively serves as a regularization term that constrains the search space Ω
from the vast V to the much smaller VC .

The conditional entropy of the generation step without constraints is:

H(Y |C)Base = −
∑
w∈V

PBase(w|C) logPBase(w|C) (5)

In standard generation, the probability mass is often distributed over a long tail of semantically
similar but extrinsically hallucinated tokens from parametric memory. In contrast, CopyPasteLLM
is optimized to concentrate probability mass on VC :∑

w∈VC

PCP(w|C) → 1 =⇒ PCP(w /∈ VC) → 0 (6)

Consequently, the entropy of the CopyPaste distribution is strictly lower than that of the base distri-
bution:

H(Y |C)CP ≪ H(Y |C)Base (7)
By minimizing the entropy and pruning the probability of tokens w /∈ VC , we statistically minimize
the risk of sampling hallucinated content. This theoretical result explains why our method, despite
relying on lexical proxies, effectively improves semantic faithfulness by eliminating the “lexical
pathways” that allow parametric priors to leak into the generation.

B EXPERIMENTAL SETUP

Datasets We evaluate across four QA datasets: RAGTruth (Niu et al., 2024), a RAG hallucination
corpus with 18K word-level annotated LLM responses; FaithEval (Ming et al., 2025), a counterfac-
tual benchmark for contextual faithfulness; PubMedQA (Jin et al., 2019), a biomedical QA dataset
where contexts contain 21% numeric descriptions; and ConFiQA (Bi et al., 2025), which includes
both counterfactual and original contexts with gold answers. Table 4 summarizes the datasets and
their roles (Train or Eval) across research questions (see Section 4).
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Table 4: Datasets and their roles across 3 research questions. Train refers to the number of samples
utilized for training our CopyPasteLLM, and Eval refers to the number of samples used for eval-
uation. The 20,000 samples of the PubMedQA Artificial subset were randomly sampled using the
random seed 42 from the 211k entries.

Dataset Subset Domain Size Gold Answer RQ1 RQ2 RQ3

RAGTruth QA Daily-Life 839 ✗ Eval only Train (16) Eval
FaithEval Counterfactual Science 1,000 ✓ Eval Train / Eval (241 / 759) Eval
PubMedQA Labeled Biomedicine 1,000 ✓ Eval Train / Eval (108 / 892) Eval
PubMedQA Artificial Biomedicine 20,000 ✓ - Eval -
ConFiQA Counterfactual & Original Wikidata 36,000 ✓ - Eval -

Metrics For RQ1, we evaluate responses across multiple dimensions: contextual faithfulness
using AlignScore (Zha et al., 2023) for overall answer assessment and MiniCheck (Tang et al.,
2024) for sentence-level evaluation; hallucination detection via LLM-as-Judge (Qwen3-32B rea-
soning (Qwen-Team, 2025)) with pairwise comparisons (Zheng et al., 2023)) to identify Twist and
Causal hallucinations (prompts detailed in Appendix L.3); response fluency measured by perplex-
ity under GPT-2; copying behavior quantified through copy coverage (κ) and copy density (δ); and
query relevance assessed via Qwen3-Embedding-8B (Zhang et al., 2025b). For RQ2, we employ Hit
Rate (following Li et al. (2025a)) and Accuracy, both requiring gold answers. Hit Rate measures the
extent to which methods recognize contextual knowledge presence using Chain-of-Thought (CoT)
prompting (Wei et al., 2022)), while Accuracy evaluates the degree of belief in contextual knowledge
using direct answer prompting (prompts detailed in Appendix L.4). FaithEval provides ready-to-use
multiple-choice options, whereas ConFiQA offers only Counterfactual and Original answers. For
ConFiQA, we designate Counterfactual answers as correct in counterfactual contexts and Original
answers as correct in original contexts. To increase task difficulty, we introduce an “unknown”
option, allowing methods to express uncertainty when appropriate.

Models & Baselines We conduct experiments using four popular open-source LLMs as base
models: Mistral-7B-Instruct-v0.2 (M-7B), Llama-3.1-8B-Instruct (L-8B), Qwen2.5-72B-Instruct (Q-
72B), and DeepSeek-V3-0324 (D-V3). CopyPaste-Prompting methods are evaluated on the four
models. CopyPasteLLM is trained on M-7B, L-8B, and its predecessor LLaMA-3-8B-Instruct to
enable comparison with more baselines.

Stage 1 Baselines: For CopyPaste-Prompting evaluation, we compare against Attributed (Zhou
et al., 2023) and Citations—the former a standard RAG approach, the latter requiring LLM-
generated citations during abstractive generation (Zhang et al., 2023)). These methods serve dual
purposes: validating our prompting effectiveness and providing rejected responses for DPO train-
ing.

Stage 2 Baselines: For CopyPasteLLM evaluation, we benchmark against state-of-the-art methods
including prompting-based Attributed, Fine-tuning-based Context-DPO (Bi et al., 2025), Canoe (Si
et al., 2025) and ParamMute (Huang et al., 2025b), and decoding-based CoCoLex (T.y.s.s et al.,
2025)—a copy-based confidence decoding strategy for legal text faithfulness.

C COPYPASTE-PROMPTING ANALYSIS

In this section, we provide a comprehensive analysis of the behavior and performance of our pro-
posed CopyPaste-Prompting methods (CP-Order, CP-Link, and CP-Refine). We focus on copying
behavior and query Relevance.

C.1 COPYING DEGREE ANALYSIS

Figure 5 illustrates the copying degree, measured by Copy Coverage (κ) and Copy Density (δ),
across different models and datasets. We observe three key trends:

Superiority of CopyPaste Methods: All three CopyPaste-Prompting variants consistently achieve
significantly higher copying degrees compared to the Attributed and Citations baselines. This con-
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Figure 5: Copying degree across models and datasets. CopyPaste-Prompting methods significantly
outperform baselines in κ and δ (area of point). Notably, the copying degree varies by dataset nature
(FaithEval > PubMedQA > RAGTruth) and model capacity, with DeepSeek-V3 balancing copying
and query relevance effectively.

firms that our prompting strategies successfully enforce the lexical reuse of context, which is the
prerequisite for our subsequent preference learning pipeline.

Model-Dependent Copying Behavior: The ability to adhere to high-copying constraints varies by
model size and intelligence. Mistral-7B-Instruct-v0.2 generally exhibits the lowest copying degree
among the models evaluated. This suggests that smaller models may struggle to maintain strict lex-
ical constraints while simultaneously managing coherence. DeepSeek-V3, despite being the largest
and most capable model, often shows the second-lowest copying degree among our methods (par-
ticularly in RAGTruth and PubMedQA). We hypothesize that this is due to the model’s advanced
capability to balance conflicting objectives; rather than blindly maximizing copying at the expense
of fluency or logic, DeepSeek-V3 likely optimizes for a ”sweet spot” that maintains high copying
while ensuring the response remains natural and logically sound. For illustrative examples detailing
the effectiveness and pattern of CP-Refine, we refer the reader to Appendix ??.

Dataset-Specific Characteristics: We observe a distinct ordering in copying magnitude across
datasets: FaithEval> PubMedQA> RAGTruth. (1) FaithEval (Highest Copying):
Since this dataset focuses on counterfactual robustness, the parametric knowledge is intentionally
incorrect. Models are forced to rely entirely on the provided context to answer correctly, leading
to maximum copying. (2) PubMedQA: The biomedical domain involves specific terminology and
factual definitions that are difficult to paraphrase without losing precision, naturally encouraging
higher lexical reuse. (3) RAGTruth (Lowest Copying): This dataset involves open-ended,
real-world queries that often necessitate abstractive synthesis and summarization. Although its over-
all copying degree is lower than the other two domain-specific datasets, our CopyPaste methods still
effectively enforce substantial and useful lexical reuse from the context.
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Figure 6: Query relevancy performance. CP-Refine consistently yields the most relevant responses.
The efficacy of CP-Link is model-dependent; only the highly capable DeepSeek-V3 utilizes the
linking mechanism to improve relevance over the rigid CP-Order approach.

C.2 QUERY RELEVANCY ANALYSIS

As shown in Figure 6, CP-Refine consistently achieves the highest query relevancy among the
three proposed methods. This validates the effectiveness of the ”Reviewer” component in our soft-
constraint loop, which explicitly critiques and guides the ”Writer” to address the query while main-
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taining copying. The performance of CP-Link is strongly correlated with model intelligence. While
CP-Link is designed to improve upon CP-Order by adding transitional text, only the most capable
model, DeepSeek-V3, successfully leverages this freedom to enhance query relevance over CP-
Order. Smaller models (e.g., Mistral-7B) often fail to generate meaningful transitions, resulting in
performance similar to or lower than the strict CP-Order method.

D IMPLEMENTATION DETAILS

D.1 COPYPPASTE-PROMPTING

Algorithm 1 CopyPaste-Prompting: Constructing High-Copying Responses
Require: Query Q, Context C, Method M ∈ {CP-Order, CP-Link, CP-Refine}, Threshold θσ , Max iterations Tmax

Ensure: High-copying response A
1: if M ∈ {CP-Order, CP-Link} then ▷ Hard-constraint methods
2: {s1, ..., sn} ← ExtractRelevantSentences(C,Q) ▷ Common extraction step
3: if M = CP-Order then ▷ Direct sentence ordering
4: A← DirectOrdering({si}, Q)
5: else ▷ CP-Link: Ordering via transition generation
6: A← GenerateTransitionsWithOrdering({si}, Q)
7: end if
8: else ▷ CP-Refine: Soft-constraint with iterative refinement
9: A(0) ← Writer(Q,C), t← 0

10: while t < Tmax or σ(t) < θσ do ▷ Until copying score meets threshold
11: feedback← Reviewer(A(t), Q, C) ▷ Verbal supervision on relevance & fluency
12: σ(t) ← α · κ(A(t), C) + min(δ(A(t), C)β/γ, ε) ▷ Copy score
13: if σ(t) ≥ θσ then ▷ Hard constraint on copying score only
14: break
15: end if
16: A(t+1) ← Writer(Q,C, feedback), t← t + 1
17: end while
18: A← A(t)

19: end if
20: return A

The CopyPaste-Prompting methods were implemented using a modular pipeline architecture. For
the CP-Order method, we employed a text similarity threshold of 0.95 for validating extracted
sentences against the source context, utilizing both direct string matching and fuzzy matching with
sliding windows to ensure strict extraction accuracy. The CP-Link method generates transition
sentences with a constraint of no more than 15 words to maintain conciseness while ensuring logical
flow. For the CP-Refine, we utilized an iterative refinement process with a dual-agent system
(Writer and Reviewer) implemented via LangGraph1. This process was configured with a maximum
of Tmax = 5 iterations and a target copying score threshold θσ = 0.99. The composite copying
score σ(t) is calculated using hyperparameters α = 0.6, β = 0.25, γ = 4, and ε = 0.4, effectively
balancing the contribution of copy coverage (κ) and copy density (δ) to guide the generation toward
high contextual fidelity. All prompting methods were run with a low temperature setting (0.1) to
ensure consistent outputs.

D.2 COPYPASTELLM

We fine-tune CopyPasteLLM on three instruction-tuned bases—Mistral-7B-Instruct-v0.22,
LLaMA-3-8B-Instruct3, and Llama-3.1-8B-Instruct|using4. Direct Preference
Optimization (DPO) with parameter-efficient LoRA adapters, based on responses generated by
DeepSeek-V3-0324. We adapt attention and MLP projections (q proj, k proj, v proj,
o proj, gate proj, up proj, down proj) with r = 64, α = 128, and dropout=0.
Training uses a maximum prompt length of 8192 and a maximum generation length of 1024; the
per-device batch size is 2, combined with 8 gradient-accumulation steps. We optimize with AdamW
(learning rate 5e-5, weight decay 0.01, max gradient norm 1.0) under a cosine schedule with a 5%

1https://github.com/langchain-ai/langgraph
2https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
3https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
4https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
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Algorithm 2 CopyPasteLLM: Automated Preference Construction and Training
Require:
1: Query-context pairs {(Qi, Ci)}Ni=1;
2: Methods T = {Base, Attributed, Citations, CP-Order, CP-Link, CP-Refine};
3: Metrics {fj , θj}6j=1; Temperature β
Ensure: Trained model πθ with internalized contextual belief
4: InitializeD ← ∅
5: for each (Qi, Ci) do
6: Ri ← {GenerateResponse(Qi, Ci,m) : m ∈ T } ▷ Generate candidates
7: Rf

i ← {r ∈ Ri :
∧6

j=1(fj(r) ▷◁j θj)} ▷ Multi-criteria filtering

8: ratings← EloTournament(Rf
i , Ci) ▷ Pairwise LLM-as-Judge with Elo scoring

9: r∗i ← argmax
r∈Rf

i

ratings[r] ▷ Select best response

10: if Agold
i and Awrong

i available then ▷ Handle samples with answer annotations
11: rchosen

i ← r∗i ⊕ Agold
i ▷ Append gold answer to transform reasoning into conclusion

12: Rrejected
i ← {r ⊕ Awrong

i : r ∈ Rf
i ∩ {CP-Order, CP-Link, CP-Refine} \ {r∗i }} ▷ Append wrong answers to other CP

methods
13: D ← D ∪ {(Qi ⊕ Ci, r

chosen
i , r−) : r− ∈ Rrejected

i ∪ (Rf
i \ {CP methods})}

14: else ▷ Handle samples without answer annotations
15: D ← D ∪ {(Qi ⊕ Ci, r

∗
i , r

−) : r− ∈ Rf
i \ {r

∗
i }} ▷ Use original responses without answer appending

16: end if
17: end for
18: Initialize θ, πref ▷ DPO training with 5N preference pairs from N samples
19: while not converged do
20: for each (x, yw, yl) ∈ D do ▷ Leverage 5× data efficiency: each sample yields 5 preference pairs

21: L = − log σ
(
β log

πθ(yw|x)

πref(yw|x)
− β log

πθ(yl|x)

πref(yl|x)

)
22: Update θ using∇θL
23: end for
24: end while
25: return πθ

warmup and no label smoothing; the DPO temperature is set to β = 0.3. To balance compute and
convergence, we train for 2 epochs on Mistral-7B-Instruct-v0.2 and LLaMA-3-8B-Instruct, and for
1 epoch on Llama-3.1-8B-Instruct.

E TASK-SPECIFIC PERFORMANCE EVALUATION OF COPYPASTELLM

To gain a deeper understanding of CopyPasteLLM’s robustness and versatility, we conduct a fine-
grained performance analysis across three dimensions: conflict complexity (ConFiQA), knowledge
domains (FaithEval), and reasoning ambiguity (PubMedQA).

E.1 IMPACT OF CONFLICT COMPLEXITY AND MULTI-HOP REASONING

We utilize the three subsets of the ConFiQA (Bi et al., 2025) dataset to evaluate how CopyPasteLLM
handles increasing levels of reasoning complexity and counterfactual conflict density:

• ConFiQA-QA (Question-Answering): Represents single-hop reasoning with a single point
of knowledge conflict.

• ConFiQA-MR (Multi-hop Reasoning): Involves multi-hop structures where only one step
contains a knowledge conflict, testing the model’s ability to integrate counterfactuals into
a reasoning chain.

• ConFiQA-MC (Multi-Conflicts): The most challenging setting, featuring multi-hop struc-
tures where all reasoning steps are modified to be counterfactual, creating a global knowl-
edge conflict.

As shown in Table 1, CopyPasteLLM demonstrates exceptional robustness as task difficulty in-
creases. On the ConFiQA-MC subset, where models must adhere to a completely counterfactual
reality, baseline performance typically collapses. For instance, on Llama-3.1-8B, the Attributed
method achieves only 15.5% accuracy. CopyPasteLLM maintains a remarkable accuracy of 83.5%,
strictly follows the instruction of generating responses based on context, and significantly mitigates
internal parametric resistance. Notably, on the Mistral-7B backbone, CopyPasteLLM (trained on
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only 365 samples) achieves 82.5% on the MC subset, outperforming even the Context-DPO method
(80.4%) which was trained on 18,000 samples seen during training.

E.2 PERFORMANCE ACROSS DIVERSE KNOWLEDGE TYPES

Basic Facts &
Properties(#324)

Processes &
Causal(#226)

Experiments(#95) Teleology /
Purpose(#60)

Definition(#20) Structure(#15) Algebraic(#13) Spatial /
Kinematic(#6)

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

Attributed CoCoLex Canoe Parammute Context-DPO CopyPasteLLM

Figure 7: Performance comparison across diverse knowledge domains. CopyPasteLLM consis-
tently outperforms or remains highly competitive against strong baselines across most categories,
demonstrating robustness in both factual (e.g., Basic Facts) and reasoning-intensive domains (e.g.,
Processes & Causal, Experiments).

To analyze performance across different knowledge domains, we classify the FaithEval-
Counterfactual (Ming et al., 2025) dataset samples into eight distinct knowledge types (e.g., Ba-
sic Facts, Processes, Experiments). Since the original dataset lacks these labels, we employed a
strong model, DeepSeek-V3.1, to classify the samples based on the taxonomy defined in the ARC-
Challenge (Clark et al., 2018). We utilized a Chain-of-Thought (CoT) prompting strategy with
majority voting (temperature sampling over 5 runs) to ensure classification reliability. Figure 7 il-
lustrates the accuracy breakdown. CopyPasteLLM (green bar) consistently outperforms or matches
the strongest baselines across all categories.

E.3 ROBUSTNESS TO REASONING AMBIGUITY
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Figure 8: Performance breakdown on PubMedQA-Labeled by reasoning difficulty. Accuracy is
compared between Attributed and CopyPasteLLM models across the Consensus (clear evidence) and
Negotiation (ambiguous context) subsets, demonstrating the highest gains in samples with explicit
evidence.

We further analyze performance on the PubMedQA-Labeled (Jin et al., 2019) dataset, distinguishing
between samples based on reasoning setting as defined by the original dataset annotators:

• Consensus: Samples where independent experts agreed on the answer easily, implying the
context provided clear, unambiguous evidence.
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• Negotiation: Samples where experts initially disagreed and had to negotiate a final answer,
implying the context was ambiguous, implicit, or difficult to interpret.

Figure 8 presents the accuracy on these splits. We observe a distinct pattern:

• Clear Evidence (Consensus): CopyPasteLLM delivers significant improvements. For
Llama-3-8B, accuracy improves from 75.49% (Attributed) to 86.85% (CopyPasteLLM);
for Llama-3.1-8B, it improves from 76.79% to 84.58%. This confirms that when explicit
evidence exists, our method effectively anchors the model to it.

• Ambiguous Evidence (Negotiation): The performance gains are more modest or neutral.
For Llama-3-8B, the performance has slightly improved (48.91% vs 51.27%), while for
Llama-3.1-8B, its performance is slightly lower than the baseline (46.38% vs 44.93% ).
This result is expected and rational: the CopyPaste pattren relies on the existence of text
fragments that directly support the answer. In ”Negotiation” samples, where the evidence
is implicit or ambiguous, there may be no clear fragments to copy that definitively resolves
the query.

Figures 9 and 10 compare the accuracy of the Attributed and CopyPasteLLM across the top
frequent MeSH terms, demonstrating consistent performance gains in handling specific medical
topics by enforcing contextual adherence.
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Figure 9: Domain-specific performance analysis of CopyPasteLLM (based on Llama-3-8b-instruct)
on PubMedQA, categorized by Medical Subject Headings (MeSH).
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Figure 10: Domain-specific performance analysis of CopyPasteLLM (based on Llama-3.1-8b-
instruct) on PubMedQA, categorized by Medical Subject Headings (MeSH).
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Table 5: Response Analysis by Method under CoT setting (Base: LLaMA-3-8B-Instruct). Metrics
reported are Median ± Standard Deviation.

Method Length κ (Coverage) δ (Density)

Attributed (Zhou et al., 2023) 199.0± 68.29 0.552± 0.129 2.70± 2.85
CoCoLex (T.y.s.s et al., 2025) 75.0± 40.01 0.989± 0.040 50.08± 37.68
Canoe (Si et al., 2025) 198.0± 69.30 0.551± 0.126 2.67± 3.68
Context-DPO (Bi et al., 2025) 159.5± 62.72 0.631± 0.130 4.17± 4.32
ParamMute (Huang et al., 2025b) 4.0± 18.69 1.000± 0.182 3.00± 13.23
CopyPasteLLM (Ours) 126.0± 78.71 0.844± 0.135 10.49± 15.49

F RESPONSE LENGTH ANALYSIS

To further investigate the behavioral characteristics of CopyPasteLLM under the Chain-of-Thought
(CoT) setting, we conduct a granular analysis of response length, copying degree, and the semantic
relevance of copied content. The statistical comparison against five baselines (based on LLaMA-3-
8B-Instruct) is presented in Table 5.

Response Length and Reasoning Capability. As shown in Table 5, there is a significant diver-
gence in response lengths among methods. ParamMute (Huang et al., 2025b) exhibits an extremely
short median length of 4.0 tokens. This indicates a failure to adhere to the CoT instructions; instead
of generating a reasoning chain, it tends to output the final answer option directly, potentially ex-
plaining its suboptimal performance in complex reasoning tasks. Conversely, abstractive baselines
like Attributed and Canoe generate longer responses (≈ 198 tokens) but with lower copy density
(δ ≈ 2.7), suggesting a reliance on internal parametric knowledge for generation. CopyPasteLLM
maintains a moderate and sufficient response length (126.0 tokens), striking a balance that allows
for adequate reasoning steps while enforcing grounding through copying.
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Figure 11: Query Relevancy analysis of copied fragments across different length buckets. The
height of the bars represents the average cosine similarity between the copied fragments and the
query. CopyPasteLLM (green) maintains competitive relevance across all lengths.
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Rational vs. Blind Copying. Analyzing the copying metrics reveals distinct strategies. Co-
CoLex (T.y.s.s et al., 2025) achieves a near-perfect copy coverage (κ ≈ 0.989) and an exceptionally
high copy density (δ ≈ 50.08). However, combined with its low Hit Rate of 17.9% on FaithEval
(refer to Table 1), this suggests a tendency towards “blind copying”—reproducing the entire context
verbatim without selective filtering or logical reasoning. In contrast, CopyPasteLLM demonstrates
a high but rational copying behavior (κ ≈ 0.844, δ ≈ 10.49). It copies significantly more continu-
ous spans than standard baselines (Context-DPO’s δ ≈ 4.17) to ensure faithfulness, yet avoids the
unselective copying observed in CoCoLex.

Query Relevancy of Copied Fragments. To verify that CopyPasteLLM copies meaningful evi-
dence rather than irrelevant noise, we analyze the semantic relevance of copied fragments in Fig-
ure 11. We extracted all copied fragments with a length ≥ 2 using Algorithm 3 and calculated their
cosine similarity with the input query using text embedding model. The results indicate that across
various fragment lengths (ranging from short phrases to long sentences), CopyPasteLLM maintains
a consistent and high level of query relevancy (comparable to or exceeding baselines). This confirms
that our method effectively identifies and copies context segments that are semantically pertinent to
the user’s question.

G ABLATION STUDY AND TRAINING DYNAMICS ANALYSIS

To rigorously dissect the contribution of each component in CopyPasteLLM and evaluate its training
stability, we conducted ablation studies based on the Llama-3.1-8B-Instruct. We utilized the coun-
terfactual subsets of ConFiQA (QA, MR, and MC) as the testset. All models were trained on the
same 365 preference pairs for 2 epochs (218 steps). To ensure statistical significance, we evaluated
the models every 10 steps using 8 different random seeds (0 − 6, 42) with a temperature of 0.7 and
top-p of 0.95. The results, visualized with 95% confidence intervals (calculated via t-distribution),
are presented in Figure 12.

G.1 IMPACT OF HIGH-COPYING PREFERENCE DATA (W/O COPYING)

To assess the necessity of our specific high-copying response construction, we implemented the w/o
Copying variant (grey lines). In this setting, we excluded the three CopyPaste-Prompting methods
(CP-Order, CP-Link, CP-Refine) and constructed preference pairs solely from standard baselines
(Base, Attributed, Citations), selecting the top 365 samples based on multi-criteria filtering (see
Figure 2).

As shown in Figure 12, the full CopyPasteLLM (green lines) consistently outperforms the w/o
Copying variant across all three datasets, particularly in the more challenging Accuracy after CoT
metric (solid lines). Even when standard RAG responses are filtered for high faithfulness, they lack
the explicit lexical anchoring provided by our CopyPaste. The performance gap indicates that the
specific structural characteristic of CopyPaste—not just semantic correctness—is a stronger supervi-
sion signal for suppressing parametric hallucinations (refer to Appendix A for mechanistic interpre-
tation of CopyPaste). The high-copying preference data effectively teaches the model to prioritize
the retrieved context over internal knowledge.

G.2 SIGNIFICANCE OF ANSWER STAMPING (W/O STAMPING)

We evaluated the role of the Stamping Answers step (Stage 2, Step 3 in Figure 2) by removing it,
denoted as w/o Stamping (purple lines). In this variant, the model learns from the chosen response’s
reasoning trace without the explicit appending of the ground-truth answer label.

The results reveal a critical insight: removing stamping leads to a drastic performance drop, often
falling close to Base model (black horizontal line), especially on the Accuracy metric. The Accuracy
after CoT metric requires the model to output a strict JSON format {"reasoning": "...",
"answer": "..."}. Without stamping, the DPO optimization primarily aligns the reasoning
style but fails to enforce a definitive commitment to the correct conclusion. The huge gap between
the solid purple line (Accuracy) and dashed purple line (Hit) in ConFiQA-QA (Figure 12a) suggests
that while the model might mention the correct entity (Hit), it struggles to formalize it as the final
answer without the explicit “conclusion-forcing” signal provided by stamping.
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Figure 12: Ablation study and training dynamics on ConFiQA datasets. Solid lines represent
Accuracy after CoT (strict JSON format, see Prompt L.6), and dashed lines represent Hit Rate
(see Prompt L.4). Shaded areas indicate 95% confidence intervals across 8 random seeds. Copy-
PasteLLM (Green) consistently outperforms variants without high-copying data (Grey) and without
answer stamping (Purple).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G.3 TRAINING DATA EFFICIENCY AND STABILITY

Figure 12 also illustrates the training dynamics over 218 steps.

Rapid Convergence and Data Efficiency: CopyPasteLLM exhibits remarkable learning effi-
ciency. The performance curves generally rise sharply and reach a plateau around step 120–130
(approximately 1 epoch). Notably, on the ConFiQA-MR and ConFiQA-MC subsets (Figures 12
b/c), the model approaches its peak performance as early as step 50. This rapid saturation suggests
that the high-copying preference signal provided by our method is highly potent, enabling the model
to realign its internal belief mechanism with minimal data updates. The marginal utility of increas-
ing data volume appears to diminish quickly, indicating that performance gains are driven primarily
by the quality and precision of the constructed preference pairs rather than the sheer scale of the
dataset.

Robustness: The narrow shaded areas (95% confidence intervals) across 8 random seeds indicate
that our method is highly stable and reproducible. Unlike the w/o Stamping variant, which shows
higher variance and instability (wider purple bands in Figure 12b/c), CopyPasteLLM consistently
converges to a high-performance state regardless of generation randomness.

H PERFORMANCE OF MAINSTREAM MODELS ON FAITHEVAL

The FaithEval counterfactual subset presents a challenging benchmark where mainstream LLMs
demonstrate surprisingly low performance, with more powerful models often achieving lower ac-
curacy rates (see Table 6). This counterintuitive pattern suggests that larger models may rely more
heavily on their parametric knowledge, leading to reduced contextual faithfulness when faced with
counterfactual information.

Table 6: Performance comparison on FaithEval counterfactual subset. The table reports accuracy
scores of mainstream models from the FaithEval (Ming et al., 2025)) alongside our CopyPasteLLM
method evaluated on three 7-8B parameter models. Bold values indicate our best performing
method, Underlined values indicate the second-best performing method and Italic values indicate
the third-best performing method.

Model Accuracy (%)

Mistral-7B-Instruct-v0.3 73.8
Llama-3.1-8B-Instruct 68.5
Llama-3-8B-Instruct 66.5
Mistral-Nemo-Instruct-2407 58.3
gpt-3.5-turbo 57.1
Command R 69.3
Phi-3.5-mini-instruct 66.8
Command R+ 73.6
gemma-2-9b-it 55.7
gemma-2-27b-it 55.7
gpt-4o-mini 50.9
Phi-3-mini-128k-instruct 75.7
Phi-3-medium-128k-instruct 60.8
Llama-3.1-70B-Instruct 55.2
Llama-3-70B-Instruct 60.5
Claude 3.5 Sonnet 73.9
gpt-4-turbo 41.2
gpt-4o 47.5

CopyPasteLLM (Based on Llama-3-8B-Instruct) 92.8
CopyPasteLLM (Based on Mistral-7B-Instruct-v0.2) 89.3
CopyPasteLLM (Based on Llama-3.1-8B-Instruct) 92.6
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I COPY FRAGMENT DETECTION

The following copy fragment detection algorithm 3 is adapted from Grusky et al. (2018) and in-
cluded here for completeness of this paper.

Algorithm 3 Copy Fragment Detection
Require: Context sequence C = [c0, c1, . . . , cm−1]; Answer sequence A = [a0, a1, . . . , an−1].
Ensure: Set of copy fragments F = {f1, f2, . . . , fk}
1: F ← ∅, i← 0
2: while i < n do
3: ℓmax ← 0, M ← {j | j ∈ [0,m− 1], cj = ai} ▷ Find all matching positions in context
4: for m ∈M do
5: ℓ← 0
6: while i + ℓ < n and m + ℓ < m and ai+ℓ = cm+ℓ do
7: ℓ← ℓ + 1
8: end while
9: if ℓ > ℓmax then
10: ℓmax ← ℓ
11: end if
12: end for
13: if ℓmax > 0 then
14: F ← F ∪ {[ai, ai+1, . . . , aℓmax−1]} ▷ Copy the matching subsequnces to fragment set
15: i← i + ℓmax

16: else
17: i← i + 1
18: end if
19: end while
20: return F

J ANALYSIS OF CONTEXT-PARAMETER COPYING CAPTURING

Algorithm 4 Context-Parameter Copying Capturing
Require: Given string of context C and query, the LLM generates a token answer Actx of length n, Pi: logits distribution of the i-th token,

Hi: hidden states of the i-th token, V : vocabulary of LLM. Apara: token answer generated without context, K: scope of knowledge
capture.

Ensure: Captured knowledge logits and hidden states Pctx, Ppara, Hctx, Hpara

1: Initialize Pctx, Ppara, Hctx, Hpara ← ∅, Tctx, Tpara ← ∅ ▷ Token lists for captured tokens
2: Scom = commonSubstringMatching(C,Apara) ▷ Identify common substrings
3: for i in [1, 2, . . . , n] do
4: P′

i = softmax(Pi) ▷ Normalize logits to probability distribution
5: V′

i = sort(V,P′
i) ▷ Sort vocabulary tokens by P′

i in descending order
6: for j in [1, 2, . . . , K] do ▷ Only consider the top-K most likely tokens
7: xj = V′

i[j] ▷ Get j-th most probable token
8: if isMeaningless(xj) then continue ▷ Skip meaningless tokens, e.g. function words
9: end if
10: if xj in Scom then break ▷ xj is common to both context and parametric generation
11: end if
12: if xj in C and xj /∈ Tctx then ▷ Capture contextual knowledge token
13: Pctx ← Pctx ∪ {P′

i,j}, Hctx ← Hctx ∪ {Hi}, Tctx ← Tctx ∪ {xj} break
14: end if
15: if xj in Apara and xj /∈ Tpara then ▷ Capture parametric knowledge token
16: Ppara ← Ppara ∪ {P′

i,j}, Hpara ← Hpara ∪ {Hi}, Tpara ← Tpara ∪ {xj} break
17: end if
18: end for
19: end for
20: return Pctx, Ppara, Hctx, Hpara

This section provides comprehensive analysis of our Context-Parameter Copying Capturing algo-
rithm across multiple datasets and model architectures. Figure 13 presents the complete logits
power distribution analysis across all three datasets (RAGTruth, FaithEval, PubMedQA), reveal-
ing how CopyPasteLLM and base models differ in their reliance on contextual versus parametric
knowledge throughout the generation process. Figures 14 and 15 complement the main text analysis
by showing hidden states distributions on FaithEval and RAGTruth datasets, demonstrating the se-
mantic separation between contextual and parametric knowledge representations in CopyPasteLLM
compared to base models.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Logits Power Calculation Formula We employ the following formula to calculate the logits
power for each response token, measuring the model’s reliance on contextual versus parametric
knowledge during generation:

logits power =

(
n∑

i=1

ℓ2i

)
×

√
n (8)

where ℓi denotes the logit value of the i-th token, and n represents the number of samples in the
dataset that have contextual or parametric knowledge at this position.
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Figure 13: Logits power distribution across response lengths for contextual (CTX) and parametric
(Para.) knowledge. Values above x=0 indicate CTX logits power, values below x=0 indicate Para.
logits power (negated for visualization).

K LIMITATIONS AND FUTURE WORKS

While CopyPasteLLM demonstrates remarkable effectiveness in enhancing contextual faithfulness
through high-copying behavior and achieves substantial performance improvements with excep-
tional data efficiency, several promising directions warrant future investigation.

Incomplete Context Scenarios: Our current framework assumes that the provided context contains
sufficient information to answer the query. When context is incomplete or lacks relevant details, the
copy-paste paradigm may struggle to generate satisfactory responses. Future work could explore
adaptive mechanisms that dynamically assess context sufficiency and gracefully handle information
gaps, potentially by incorporating uncertainty quantification or developing hybrid strategies that
selectively combine contextual and parametric knowledge based on context completeness.

Deeper Mechanistic Understanding: While our Context-Parameter Copying Capturing algorithm
provides valuable insights into logits and hidden state distributions, a more comprehensive mech-
anistic analysis could examine the roles of specific model components such as attention heads and
feed-forward networks (FFNs). Understanding how CopyPasteLLM affects attention patterns across
layers and how FFNs process contextual versus parametric information could reveal finer-grained
mechanisms underlying our approach’s effectiveness and potentially inform more targeted architec-
tural modifications.
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Figure 14: Dimensionality reduction visualization of hidden states distributions between contextual
(CTX) and parametric (Para.) knowledge on FaithEval dataset across two base models. Each subplot
shows pairwise comparisons with marginal KDE distributions and confidence ellipses.
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Figure 15: Dimensionality reduction visualization of hidden states distributions between contextual
(CTX) and parametric (Para.) knowledge on RAGTruth dataset across two base models. Each
subplot shows pairwise comparisons with marginal KDE distributions and confidence ellipses.
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Multimodal Contextual Faithfulness: An intriguing extension involves applying the copy-paste
paradigm to multimodal scenarios, particularly in domains like medical imaging where models
might favor parametric knowledge over visual evidence. For instance, when interpreting medical im-
ages, models may overlook subtle but critical visual details (such as minor variations in ECG wave-
forms or radiological abnormalities) in favor of common parametric patterns. Investigating whether
copy-paste principles can be adapted to enforce stronger reliance on visual context—perhaps through
visual attention mechanisms or multimodal copying strategies—represents a compelling avenue for
enhancing faithfulness in vision-language tasks.

L PROMPTS

Here are the prompts we use in our experiments.

L.1 COPYPASTE-PROMPTING METHODS

L.1.1 RELATED SENTENCE EXTRACTION

Related Sentence Extraction

Instruction: Please carefully read the Context and extract ALL relevant complete sentences that could help answer the Query. Output each extracted
sentence on a separate line, preceded by ”EXTRACTED: ”.
Context
{context}
Query
{query}
CRITICAL REQUIREMENTS
1. You MUST extract complete sentences EXACTLY as they appear in the Context.
2. NO modifications, paraphrasing, or combining of sentences allowed.
3. Each extracted sentence must be highly relevant to the Query.
4. Extract ALL sentences that could help answer the Query (err on the side of inclusion).
5. Preserve all terminology, measurements, and symbols exactly as written.
Output Format
EXTRACTED: [First complete sentence exactly as it appears in Context]
EXTRACTED: [Second complete sentence exactly as it appears in Context]
...
Your extraction:

L.1.2 CP-ORDER

CP-Order

Instruction: Given the Query and a list of Copied Sentences, please determine the optimal order for these sentences to create the most logical, coherent,
and helpful response.
Query
{query}
Copied Sentences
{numbered sentences}
Important Requirements
- Only use the sentence IDs provided above
- Include ALL sentences in your ordering
- Consider the query context when determining the most logical flow
Output Format
Output the optimal order as a comma-separated list of sentence IDs as below, do not provide any other information.
ORDER: [comma-separated list of sentence IDs, e.g., SENT 2,SENT 1,SENT 3]
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L.1.3 CP-LINK

CP-Link

Instruction: You are a professional text organization expert. Generate concise transition sentences to connect the core sentences and make the response
flow naturally.
Query {query}
Core Sentences {numbered sentences}
Requirements
1. Transition sentences should be concise (no more than 15 words)
2. They should logically connect adjacent core sentences
3. Focus on creating smooth flow between ideas
4. Common types: progression, contrast, addition, conclusion
Output Format
[TRANSITION 1 2]transition sentence content[/TRANSITION 1 2]
[TRANSITION 2 3]transition sentence content[/TRANSITION 2 3]
...
Optionally add:
[INTRO]introduction sentence[/INTRO]
[CONCLUSION]conclusion sentence[/CONCLUSION]
Please generate transitions:

L.1.4 CP-REFINE

Copying Requirements

1. RELEVANT CONTEXT REUSE: Incorporate relevant text.
2. MINIMAL ORIGINAL CONTENT: Limit additions to essential connections only.
3. PRESERVE EXACT WORDING: Keep original phrases and expressions.
4. CONTEXT-ONLY INFORMATION: Use only facts explicitly in the context, do not make up any information.
5. KEEP FLUENT and NATURAL ENGLISH.

Writer w/o Reviewer’s Suggestions

Instruction: You are writer, skilled at copying relevant content from context to answer user questions. Generate highly copying responses from the given
context.
Query
{query}
Context
{context}
Copying Requirements
{copying requirements}
Answer:

Writer w/ Reviewer’s Suggestions

Instruction: You are Writer, skilled at copying relevant content from context to answer user questions. The Reviewer has suggested revisions to your old
answer. Please provide a better answer to improve copying score and query relevance.
Your previous answer and Reviewer’s suggestions
Old Answer
{old answer}
Reviewer’s Suggestions
{reviewer suggestions}
Context
{context}
Query
{query}
Copying Requirements
{copying requirements}
Answer:
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Reviewer

Your task is to review the answer to the query and suggest revisions with the goal of improving the answer’s copying score (contextual faithfulness) and
query relevance.
Context
{context}
Query
{query}
Answer Awaiting Review
{answer}
Review Criteria
- Copying Score: Text reuse from context (Current: {copying score})

- If copying score ≤ {copying threshold}, require more context incorporation
- Contextual Faithfulness: All facts sourced from context only

- Remove any facts or knowledge not in context
- Reduce excessive or unnecessary original content

- Query Relevance: Direct addressing of user query
Provide CONCISE and ACTIONABLE suggestions (max 3 points):

L.2 BASELINES OF PROMPT-BASED

L.2.1 BASE

Base

{query}

L.2.2 ATTRIBUTED

Attributed

Instruction: Bear in mind that your answer should be strictly based on the following context.
Context: {context}
Query: {query}
Answer:

L.2.3 CITATIONS

Citations

Instruction: Bear in mind that your answer should be strictly based on the following numbered passages. Add citations in square brackets [1], [2, 3], etc.
at the end of sentences that are supported by the evidence.
Numbered Sentences
{numbered sentences}
Query
{query}
Answer:

L.3 PROMPTS OF LLM JUDGES

We design the pairwise-comparison template and instructions to enable systematic, fine-grained
evaluation of hallucinations in RAG responses.

Pairwise Comparison Template

Instruction: You are an expert judge. Compare two RAG responses (Response A and Response B) {instruction}
Context: {context}
Response A: {response a}
Response B: {response b}
Please note: Do not question or doubt the provided context. Assume the context is absolutely correct, and make your verdict strictly based on this premise.
Output Format: {{ “verdict”: “<A/B/TIE>”}}

Above template is method-agnostic: it presents two anonymous responses, a common context treated
as ground truth, and requires judges to output a formatted verdict—A, B or Tie.

The three instructions below can be slotted into the {instruction} placeholder in the above template
and each then serves to pick the response exhibiting fewer RAG hallucinations along its respective
dimension. Fabrication focuses on statements that are wholly unanchored in the provided context.
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Information-Distortion focuses on statements that misalign with the explicitly given context. False-
Association focuses on claims that misweave separate pieces of context into an unsupported whole.

Instruction for Comparing Twist Hallucination

for information distortion hallucination. The Core Definition of Information Twist: Altering key information in the Context (e.g., numbers, timelines,
subjects, conclusions).
Which has fewer information distortion hallucinations?

Instruction for Comparing Causal Hallucination

for causal hallucination. The Core Definition of Causal: Forcibly linking unrelated content in the Context to form new conclusions unsupported by the
Context.
Which has fewer false association hallucinations?

L.4 HIT RATE

Hit Rate

Context: {context}
Question: {question}
Based on the context, let’s think step-by-step and answer the question in detail. Answer:

L.5 ACCURACY

Accuracy

Context: {context}
Question: {question}
Options: {options}
Based on the above context, answer the question. You must output only a single token: A, B C or D. Do not provide any explanation or reasoning, just
the chosen option. Answer:

L.6 ACCURACY AFTER COT

Accuracy After CoT

Context: {context}
Question: {question}
Options: {options}
Based on the context, let’s think step-by-step. Give your reasoining process first, then provide the final option.
Output format should be a JSON object with two fields: “reasoning” and “answer”, such as: { “reasoning”: “...”, “answer”: “...” } Answer:

M USE OF LLMS

We used large language models solely for proofreading purposes to check spelling and grammatical
errors in this paper.
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