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ABSTRACT

Multimodal Large Language Models (MLLMs), particularly smaller, deployable
variants, exhibit a critical deficiency in understanding temporal and procedural vi-
sual data, a bottleneck hindering their application in real-world embodied Al. This
gap is largely caused by a systemic failure in training paradigms, which lack large-
scale, procedurally coherent data. To address this problem, we introduce TPRU, a
large-scale dataset sourced from diverse embodied scenarios such as robotic ma-
nipulation and GUI navigation. TPRU is systematically designed to cultivate tem-
poral reasoning through three complementary tasks: Temporal Reordering, Next-
Frame Prediction, and Previous-Frame Review. A key feature is the inclusion of
challenging negative samples, compelling models to transition from passive ob-
servation to active, cross-modal validation. We leverage TPRU with a reinforce-
ment learning (RL) fine-tuning methodology, specifically targeting the enhance-
ment of resource-efficient models. Experiments show our approach yields dra-
matic gains: on our manually curated TPRU-Test, the accuracy of TPRU-7B soars
from 50.33% to 75.70%, a state-of-the-art result that significantly outperforms
vastly larger baselines, including GPT-40. Crucially, these capabilities generalize
effectively, demonstrating substantial improvements on established benchmarks.
We will release our dataset and models to the community.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities, with
leading large-scale open-source (Bai et al., 2025} Zhu et al., 2025) and proprietary models (Hurst
et al.,2024) achieving remarkable performance on a wide range of vision-language tasks. However,
this progress masks a critical and widening gap: while massive, expensive models show emerging
competence, their smaller and more efficient counterparts struggle profoundly with complex reason-
ing. Especially when they try to understand temporal and procedural image sequences (Song et al.,
2025} [Tang et al., [2025; Zhang et al.l 2025)). This capability gap is not merely an academic concern
but a primary obstacle hindering the deployment of MLLMs in real-world and interactive applica-
tions. Downstream tasks like robotic manipulation, embodied navigation, and instruction following
often operate on resource-constrained edge devices where deploying dozens or hundreds billion pa-
rameter models is infeasible (Ji et al., |2025; [Lu et al.l 2024} |Savva et al., [2019). Consequently,
the inability of small models to grasp state changes and procedural logic represents a fundamental
bottleneck for the entire field of embodied Al.

The root of this deficiency lies not in model scale alone, but in a systemic failure of the prevailing
training paradigm. Existing paradigms predominantly focus on aligning text with a single image (L1
et al.,2023)) or treating multiple images as an unordered collection (Jiang et al.| [2024). Although
datasets like LLaVA-NeXT-Interleave (Li et al.}|2024)) incorporate multi-frame inputs derived from
videos, they primarily emphasize general sequential content comprehension rather than the fine-
grained temporal and procedural understanding. This approach overlooks the critical distinction
between understanding a set of images and comprehending a sequence of images. As shown in Fig-
ure [T(@), the community’s response has been to create evaluation-only benchmarks that repeatedly
confirm this failure (Wang et al. 2024} [Tang et al., 2025), rather than addressing the root cause,
which is the absence of large-scale, high-quality real-world sequential data for training. This over-
sight stems from the inherent difficulty of capturing the complex, continuous transformations of
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Figure 1: An overview of our TPRU dataset. Unlike prior synthetic datasets (a), TPRU is built from
real-world scenarios and structured into temporal tasks (b). As shown in the ability display (c),
TPRU-7B achieves significant performance gains in temporal understanding.

real-world actions. As a result, smaller models are evaluated on a sophisticated skill they were never
systematically taught, leading to poor performance in detecting procedural errors and leaving gen-

uine procedural understanding an unsolved problem for deployable Al systems (Song et al.l 2025
Fu et al., 2024a).

To bridge this critical capability gap, particularly for resource-constrained models, we introduce
TPRU (Temporal-Procedural Understanding dataset), a novel dataset designed to bridge the gap be-
tween evaluation and training. First, to address data scarcity and authenticity, TPRU provides a
large-scale training set (24,750 QA pairs, 126,000 images) sourced from four diverse and authen-
tic embodied scenarios: robotic manipulation, embodied navigation, mobile GUI interaction, and
LEGO assembly. More importantly, as depicted in Figure [T{b), TPRU is not just a data collection
but a systematically structured dataset designed to cultivate a deep procedural understanding through
three complementary task formats: Temporal Reordering, Next-Frame Prediction and Previous-
Frame Review. To ensure models develop true comprehension beyond superficial heuristics, TPRU
incorporates a significant number of challenging negative samples with deliberate inconsistencies,
forcing models to transition from passive “seeing” to active validation. To benchmark this capabil-
ity, we also present the TPRU-Test, a manually curated set of 461 challenging instances for rigorous
evaluation.

Leveraging our TPRU dataset, we employed a reinforcement learning (RL) strategy to fine-tune
a suite of Qwen2.5-VL models, focusing on smaller parameter counts. The results are striking.
Our RL-finetuned models not only show massive improvements over their base versions but also
significantly outperform existing state-of-the-art (SOTA) MLLMs on our proposed TPRU test set.
Remarkably, our TPRU-7B and TPRU-32B surpass the performance of the much larger proprietary
model GPT-40 and large-scale open-source models. Furthermore, as shown in Figure [Tfc), TPRU-
7B exhibits substantial gains on established multi-image benchmarks like MuirBench
[2024) and LEGO-Puzzles 2025). These findings demonstrate that the temporal rea-

soning gap in small models is not an inherent limitation of their scale but a solvable challenge of
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targeted data and training. We have unlocked SOTA-level procedural understanding in models small
enough for practical, real-world deployment. Our contributions are summarized as below:

* We construct TPRU, a new, large-scale, high-quality multi-image dataset focused on fine-
grained temporal and procedural understanding, designed to empower smaller models for
embodied contexts. The dataset and its creation methodology will be publicly released.

* We present a challenging held-out test set, TPRU-Test, manually curated and verified to
rigorously evaluate temporal understanding in MLLMs.

* We propose and validate an effective reinforcement learning-based training methodology
that enables small-to-medium-sized MLLMs to achieve and even surpass the temporal un-
derstanding capabilities of vastly larger models. Extensive experiments demonstrate this
superiority and strong generalization on both our TPRU-test and existing public bench-
marks.

2 RELATED WORK

While Multimodal Large Language Models (MLLMs) excel at single-image comprehension (Fu
et al.,2024a}; [Zhang et al.,2024a)), reasoning across multiple images remains a significant challenge.
To address this limitation, recent work has moved beyond the single-frame paradigm to tackle more
complex real-world tasks (Wang et al., 2025b). This emerging research direction has necessitated
the development of specialized instruction-tuning datasets and rigorous evaluation benchmarks.

2.1 MULTI-IMAGE TRAINING DATA

To enhance the multi-image capabilities of Multimodal Large Language Models (MLLMs), re-
searchers have constructed large-scale instruction-tuning datasets. For instance, Mantis-Instruct
(Jiang et al.,|2024) adopts a skill-oriented strategy, efficiently imbuing models with four core abili-
ties via a meticulously constructed 721K-sample dataset. LLaVA-NeXT-Interleave (Li et al., [2024)
advances this direction by leveraging its 1.18M-sample M4-Instruct dataset and a unified interleaved
data format to seamlessly handle multi-image, video, and 3D scenarios. Addressing conversational
depth, MMDU (Liu et al., 2024) and MMCR (Yan et al., 2025) provide large-scale datasets specif-
ically for training models on coherent reasoning in multi-turn dialogues. Furthermore, datasets
have expanded into specific domains, such as RoboBrain’s ShareRobot (Ji et al., |2025)), which pro-
vides planning and affordance annotations for robotics tasks, and GUI Odyssey (Lu et al., [2024)),
which focuses on cross-application mobile device navigation. In parallel, innovative data genera-
tion paradigms are emerging that move beyond reliance on manual annotation. Jigsaw-R1 (Wang
et al.l |2025c), for example, enhances models’ spatial awareness by programmatically generating
jigsaw puzzle tasks for rule-based visual reinforcement learning. Taking this further, MiCo (Chen
et al.| [2025) proposes a fully self-supervised reinforcement learning framework, enabling models to
learn complex reasoning from programmatically constructed contrastive image triplets without any
instruction data.

While these datasets have significantly advanced multi-image instruction tuning, they often treat im-
ages as an unordered collection. Even datasets with inherent sequentiality lack a systematic frame-
work designed to teach the underlying principles of procedural flow. Our work addresses this gap
by introducing TPRU. Through its complementary three temporal tasks, TPRU is specifically engi-
neered to instill a foundational understanding of procedural dynamics.

2.2 BENCHMARKS FOR MULTI-IMAGE EVALUATION

Concurrently with the development of training data, a suite of rigorous benchmarks has been es-
tablished to evaluate these emerging capabilities. For comprehensive and robust evaluation, Muir-
Bench (Wang et al.| [2024) presents a 2,600-question test whose key innovation is a pairwise de-
sign—matching each answerable question with a minimally different, unanswerable variant to rig-
orously test against hallucination. Targeting specific reasoning domains, STRIPCIPHER (Wang
et al.| [2025b)) leverages wordless comic strips to assess narrative and temporal logic, while TempVS
(Song et al,[2025)) focuses on event ordering with a design that resists single-modality shortcuts. For
spatial and physical reasoning, LEGO-Puzzles (Tang et al., 2025) creates a challenging testbed for
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multi-step planning based on LEGO instructions, and MV-Math (Wang et al., [2025a) fills a critical
gap in multi-visual context mathematical reasoning using real K-12 educational materials. Other
benchmarks probe more fundamental visual abilities; BLINK (Fu et al., 2024b) aims to decouple
core visual perception from linguistic reasoning, and MMRA (Wu et al.,|2024) evaluates the ability
to identify cross-image relations at multiple granularities. Finally, to systematize the application of
these benchmarks, toolkits like VLMEvalKit (Duan et al.| 2024) provide a standardized evaluation
framework, greatly facilitating reproducible and comprehensive assessment across the community.

While invaluable for diagnosis, the critical limitation of these benchmarks is their evaluation-only
nature, creating a disconnect between training and testing. TPRU bridges this gap by providing an
integrated solution: a large-scale, structured training set alongside a challenging, manually curated
test set to unify the development and evaluation of procedural understanding.

3 TPRU

While current Multi-modal Large Language Models excel on static single-image tasks, their perfor-
mance degrades sharply as the number of input images increases (Li et al.| |2024). This deficiency
is exacerbated when processing image sequences that represent a coherent process or event. Recent
work shows existing MLLMs largely fail to comprehend temporal dynamics and sequential relation-
ships between visual frames. This limitation is starkly revealed on benchmarks for narrative comics,
procedural instructions, and event ordering (Song et al.| 2025; Tang et al., 2025 Wang et al., 2025b;
2024])). Consequently, the inability to grasp temporal dynamics severely hinders their applicability in
real-world scenarios that demand comprehension of procedural activities and evolving states (Tang
et al., 2025} Ji et al.| 2025)).

To systematically enhance and evaluate the capability of MLLMs in comprehending image se-
quences with temporal and procedural order, we propose the TPRU dataset. The dataset consists
of two components. TPRU-25k is a fine-tuning set with 24,750 samples across four procedural sce-
narios, designed to enhance the model’s temporal and procedural understanding. TPRU-test is an
evaluation benchmark comprising 461 manually annotated samples across five application scenar-
ios. The detailed data sourcing and construction methodologies for TPRU-25k and TPRU-test are
elaborated in Sections 3.1 and 3.2, respectively.

3.1 TPRU-25K

Data Sources. TPRU aims to provide MLLMs with high-quality, multi-image sequential data char-
acterized by clear procedural and temporal structures. To construct a dataset with coherent proce-
dural logic and ensure that the image sequences represent meaningful, ordered events, we sourced
data from four diverse and complementary real-world scenarios: (1) Robotic Manipulation. Data
is primarily derived from the “planning” tasks in the ShareRobot dataset (J1 et al.l 2025)), where we
sample video frames to create discrete action sequences. (2) LEGO Assembly. Data is curated
from 36 high-quality stop-motion videos from the YouTube creator Arvin Bricks, providing blur-
free, state-distinct images ideal for part-to-whole reasoning. (3) GUI Operation. A novel dataset
constructed from four-step screenshot sequences from GUI Odyssey (Lu et all |2024) to capture
goal-driven digital workflows. (4) Embodied Navigation. This category consists of ordered visual
observations from agents navigating in simulated environments like Habitat (Savva et al., [2019).
The diversity of these sources ensures the data is not confined to a single domain, fostering the
development of generalizable sequential understanding.

Generation Pipeline Our data generation pipeline systematically transforms raw sequential data
from diverse sources into structured training instances. The process involves three main stages:
sequence filtering, text description generation, and task formulation, as illustrated in Figure[2]

(a) Filtering and Quality Control. Our dataset is constructed from heterogeneous sources, in-
cluding temporally sampled video frames and ordered screenshots from embodied agent tasks and
mobile Ul interactions. We process these diverse inputs into a canonical format of coherent im-
age sequences, each containing three to four images. To ensure high data quality and procedural
integrity, every image sequence is subjected to a rigorous filtering pipeline. We employ Qwen?2.5-
VL-72B (Bai et al.| [2025) as an automated quality assessor to discard sequences exhibiting visual
blurriness, abrupt scene transitions, or a lack of discernible temporal progression. This stringent
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Figure 2: The TPRU dataset construction and training pipeline. Chronological image sequences
from embodied sources are curated with both positive and negative text descriptions. These image
sequences are then formulated into three tasks (Ordering, Next Frame Prediction, and Previous
Frame Review) to fine-tune MLLMs for enhanced temporal and procedural understanding.
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protocol guarantees that only high-fidelity, logically coherent sequences are used for subsequent
processing.

(b) Description Generation and Robustness Enhancement. For each filtered image sequence,
we generate a corresponding textual description using Qwen2.5-VL-72B to reinforce the model’s
core vision-language alignment. To specifically bolster robustness and mitigate hallucination, we
also introduce a negative sampling strategy. This involves creating a subset of instances where the
textual description is deliberately mismatched with the visual content (e.g., pairing the instruction
“pick up the fork” with images of “putting down a knife”). For these challenging cases, the target
output is formulated as “None of the choices provided” (Wang et al,[2024). This forces the model
to perform explicit cross-modal verification rather than relying solely on textual priors.

(c) Task Formulation. Based on the curated image sequences and their corresponding textual de-
scriptions, we formulate three distinct yet complementary tasks designed to comprehensively en-
hance the model’s temporal and procedural understanding ability.

* Temporal Ordering. The primary objective of this task is to evaluate and enhance the model’s
comprehension of an entire procedural timeline. We formulate this as a reordering problem. For
a given image group, we shuffle the temporal order of the frames and provide the corresponding
textual description. The model is then required to output the correct permutation that restores the
reasonable sequence of the event.

* Next Frame Prediction. This task improves the model’s grasp of temporal coherence and proce-
dural flow. The model is presented with the initial, second, and terminal frames of a four-frame
procedural sequence and must select the correct intervening third frame from a set of candidates.
These candidates include distractors from other similar scenarios. This task directly simulates the
immediate planning required for robotic agents to anticipate the direct consequences of an action.

* Previous Frame Review. This task enhances the model’s ability to reconstruct the historical con-
text of a procedural segment. The model is given the final three frames of a four-frame sequence
and is tasked with identifying the correct initial frame from a set of candidates. This capability
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improves the model’s understanding of procedural prerequisites and its ability to trace an observed
event back to its origin, a fundamental aspect of comprehensive temporal understanding.

Collectively, these three complementary tasks are engineered to advance MLLMs beyond static
image analysis. By jointly addressing temporal ordering, forward prediction, and backward review,
our approach endows the model with a more profound and structured comprehension of procedural
dynamics, significantly enhancing its ability to interpret the temporal evolution of events depicted
in image sequences.

3.2 TPRU-TEST

To rigorously evaluate the temporal and procedural understanding capabilities of MLLMs, we in-
troduce TPRU-Test, a dedicated, held-out evaluation set. TPRU-Test is meticulously curated and
verified by human experts to ensure high quality and present novel generalization challenges. Its
composition is deliberately diverse, incorporating the most demanding instances from our four
core domains (Robotic Manipulation, LEGO Assembly, GUI Operation, and Embodied Naviga-
tion) alongside complex, human activities from the EPIC-KITCHENS (Damen et al.,[2020) dataset
to probe model robustness. TPRU-Test inherits three complementary tasks of our training set, as-
sessing temporal ordering, next-frame prediction, and previous-frame review. The curation protocol
was exceptionally stringent. Each instance underwent a multi-stage human review where annotators
picked and verified the ground-truth image sequence, authored plausible yet incorrect distractors,
and ensured question clarity. Subsequently, every instance was cross-verified by at least one other
expert to eliminate errors and subjective judgments. This process yields a high-quality benchmark
of 461 instances across 5 distinct scenarios, engineered to provide a robust measure of genuine
progress in temporal and procedural understanding for MLLMs.

4 EXPERIMENTS

In this section, we conduct comprehensive experiments to validate the effectiveness of our proposed
TPRU dataset. We fine-tuned Qwen2.5-VL on TPRU-25k and evaluated on TPRU-test as well as on
established public benchmarks. In Section 4.1, we assess the model’s performance on MuirBench
(Wang et al., 2024) and LEGO-Puzzles (Tang et al.,|2025) benchmarks which include tasks relevant
to temporal and procedural understanding. And we present the primary results on our TPRU-test set
in Section 4.2. To ensure our method does not degrade performance on broader tasks, we evaluate
on general-purpose benchmarks in Section 4.3. Finally, in Section 4.4, we report a series of abla-
tion studies to investigate the contribution of key components of our dataset. The hyperparameter
Settings and reward designs of the experiment can be obtained respectively in Appendix A and F.

4.1 EVALUATION OF TEMPORAL RELATED BENCHMARKS

Performance on MuirBench. As presented in Table [T our TPRU-finetuned models demonstrate
significant improvements over their Qwen2.5-VL base models across all scales on the MuirBench
(Wang et al., 2024). Notably, our TPRU-32B model achieves an overall accuracy of 68.42%, out-
performing the powerful proprietary model GPT-40 (68.00%) and closely matching the much larger
Qwen2.5-VL-72B.

The most substantial gains are observed in the Ordering sub-task, which directly aligns with the
temporal reasoning skills targeted by our TPRU dataset. TPRU-32B achieves a remarkable 45.31%
in this category, drastically surpassing both its base model and GPT-40. This trend is consistent
across scales, with the score of TPRU-7B also more than doubling from 14.06% to 34.38%. Beyond
temporal tasks, our training methodology enhances broader relational reasoning abilities, evidenced
by significant improvements in tasks such as Difference Spotting and Visual Retrieval. These results
confirm that our approach not only instills specialized temporal skills but also strengthens general
cross-image reasoning capabilities.

Performance on LEGO-Puzzles. The efficacy of our approach is further validated on the LEGO-
Puzzles benchmark, which directly evaluates procedural assembly reasoning as detailed in Table [2]
Our models consistently outperform their base versions, with TPRU-7B achieving an overall score
of 42.8%. This result confirms that the skills learned from our TPRU-25k dataset exhibit strong
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Table 1: Performance on MuirBench. The light gray rows show the absolute improvement (in percentage
points) of our models over their corresponding Qwen2.5-VL base models. Gains are shown in red, and losses
in blue.

Action  Attribute  Cartoon . Diagram Difference Geographic Image-Text . Scene Visual Visual
Model o Counting A . Ordering ) A Overall
Underst. Similarity Underst. Underst. ~ Spotting Underst. Matching Underst. Grounding Retrieval
Open-source
InternVL3-78B 48.17 61.73 44.87 50.85 83.17 55.59 60.00 79.31 31.25 69.35 44.05 66.10 64.65
InternVL3-38B 4451 66.33 46.15 45.30 78.14 61.18 63.00 77.80 32.81 61.29 36.90 72.95 64.12
Qwen2.5-VL-72B | 50.00 59.18 4231 49.57 89.45 60.59 50.00 87.93 40.63 76.34 46.43 78.42 69.35
Qwen2.5-VL-32B | 36.59 51.02 47.44 45.30 82.41 58.53 47.00 85.78 26.56 72.04 41.67 67.12 63.73
Qwen2.5-VL-7B 40.85 58.67 46.15 34.19 77.89 54.41 49.00 72.63 14.06 61.83 3333 63.70 5835
Qwen2.5-VL-3B 36.59 44.39 46.15 3291 58.04 46.47 49.00 54.09 9.38 59.14 40.48 38.70 46.62
Proprietary
Gemini-2.5-Flash 50.00 49.49 60.26 82.05 92.71 70.00 47.00 86.64 46.88 83.87 59.52 70.89 73.73
GPT-40 44.51 56.12 51.28 49.15 88.69 60.29 56.00 86.85 23.44 71.51 36.90 80.14 68.00
Claude-3.5-Sonnet | 35.37 55.10 44.87 35.90 76.38 54.12 41.00 77.59 25.00 54.84 47.62 57.53 57.69
Ours
TPRU-32B ‘ 40.24 51.02 51.28 47.44 85.68 63.24 60.00 87.28 45.31 75.81 44.05 80.14 ‘ 68.42
Improvement +3.65 0.00 +3.84 +2.14 +3.27 +4.71 +13.00 +1.50 +18.75 +3.77 +2.38 +13.02 +4.69
TPRU-7B ‘ 41.46 57.65 47.44 34.62 8291 63.82 63.00 82.11 34.38 67.74 38.10 75.68 ‘ 65.04
Improvement +0.61 -1.02 +1.29 +0.43 +5.02 +9.41 +14.00 +9.48 +20.32 +5.91 +4.77 +11.98 +6.69
TPRU-3B ‘ 39.63 51.02 47.44 40.17 67.34 55.88 84.00 68.32 23.44 72.04 53.57 66.10 ‘ 59.31
Improvement +3.04 +6.63 +1.29 +7.26 +9.30 +9.41 +35.00 +14.23 +14.06 +12.90 +13.09 +27.40 +12.69

positive generalization to complex, structured assembly tasks. The most pronounced improvements
are concentrated in the Multi-Step Reasoning category, confirming the targeted impact of our train-
ing methodology. For the TPRU-7B, performance on the Ordering task quadruples, soaring from
8.0% to 32.0%. Similarly, its capability in Backwards reasoning more than doubles, jumping from
22.0% to 49.0%, and a significant gain is also observed in Next-Step sub-task. These enhancements
strongly indicate that the procedural and causal reasoning abilities cultivated by the TPRU dataset
effectively transfer to the logical, sequential challenges inherent in the LEGO-Puzzles.

Table 2: Performance on LEGO-Puzzles. The light gray rows show the absolute improvement (in percentage
points) of our models over their corresponding Qwen2.5-VL base models. Gains are shown in red, and losses
in blue.

Models Height Adjacency Rotation Multiview Next-Step Dependency Rotation Stat.  Position Backwards Ordering Outlier ‘ Overall
Open-source
InternVL3-78B 52.0 63.0 36.0 54.0 64.0 80.0 58.0 29.0 25.0 22,0 37.0 473
InternVL3-38B 40.0 60.0 39.0 55.0 57.0 81.0 59.0 33.0 47.0 12.0 36.0 472
Qwen2.5-VL-72B 43.0 58.0 38.0 39.0 57.0 76.0 57.0 52.0 74.0 43.0 43.0 527
Qwen2.5-VL-32B 35.0 60.0 38.0 52.0 45.0 79.0 51.0 45.0 66.0 43.0 43.0 50.6
Qwen2.5-VL-7B 20.0 57.0 32.0 47.0 38.0 67.0 56.0 29.0 22.0 8.0 25.0 36.5
Qwen2.5-VL-3B 29.0 55.0 30.0 36.0 32.0 65.0 48.0 19.0 16.0 4.0 25.0 326
Proprietary
Gemini-2.5-Flash 52.0 58.0 37.0 55.0 58.0 74.0 53.0 49.0 40.0 46.0 29.0 50.1
GPT-40 49.0 66.0 41.0 51.0 65.0 87.0 51.0 51.0 53.0 72.0 49.0 57.7
Claude-3.5-Sonnet ~ 39.0 60.0 42.0 48.0 61.0 78.0 58.0 37.0 49.0 54.0 64.0 53.6
Ours
TPRU-32B 34.0 61.0 35.0 47.0 55.0 76.0 52.0 48.0 70.0 49.0 48.0 523
Improvement -1.0 +1.0 -3.0 -5.0 +10.0 -3.0 +1.0 +3.0 +4.0 +6.0 +5.0 +1.7
TPRU-7B 23.0 56.0 37.0 40.0 45.0 67.0 55.0 31.0 49.0 32.0 36.0 42.8
Improvement +3.0 -1.0 +5.0 -7.0 +7.0 0.0 -1.0 +2.0 +27.0 +24.0 +11.0 +6.3
TPRU-3B 30.0 54.0 320 40.0 37.0 69.0 49.0 14.0 30.0 8.0 24.0 35.2
Improvement +1.0 -1.0 +2.0 +4.0 +5.0 +4.0 +1.0 -5.0 +14.0 +4.0 -1.0 +2.6

4.2 EVALUATION OF GENERAL BENCHMARKS

To ensure our specialized training does not degrade general capabilities, we evaluated our model on a
range of broad multi-image benchmarks, as shown in Table[3] The results confirm that our finetuned
models maintain or slightly improves performance across these diverse tasks. This pattern of stable
to positive gains, such as on MMMU (+2.6) and MMCR (+1.08) for TPRU-7B, demonstrates that our
method for enhancing temporal reasoning successfully avoids catastrophic forgetting and preserves
the model’s foundational abilities. The relevant content of these benchmarks can be obtained from
the appendix.
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Table 3: Evaluation on general multi-image benchmarks. Results show that our TPRU models maintain
comparable performance to their base models, indicating that our specialized training does not degrade general
capabilities.

Model Real&gﬁ_me BLINK Reagxmld MMCR MMTBench MMStar MMMU-Dev | Overall
Open-source

InternVL3-78B 65.40 66.30 78.00 20.29 73.20 72.50 64.20 62.84
InternVL3-38B 67.30 64.49 75.60 21.38 71.80 71.50 62.00 62.01
Qwen2.5-VL-32B 45.96 59.34 68.89 37.32 58.89 54.93 34.67 51.43
Qwen2.5-VL-7B 4455 54.76 68.10 22.83 61.46 61.67 44.40 51.11
Qwen2.5-VL-3B 41.94 48.97 65.36 19.20 60.47 54.40 44.67 47.86
Ours

TPRU-32B 44.92 58.81 69.80 39.86 56.25 52.26 34.00 50.84
TPRU-7B 4534 55.86 69.54 2391 61.85 61.13 47.00 52.09
TPRU-3B 39.19 48.13 66.54 21.01 60.89 54.93 44.67 4791

4.3 MAIN RESULTS ON TPRU-TEST

We evaluate the core efficacy of our approach on the proposed TPRU-test, a benchmark specifi-
cally designed to assess fine-grained temporal ordering, causal prediction, and procedural consis-
tency. The results, presented in Figure 3] demonstrate that fine-tuning with our TPRU dataset with
RL methodology yields substantial and consistent performance improvements across various model
scales. Notably, the accuracy of TPRU-7B soars from 50.33% to 75.70 %, while the TPRU-3B shows
a similarly strong improvement from 37.96% to 60.95%. This level of performance is highly com-
petitive: TPRU-7B surpasses the powerful proprietary model GPT-40 by a significant margin. These
results unequivocally validate the effectiveness of our training paradigm. The dramatic performance
gains underscore that targeted training on procedurally-grounded data, enriched with challenging
negative samples and optimized via reinforcement learning, is a potent strategy for instilling robust
sequential reasoning capabilities in MLLMs.

mmm GPT Series
Claude Series
80 Gemini Series %
_ 75.70%
I InternVL Series 72.67%
Qwen-2.5-VL £7.68% 70.05%

TPRU 65.15% 63.78%

60.95%

57.70%

50.33%

37.96%

Accuracy (%)

I

Figure 3: Performance of different models on TPRU-test.

4.4 ABLATION STUDIES

To systematically investigate the contributions of the core components of our methodology, we
conducted a series of ablation studies. We evaluate the impact of task composition, negative samples
and data volume. All experiments are conducted by training variants of the Qwen2.5-VL-7B model,
with performance evaluated on MuirBench and Lego-Puzzles. The detailed results are presented in
Appendix.

Impact of Task Composition. We conducted an ablation study on a small-scale dataset of 8,250
samples to analyze the individual and combined contributions of our core training tasks, with results
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Table 4: Ablation study on the effect of different TPRU data components for the Qwen2.5-VL-7B
model on MuirBench and LEGO-Puzzles benchmarks. The inclusion of a component is marked
with a v'. All scores are Overall Accuracy (%). The volume of data remains consistent.

TPRU Data Components Benchmark Accuracy (%)
Ordering Previous Frame Review Next Frame Predict MuirBench LEGO-Puzzles

v 60.8 39.0

v 61.7 38.0

v 61.6 41.1

v v 62.5 40.3

v v 62.2 40.3

v v 62.2 39.1

v v v 63.8 42.3

presented in Table @ The findings reveal a clear synergistic effect. While each task component
individually improves baseline performance, their pairwise combinations yield further gains. A
model trained on the complete dataset integrating all three tasks ultimately achieves the highest
performance. This confirms that the diversity of these complementary reasoning skills is crucial for
fostering a comprehensive and robust understanding of temporal and procedural logic.

Efficacy of Negative Samples. A core design choice in TPRU is the inclusion of negative sam-
ples, which are instances with deliberate procedural inconsistencies that force the model to reject
all options. An ablation study confirms their impact. As illustrated in Figure [4a] training without
these negative samples significantly degrades performance on temporal reasoning benchmarks like
LEGO-Puzzles and MuirBench. This result validates our hypothesis that teaching a model to ex-
plicitly reject invalid logic is critical for advancing from pattern recognition to robust procedural
understanding.

65.0% 41.0%
64.20%

TPRU-test MUIRBench

63.80% 63-90%

4.09
64.0% 63.46%

40.10%
40.00%
40.0% 39.90%

63.0% 39.30%

39.0%

MMER Lo, 62.0%

38.36%
38.09%

61.0% 38.0%

Overall Accuracy
Overall Accuracy

60.0%

37.0%
36.45%

—e— MUIRBench LEGO

36.0%,

50,000 %

BLINK RealWorldQA

58.0%

5,000 10,000 15,000 20,000 24,75 5,000 10,000 15,000 20,000 24,75

Quen2.5-VL-7B + TPRU25k (with Negative Samples)
Qwen2.5-VL-78B + TPRU25k (without Negative Samples) Number of Training Samples Number of Training Samples

(a) (b) Muirbench (c) Lego-Puzzles
Figure 4: Ablation analysis. (a) Ablation on negative samples. (b) and (c) show the performance
with different training samples.

Impact of Data Volume. We evaluated training on data subsets up to the full 24,750 samples. As
shown in Figures[#bland[Ac] performance on MuirBench and LEGO-Puzzles improves with data size
but begins to plateau near the full set. This pattern of diminishing returns indicates our dataset is
sufficiently comprehensive to instill robust temporal understanding without requiring further scaling.

Impact of Training Strategy. To validate the necessity of our Reinforcement Learning framework,
we conducted a direct comparison between the proposed GRPO approach and standard Supervised
Fine-Tuning (SFT). Both experiments were performed using the Qwen2.5-VL-7B backbone under
consistent hyperparameters via the LLaMA-Factory framework [Zheng et al.| (2024)). As shown in
Table [5] while SFT provides a solid performance baseline, GRPO consistently achieves superior
results across all benchmarks. These results indicate that GRPO is more effective than SFT for
this domain, as it moves beyond simple pattern imitation to better cultivate the advanced reasoning
capabilities required for complex procedural multi-modal tasks.
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Table 5: Ablation study on training paradigms. We compare the performance of standard Supervised
Fine-Tuning (SFT) against our GRPO approach using the Qwen2.5-VL-7B backbone.

Training Paradigm TPRU-Test MuirBench  LEGO-Puzzles
Supervised Fine-Tuning (SFT) 72.88 63.03 40.60
TPRU-7B (GRPO) 75.70 65.04 42.82

Table 6: Performance comparison with state-of-the-art Video LLMs on MuirBench, LEGO-Puzzles,
and TPRU-Test datasets. The “Ordering” columns denote specific subtasks requiring precise se-
quential reasoning. Best results are highlighted in bold.

Model MuirBench LEGO-Puzzles TPRU-Test
Overall Ordering Overall Ordering
LLaVA-Video-Qwen2-7B 37.88 15.63 31.91 1.0 38.61
LLaVA-Video-Qwen2-72B  41.81 10.94 41.64 5.0 44.03
SmolVLM2-256M-Video 27.92 21.88 28.18 0.0 17.79
SmolVLM2-500M-Video 25.92 7.8 27.27 0.0 16.92
Long-VITA-16K 53.07 17.19 34.45 2.0 39.26
Qwen2.5-Omni-7B 59.11 18.75 36.45 12.0 46.85
TPRU-7B (Ours) 65.04 34.38 42.82 32.0 75.70

4.5 COMPARISON WITH VIDEO-TEMPORAL BASELINES

To further elucidate the distinction between procedural temporal understanding and general video
understanding, we conducted a comprehensive evaluation using several state-of-the-art Video Large
Language Models (Video-LLMs). We posit that while general video understanding typically focuses
on recognizing what events occur, procedural multi-image understanding places a greater emphasis
on inferring the precise sequence and consequential relationships between discrete actions.

We compared our TPRU-7B model against strong open-source video baselines, including LLaVA-

Video (Zhang et al.} 2024b)), SmolVLM?2 (Marafioti et al.,[2025)), Long-VITA (2025)), and
Qwen2.5-Omni (Xu et al.| [2025), on the MuirBench, LEGO-Puzzles, and our TPRU-Test datasets.

As presented in Table[6] TPRU-7B significantly outperforms these powerful video models across all
three benchmarks.

Notably, the experimental results reveal a critical gap in current video models regarding tasks that
require fine-grained temporal ordering. For instance, on the MuirBench Ordering subtask, even the
top-performing video baseline, Qwen2.5-Omni, achieves a score of only 18.8. In contrast, TPRU-7B
achieves 34.38 on these respective ordering tasks.

These findings substantiate our core hypothesis. While general video pre-training equips models
with a fundamental level of temporal awareness, it is insufficient for tasks necessitating precise tem-
poral and procedural understanding. Our approach successfully bridges this capability gap through
its targeted data synthesis and training strategy designed for discrete state changes.

5 CONCLUSION

In this work, we addressed the critical failure of MLLMs in comprehending visual sequences by
introducing TPRU, a large-scale dataset designed to systematically teach temporal and procedural
logic. Our experiments show that fine-tuning with a reinforcement learning strategy on TPRU yields
dramatic performance gains, with TPRU-7B not only dominating its baseline but also outperform-
ing the much larger GPT-40 and generalizing strongly to benchmarks like MuirBench and LEGO-
Puzzles. The primary contribution of this work is the demonstration that targeted, procedurally-
grounded data can effectively close the reasoning gap for smaller, more efficient models, moving
the frontier of capable Al from massive systems towards practical, deployable agents.
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6 ETHICAL CONDUCT AND SOCIETAL IMPACT STATEMENT

This research was conducted with a steadfast commitment to ethical integrity, in strict accordance
with the ICLR Code of Ethics. All experimental procedures and data handling protocols comply
with applicable national and international laws, institutional regulations, and established ethical
standards.

The data utilized in this study were sourced exclusively from publicly available, open-access
datasets, or were obtained with explicit and appropriate authorization from the data providers. To
safeguard individual privacy and ensure data security, all datasets underwent rigorous preprocess-
ing, including anonymization and the removal of personally identifiable information (PII) where
applicable.

Specifically regarding the video content sourced from the “Arvin Bricks” YouTube channel, these
materials are utilized strictly for non-commercial, transformative academic research. Consistent
with practices in recent literature (Ju et al., [2025), we operate under the principle of fair use for
publicly available creative works governed by the Standard YouTube License. Our processing and
analysis of this data are conducted solely to advance scientific understanding, with no commercial
intent or redistribution of the original assets.

The primary objective of this work is to contribute to the advancement of scientific knowledge. We
have carefully considered the potential societal impacts of our research and have found no foresee-
able risks of direct harm or misuse. The authors explicitly disavow any application of this work
for malicious or unethical purposes. Furthermore, the authors declare that there are no competing
financial or personal interests that could have influenced the outcomes of this research.

7 REPRODUCIBILITY STATEMENT

To ensure the transparency and reproducibility of our research, we provide a detailed description
of our methodology, datasets, and experimental setup within the main body and appendix of this
paper. To facilitate verification and extension of our work by the research community, all associated
source code, data preprocessing scripts, and necessary model files will be made publicly available
in a repository (e.g., GitHub) upon publication. We are committed to providing a complete set of
materials to foster collective progress in the academic community.
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A EXPERIMENTAL SETUP

Hyperparameters. We fine-tuned the Qwen2.5-VL model (Bai et al., 2025) on our TPRU dataset.
Our reinforcement learning methodology was implemented using the Easy-R1 framework (Zheng
et al.| [2025), employing the Group-wise Preference Optimization (GRPO) algorithm (Shao et al.,
2024). Key settings included KL regularization with a coefficient of 0.01 and the generation of 5
rollouts per training sample. We used the AdamW optimizer with a learning rate of le-6 and trained
for 2 epochs on a cluster of 8 NVIDIA A800 GPUs.

Evaluation Benchmarks.

To comprehensively evaluate the performance of our model, we assessed its capabilities on a wide
variety of benchmarks. To test its generalized multi-image and multimodal reasoning abilities,
we selected several established public benchmarks, including MME-RealWorld-Lite (Zhang et al.,
20244al) and RealWorldQA (xAl team, 2024), BLINK (Fu et al., 2024b), MMCR (Yan et al., 2025)
and MMStar (Chen et al.,|2024), MMTBench (Ying et al.| 2024), MMMU (Yue et al.| [2024), Muir-
Bench (Wang et al., 2024), and LEGO-Puzzles (Tang et al.,[2025). Furthermore, to specifically mea-
sure the improvements in temporal and procedural understanding, the core focus of our work. We
evaluated our model on our proposed TPRU-test. To ensure a standardized and reproducible eval-
uation process across all benchmarks, we utilized the open-source VLMEvalKit framework (Duan
et al.| [2024). We also integrated our TPRU-test into this framework, allowing for a consistent and
streamlined evaluation methodology for both existing and our newly proposed tasks.

B PROMPTS FOR MICRO IMAGE SEQUENCE FILTERING

System Prompt

You are a professional visual data analyst responsible for filtering multi-image sequences for
a machine learning dataset. Your task is to ensure that each sequence meets the following
strict quality and coherence standards:

1. Continuity of Action: The images must depict a single, continuous, and uninter-
rupted action or process performed by the same subject or agent.

2. Temporal Coherence: The sequence must have a clear and logical chronological
order. The state change between consecutive frames must be discernible and sensi-
ble.

3. Visual Quality: All images in the sequence must be clear and free of significant
blur, corruption, or distracting artifacts. The main subject and object must be clearly
visible.

4. Scene Consistency: The background and core environment must remain consistent
throughout the sequence. Changes should be due to the action itself, not abrupt scene
cuts or significant camera movement.

User Prompt

Strictly analyze the provided image sequence based on the quality standards. Determine if it
represents a high-quality, coherent, and temporally logical process.

A sequence is considered unqualified if any of the following are true:

» The images are from different, unrelated scenes or actions.
* The chronological order is illogical or indiscernible.
* The images are severely blurry, low-resolution, or contain duplicate frames.

* The change in the scene is solely due to camera panning/zooming without a mean-
ingful action occurring.

» The main object of the action is swapped, disappears, or is completely occluded.

Does this image sequence meet all the required standards? Please provide your answer as a
single word: *Yes’ or 'No’.
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C PROMPTS FOR MODEL TRAINING

's N

Reasoning and Output Instruction Template

You will be presented with a task involving a set of images. The specific task is described
in the content below. Carefully analyze the images and the specific task description provided
above. Your response must strictly follow the format rules below.

ANSWER FORMAT RULES
Your response format depends on the specific task presented in the content above:

1. For an Ordering Task: If the question asks for the correct sequence of images
(labeled A, B, C, D), your answer must be a single string representing the correct
order of the labels. Do not include spaces or other characters.

2. For a Multiple-Choice Question (MCQ): If the question provides options (e.g.,
A, B, C, D, E), your answer must be the single letter corresponding to the correct
option. If you believe none of the options are correct, choose the letter for the "None
of the choices provided” option if available.

EXAMPLES

Example for an Ordering Task:

<think>The process starts with image C, which shows the initial state. Image A adds the
first component. Image B continues the process, and image D shows the final, completed
assembly. Therefore, the correct sequence is C, then A, then B, then D.</think>
<answer>CABD</answer>

Example for a Multiple-Choice Question (MCQ):

<think>The question asks to predict the state of the phone screen after tapping the ’Set-
tings’ icon. The first image shows the home screen. Option C correctly displays the
main settings menu, which is the expected outcome. Options A, B, and D show irrelevant
screens.</think>

<answer>C</answer>

You must enclose your reasoning process in <think> tags and your final answer in
<answer> tags. Output only the content within these tags, with no additional text or ex-
planation.

D ABLATION STUDY ON DATA FROM DIFFERENT TRAINING STAGES.

Table 7: Ablation study on the training stage order for the Qwen2.5-VL-7B model. All scores are
Overall Accuracy (%).

Training Strategy Benchmark Accuracy (%)
Stage 1 Stage 2 Stage 3 MuirBench LEGO-Puzzles
Ordering Next Frame Prediction  Previous Frame Review 61.31 3991
Ordering Previous Frame Review  Next Frame Prediction 61.58 40.45
Previous Frame Review Ordering Next Frame Prediction 60.38 42.64
Next Frame Prediction Ordering Previous Frame Review 64.23 42.55
Next Frame Prediction  Previous Frame Review Ordering 63.62 42.09
Previous Frame Review  Next Frame Prediction Ordering 63.62 42.09
All tasks combined 65.03 42.82

E THE USE OF LLM

During the writing and editing of this paper, the author(s) utilized Large Language Models (such
as ChatGPT) for text refinement to improve the clarity and accuracy of the language. These tools
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were primarily used for grammar checking, optimizing phrasing, and enhancing readability. All core
ideas, the research design, data analysis, and conclusions are the original work of the author(s). The
author(s) take full responsibility for the final content of the manuscript and have carefully reviewed
all Al-assisted modifications.

F TRAINING STABILITY AND REWARD ANALYSIS

F.1 TRAINING STABILITY

To demonstrate the stability of our Reinforcement Learning (RL) training process, we visualize the
reward curves in Figure[5} As illustrated, the model’s average reward exhibits a rapid and smooth
ascent during the initial training stages. Subsequently, the curve successfully converges to a high-
score plateau and maintains stability throughout the remaining steps, showing no signs of collapse or
drastic oscillations. This convergence trajectory provides strong empirical evidence that our GRPO
training configuration is both stable and efficient.

critic/score/mean critic/score/mean critic/score/mean

50 100 150 0 50 100 150 0 40 80 120 160

(a) TPRU-3B (b) TPRU-7B (c) TPRU-32B

Figure 5: RL Training Reward Curves. The plots (a), (b) and (c) display the reward score across
training steps. The curves demonstrate rapid initial convergence followed by a stable high-score
plateau, indicating a stable optimization process without collapse or drastic oscillations.

F.2 ABLATION ON FORMAT REWARDS

To investigate whether the inclusion of a format-specific reward induces overfitting to the prompt
structure, we conducted a dedicated ablation study. We finetuned the Qwen2.5-VL-7B without the
format reward, forcing the model to learn solely from the core task accuracy reward.

As presented in Table [8] while removing the format reward results in a marginal performance de-
crease, the model retains robust capabilities across all benchmarks. For instance, on the TPRU-test,
the performance only drops slightly from 75.70% to 74.40%. These results substantiate that the vast
majority of our model’s performance stems from the acquisition of core temporal reasoning skills
rather than superficial mimicry of the output format. The format reward serves as a beneficial auxil-
iary mechanism that enhances training stability and provides minor performance gains, but it is not
the primary driver of the model’s reasoning ability.

Table 8: Ablation study on the impact of format rewards. “TPRU-7B (No-Format Reward)” denotes
the model trained solely with task-accuracy rewards, excluding format-specific constraints.

MuirBench LEGO-Puzzles

Model TPRU-Test
Overall Ordering Overall Ordering

TPRU-7B (No-Format Reward)  63.96 29.69 41.64 28.0 74.40

TPRU-7B (Ours) 65.04 34.4 42.82 32.0 75.70
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