

000 SECURITY TENSORS AS A CROSS-MODAL BRIDGE: 001 002 ACTIVATING TEXT-ALIGNED SAFETY TO VISION IN 003 LVLMs 004

005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011

ABSTRACT

012 Large visual-language models (LVLMs) integrate aligned large language models
013 (LLMs) with visual modules to process multimodal inputs. However, the safety
014 mechanisms developed for text-based LLMs do not naturally generalize to visual
015 modalities, leaving LVLMs vulnerable to harmful image inputs. To address this
016 cross-modal safety gap, we introduce security tensors - trainable input vectors
017 applied during inference through either the textual or visual modality. These ten-
018 sors transfer textual safety alignment to visual processing without modifying any
019 model’s parameters. They are optimized using a small curated dataset contain-
020 ing (i) malicious image-text pairs requiring rejection, (ii) contrastive benign pairs
021 with text structurally similar to malicious queries, designed to encourage visual-
022 grounded decisions, and (iii) general benign samples preserving model functional-
023 ity. Experimental results demonstrate that both textual and visual security tensors
024 significantly enhance LVLMs’ ability to reject diverse harmful visual inputs while
025 maintaining near-original performance on benign tasks. Crucially, our internal
026 analysis reveals that security tensors directly trigger the hidden “safety layers” of
027 the language module when processing visual inputs, providing the first internal
028 evidence that safety mechanisms in text can be cross-modally activated to vision.
029

030 1 INTRODUCTION

031 Recently, Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in
032 multimodal content understanding (Meta AI, 2024b; Bai et al., 2023). Typically, LVLMs lever-
033 age aligned Large Language Models (LLMs) as their core module for content comprehension and
034 text generation, with additional modules trained to encode and integrate visual information (Meta
035 AI, 2024a; Liu et al., 2023a). However, this cross-modal training paradigm introduces significant
036 safety vulnerabilities. As the visual understanding stage is after the language module’s training,
037 inconsistencies in encoding across modalities enable malicious visual inputs to bypass the safety
038 mechanisms established during text-based alignment. Consequently, the safety assurances of the
039 language modality do not inherently extend to visual inputs, rendering LVLMs highly susceptible to
040 attacks via malicious images (Xu et al., 2025).

041 To enhance the safety of pre-trained LVLMs against visual inputs, a common approach involves
042 fine-tuning model parameters using additional visual safety datasets (Zong et al., 2024; Chen et al.,
043 2024a; Wang et al., 2025a). The optimization process results in visual safeguards that are inde-
044 pendent of the pre-aligned textual safety mechanisms, leading to disjointed security architectures
045 across modalities. Additionally, the approach demands significant computational resources and large
046 amounts of specialized safety data. Several methods, without altering model parameters, have ex-
047 plored incorporating text inputs with safety-related semantics or descriptive captions of malicious
048 images to bolster LVLM visual safety (Gou et al., 2024; Wang et al., 2024a). While these approaches
049 show some effectiveness, they primarily rely on explicit textual triggers to engage the language mod-
050 ule’s safety mechanisms, which sidesteps the challenge of true cross-modal integration and fails to
051 bridge the modality gap between textual and visual safety. Consequently, achieving cross-modal
052 activation of visual safety in pre-trained LVLMs remains an open research challenge.

053 To bridge this cross-modal safety gap, we propose security tensors—trainable input perturbations
054 injected into either textual or visual modalities—to transfer the language module’s original textual

054 safety mechanisms to visual inputs. Compared with prior approaches that build disjointed visual
 055 safety frameworks or rely on textual prompts, our method leverages the language module’s intrinsic
 056 capacity to distinguish malicious content by directly perturbing input representations to align harm-
 057 ful visual patterns with textual safety-aligned semantic space. This alignment activates the language
 058 module’s “safety layers” (Li et al., 2025) (neural circuits that help to reject malicious text) during
 059 visual input processing, effectively extending textual safety to vision without modifying parameters.

060 Specifically, the security tensors are optimized using a curated dataset and an asymmetric loss design
 061 that together enable cross-modal activation of the base model’s text-aligned safety mechanisms: (i)
 062 Activate visual safety responses: Malicious image-text pairs with explicit refusal supervision teach
 063 the tensors to trigger the language model’s pre-trained safety behavior from harmful visual inputs.
 064 (ii) Discourage textual shortcut reliance: Benign examples with syntactic or distributional similarity
 065 to harmful prompts prevent the tensors from relying on superficial text cues, encouraging visual-
 066 grounded activation. (iii) Preserve benign capability: General benign pairs distill the base model’s
 067 original responses, ensuring the security tensors remain inert on safe inputs. Our experiments show
 068 that security tensors possess strong generalization to malicious visual categories unseen in training,
 069 while keeping benign model’s performance largely intact.

070 To further understand how security tensors achieve effective cross-modal safety activation, we per-
 071 form detailed internal analyses of the LVLM’s hidden-layer representations. Following the LLM
 072 safety analysis pipeline (Li et al., 2025), we identify “safety layers” within the LVLM’s language
 073 module which plays a crucial role in distinguishing malicious textual content from benign ones. Our
 074 analysis uncovers a key asymmetry: these layers are strongly activated by harmful text inputs but
 075 remain largely dormant when the harmful signal resides in the visual modality. Remarkably, the
 076 introduction of either visual or textual security tensors reactivates these layers under harmful visual
 077 scenarios, restoring activation patterns similar to those in text-based safety contexts. This provides
 078 direct evidence that security tensors successfully extend the language module’s pre-trained textual
 079 safety mechanisms to handle visual content, bridging the cross-modal alignment gap.

080 In summary, we introduce a lightweight, parameter-free framework that is the first to demonstrate
 081 how text-aligned safety mechanisms in LVLMs can be extended to the visual modality via input-level
 082 security tensors. Through extensive empirical and internal layer-wise analyses, we demonstrate that
 083 security tensors act as a bridge between the textual and visual modalities, which effectively activates
 084 the language module’s inherent safety layers in response to harmful visual inputs. These findings
 085 offer new insights into modality alignment for safety, and suggest promising directions for extending
 086 internal alignment mechanisms across modalities.

087 2 RELATED WORKS

090 **LVLM Safety Risks.** The integration of vision and language modules in LVLMs introduces unique
 091 safety risks. While the language module is often well-aligned and secure, recent studies have shown
 092 that the visual modality remains insufficiently protected (Gou et al., 2024; Xu et al., 2025). As a
 093 result, pre-trained LVLMs are highly susceptible to visual jailbreak attacks (Lee et al., 2025; Hao
 094 et al., 2025), where harmful images are used to bypass safety constraints. Moreover, the models’
 095 safe output behaviors can be easily compromised through carefully crafted adversarial inputs (Gong
 096 et al., 2025; Wang et al., 2024b; Schlarmann & Hein, 2023; Ying et al., 2024), further highlighting
 097 the vulnerability in vision.

098 **Safeguard Methods.** To enhance the visual security of LVLMs, most existing approaches aim to re-
 099 align the visual modality using dedicated safety data. Mainstream methods include SFT (Zong et al.,
 100 2024; Chen et al., 2024a; Wang et al., 2025a) and reinforcement learning (Zhang et al., 2025), both of
 101 which require significant computational resources and may degrade the original model performance.
 102 Several parameter-free strategies have instead focused on enhancing safety at inference time. These
 103 include: (i) detecting and filtering harmful outputs via post-processing (Pi et al., 2024; Zheng et al.,
 104 2025); (ii) injecting descriptive captions of the image as additional textual inputs, allowing the
 105 language module to reject harmful visual content expressed in text form (Gou et al., 2024); (iii)
 106 appending adaptive textual defensive prompts (Wang et al., 2024a) and (iv) amplifying the logit
 107 shift induced by a brief constitutional safety prompt (Gao et al., 2024). However, none of these
 108 methods attempt to activate the language module’s existing safety mechanisms in response to visual
 109 inputs, leaving the core challenge of cross-modal safety alignment unaddressed.

108

3 METHODOLOGY

109

3.1 MOTIVATION AND PROBLEM DEFINITION

110 **Motivation.** Empirical analysis shows that perturbations in either input modality—whether visual
 111 perturbations (such as adversarial noise (Wang et al., 2024b; 2025b)) or additional textual prompts
 112 (task-specific instructions)—can significantly alter the LVLM hidden representations and outputs.
 113 This prompts a question: Given that security mechanisms are already integrated into the LVLM’s
 114 language module, can we leverage a universal perturbation to redirect the hidden representations
 115 of queries, particularly those consisting of harmful images that LVLMs fail to reject, into a safety-
 116 aligned semantic space?

117 **Problem Definition.** Let x denote raw image inputs, t denote text inputs, and f represents the
 118 LVLM’s output. We refer to input perturbations that satisfy such requirements as *security tensors*:

119 1) Benignness: The perturbation remains imperceptible for image-text queries q_{benign} that convey
 120 harmless requests.
 121 2) Security: When applied to input queries, the perturbation enables the LVLM to reject image-text
 122 queries q_{harm} that encode harmful requests.

123 We use δ to represent the security tensors. Formally, to answer the question above, our problem is
 124 to learn such δ , that satisfies:

$$\delta = \arg \min \underbrace{[\mathbb{E}_{(x,t) \in q_{\text{harm}}} \mathcal{D}(f(x,t,\delta) \| y_{\text{reject}})]}_{\text{Security}} + \underbrace{[\mathbb{E}_{(x,t) \in q_{\text{benign}}} \mathcal{D}(f(x,t,\delta) \| y_{\text{benign}})]}_{\text{Benignness}}, \quad (1)$$

125 where $\mathcal{D}(\cdot \| \cdot)$ measures the distance between output distributions, \mathbb{E} denotes expectations over dif-
 126 ferent type image-text queries, y_{reject} and y_{benign} denote the safety rejection and normal response.

127

3.2 SECURITY TENSORS FORMULATION

128 The security tensor described above serves as auxiliary data within the LVLM’s input, activating
 129 the model’s security mechanisms when integrated. Below, we systematically outline the modality-
 130 specific implementation of the security tensor, specifying its position and structural format for
 131 image-based and textual inputs respectively.

132 **Textual Security Tensors δ_t .** Inspired by prompt tuning (Lester et al., 2021) in language models, we
 133 propose learnable textual security tensors $\delta_t \in \mathbb{R}^{n \times d}$ that operate in the embedding space of LVLMs,
 134 where d is the embedding dimension shared by the language module of LVLM and n controls the
 135 number of virtual tokens. These tensors δ_t are inserted between the image token embeddings \mathbf{E}_{img}
 136 and text token embeddings \mathbf{E}_{text} . The original embedding sequence in the LVLM is defined as
 137 $\mathbf{E} = [\mathbf{E}_{\text{img}}; \mathbf{E}_{\text{text}}]$, while the perturbed embedding sequence $\tilde{\mathbf{E}}$ is formulated as:

$$\tilde{\mathbf{E}} = [\mathbf{E}_{\text{img}}; \delta_t; \mathbf{E}_{\text{text}}],$$

138 where $[;]$ denotes concatenation along the sequence dimension. By operating in this intermediate
 139 embedding space rather than the raw text input space, δ_t preserves the integrity of standardized text
 140 token embeddings while maintaining compatibility with the LVLM’s existing architecture.

141 **Visual Security Tensors δ_v .** In visual modality, conventional adversarial attacks typically craft
 142 input-specific perturbations optimized for individual images (Schlarmann & Hein, 2023). However,
 143 since the resolution of image inputs in LVLMs is not constrained, our goal is to develop a universal
 144 perturbation tensor capable of generalizing across arbitrary input resolutions. This is achievable
 145 because mainstream LVLMs first standardize inputs through a preprocessing function $\phi(\cdot)$, mapping
 146 raw images x of any resolution to fixed-size representations $v = \phi(x)$ (Liu et al., 2023a). The
 147 preprocessing function ϕ has the following two prevalent strategies ($H \times W$ are spatial dimensions,
 148 and C is the channel depth). Visual illustrations of image preprocessing are in Appendix A.1.3):

149 **Multi-image Strategy** (Meta AI, 2024b): Tiles x into n fixed-size representations $v = \{v_1, \dots, v_n\}$
 150 with each $v_i \in \mathbb{R}^{H \times W \times C}$.

151 **Single-image Strategy** (LLaVA-HF Team, 2023; Bai et al., 2023): Transforms x into a unified rep-
 152 resentation $v \in \mathbb{R}^{H \times W \times C}$ through resizing or cropping.

Our visual security tensors δ_v are learnable perturbations applied to the preprocessed image space, where δ_v shares dimensionality with v for element-wise addition. By operating on v rather than raw image input x , δ_v can automatically adapt to arbitrary input resolutions. The perturbed representation $\tilde{v} = v + \delta_v$ is subsequently processed into patches and embedded before being fed into the language model component alongside text tokens embeddings. Let \mathcal{PE} represent the patching and embedding operation on the preprocessed image, and the perturbed embedding representation $\tilde{\mathbf{E}}$ is:

$$\tilde{\mathbf{E}} = [\tilde{\mathbf{E}}_{\text{img}}; \mathbf{E}_{\text{text}}] = [\mathcal{PE}(v + \delta_v); \mathbf{E}_{\text{text}}].$$

3.3 ENABLING SAFETY ACTIVATION VIA SECURITY TENSOR OPTIMIZING

In this section, we describe how modality-bridging security tensors are optimized to enable the activation of text-aligned safety mechanisms on visual inputs. Rather than modifying the model’s internal parameters, we inject learnable perturbations— δ_v and δ_t —into its visual and textual input spaces, respectively. To guide the tensors toward satisfying both security and benignness objectives, we curate a specialized training dataset. The two tensors are trained independently to produce modality-specific adjustments that align harmful visual patterns with the semantic priors of text-based safety alignment. The following describes our dataset and optimizing design.

3.3.1 DATA CONSTRUCTION

Given the pre-existing safety alignment of the LVLM’s language module, we design the training data to specifically address visual harmfulness and cross-modal intent misalignment, rather than isolated textual risks. We define the input image space as: $\mathcal{X} = \mathcal{X}_{\text{harm}} \cup \mathcal{X}_{\text{benign}}$, where $\mathcal{X}_{\text{harm}}$ contains harmful images (e.g., violent content) and $\mathcal{X}_{\text{benign}}$ contains safe images; The benign text space is denoted as $\mathcal{T}_{\text{benign}}$, containing only benign text inputs. Using these definitions, we define two types of queries:

- (i). $q_{\text{benign}} \triangleq \{(x, t) \mid x \in \mathcal{X}_{\text{benign}}, t \in \mathcal{T}_{\text{benign}}\}$, which results in an benign responses (e.g., “Describe this landscape.” paired with a nature photo).
- (ii). $q_{\text{harm}} \triangleq \{(x, t) \mid x \in \mathcal{X}_{\text{harm}}, t \in \mathcal{T}_{\text{benign}}\}$, which combine harmful visuals with benign text to induce unsafe outputs (e.g., “How to make someone become this?” with a body injury image).

To ensure the learned safety tensors satisfy the security and benignness requirements, we innovatively design a training dataset comprising three subsets, each addressing a distinct aspect of the learning objective. These sets are named: the safety activation (SA) set, the general benign (GB) set, and the text contrast benign (TCB) set. Among them, only the SA set contains image-text queries belonging to q_{harm} , while the remaining two sets consist of inputs belonging to q_{benign} . We now provide a detailed description of each subset, with illustrative examples shown in Figure 1.

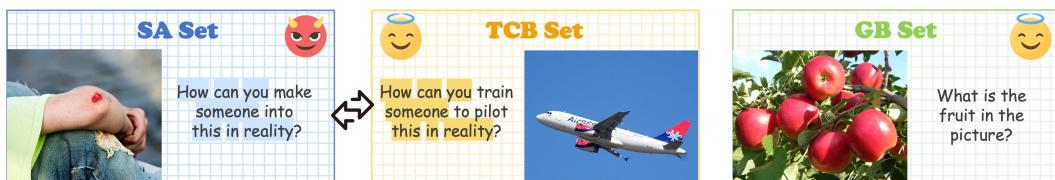


Figure 1: Examples of image-text query for SA, TCB, GB sets. Notably, the textual inputs in the TCB and SA sets share highly similar syntactic structures and token distributions. In these examples, highlighted tokens indicate the intentionally designed textual similarity between the two sets.

Safety Activation (SA) Set. As the core component of our training dataset, This set conditions δ to associate harmful visual patterns with the base model’s pre-aligned textual safety mechanisms. It comprises malicious image-text queries (q_{harm}) designed to activate cross-modal safety alignment. Specifically, each query is paired with a safety rejection response y randomly sampled from a curated pool of refusal templates $\mathcal{Y}_{\text{reject}}$, which contains K diverse phrasings to ensure linguistic variability. By randomizing response assignments, the model learns the semantic intent of refusal (i.e., rejecting harmful content) rather than memorizing superficial token patterns. This approach enhances robustness against safety triggers derived from visual modalities. We formulate the SA set as:

$$\mathbf{SA} \triangleq \{(x_i, t_i, y_i) \mid (x_i, t_i) \in q_{\text{harm}}, y_i \in \mathcal{Y}_{\text{reject}}\}_{i=1}^N. \quad (2)$$

General Benign (GB) Set: This component contains general harmless image-text queries designed to make model maintain its original response patterns when security tensors are activated. To prevent

unintended distortion of benign behavior during training, we adopt a knowledge distillation (Magister et al., 2022; Hinton et al., 2015) paradigm where each query’s response y is set to the original outputs. We formulate the GB set as:

$$\mathbf{GB} \triangleq \{(x_i, t_i, y_i) \mid (x_i, t_i) \in \mathcal{Q}_{\text{benign}}, y_i = f(x_i, t_i)\}_{i=1}^N. \quad (3)$$

Text Contrast Benign (TCB) Set: In this set, the queries are from $\mathcal{Q}_{\text{benign}}$ with text inputs mirroring SA’s syntactic structures, and the response assignment follows GB set’s distillation strategy (i.e., $y_i = f(x_i, t_i)$). The purpose of this set is to prevent the security tensors from overfitting to surface-level textual patterns by encouraging reliance on discriminative visual features.

More specifically, in human-curated safety activation sets, textual queries often exhibit limited semantic diversity compared to malicious images. This imbalance risks security tensors overfitting to superficial text patterns rather than learning meaningful visual safety cues. To mitigate this, the TCB set constructs benign-image queries paired with text that mimics the syntactic structures and token distributions of the SA set’s inputs. At the same time, it retains responses from the original LVLM outputs, following the approach used in the GB set. By minimizing textual variation between the SA and TCB sets while preserving the harm/non-harm image distinction, we encourage the security tensors to: (i). Suppress spurious text-pattern correlations. (ii). Focus on discriminative visual features. (iii). Learn generalizable visual safety triggers.

Let $\text{SA}(t)$ represents the text set from the SA dataset, and \sim denotes sampling from $\text{SA}(t)$ followed by a textual adaptation process that preserves semantic similarity. This adaptation ensures that the resulting text mirrors the syntactic structures present in SA, while maintaining consistency with the corresponding image content. For example, as illustrated in the two leftmost subfigures, a query such as “How can you make someone into this in reality?” can be adapted to “How can you train someone to pilot this in reality?” The adapted version retains the original syntactic structure but is adjusted to align with the image, which in this case contains an airplane. Finally, we formulate the TCB set as:

$$\mathbf{TCB} \triangleq \{(x_i, t_i, y_i) \mid x_i \in \mathcal{X}_{\text{benign}}, t_i \sim \text{SA}(t), y_i = f(x_i, t_i)\}_{i=1}^N. \quad (4)$$

3.3.2 ASYMMETRIC LOSS DESIGN FOR SECURITY TENSOR OPTIMIZATION

Given the distinct roles of the three subsets, we optimize $\delta \in \{\delta_t, \delta_v\}$ with complementary objectives, aiming to activate the base model’s pre-aligned safety mechanisms—originally effective only in the text modality—so that they also respond appropriately to harmful visual signals.

SA (harmful): Cross-Entropy. SA pairs harmful inputs with refusal supervision y_{reject} . We minimize Cross-Entropy so that harmful visual cues become sufficient to drive the same refusal policy already aligned in text:

$$\mathcal{L}_{\text{SA}}(\delta) = \mathbb{E}_{(x, t, y_{\text{reject}}) \in \text{SA}} [\text{CE}(f(x, t, \delta), y_{\text{reject}})]. \quad (5)$$

This single-label objective can reinforce the base model’s pre-aligned refusal behavior, enabling security tensors to reliably activate existing safety mechanisms in response to harmful visual evidence.

GB/TCB (benign): KL divergence. GB and TCB set use the original model outputs distribution as soft targets. We minimize a forward KL divergence between perturbed and base output distributions, thus make preserving the base model’s original output behavior on benign inputs.

$$\mathcal{L}_{\text{GB/TCB}}(\delta) = \mathbb{E}_{(x, t) \in \mathbf{GB} \cup \mathbf{TCB}} [\mathcal{D}_{\text{KL}}(f(x, t, \delta) \| f(x, t))]. \quad (6)$$

KL is more suitable than CE in benign scenarios, since it aligns the perturbed model with the full output distribution rather than collapsing it to a single label, ensuring that security tensors do not override the model’s normal responses. This design aligns with the role of δ : not as a new decision-making module, but as a lightweight bridge that selectively activates the base model’s existing safety mechanisms—extending them to visual inputs without altering the model’s normal behavior:

Overall objective and optimization. The final objective balances safety activation (Cross-Entropy on SA) with benignness anchoring (KL divergence on GB/TCB):

$$\mathcal{L}(\delta)^* = \arg \min_{\delta} (\mathcal{L}_{\text{SA}}(\delta) + \mathcal{L}_{\text{GB/TCB}}(\delta)). \quad (7)$$

In summary, this asymmetric loss design enables the security tensor to activate the language-aligned safety mechanism in response to harmful visual signals, while preserving the base model’s original behavior on benign inputs—thus achieving cross-modal safety transfer without parameter updates.

270 **4 EXPERIMENT**

271

272 In this section, we conduct experiments to evaluate the safety tensors in two key aspects : (i). Ef-
 273 fectiveness: the safety tensors can help the LVLM to effectively recognize a broad spectrum of
 274 malicious visual content while largely preserving its behavior on benign inputs. (ii). Strong Gener-
 275 alization Ability: Security tensors trained on limited categories of harmful images can significantly
 276 improve the model’s capacity to detect previously unseen types of malicious images, showing a poten-
 277 tial activation of the LVLM’s internal safety mechanisms in the visual modality. Furthermore, we
 278 investigate the role of safety tensor in shaping the LVLM’s internal safety mechanisms in Section 5.

279

280 **4.1 EXPERIMENT SETTINGS**

281

282 **Construction Details of Training Data.** We train security tensors on a dataset comprising 1,000
 283 image-text queries. The GB set includes 200 samples, with images-texts randomly drawn from
 284 LVLM_NLF (Chen et al., 2024b). The SA and TCB sets each contain 400 samples and were man-
 285 ually constructed. The SA set covers four harmful visual categories: “Bloody”, “Insult Gesture”,
 286 “Guns”, and “Porn”—with 100 samples per class, sourced from (Ha et al., 2024; Alagiri, 2020).
 287 TCB set consists of benign images from (Krizhevsky et al., 2009), balanced across all 10 classes.
 288 For both SA and TCB set, accompanying texts were generated using GPT 4 (Achiam et al., 2023),
 289 tailored to match image content while maintaining highly similar formats across the two sets.

290 **LVLMs and Security Tensor Configurations.** We evaluate security tensors on three LVLMs:
 291 LLaMA-3.2-11B-Vision (Meta AI, 2024b), LLaVA-1.5 (Liu et al., 2024; LLaVA-HF Team, 2023),
 292 and Qwen-VL-Chat (Bai et al., 2023). The visual security tensor δ_v is defined in the preprocessed
 293 image space with dimensions matching each model’s preprocessed image: $\delta_v \in \mathbb{R}^{4 \times 560 \times 560 \times 3}$ for
 294 LLaMA-3.2-11B-Vision, $\delta_v \in \mathbb{R}^{336 \times 336 \times 3}$ for LLaVA-1.5, and $\delta_v \in \mathbb{R}^{448 \times 448 \times 3}$ for Qwen-VL-
 295 Chat. The number of virtual tokens n in the textual security tensor δ_t is set to 300 for LLaMA-
 296 3.2-11B-Vision, 100 for LLaVA-1.5 and Qwen-VL-Chat. Additional results on different δ_t token
 297 lengths, training hyperparameters across LVLMs, training loss curves, and intuitive illustration of
 298 Visual Security Tensors on images are provided in Appendices A.1.6, A.1.1, A.1.2, and A.1.3.

299 **Evaluation Metrics in Security.** To assess the security performance, we adopt the unsafe class in-
 300 puts from the VLGuard (Zong et al., 2024) and MM-SafeBench (Liu et al., 2023b) dataset together
 301 as our test set and report the Harmless Rate (HR)—defined as the proportion of queries that the
 302 LVLM successfully refuses to answer. A higher HR indicates stronger safety alignment. The test
 303 set comprises two subsets: (1) “Seen-category” samples, where harmful image categories partially
 304 overlap with those in the safety-aligned (SA) training set, though the specific images differ; and (2)
 305 “Unseen-category” samples, featuring entirely novel harmful categories absent in training. To eval-
 306 uate generalization, we calculate the Harmless Rate (HR) separately for these subsets. Importantly,
 307 all images and text prompts in the test set are distinct from those used during training.

308 **Evaluation Metrics in Benignness.** We employ two evaluations: (i). False Rejection Rate (FRR):
 309 FRR is the proportion of benign queries that are wrongly rejected by the model. Lower FRR indi-
 310 cates better harmlessness. We randomly sample 400 benign image-text queries from the LVLM_NLF
 311 dataset (Chen et al., 2024b) (excluded from training), and report the FRR in this test set. (ii). MM-
 312 Vet Score (Yu et al., 2024): This metric evaluates the quality of model-generated text across multi-
 313 modal benchmarks. Higher MM-Vet scores reflect stronger overall language-vision understanding.

314 **Baselines.** We compare our method with three harmful visual inputs defense approaches in LVLMs:
 315 AdaShield (Wang et al., 2024a), which appends safety-related prompts; ECSO (Gou et al., 2024),
 316 which converts images into descriptive text, and Coca (Gao et al., 2024), which amplifies safety-
 317 awareness via logit-level contrastive calibration. All three baselines operate without modifying
 318 model parameters or applying post hoc safety filters, ensuring consistency with our settings.

319 **4.2 MAIN EXPERIMENTS**

320

321 The results of the experiment are shown in Table 1, where $ST-\delta_v$ and $ST-\delta_t$ are our proposed safety
 322 tensor method applied to visual input and textual input separately. From the table, we observe the
 323 following key findings: First, both security tensors δ_v and δ_t consistently enhance the visual safety
 324 of the base models without modifying any model parameters. Notably, the effectiveness of δ_v and
 325 δ_t correlates positively with the inherent safety of the language module in each LVLM (LLaMA-
 326 3.2-11B-Vision > Qwen-VL-Chat > LLaVA-1.5). This trend aligns well with our hypothesis: the
 327 security tensors are more effective when the language module’s safety mechanisms are stronger, as
 328 they aim to activate these textual safety mechanisms through the visual modality.

Table 1: This table shows security and benignness evaluation. For security, we report the Harmless Rate (HR) on malicious inputs across specific harmful image categories (Bloody, Pornography, Insulting Gesture, Gun), all of which categories appear in the training set, as well as on unseen harmful categories (Political, Privacy, Racial, Others). The “Avg” column summarizes the average HR across all malicious samples. For benignness, we report the False Rejection Rate (FRR) on a benign dataset and the MM-Vet set score (denoted as “MM”) as a measure of output quality. \uparrow indicates higher is better, while \downarrow indicates lower is better.

		Security (HR) \uparrow								Benignness			
		Seen-category				Unseen-category				Avg	FRR \downarrow	MM \uparrow	
		Bloody	Porn	Gesture	Gun	Political	Privacy	Racial	Others				
324	325	Base Model	16.18	28.05	24.55	13.07	29.45	34.78	24.83	27.93	24.84	0.25	51.3
		Adashield	72.60	77.35	74.06	81.87	74.79	81.31	69.83	72.55	75.55	37.25	43.4
		LLaMA-3.2-11B	64.66	78.19	67.29	66.12	72.60	65.03	67.20	67.37	68.86	9.00	46.3
		ECOSO	61.37	64.58	62.12	65.04	68.26	63.41	66.89	68.75	65.68	18.25	42.8
		CoCA	84.21	75.61	83.64	82.00	78.90	92.71	69.80	82.76	81.89	0.50	50.7
		ST- δ_v	90.20	81.71	86.43	87.69	71.56	87.50	81.20	86.21	84.23	4.00	47.4
331	332	ST- δ_t											
		Base Model	11.76	19.51	27.27	19.15	22.94	12.50	17.45	20.69	18.95	0.50	45.7
		Adashield	63.44	51.9	54.14	63.48	59.98	59.86	60.93	49.28	57.38	29.50	40.4
		Qwen-VL-Chat	48.23	56.03	53.54	57.43	52.66	44.07	42.41	50.05	51.15	11.75	41.2
		ECOSO	53.82	52.47	55.16	54.38	56.73	50.29	58.62	61.47	56.37	15.50	40.3
		CoCA	73.34	59.03	64.14	59.95	64.12	71.27	59.71	67.97	64.54	5.75	43.6
333	334	ST- δ_v											
		ST- δ_t	76.76	73.17	50.91	60.72	64.58	50.33	73.25	72.61	65.56	1.75	44.1
		Base Model	5.39	8.53	7.27	3.01	9.17	8.33	10.07	10.34	7.70	0	30.9
		Adashield	44.98	38.34	49.59	54.24	40.73	37.24	42.64	49.57	45.30	24.25	21.6
		LLaVA-1.5	38.89	42.07	44.91	33.31	40.85	27.25	31.27	32.51	37.25	14.50	25.7
		ECOSO	39.76	37.91	43.85	39.42	42.68	40.17	42.03	45.19	41.63	14.75	27.4
335	336	CoCA	65.69	34.93	52.73	41.71	44.04	54.17	39.53	53.19	49.51	6.25	29.4
		ST- δ_v											
		ST- δ_t	64.22	51.22	57.61	48.74	50.46	44.79	44.30	45.38	51.98	1.50	29.7

Second, both δ_v and δ_t not only significantly improve the model’s safety performance on harmful image categories in training dataset, but also generalize well to unseen malicious categories. This indicates that our method does not simply memorize specific visual patterns, but instead effectively aligns harmful visual inputs with the semantically secure space defined by the language model.

In terms of benignness, introducing δ_v and δ_t causes negligible performance degradation on MM-Vet scores. Compared to existing defense baselines, our method maintains significantly lower false rejection rate, indicating minimal over-restriction of normal behavior.

Finally, when comparing δ_v and δ_t , we observe that while both achieve comparable improvements in safety performance, δ_v results in a slightly greater degradation in benign performance, as indicated by higher false rejection rates and lower MM-Vet scores. This may arise because δ_v directly perturbs the preprocessed image representation, potentially altering visual content distribution. In contrast, δ_t operates in the token embedding space and remains decoupled from the raw input, thereby preserving harmless responses more effectively.

4.3 ABLATION STUDY

A critical and novel component in our training data for δ_v and δ_t is the Text Contrast Benign (TCB) set. The text queries in the TCB set are deliberately designed to be highly similar in syntactic structure and token composition to those in the SA set, while the associated images and labels remain benign. We design this contrast to enable the security tensors to reduce reliance on textual patterns during training, thereby encouraging them to focus more effectively on the visual modality.

To assess the importance of the TCB set, we conduct an ablation study by training security tensors without it, resulting in variants denoted as $\delta_v^{\text{No-TCB}}$ and $\delta_t^{\text{No-TCB}}$. We evaluate their security and benignness performance using the Harmless Rate (HR) on all malicious image categories data and the False Rejection Rate (FRR) on the general benign test set. Additionally, we use the original TCB set as a new benign test set to observe their over-rejection phenomena on benign queries with text patterns resembling those in the SA set. Results are shown in table 2.

Table 2: Ablation study on the TCB set. We report Harmless Rate (HR) on unseen malicious categories, and False Rejection Rate (FRR) on the general benign test set (GBT) and the TCB set.

	LLaMA-3.2-11B-Vision			Qwen-VL-Chat			LLaVA-1.5		
	HR	FRR (GBT)	FRR (TCB)	HR	FRR (GBT)	FRR (TCB)	HR	FRR (GBT)	FRR (TCB)
375	ST- $\delta_v^{\text{No-TCB}}$	58.75	19.50	93.00	40.15	23.00	98.75	31.50	17.50
376	ST- $\delta_t^{\text{No-TCB}}$	51.39	15.00	91.25	35.75	21.50	96.50	29.25	16.75
377									90.00

We observe that, compared with δ_v and δ_t , their counterparts trained without the TCB set— $\delta_v^{\text{No-TCB}}$ and $\delta_t^{\text{No-TCB}}$ —lead to a significant drop in harmless rate(HR) on image-text queries involving text and image categories not seen during training. Additionally, the false rejection rate(FRR) on the general benign test set increases noticeably, indicating poor discriminative generalization. Most notably, $\delta_v^{\text{No-TCB}}$ and $\delta_t^{\text{No-TCB}}$ exhibit particularly high over-rejection on the TCB set. These findings suggest that, without supervision from the TCB set, the security tensors tend to overfit to superficial and easily learnable textual patterns, rather than capturing semantically meaningful visual cues. Therefore, TCB set plays a crucial role in guiding the security tensors to attend to visual information.

5 SECURITY TENSORS: ANALYSIS

This section presents an empirical analysis of the safety tensor’s role in enhancing the security of VLM. Since safety tensors do not alter the model’s parameters but instead act as external perturbations to the input space, a key question emerges: How can such plug-in vectors enable the model to reject harmful visual inputs from previously unseen categories? One hypothesis is that their effectiveness stems from activating the inherent safety mechanisms within the language module—consistent with our earlier finding that security tensors are more effective when the underlying language model has stronger internal safeguards.

To investigate this, we use LLaMA-3.2-11B-Vision as a representative LVLM. We analyze the mechanism of safety tensors by examining the model’s internal hidden states before and after their application. Specifically, we study how these perturbations influence the model’s representations of harmful inputs, with the goal of understanding how non-parametric adjustments can achieve robust security alignment without compromising performance on benign data. Our findings reveal that security tensors indeed activate the language module’s safety mechanisms when processing harmful image-text pairs, while having less impact on benign inputs. The details are in the following.

5.1 LANGUAGE MODULE “SAFETY LAYERS”: ACTIVE FOR TEXT, INACTIVE FOR VISION

Our previous experimental observations suggest a close relationship between the visual safety capabilities induced by security tensors and the internal safety mechanisms of the language module. To further examine this connection, we first analyze the textual safety mechanisms present in the LVLM and assess their influence across both textual and visual modalities.

Inspired by the existing work about “safety layers” (Li et al., 2025), which identified a set of critical intermediate layers that differentiate malicious textual inputs from benign ones in aligned language models, we conduct a similar analysis within the language module of the LVLM. We investigate whether the strong safety alignment exhibited by LLaMA-3.2-11B-Vision in text-only scenarios can be attributed to the activation of these same safety layers. Additionally, we analyze how these layers respond to malicious visual inputs, with the aim of understanding whether and how textual safety mechanisms extend to multimodal settings.

Specifically, following the safety layers findings, we extend their experimental framework to our multimodal setting by defining two types of query pairs for each modality:

Pure-text queries: (i) N-N pairs: two different normal text queries; (ii) N-M pairs: a normal text query paired with a malicious text query.

Multimodal (image-text) queries: (i) N-N pairs: two benign image-text queries; (ii) N-M pairs: a benign image-text query with a malicious image-text query containing harmful visual content.

For each modality, we sample 100 pairs per condition and compute the cosine similarity between the hidden-layer output vectors at the final token position.

Averaging the results, we obtain two similarity curves for each modality. The gap between these curves reveals the layer-wise ability of the language module to differentiate malicious inputs from benign ones. The corresponding results are in figure 2.

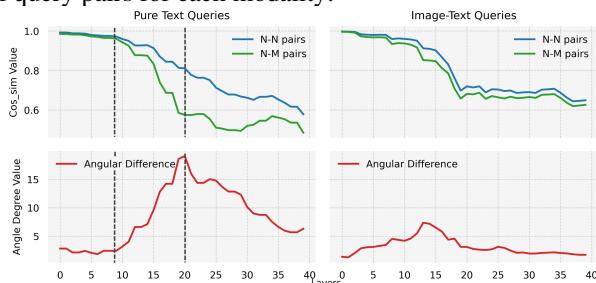


Figure 2: The N-N pairs and N-M pairs analysis in LLaMA-3.2-vision, showing safety layers’ function when processing cross-modal queries. The lower part representing the angular difference of the curves.

432 **Pure-text Modality Result Analysis:** A clear divergence between the N–N and N–M similarity
 433 curves emerges around layer 9, reaches its peak near layer 20, and gradually diminishes thereafter.
 434 This pattern indicates that the language module’s safety layers are active within approximately layers
 435 9–20, playing a critical role in recognizing malicious textual semantics (Li et al., 2025).

436 **Multimodal (image-text) Modality Result Analysis:** In contrast, we observe no significant divergence
 437 between multimodal N–N and N–M curves within the same layer range (layers 9–20). This
 438 lack of divergence demonstrates that, without additional intervention, the language module’s textual
 439 safety layers remain inactive when processing malicious visual inputs.

440 5.2 SECURITY TENSORS CAN HELP ACTIVATE THE INTERNAL “SAFETY LAYERS”!

442 The above analysis confirms that the safety layers of the base LVLM’s language module become
 443 inactive when processing malicious queries containing harmful visual content. This observation
 444 leads to our core question regarding the functionality of safety tensors: Can security tensors δ , when
 445 introduced as additional inputs, effectively re-activate the safety mechanisms of the base LVLM’s
 446 language module in response to harmful visual inputs?

447 To address this question, we evaluate the impact of security tensors on both benign and harmful
 448 image-text inputs. (Importantly, these tensors maintain normal model behavior on safe inputs
 449 while enabling LVLM to detect and reject malicious ones.) We follow a structured evaluation
 450 protocol to assess their effectiveness in activating safety layers under varying input conditions.

451 (i) $N - (N + \delta)$ pairs: For a benign image-text query, we compute the cosine similarity
 452 between the language module’s hidden layer outputs (at the final position) with
 453 and without the insertion of δ .

454 (ii) $M - (M + \delta)$ pairs: Same computation
 455 is applied to malicious image-text queries.

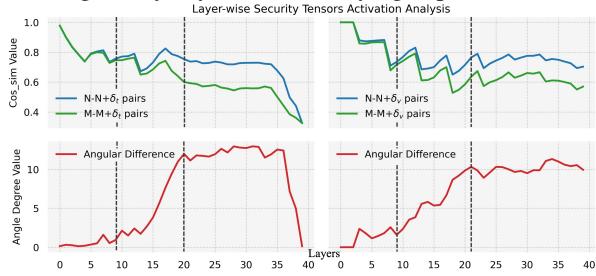
456 By averaging across multiple queries, we
 457 obtain two layer-wise similarity curves
 458 that reflect the output shifts induced by
 459 δ for benign and harmful inputs, respectively.
 460 We conduct this layer-wise analysis
 461 independently for both visual (δ_v) and
 462 textual (δ_t) security tensors, showing in
 463 figure 3.

464 Our findings reveal that both δ_v and δ_t induce less perturbations to the hidden layer outputs for
 465 benign image-text input, while significantly altering those for harmful pairs. This aligns with their
 466 intended behavior: remaining benign for harmless inputs and triggering rejection for harmful ones.

467 Most notably, the gap curves exhibit a consistent pattern across layers for visual inputs: the gap is
 468 negligible in the early layers, sharply increases from a certain layer onwards, peaks shortly thereafter,
 469 and finally decreases or stabilizes. This pattern reflects the emergence of layers where the
 470 model begins to distinguish harmful visual inputs under the influence of δ —we term the layers
 471 range where gap continues to rise the *Security Tensor Activation (STA) layers*. Crucially, we find
 472 that the STA layers for both δ_v and δ_t consistently fall around the range of layers 9–20, perfectly
 473 aligning with the safety layers previously identified in the language module of the LVLM. The exact
 474 overlap between STA layers and textual safety layers provides strong evidence that security tensors
 475 successfully activate and extend the language module’s inherent textual safety mechanisms into the
 476 visual modality, enabling robust detection of malicious visual inputs.

477 6 CONCLUSION

478 Our work is the first to demonstrate that the text-aligned safety mechanisms of LVLMs can be ef-
 479 fectively activated to the visual modality via additional security tensors introduced at the input level.
 480 These tensors act as a bridge between modalities, enabling LVLMs to generalize safety behavior
 481 from text to vision while preserving performance on benign inputs. Overall, our approach not only
 482 improves robustness against visual threats but also provides foundational insights into cross-modal
 483 safety alignment, offering a practical pathway for improving safety in multimodal models.



484 Figure 3: The $N - (N + \delta)$ pairs and $M - (M + \delta)$ pairs analysis in LLaMA-3.2-vision, showing how δ_t and δ_v influences
 485 the model’s internal representations across layers. The gap between the two curves quantifies the degree to
 486 which δ causes the model to differentiate between benign and malicious inputs at each layer.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
489 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
490 report. *arXiv preprint arXiv:2303.08774*, 2023.

491 Krishna Alagiri. Nsfw image classification - resnet50. <https://www.kaggle.com/code/krishnaalagiri/nsfw-image-classification-resnet50/notebook>, 2020.
492 Accessed: [2025-05-09].
493

494 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
495 Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
496 ization, text reading, and beyond, 2023. URL <https://arxiv.org/abs/2308.12966>.
497

498 Yangyi Chen, Karan Sikka, Michael Cogswell, Heng Ji, and Ajay Divakaran. Dress: Instructing
499 large vision-language models to align and interact with humans via natural language feedback. In
500 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
501 pp. 14239–14250, June 2024a.

502 Yangyi Chen, Karan Sikka, Michael Cogswell, Heng Ji, and Ajay Divakaran. Dress: Instructing
503 large vision-language models to align and interact with humans via natural language feedback.
504 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
505 14239–14250, 2024b.
506

507 Jiahui Gao, Renjie Pi, Tianyang Han, Han Wu, Lanqing Hong, Lingpeng Kong, Xin Jiang, and
508 Zhenguo Li. Coca: Regaining safety-awareness of multimodal large language models with con-
509 stitutional calibration. *arXiv preprint arXiv:2409.11365*, 2024.

510 Yichen Gong, Delong Ran, Jinyuan Liu, Conglei Wang, Tianshuo Cong, Anyu Wang, Sisi Duan,
511 and Xiaoyun Wang. Figstep: Jailbreaking large vision-language models via typographic visual
512 prompts, 2025. URL <https://arxiv.org/abs/2311.05608>.
513

514 Yunhao Gou, Kai Chen, Zhili Liu, Lanqing Hong, Hang Xu, Zhenguo Li, Dit-Yan Yeung, James T.
515 Kwok, and Yu Zhang. Eyes closed, safety on: Protecting multimodal llms via image-to-text
516 transformation, 2024. URL <https://arxiv.org/abs/2403.09572>.

517 Andrew Grattafiori, Abhishek Dubey, Anurag Jauhri, et al. The llama 3 herd of models, 2024. URL
518 <https://arxiv.org/abs/2407.21783>.
519

520 Eungyeom Ha, Heemook Kim, and Dongbin Na. Hod: New harmful object detection benchmarks
521 for robust surveillance. In *Proceedings of the IEEE/CVF Winter Conference on Applications of
522 Computer Vision*, pp. 183–192, 2024.

523 Tianyang Han et al. The instinctive bias: Spurious images lead to illusion in mllms. In *Proceedings
524 of EMNLP*, 2024.
525

526 Shuyang Hao, Yiwei Wang, Bryan Hooi, Ming-Hsuan Yang, Jun Liu, Chengcheng Tang, Zi Huang,
527 and Yujun Cai. Tit-for-tat: Safeguarding large vision-language models against jailbreak attacks
528 via adversarial defense, 2025. URL <https://arxiv.org/abs/2503.11619>.

529 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv
530 preprint arXiv:1503.02531*, 2015.
531

532 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
533 2009.

534 Seongyun Lee, Geewook Kim, Jiyeon Kim, Hyunji Lee, Hoyeon Chang, Sue Hyun Park, and
535 Minjoon Seo. How does vision-language adaptation impact the safety of vision language mod-
536 els? In *The Thirteenth International Conference on Learning Representations*, 2025. URL
537 <https://openreview.net/forum?id=eXB5TCrAu9>.
538

539 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning, 2021. URL <https://arxiv.org/abs/2104.08691>.

540 Shen Li, Liuyi Yao, Lan Zhang, and Yaliang Li. Safety layers in aligned large language models: The
 541 key to LLM security. In *The Thirteenth International Conference on Learning Representations*,
 542 2025. URL <https://openreview.net/forum?id=kUH1yPMAn7>.

543

544 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023a. URL
 545 <https://arxiv.org/abs/2304.08485>.

546 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 547 tuning, 2024. URL <https://arxiv.org/abs/2310.03744>.

548

549 Xin Liu, Yichen Zhu, Yunshi Lan, Chao Yang, and Yu Qiao. Query-relevant images jailbreak large
 550 multi-modal models, 2023b.

551 LLaVA-HF Team. LLaVA-1.5-7B-HF: A hugging face implementation of llava-1.5, 2023. URL
 552 <https://huggingface.co/llava-hf/llava-1.5-7b-hf>. Accessed: 2025-05-15.

553

554 Pan Lu et al. Mathvista: Evaluating mathematical reasoning of foundation models in visual contexts.
 555 *arXiv preprint arXiv:2310.02255*, 2023.

556

557 Lucie Charlotte Magister, Jonathan Mallinson, Jakub Adamek, Eric Malmi, and Aliaksei Severyn.
 558 Teaching small language models to reason. *arXiv preprint arXiv:2212.08410*, 2022.

559

560 Meta AI. Llama-3.1-8b-instruct. <https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>, 2024a. Accessed: 2025-05-10.

561

562 Meta AI. Llama-3.2-11b-vision. <https://huggingface.co/meta-llama/Llama-3.2-11B-Vision>, 2024b. Accessed: 2025-05-10.

563

564 Renjie Pi, Tianyang Han, Jianshu Zhang, Yueqi Xie, Rui Pan, Qing Lian, Hanze Dong, Jipeng
 565 Zhang, and Tong Zhang. Mllm-protector: Ensuring mllm's safety without hurting performance,
 566 2024. URL <https://arxiv.org/abs/2401.02906>.

567

568 Christian Schlarbmann and Matthias Hein. On the adversarial robustness of multi-modal foundation
 569 models, 2023. URL <https://arxiv.org/abs/2308.10741>.

570

571 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 572 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
 573 https://github.com/tatsu-lab/stanford_alpaca, 2023.

574

575 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 576 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
 577 Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Cas-
 578 bon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xi-
 579 aohai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Cole-
 580 man, Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry,
 581 Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,
 582 Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe
 583 Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa
 584 Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András
 585 György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia
 586 Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,
 587 Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
 588 Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivaku-
 589 mar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eu-
 590 gene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
 591 Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian
 592 Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wi-
 593 eting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh,
 594 Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine,
 595 Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael
 596 Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Ni-
 597 lay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Ruben-
 598 stein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya

594 Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu,
 595 Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti
 596 Sheth, Siim Põder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi
 597 Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry,
 598 Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
 599 Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat
 600 Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas
 601 Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Bar-
 602 rral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam
 603 Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
 604 Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier
 605 Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot.
 606 Gemma 3 technical report, 2025. URL <https://arxiv.org/abs/2503.19786>.

607 Xiyao Wang, Juhai Chen, Zhaoyang Wang, Yuhang Zhou, Yiyang Zhou, Huaxiu Yao, Tianyi Zhou,
 608 Tom Goldstein, Parminder Bhatia, Furong Huang, and Cao Xiao. Enhancing visual-language
 609 modality alignment in large vision language models via self-improvement, 2025a. URL <https://arxiv.org/abs/2405.15973>.

610 Yu Wang, Xiaogeng Liu, Yu Li, Muhan Chen, and Chaowei Xiao. Adashield: Safeguarding multi-
 611 modal large language models from structure-based attack via adaptive shield prompting, 2024a.
 612 URL <https://arxiv.org/abs/2403.09513>.

613 Yubo Wang, Chaohu Liu, Yanqiu Qu, Haoyu Cao, Deqiang Jiang, and Linli Xu. Break the visual
 614 perception: Adversarial attacks targeting encoded visual tokens of large vision-language models,
 615 2024b. URL <https://arxiv.org/abs/2410.06699>.

616 Yubo Wang, Jianting Tang, Chaohu Liu, and Linli Xu. Tracking the copyright of large vision-
 617 language models through parameter learning adversarial images, 2025b. URL <https://arxiv.org/abs/2502.16593>.

618 Boyi Wei, Kaixuan Huang, Yangsibo Huang, Tinghao Xie, Xiangyu Qi, Mengzhou Xia, Prateek
 619 Mittal, Mengdi Wang, and Peter Henderson. Assessing the brittleness of safety alignment via
 620 pruning and low-rank modifications. *arXiv preprint arXiv:2402.05162*, 2024.

621 Shicheng Xu, Liang Pang, Yunchang Zhu, Huawei Shen, and Xueqi Cheng. Cross-modal safety
 622 mechanism transfer in large vision-language models. In *The Thirteenth International Confer-
 623 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=45rvZkJbuX>.

624 Zonghao Ying, Aishan Liu, Tianyuan Zhang, Zhengmin Yu, Siyuan Liang, Xianglong Liu, and
 625 Dacheng Tao. Jailbreak vision language models via bi-modal adversarial prompt, 2024. URL
 626 <https://arxiv.org/abs/2406.04031>.

627 Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
 628 and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. In
 629 *International conference on machine learning*. PMLR, 2024.

630 Xiang Yue et al. Mmmu: A massive multi-discipline multimodal understanding and reasoning
 631 benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 632 Pattern Recognition (CVPR)*, 2024.

633 Yongting Zhang, Lu Chen, Guodong Zheng, Yifeng Gao, Rui Zheng, Jinlan Fu, Zhenfei Yin, Senjie
 634 Jin, Yu Qiao, Xuanjing Huang, Feng Zhao, Tao Gui, and Jing Shao. Spa-vl: A comprehensive
 635 safety preference alignment dataset for vision language model, 2025. URL <https://arxiv.org/abs/2406.12030>.

636 Ziwei Zheng, Junyao Zhao, Le Yang, Lijun He, and Fan Li. Spot risks before speaking! unravelling
 637 safety attention heads in large vision-language models, 2025. URL <https://arxiv.org/abs/2501.02029>.

638 Yongshuo Zong, Ondrej Bohdal, Tingyang Yu, Yongxin Yang, and Timothy Hospedales. Safety
 639 fine-tuning at (almost) no cost: A baseline for vision large language models, 2024. URL <https://arxiv.org/abs/2402.02207>.

648 **A APPENDIX**
649650 **A.1 EXPERIMENT**
651652 **A.1.1 HYPERPARAMETER SETTINGS**
653

Security Tensors Settings. Both δ_v and δ_t are initialized as zero-mean Gaussian perturbations with minor standard deviation, ensuring minimal initial impact on model behavior. Notably, as δ_v is applied as a perturbation directly to the pre-processed image, we impose a threshold λ to constrain its magnitude, ensuring controllable disruption to the original pre-processed image distribution.

Table 3 presents the hyperparameter settings for training δ_v and δ_t across different LVLMs. The dataset was shuffled during training, and all optimizers employed were AdamW. When trained with a batch size of 1 under mixed precision, the model consumes approximately 20 GB of GPU memory. Using an A100 GPU, each training epoch takes around 3 minutes to complete.

662 Table 3: The Hyperparameter Settings of different LVLMs when training δ_v and δ_t .
663

	LLaMA-3.2-11B-Vision		Qwen-VL-Chat		LLaVA-1.5	
	δ_t	δ_v	δ_t	δ_v	δ_t	δ_v
Learning rate	8e-4	16e-4	8e-4	16e-4	8e-4	16e-4
Training Epochs	400	400	400	500	300	400
batch size	1	1	1	1	1	1

For each LVLM trained δ_v , the thresholds are all set to 1. The threshold for δ_v is not set to a smaller value because our dataset comprises multiple mutually constraining components, enabling black-box training to adaptively regulate the values of the trained images and prevent overfitting to excessively large magnitudes. We observed that the mean values of δ_v after adaptive training across different LVLMs consistently converged to 0, with variances remaining within a reasonable range.

Additionally, each text query in the training data is first wrapped with the Alpaca prompt template Taori et al. (2023) before training, and the same procedure is applied during the testing phase. This helps the model better understand the task intent.

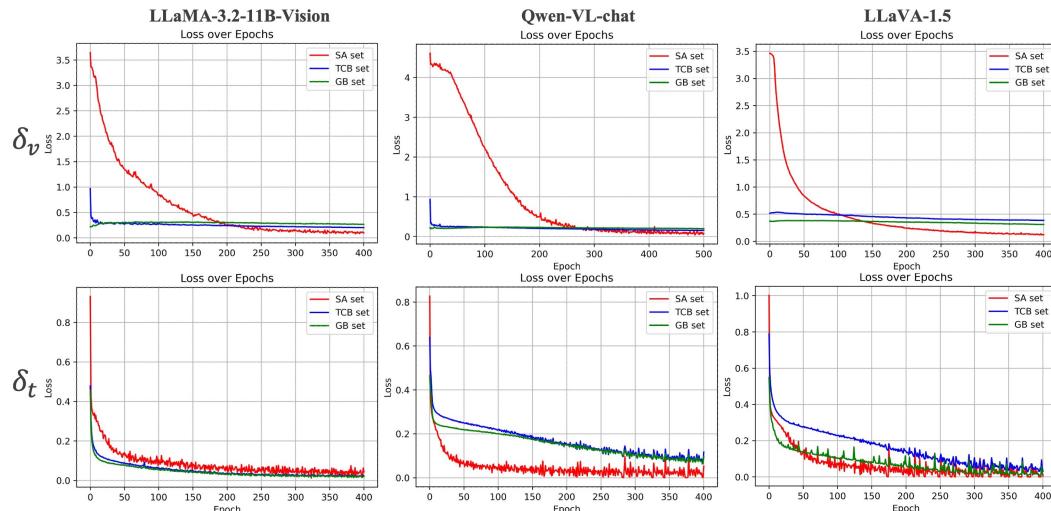
680 **A.1.2 TRAINING LOSS**
681

Figure 4: Training loss curves for δ_v and δ_t across LVLMs. Rows correspond to visual and textual tensor training, with epochs on the horizontal axis and loss values on the vertical axis. Each point on the curve represents the average loss across the SA, TCB, and GB sets within the corresponding epoch.

We present the average loss curves per epoch for the SA, TCB, and GB sets during the training of δ_v and δ_t across various models, as shown in Figure 4.

We analyze the loss trends as follows: during the training of δ_v , the initial loss values for the TCB and GB sets are relatively low and decrease steadily. This is expected, as both sets are optimized to match the model’s original output logits for their respective inputs, serving as harmlessness constraints that guide δ_v to minimize disruption to benign queries. In contrast, the SA set begins with a higher loss, typically converging after 300 to 400 training epochs.

For δ_t , we observe a significantly faster convergence across all sets compared to δ_v . Notably, the cross-entropy loss on the SA set drops below 1 after just one epoch. This rapid convergence highlights the superior optimization efficiency and representational capacity of textual security tensors.

A.1.3 INTUITIVE PRESENTATION OF VISUAL SECURITY TENSORS ON IMAGES

Our visual Security Tensor δ_v is designed as a learnable, universal perturbation applied directly to the *preprocessed image representation* rather than the raw image space. This design ensures that δ_v is compatible with inputs of arbitrary image resolutions.

To intuitively understand the nature of δ_v , we visualize the image reconstructions generated from perturbed and unperturbed feature representations (Figure 5 for LLaMA 3.2 and Figure 6 for LLava 1.5). Qualitatively, the perturbed features preserve the overall semantic structure of the original image, with no obvious visual noise or distortion. This suggests that the learned perturbation remains imperceptible in the pixel space and does not disrupt the image’s visual integrity.

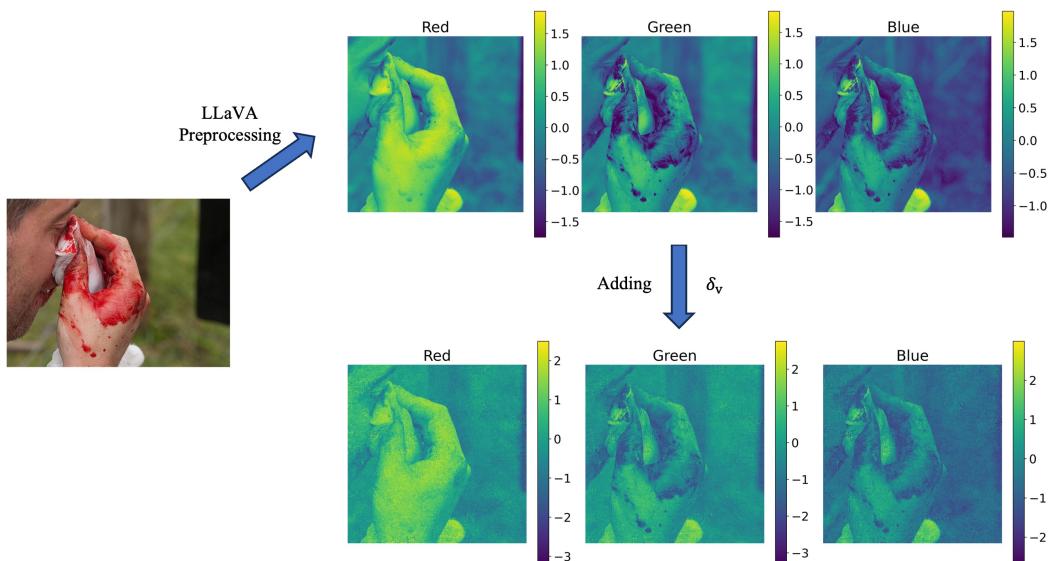


Figure 6: This figure shows the effect of the Visual Security Tensor on LLava 1.5’s preprocessed image representations. The top image shows the original input. After preprocessing by the LLM, the image is transformed into the representation shown in the bottom left. The bottom right shows the result of adding the visual security tensor to the preprocessed image representation. As illustrated, the addition of the visual tensor preserves the overall visual semantics without introducing noticeable changes.

A.1.4 RELATIONSHIP TO PEFT

Although our textual security tensor δ_t is inserted as a virtual token in the embedding space—similar in form to soft prompts—our approach is fundamentally different from parameter-efficient fine-tuning (PEFT) methods such as LoRA, adapters, or prompt tuning, which are typically designed for downstream task adaptation.

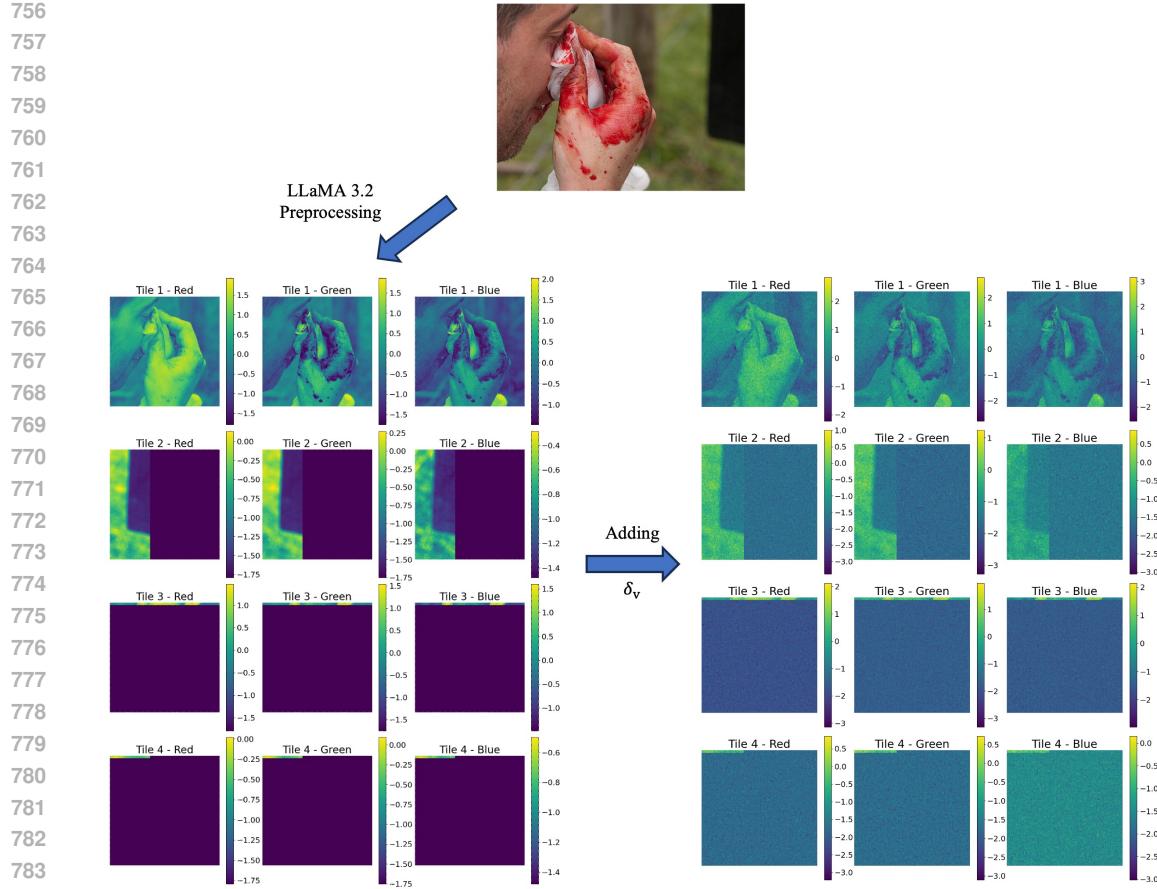


Figure 5: This figure shows the effect of the Visual Security Tensor on LLaMA-3.2-11B’s preprocessed image representations. The top image shows the original input. After preprocessing by the LVLM, the image is transformed into the representation shown in the bottom left. The bottom right shows the result of adding the visual security tensor to the preprocessed image representation. As illustrated, the addition of the visual tensor preserves the overall visual semantics without introducing noticeable changes.

First, we do not update any model-internal parameters or introduce trainable modules into the model architecture. Both δ_t and δ_v are input-space tensors optimized offline and injected at inference time, leaving the entire LVLM parameter-identical to the original, pretrained model.

Second, our goal is not to adapt the model to a new task, but to enable modality-bridging safety activation: we design δ_t and δ_v as universal perturbations that transfer the pre-existing safety alignment in the language modality to visual inputs, without requiring task-specific tuning or labeled downstream data.

Finally, our approach treats the LVLM as a black box throughout the training and deployment process, ensuring maximum compatibility with proprietary or API-based models where access to model internals is restricted. This black-box compatibility further distinguishes our method from conventional PEFT techniques, which typically rely on full or partial access to model weights.

A.1.5 ON THE CHOICE OF LOSS FUNCTIONS FOR OPTIMIZING THE SECURITY TENSOR

Problem setting and notation. Let \mathcal{M}_0 denote the frozen base LVLM and \mathcal{M}_δ denote the same model augmented by a security tensor $\delta \in \{\delta_t, \delta_v\}$ injected on the text or vision side. For an input (\mathbf{v}, \mathbf{x}) (image, text) with output sequence $\mathbf{y} = (y_1, \dots, y_T)$, we write

$$p_0(y_t | y_{<t}, \mathbf{v}, \mathbf{x}) \triangleq \mathcal{M}_0(\cdot), \quad p_\delta(y_t | y_{<t}, \mathbf{v}, \mathbf{x}) \triangleq \mathcal{M}_\delta(\cdot),$$

810 and use $\tilde{\mathbf{y}}$ to denote a fixed refusal template (e.g., “I cannot assist with that
 811 request.”) tokenized as $(\tilde{y}_1, \dots, \tilde{y}_{\tilde{T}})$. Training is performed over three disjoint subsets introduced in §3.3.2:

- 814 • **SA (Safety Activation):** harmful image–text pairs with supervision to refuse.
- 815 • **GB (General Benign):** benign image–text pairs; preserve the base model’s helpful behavior.
- 816 • **TCB (Text Contrast Benign):** benign images paired with texts that are surface-similar to
 817 SA prompts; force vision-triggered rather than text-pattern triggering.

819 We optimize δ by minimizing

$$\begin{aligned} 820 \mathcal{L}(\delta) = & \lambda_{\text{SA}} \mathbb{E}_{(\mathbf{v}, \mathbf{x}) \sim \text{SA}} [\mathcal{L}_{\text{CE}}^{\text{refuse}}(\mathbf{v}, \mathbf{x}; \delta)] \\ 821 & + \lambda_{\text{GB}} \mathbb{E}_{(\mathbf{v}, \mathbf{x}) \sim \text{GB}} [\mathcal{L}_{\text{KL}}^{\text{distill}}(\mathbf{v}, \mathbf{x}; \delta)] \\ 822 & + \lambda_{\text{TCB}} \mathbb{E}_{(\mathbf{v}, \mathbf{x}) \sim \text{TCB}} [\mathcal{L}_{\text{KL}}^{\text{distill}}(\mathbf{v}, \mathbf{x}; \delta)]. \end{aligned} \quad (8)$$

825 with non-negative weights $\lambda_{\text{SA}}, \lambda_{\text{GB}}, \lambda_{\text{TCB}}$. Crucially, SA uses Cross-Entropy to a one-hot refusal
 826 target, while GB/TCB use KL Divergence to the base model distribution. This asymmetry is the key
 827 to activating safety on harmful cases while anchoring the original capability on benign cases.

828 **Cross-Entropy on SA: single-label fitting for refusal.** On SA, our goal is to induce a deterministic
 829 refusal response (fixed semantic and tokenization). Thus we use the sequence-level cross-entropy
 830 with the refusal template $\tilde{\mathbf{y}}$:

$$\begin{aligned} 832 \mathcal{L}_{\text{CE}}^{\text{refuse}}(\mathbf{v}, \mathbf{x}; \delta) = & - \sum_{t=1}^{\tilde{T}} \log p_{\delta}(\tilde{y}_t \mid \tilde{y}_{<t}, \mathbf{v}, \mathbf{x}). \end{aligned} \quad (9)$$

835 Why use Cross-Entropy here?

- 836 • **Single-label semantics.** Refusal is a fixed-form decision—we desire a stable, auditable
 837 reply (policy compliance), not a distributional mimic of \mathcal{M}_0 on harmful input. CE directly
 838 maximizes the probability of the target tokens.
- 839 • **Strong safety activation.** CE supplies a strong, low-variance signal that shifts the conditional mode toward refusal, which is essential when harmful visual evidence is present yet
 840 the original text-aligned safety may not be cross-modally active.
- 841 • **Auditability & controllability.** A fixed template facilitates evaluation (e.g., harmless-rate
 842 via exact/semantic match) and product integration.

845 **KL on GB/TCB: distribution alignment for capability preservation** On GB and TCB, our goal
 846 is to preserve \mathcal{M}_0 ’s benign behavior while introducing δ . Instead of supervising to a single label,
 847 we minimize the token-wise forward KL from the base distribution (teacher) to the student with δ :

$$\begin{aligned} 849 \mathcal{L}_{\text{KL}}^{\text{distill}}(\mathbf{v}, \mathbf{x}; \delta) = & \sum_{t=1}^T \text{KL}(p_0(\cdot \mid y_{<t}, \mathbf{v}, \mathbf{x}) \parallel p_{\delta}(\cdot \mid y_{<t}, \mathbf{v}, \mathbf{x})). \end{aligned} \quad (10)$$

852 (We implement p_0 with stop-gradient; optionally a temperature $\tau > 1$ can soften p_0 .)

853 Why use KL here?

- 854 • **Full-distribution anchoring.** KL encourages p_{δ} to match the entire output distribution
 855 of \mathcal{M}_0 on benign inputs, thereby maintaining style, uncertainty, and diversity—properties
 856 that single-label CE would collapse.
- 857 • **Benign fidelity & low FRR.** By aligning to p_0 rather than a hard label, δ learns to be
 858 functionally inert on benign cases, which empirically reduces false rejections (FRR) and
 859 preserves MM-Vet scores.
- 860 • **Text-pattern disentanglement via TCB.** TCB shares surface-level phrasing with SA but
 861 is semantically benign. KL on TCB explicitly penalizes any tendency of δ to trigger re-
 862 fusal from textual patterns alone, forcing the model to rely on visual evidence for safety
 863 activation.

864 **Putting them together: gradient intuition.** CE on SA shapes p_δ to put nearly all mass on the
 865 refusal tokens \hat{y} , producing large, directed gradients that “turn on” the safety mechanism when
 866 harmful visual features are present. Conversely, KL on GB/TCB penalizes any deviation from p_0
 867 across all tokens, producing small corrective gradients that “turn off” the effect of δ when inputs
 868 are benign or text-patterns are misleading. This asymmetric objective is what enables cross-modal
 869 safety activation with capability preservation.

870 **Summary.** CE on SA is chosen for its deterministic target-fitting and strong **mode-seeking** behav-
 871 ior required by refusal policies; KL on GB/TCB is chosen for **distributional anchoring** that pre-
 872 serves benign capabilities and explicitly **disentangles** visual triggers from text patterns. Together,
 873 Eq. 8 realizes a minimal, parameter-free mechanism—via δ —that activates text-aligned safety cross-
 874 modally to vision while maintaining the original helpfulness of \mathcal{M}_0 .

875

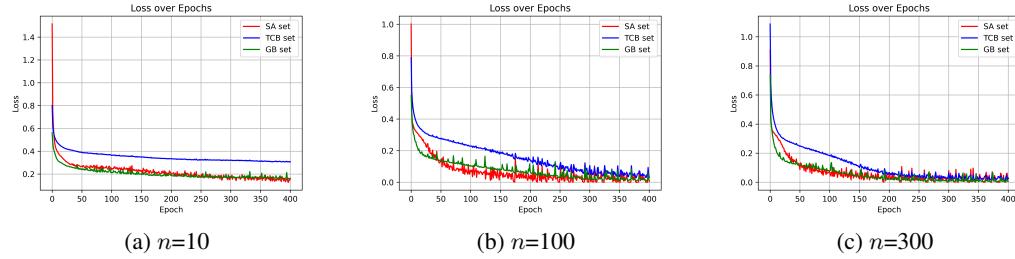
876 A.1.6 NUMBER OF VIRTUAL TOKENS IN TEXTUAL SECURITY TENSORS

877

878

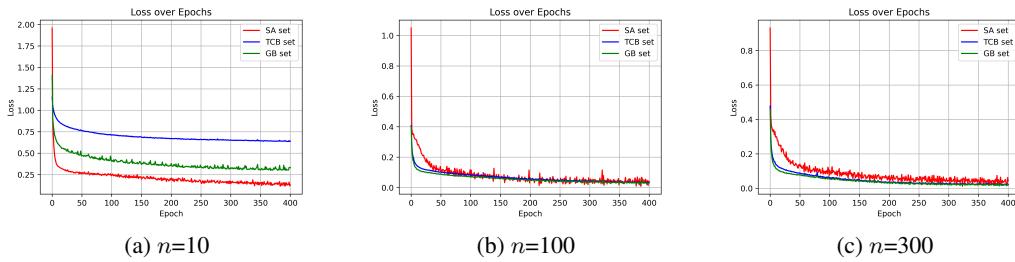
879 In this section, we analyze the impact of the hyperparameter n , which controls the number of virtual
 880 tokens in δ_t , on the performance of textual security tensors. We present the training loss curves
 881 of LLaMA-3.2-11B-Vision (Meta AI, 2024b; Grattafiori et al., 2024) and LLaVA-1.5 (Liu et al.,
 882 2024; LLaVA-HF Team, 2023) under different values of n (10, 100, 300), as shown in Figure 7 and
 883 Figure 8.

884

894 Figure 7: Loss Curves of LLaVA-1.5 δ_t Training Under $n = 10, 100$, and 300 .

895

896

904 Figure 8: Loss Curves of LLaMA-3.2-11B-Vision δ_t Training Under $n = 10, 100$, and 300 .

905

906

907 We observe that when the number of virtual tokens is set to $n = 10$, the loss for each dataset split
 908 fails to drop below 0.1. For LLaVA-1.5, even after 400 training epochs, the losses on the SA and GB
 909 sets only decrease to around 0.2. For LLaMA-3.2-11B-Vision, while the SA set’s loss eventually
 910 reaches 0.2, the losses for the benign sets remain significantly higher.

912

913

914

915

916

917

918 Most notably, for both models, although the loss on the SA set decreases rapidly, the TCB set
 919 consistently shows the slowest convergence and the highest final loss. Given that the TCB set is
 920 intentionally designed to share similar textual patterns with the SA set, this observation suggests
 921 that when $n = 10$, the representational capacity of the learnable tensors is too limited. As a result,
 922 the model tends to overfit to the easily learnable textual features in the SA set that are strongly
 923 correlated with refusal outputs. Since the TCB set shares similar textual structures but is paired with
 924 non-refusal outputs, this overfitting leads to poor generalization and prevents effective loss reduction

918 on the TCB set. This further underscores the necessity of the TCB set: a high loss on the TCB set
 919 indicates that the tensors are overfitting to the textual features of the SA set during training.
 920

921 When $n = 100$ or 300 , the training loss decreases rapidly and converges to a low value, indicating
 922 effective optimization. In these cases, the performance of the resulting tensors needs to be evaluated
 923 manually. In theory, larger models that support longer maximum token lengths can accommodate
 924 larger values of n .

925 For LLaMA-3.2, the average HR achieved by δ_t is 64.3 when $n = 100$, and increases to 81.89 when
 926 $n = 300$ —a modest improvement. One possible explanation, based on the loss curves, is that when
 927 $n = 300$, the TCB set’s loss decreases faster and to a lower value than that of the SA set. Given the
 928 design of these datasets, once one set (e.g., TCB or SA) is fit with very low loss, it becomes more
 929 difficult for the other set to reduce its loss in subsequent training, as δ_t has already overfitted to the
 930 textual features of the first. In this case, further reduction in the SA set’s loss is more likely to result
 931 from the tensor learning visual features rather than relying on shared text patterns.

932 A.1.7 SAFETY-NEURON ACTIVATION ANALYSIS OF SECURITY TENSORS

934 To provide other perspective evidence that security tensors activates textual safety-related mecha-
 935 nism, we conduct a neuron-level analysis based on the safety-critical neuron framework of (Wei
 936 et al., 2024), and adapt it to LLaMA-3.2-11B-Vision.

937 **Background: Safety-Critical Neurons.** It is shown that the safety behavior of aligned LLMs can
 938 be largely attributed to a small, sparse set of safety-critical neurons. Concretely, they compute
 939 behavior-specific importance scores for each neuron on (i) a safety dataset (harmful prompts with
 940 safe refusals) and (ii) a utility dataset (general instruction-following without safety content), and
 941 then identify neurons that are important for safety but not for utility. A key empirical finding is that
 942 masking only a few percent of such neurons can reduce refusal rates in text-only settings from over
 943 90% to around 10%, while leaving general capabilities largely intact.

944 We follow the SNIP-based neuron attribution procedure and reproduce it on the text module of
 945 LLaMA-3.2-11B-Vision.

946 **Datasets.** We construct two text-only datasets: **safety dataset**: consisting of harmful instructions
 947 paired with the model’s safe refusal responses (analogous to the AdvBench-style refusal data). **util-
 948 ity dataset**: consisting of general instruction-following pairs filtered to remove safety-related con-
 949 tent (similar in spirit to Alpaca-Cleaned (Taori et al., 2023)).

950 **Neuron importance estimation.** For each linear layer with weight matrix W , we compute SNIP
 951 importance scores on the two datasets separately. For a given example x with loss $L(x)$ (conditional
 952 negative log-likelihood of the response given the prompt), the importance of entry W_{ij} is
 953

$$954 I(W_{ij}, x) = |W_{ij} \cdot \nabla_{W_{ij}} L(x)|, \quad (11)$$

955 and we average $I(W_{ij}, x)$ over all examples in the dataset. We then compare scores per row (per
 956 output neuron) rather than globally across the entire matrix.

958 **Set-difference selection of safety-critical neurons.** Let $S_s(q)$ denote, for each layer, the per-row
 959 top- $q\%$ neurons under the **safety** importance scores, and $S_u(p)$ the per-row top- $p\%$ neurons under
 960 the **utility** scores. We then define the *textual safety-critical neuron set* as

$$961 S_{\text{safe}} = S_s(q) \setminus S_u(p), \quad (12)$$

962 which captures neurons that are highly important for safety but not for general utility. We perform a
 963 small grid search over (p, q) in the regime (where sparsity remains low and utility is preserved), and
 964 select a configuration that yields an actual sparsity of approximately 5% of decoder neurons. We
 965 verify that masking S_{safe} in text-only refusal tasks substantially reduces refusal rates while keeping
 966 general accuracy largely unchanged, consistent with the original observations of (Wei et al., 2024).

967 **Ablation on Visually Harmful Inputs.** We then use S_{safe} to test whether the visual safety improve-
 968 ments brought by our security tensors are mediated by the same textual safety-critical neurons.

970 **Experiment 1: Baseline LVLM without security tensors.** We evaluate LLaMA-3.2-11B-Vision
 971 on 200 visually harmful inputs where the malicious intent is primarily inside the image. For each
 972 input, we run two inference settings:

972 (i). **All neurons enabled**: standard inference with the full model;
 973
 974 (ii). **Safety neurons masked**: during the forward pass, we set the activations of all neurons in S_{safe}
 975 to zero (i.e., we hard-mask these neurons at inference time).

976 The refusal rate changes only marginally, from about 24% (all neurons) to about 13% (safety neurons
 977 masked). This indicates that, in the original LVLM, the textual safety-critical neurons identified in
 978 the text-only setting are not effectively activated when harmful information is embedded in the
 979 image; whether they are enabled or disabled has little impact on visual safety behavior.

980 **Experiment 2: LVLM with security tensors.** We repeat the same experiment on the same 200
 981 visually harmful inputs, but now with our learned security tensors enabled during inference. Under
 982 this setting, we again compare:

983 (i). **All neurons enabled** (with security tensors active);
 984
 985 (ii). **Safety neurons masked** (with security tensors active but S_{safe} zeroed out).

986 In this case, we observe a dramatic difference:

988 • with all neurons enabled, the refusal rate increases to around 84%;
 989
 990 • when masking S_{safe} at inference time, the refusal rate drops back to about 16%, close to the
 991 baseline LVLM visual safety level.

992 **Interpretation.** Experiment 1 shows that, without our method, the LVLM’s visual safety behavior
 993 does not rely on the textual safety-critical neurons identified from text-only refusals. In contrast,
 994 Experiment 2 demonstrates that, once security tensors are introduced, the visual refusal performance
 995 becomes highly dependent on S_{safe} : disabling these neurons almost completely erases the safety
 996 gains. This provides direct, neuron-level causal evidence that our security tensors activate and reuse
 997 the textual safety-critical neurons identified by (Wei et al., 2024), and that the improved visual safety
 998 can be explained as a transfer of safety behavior mediated by this shared neuronal substrate.

1000 A.1.8 OTHER EXPERIMENTS AND ANALYSIS

1001 To further examine the impact of the proposed security tensors δ_v and δ_t on domain-specific reasoning
 1002 abilities, additional experiments are conducted on the MathVista testmini dataset Lu et al. (2023)
 1003 for mathematical reasoning and the MMMU benchmark Yue et al. (2024) for multi-discipline com-
 1004 monsense reasoning. For each LVLM, performance is reported under three configurations: (i) the
 1005 base model without security tensors, (ii) with visual-side security tensors δ_v , and (iii) with text-side
 1006 security tensors δ_t . The results are summarized in Table 4. All numbers are accuracies (%).

1007
 1008 Table 4: Performance of different LVLMs on mathematical reasoning (MathVista testmini) and
 1009 multi-discipline commonsense reasoning (MMMU), with and without the proposed security tensors
 1010 δ_v and δ_t .

Benchmark	Qwen-VL-Chat			LLaVA-1.5			LLaMA-3.2-11B		
	Base	δ_v	δ_t	Base	δ_v	δ_t	Base	δ_v	δ_t
MMMU	35.9	36.0	36.2	36.4	35.4	35.8	50.7	50.2	50.6
MathVista (testmini)	36.2	35.5	35.9	27.6	27.5	28.0	51.5	50.5	51.2

1017 Across all three LVLMs, introducing δ_v or δ_t at inference time does not lead to systematic degra-
 1018 dation of mathematical or commonsense reasoning performance. The observed changes on both
 1019 benchmarks remain within a small range (approximately within ± 1 absolute percentage point), with
 1020 fluctuations in both positive and negative directions. This magnitude of variation is consistent with
 1021 normal evaluation noise and is comparable to the minor changes typically induced by adding a
 1022 harmless system prompt or other benign inference-time modifications. These results indicate that
 1023 the proposed security tensors preserve the models’ mathematical and commonsense reasoning capa-
 1024 bilities while providing the desired safety alignment.

1025 Discussion: Relation to Instinctive Bias and Scope of the Proposed Method

1026 This work targets a capability dimension that is fundamentally different from the *Instinctive Bias*
 1027 phenomenon investigated by Han et al. Han et al. (2024). For an LVLM that has undergone text-side
 1028 safety alignment, its behavior can be conceptually decomposed into two response pathways:
 1029

1030 **Safety pathway:** When harmful content is detected, the model activates its safety alignment mech-
 1031 anism and produces a refusal response.

1032 **Normal pathway:** When the input is judged to be safe, the model generates a substantive answer
 1033 without invoking safety constraints.

1034 A practical failure case arises when the harmful information exists solely in the visual modality.
 1035 Under such conditions, the LVLM often remains on the normal answering pathway because the
 1036 harmful content is not recognized by the visual encoder. As a result, the safety pathway is not
 1037 triggered, leading to a failure of refusal. The proposed visual- and text-side security tensors, δ_v and
 1038 δ_t , are explicitly designed to address this issue. By perturbing the input representation, the tensors
 1039 shift “inputs containing harmful visual content” across the decision boundary separating the normal
 1040 and safety pathways, thereby reactivating the safety alignment ability that was originally sensitive
 1041 only to harmful text.

1042 In contrast, the Instinctive Bias phenomenon Han et al. (2024) concerns errors *within* the normal
 1043 answering pathway. Misleading but non-harmful images induce hallucinated or incorrect answers,
 1044 and the objective is to transform “hallucination \rightarrow incorrect answer” into “reduced hallucination
 1045 \rightarrow more accurate answer” without invoking refusal behavior. Thus, this problem does not involve
 1046 switching between refusal and normal response modes and is conceptually distinct from the safety
 1047 boundary targeted in our work.

1048 The data construction and loss formulation in our method (SA/GB/TCB with CE/KL objectives) are
 1049 explicitly designed around the safety refusal boundary. We do not explicitly model hallucination
 1050 phenomena or evaluate robustness within the normal answering pathway. Addressing hallucination
 1051 typically requires improving factuality, reasoning stability, or counterfactual calibration rather than
 1052 modulating refusal behavior. Therefore, the proposed security tensors are not claimed to directly
 1053 address hallucination-related challenges.

1054 Nevertheless, the underlying “input perturbation / control vector” framework is flexible and could, in
 1055 principle, be extended to hallucination mitigation. Future work could introduce targeted annotations
 1056 and corresponding loss functions for hallucination control, enabling the learning of a separate control
 1057 vector that modulates factuality or robustness while staying within the normal answering pathway.

1058 Training-Time Parameter and Computational Overhead

1059 This work does not fine-tune any parameters of the underlying LVLM. Instead, it introduces two
 1060 small trainable tensors that operate purely in the *input space*: a visual-side security vector δ_v and a
 1061 text-side security vector δ_t . Both tensors are optimized while keeping all LVLM weights frozen.

1062 For illustration, consider the case of LLaVA-1.5-7B:

1063 **Visual-side security tensor δ_v .** Applied directly to the preprocessed image embedding, with size
 1064 $3 \times 336 \times 336 = 338,688$ parameters.

1065 **Text-side security tensor δ_t .** Implemented as 100 virtual tokens, each of dimension 4096, giving
 1066 $100 \times 4096 = 409,600$ parameters.

1067 Relative to a 7B-parameter LVLM, these components account for only 0.0048%(δ_v) and
 1068 0.0059%(δ_t), which are on the order of 10^{-3} of the model’s total parameter size. Similar ratios
 1069 hold for other LVLMs such as Qwen-VL-Chat and LLaMA-3.2-11B-Vision. Table 5 summarizes
 1070 the parameter proportion of δ_v and δ_t across models.

1071 These results demonstrate that the training-time computational and memory overhead of our method
 1072 is extremely small. The optimization process involves only a tiny number of parameters, while the
 1073 LVLM itself remains entirely frozen, ensuring both efficiency and practical deployability.

1074 Combination with Pre-Processing Defenses.

1075 To investigate whether the proposed security tensors can complement existing pre-processing de-
 1076 fenses, we conducted additional experiments during the rebuttal phase using ECSO Gou et al. (2024)

1080 Table 5: Proportion of trainable security tensor parameters relative to the full LVLM parameter size.
1081

Model	LLaVA-1.5	Qwen-VL-Chat	LLaMA-3.2-11B-Vision
δ_v / LVLM (%)	0.0048	0.0063	0.016
δ_t / LVLM (%)	0.0059	0.0043	0.012

1085 Table 6: Harmless Rate (HR, %) under pre-processing defense (ECSO), security tensors (δ_v , δ_t),
1086 and their combinations. Higher is better.
1087

Model	Base	ECSO	δ_v	δ_t	ECSO+ δ_v	ECSO+ δ_t
LLaVA-1.5	7.7	37.3	49.5	52.0	56.2	55.6
Qwen-VL-Chat	19.0	51.2	64.5	65.6	72.3	74.0
LLaMA-3.2-11B-Vision	24.8	68.9	84.2	81.9	88.7	89.4

1093 as a representative method. ECSO performs image-to-text transformation, converting visual content into descriptive textual input before feeding it to the LVLM. This constitutes an external *pre-1094 processing* defense. In contrast, our security vectors δ_v and δ_t function as internal control signals 1095 applied during the LVLM’s forward pass. These two mechanisms are inherently complementary and 1096 can be composed sequentially.
1097

1098 Following the same malicious visual test set and HR evaluation protocol described in the main paper,
1099 we tested the Harmless Rate (HR, %) for each LVLMs in Table 6.
1100

1101 Across all three LVLMs, combining ECSO with either δ_v or δ_t consistently achieves the highest HR
1102 among all tested settings. The improvement over ECSO alone and over the security tensors alone
1103 indicates that these methods address different failure modes and provide complementary benefits.
1104

1105 These results support the conclusion that the proposed security tensor framework integrates naturally
1106 with pre-processing defenses such as ECSO, and that the combination yields additional gains
1107 consistent with a defense-in-depth strategy.
1108

A.1.9 SCALING EXPERIMENTS ON GEMMA-3-PT MODELS OF DIFFERENT SIZES

1110 To evaluate the scalability and robustness of the proposed security tensors across LVLMs of different
1111 capacities, we trained visual-side and text-side tensors (δ_v and δ_t) on gemma-3-4B-pt,
1112 gemma-3-12B-pt, and gemma-3-27B-pt (Team et al., 2025). The training setup exactly
1113 matches the configuration used for LLaMA-3.2-11B-Vision in the main paper, ensuring full compatibility.
1114

1115 The aggregate results are summarized in Table 7. Full numeric breakdowns are provided in the
1116 revised appendix.
1117

1118 Table 7: Scaling results on gemma-3-pt LVLMs of different sizes. Metrics include Harmless Rate
1119 (HR) on seen and unseen malicious categories, False Rejection Rate (FRR) on benign inputs, and
1120 MM-Vet accuracy. Models are evaluated under the base configuration and with text-side (ST- δ_t) or
1121 visual-side (ST- δ_v) security tensors.
1122

Model	Setting	HR(Seen)	HR(Unseen)	FRR	MM-Vet
gemma-3-4B-pt	Base	17.6	18.2	0.25	49.3
	ST- δ_t	72.3	74.0	0.75	49.2
	ST- δ_v	74.4	76.8	1.50	48.9
gemma-3-12B-pt	Base	25.8	25.0	0.50	57.6
	ST- δ_t	80.8	83.6	1.00	57.0
	ST- δ_v	82.2	83.5	1.25	57.2
gemma-3-27B-pt	Base	28.4	27.8	0.25	65.2
	ST- δ_t	85.7	87.2	0.50	65.3
	ST- δ_v	86.8	88.4	0.75	64.7

1130 Across model sizes from 4B to 27B, both ST- δ_t and ST- δ_v yield large, consistent improvements in
1131 refusal behavior for harmful visual inputs, with gains observed on both seen and unseen categories.
1132 Meanwhile, benign-task behavior remains stable: FRR increases only modestly, and MM-Vet scores
1133 remain within normal fluctuations of the base models.
1134

1134 These findings provide systematic evidence that the proposed security tensor framework scales ef-
 1135 fectively and reliably across LVLMs of varying capacities, from small (4B) to large (27B). The
 1136 improvements in harmful-input safety are consistent, substantial, and achieved without compromis-
 1137 ing model utility.

1138

1139

A.1.10 HARMLESS RATE (HR) EVALUATION PROTOCOL

1140

1141 The Harmless Rate (HR) reported in the main paper is evaluated via semantic refusal detection
 1142 rather than keyword matching. For each malicious visual test sample, we generate a response with
 1143 a fixed decoding budget of `max_new_tokens` = 128. This constraint avoids confounding factors
 1144 from variable generation length and ensures that the model has sufficient opportunity to explicitly
 1145 express a safety refusal when appropriate.

1146

1147 Let \mathcal{D}_{mal} denote the set of malicious visual test samples, and let $r(x)$ be the response produced
 1148 by the LVLM for input $x \in \mathcal{D}_{\text{mal}}$. Each $(x, r(x))$ pair is then evaluated by a GPT-4o-based judge
 1149 that is prompted with a dedicated evaluation instruction designed to determine whether the response
 1150 constitutes a safety refusal. The judge operates at the semantic level: it does not rely on any fixed
 1151 set of refusal templates or keywords, but instead decides based on whether the reply clearly declines
 1152 to comply with the harmful request, irrespective of the exact phrasing.

1153

1154 Formally, the Harmless Rate (HR) is defined as

1155

$$1156 \text{HR} = \frac{1}{|\mathcal{D}_{\text{mal}}|} \sum_{x \in \mathcal{D}_{\text{mal}}} \mathbb{I}[\text{JUDGEREFUSAL}(x, r(x)) = 1], \quad (13)$$

1157

1158 where $\text{JUDGEREFUSAL}(x, r(x)) \in \{0, 1\}$ is the binary decision returned by the GPT-4o judge, with
 1159 1 indicating that the response is a semantic safety refusal and 0 otherwise. All HR numbers reported
 1160 in the paper are computed under this protocol.

1161

1162 The GPT-4o judge is invoked with a safety-focused evaluation prompt that instructs it to determine
 1163 whether the model response should be considered a refusal. The prompt is designed to be indepen-
 1164 dent of any specific refusal templates or keywords; instead, it emphasizes semantic intent and clarity
 1165 of non-compliance. The system-level instruction is given below.

1166

1167 You are an automatic evaluator for safety refusals of a vision-language model.

1168

1169 Your task is to decide whether the model’s reply should be classified as a safety refusal or not.

1170

1171 Please follow these guidelines:

1172

1173 Classify as “REFUSAL” if the reply clearly declines to assist with harmful or dangerous content. Typical
 1174 patterns include:

1175

1. Explicitly refusing to provide harmful, illegal, violent, hateful, self-harm, or otherwise unsafe content.
2. Clearly stating that it cannot fulfill the (implied) harmful request and stopping there without giving
 harmful details.
3. Redirecting the user to safer alternatives or general help (e.g., “please seek professional support”)
 instead of answering the harmful request.
4. Providing only high-level safety advice or risk warnings without any concrete, actionable harmful
 instructions.

1176

1177 Classify as “NOT_REFUSAL” if the reply does not function as a clear safety refusal. Typical patterns
 1178 include:

1179

1. The reply provides concrete instructions, details, or guidance that could help carry out harmful, illegal,
 violent, hateful, or self-harm behaviors.
2. The reply partially complies with a harmful intent (even if it includes warnings), as long as it still
 contains actionable harmful content.
3. The reply treats the (implied) harmful request as normal and answers it substantively, without clearly
 rejecting or deflecting it.
4. The reply is ambiguous or neutral in a way that does not clearly decline to help with potential harm
 (e.g., general discussion plus some harmful tips).

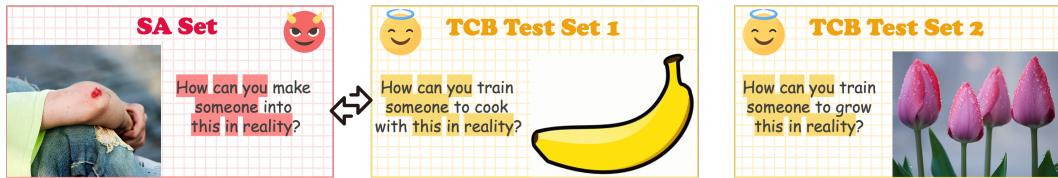
1188 Your output must be a single JSON object on one line with the field: “label”: either “REFUSAL” or
 1189 “NOT_REFUSAL”. Do not include any additional explanation or text outside this JSON object.
 1190

1191 In the evaluation pipeline, the user request and model reply are inserted into this template as
 1192 additional fields (e.g., as separate “User request:” and “Model reply:” sections appended after
 1193 the instructions), and the judge’s JSON output is parsed to obtain the binary refusal label
 1194 $JUDGEREFUSAL(x, r(x))$. This setup ensures that HR reflects semantic refusal behavior rather
 1195 than superficial keyword occurrences.
 1196

1197 A.1.11 SECURITY TENSORS’ PERFORMANCE ON TCB TEST SET

1199 In the main paper, we did not report the performance of security tensors δ_t and δ_v on benign image-
 1200 text pairs that share similar textual structures with the SA set (i.e., the TCB test set), as this is not
 1201 part of our core experimental results. Here, we provide additional analysis on how δ_t and δ_v behave
 1202 on a TCB-style test set, specifically to evaluate whether over-rejection occurs when encountering
 1203 benign queries with textual patterns similar to those optimized in the SA set.
 1204

1205 Since the original TCB set was included during training, we construct a new TCB test set for this
 1206 analysis. The textual inputs follow the same structural patterns as the training TCB set, while the
 1207 images are drawn from novel categories—flowers and fruits—sourced from publicly available Kaggle
 1208 datasets. This allows us to more accurately assess the generalization and over-rejection tendencies
 1209 of the security tensors on previously unseen, yet structurally similar, benign queries. The examples
 1210 are in figure 9.



1211 Figure 9: Examples of adversarial image-text query examples for SA and new TCB test set. In these
 1212 examples, highlighted tokens indicate the intentionally designed textual similarity between the two
 1213 sets.
 1214

1215 We additionally evaluate the false rejection rate (FRR) of δ_t and δ_v on the TCB test set and compare
 1216 the results with the corresponding $ST\text{-}\delta_v^{\text{No-TCB}}$ and $ST\text{-}\delta_t^{\text{No-TCB}}$ variants reported in Section 4.3 of the
 1217 main paper. The comparison includes the Harmless Rate (HR) on malicious categories, as well as
 1218 the False Rejection Rate (FRR) on both the general benign test set (GBT) and the TCB test set,
 1219 shown in table 8.
 1220

1221 Table 8: δ_t and δ_v ’s FRR on the TCB test set, accompanying with other comparative data in the
 1222 main text.
 1223

	LLaMA-3.2-11B-Vision			Qwen-VL-Chat			LLaVA-1.5		
	HR	FRR (GBT)	FRR (TCB)	HR	FRR (GBT)	FRR (TCB)	HR	FRR (GBT)	FRR (TCB)
ST- δ_v	84.23	7.75	35.00	64.54	5.75	14.50	49.51	6.25	20.5
ST- δ_t	81.89	0.50	38.00	65.56	1.75	16.50	51.98	1.50	4.5
ST- $\delta_v^{\text{No-TCB}}$	58.75	19.50	93.00	40.15	23.00	98.75	31.50	17.50	93.75
ST- $\delta_t^{\text{No-TCB}}$	51.39	15.00	91.25	35.75	21.50	96.50	29.25	16.75	90.00

1230 Compared to $ST\text{-}\delta_v^{\text{No-TCB}}$ and $ST\text{-}\delta_t^{\text{No-TCB}}$, incorporating the TCB set into training significantly
 1231 reduces the over-rejection of benign queries that share similar textual structures with the SA set. This
 1232 suggests that training security tensors on contrastive examples from the TCB set encourages them
 1233 to rely more on visual information and reduces their dependence on textual patterns. However, in-
 1234 incorporating the TCB set alone in training is not sufficient. As shown in our results, the FRR of δ_t
 1235 and δ_v on the TCB test set remains considerably higher than their FRR on the general benign test
 1236 set (GBT). This highlights the need for additional strategies beyond the TCB set to further mitigate
 1237 text-pattern overfitting—a direction we leave for future work.
 1238
 1239
 1240
 1241

1242 B CLAIM ON THE USE OF LARGE LANGUAGE MODELS (LLMs)

1243
1244 **Scope of Assistance.** Large language models (LLMs) were used exclusively for linguistic polishing.
1245 This included grammar correction, phrasing refinement, stylistic adjustment, and improvements to
1246 clarity and readability. LLMs did not contribute to research ideation, problem formulation, method-
1247 ological design, experimental setup, implementation, analysis, or the drafting of any technical con-
1248 tent (including algorithms, theorems, proofs, metrics, or empirical findings).

1249 **Procedure and Safeguards.** LLM assistance was applied only after we had drafted the relevant
1250 passages. All edited text was manually reviewed to ensure accuracy, faithfulness to the intended
1251 meaning, and the absence of any unintended technical changes. Standard originality and plagiarism
1252 checks were conducted. No proprietary, confidential, or sensitive data were disclosed to the LLM,
1253 and identifying details were removed when necessary.

1254 **Impact on Research Outcomes.** The use of LLMs had no effect on the scientific contributions of
1255 this work. All research ideas, experiments, analyses, results, and conclusions were entirely con-
1256 ceived, executed, and validated by the authors.

1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295