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Abstract

Large Vision-Language Models (LVLMs) pretrained on large-scale multimodal data
have shown promising capabilities in Video Anomaly Detection (VAD). However,
their ability to reason about abnormal events based on scene semantics remains
underexplored. In this paper, we investigate LVLMs’ behavior in VAD from a
visual-textual co-occurrence perspective, focusing on whether their decisions are
driven by statistical shortcuts between visual instances and textual phrases. By ana-
lyzing visual-textual co-occurrence in pretraining data and conducting experiments
under different data settings, we reveal a hallucination phenomenon: LVLMs tend
to rely on co-occurrence patterns between visual instances and textual phrases
associated with either normality or abnormality, leading to incorrect predictions
when these high-frequency objects appear in semantically mismatched contexts.
To address this issue, we propose VAD-DPO, a direct preference optimization
method supervised with counter-example pairs. By constructing visually similar
but semantically contrasting video clips, VAD-DPO encourages the model to align
its predictions with the semantics of scene rather than relying on co-occurrence
patterns. Extensive experiments on six benchmark datasets demonstrate the ef-
fectiveness of VAD-DPO in enhancing both anomaly detection and reasoning
performance, particularly in scene-dependent scenarios.

1 Introduction

Video Anomaly Detection (VAD) aims to automatically identify anomalous events in a given video,
and has been widely applied in surveillance systems and smart city applications. Anomalies are
typically defined as events or patterns that deviate from expected behaviors within a scene, meaning
that the same visual action may appear normal in one context but anomalous in another. However,
due to the limited availability of labeled anomaly data, most existing methods [35, 40, 46, 4, 41] tend
to overfit the normal patterns present in the training data, and thus fail to interpret scene context and
reason about anomalies.

With the rise of Large Vision-Language Models (LVLMs) [17, 18, 1], several studies explore the
application of LVLMs to VAD, aiming to enhance their ability to reason about anomalies across
diverse scenes. Early attempts [37, 36, 42, 39] leverage the general visual-language alignment
capabilities of LVLMs to perform frame-level anomaly detection in a training-free manner. More
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Figure 1: Illustration of hallucination in LVLM-based VAD. Although the input image and caption
both describe a normal scenario (“a man is having a barbecue”), the LVLM incorrectly predicts an
anomaly due to the presence of the word “fire.” This behavior is driven by co-occurrence bias learned
during pretraining, as visualized in the frequency statistics showing that “fire” is strongly associated
with anomaly-related tokens in the pretraining corpus.

recent works [6, 29, 44] reformulate VAD as a video question answering task, using model-generated
event descriptions to enhance interpretability. Despite the impressive performance of these LVLM-
based VAD approaches, the underlying reasoning mechanisms behind their detection capabilities
remain unclear. This gap motivates our study, as understanding how LVLMs reason about anomalies
is critical for building safe and reliable VAD systems in real-world applications.

In this paper, we ask a fundamental question: Do LVLMs truly understand video anomalies?
This question drives our investigation into whether LVLMs detect anomalies based on scene-aware
understanding, or simply rely on superficial statistical shortcuts learned during pretraining. An ideal
VAD model should interpret scene context and ground its predictions in visual evidence.

To investigate this question, we conduct an in-depth analysis of LVLMs’ behavior in VAD from the
perspective of visual-textual co-occurrence. Our study reveals a hallucination phenomenon: LVLMs
tend to rely on co-occurrence patterns between visual instances and textual phrases associated with
either normality or abnormality. This reliance leads to incorrect predictions when high-frequency
visual instances appear in semantically normal contexts. As shown in Figure 1, the model incorrectly
predicts an anomaly in a scene where a man is having a barbecue, even though both the image and its
caption describe a normal situation. To systematically examine this issue, we analyze co-occurrence
patterns across multiple semantic levels, including objects, visual combinations, interactions, and
temporal dynamics. Through both data analysis and controlled experiments, we show that such
hallucinations are not isolated errors, but rather systematic failures rooted in the model’s reliance on
superficial statistical shortcuts instead of scene-aware reasoning about anomalies.

To address this issue, we propose VAD-DPO, a direct preference optimization framework tailored
for VAD. The core idea is to formulate VAD as a pairwise preference optimization problem: by
training on visually similar video clips with contrasting anomaly labels, the model is encouraged to
distinguish semantic abnormality rather than rely on superficial statistical correlations. Specifically,
we construct contrastive preference pairs in which the same object or scene context appears across
clips, but only one constitutes an anomaly due to contextual differences. This preference-aligned
fine-tuning process encourages the model to perform scene-aware reasoning, thereby mitigating
hallucinations caused by spurious co-occurrence patterns.

In summary, our contributions are threefold:

• An underexplored problem in LVLM-based VAD is investigated, wherein a hallucination phe-
nomenon is revealed from the perspective of visual-textual co-occurrence patterns. This suggests that
anomaly detection is driven by statistical shortcuts rather than contextual reasoning.
• A preference-based optimization framework, VAD-DPO, is proposed to guide the model toward
scene-aware reasoning and visually grounded anomaly detection by leveraging counter-example
preference pairs with visually similar content but contrasting semantics.
• Extensive experiments conducted on six benchmark datasets demonstrate the superiority of VAD-

2



DPO in both anomaly detection and contextual reasoning. The improvements are particularly
pronounced on the benchmarks involving scene-dependent anomalies.

2 Related Work

2.1 Video Anomaly Detection

Traditional VAD methods mostly rely on self-supervised training using normal data [8, 33, 40, 45, 46]
or adopt video-level labels [35, 4, 41] with multiple instance learning [28, 20]. While effective
in constrained settings, they struggle with generalization due to limited training data. Recent
works [37, 42, 39, 29] introduce LVLMs into VAD to leverage the capabilities acquired through
large-scale multimodal pretraining. Early efforts explored training-free use of LVLMs by prompting
them to summarize abnormal patterns for detection [42, 39]. Subsequent studies [6, 29] leverage
LVLMs to detect anomalies in the form of video question answering. Zhang et al. [44] enhance
anomaly detection performance by fine-tuning pre-trained LVLMs with supervision on VAD datasets.
Despite the impressive performance of LVLMs, whether they truly ground their predictions in visual
evidence remains unclear. In this work, we reveal a hallucination phenomenon rooted in LVLMs’
reliance on visual-textual co-occurrence patterns, which causes the model to be misled by frequent
but irrelevant visual instances. Furthermore, we propose a DPO-based training framework to mitigate
this issue by guiding the model toward visually grounded reasoning.

2.2 Mitigating Hallucination in Large Vision-Language Models

Hallucination, a prevalent issue in LVLMs, refers to the generation of outputs that are not grounded
in the input [47, 9, 12, 3, 21]. To mitigate hallucinations, various methods have been explored, most
of which focus on improving decoding strategies [13, 5, 38]. For instance, Leng et al. [13] introduce
visual contrastive decoding, which corrects hallucinated outputs by comparing the model’s responses
to original and perturbed visual inputs. Chen et al. [5] highlight the importance of incorporating
both local and global visual context, which integrates an external grounding module during decoding.
Xing et al. [38] perform attention reallocation during decoding to guide the model’s focus toward
visual information. In addition, some methods [10, 16, 48] address hallucination by performing
robust instruction tuning on curated datasets. Despite these advances, hallucination in VAD remains
underexplored. In this paper, we investigate this phenomenon from a co-occurrence perspective and
introduce VAD-DPO, a training framework designed to mitigate hallucinations. To the best of our
knowledge, this is the first systematic study of hallucination in the VAD setting.

3 Diagnosing Hallucinations in VAD: A Co-occurrence Perspective

Task Formulation. Given a video clip and a textual prompt, the objective of LVLM-based VAD [6,
44] is to determine whether the clip contains anomalous content. Specifically, the input to the model
consists of a video sequence v and a question q, typically phrased in natural language (e.g., “Is there
anything abnormal in this video?”). The LVLM processes the visual and textual inputs and outputs a
response r, which may take the form of a binary decision (“Yes” or “No”) or an open-ended caption.
Formally, the LVLM-based VAD task is defined as:

r = LVLM(v,q), (1)

where v = {f1, f2, . . . , fT } denotes a sequence of T video frames, and q is the anomaly-related
query. The model’s output r reflects its internal judgment on whether the video contains an anomaly.
To assess whether these models perform scene-aware anomaly reasoning or rely on spurious statistical
shortcuts, we examine their behavior from a perspective of co-occurrence.

3.1 Does Hallucination Exist? Evidence from Object-Level Co-occurrence

In language modeling, co-occurrence refers to the frequency with which tokens appear together in
training corpora. Extending this notion to vision-language settings, we hypothesize that anomaly
judgments may be biased by visual instances (e.g., objects, scenes) that frequently co-occur with
anomaly-related phrases (e.g., “fire,” “robbery,” “panic”) during pretraining. Since LVLMs are not
trained with explicit normal/anomalous labels, we approximate such biases by measuring alignment

3



Table 1: Object-level co-occurrence statistics between visual objects and abnormality/normality-
related textual phrases. Top 8 objects are ranked by abnormal co-occurrence count; the last 2 are
neutral visual objects added as counter-shortcut examples.

Visual Object Abn. Count Norm. Count Total
Occur.

Abn./Norm.
Ratio

Normalized
Abn. Freq

Bias
Score

gun 812 34 846 23.9 0.960 5.24
knife 431 16 447 26.9 0.964 5.43
fire 688 51 739 13.5 0.931 4.40
blood 279 11 290 25.4 0.962 5.32
smoke 403 27 430 14.9 0.937 4.27
ambulance 209 19 228 11.0 0.917 3.54
police car 201 26 227 7.73 0.886 3.16
syringe 165 13 178 12.7 0.927 3.80

tree 17 62 79 0.27 0.215 -1.87
chef knife 23 88 111 0.26 0.207 -1.93

Table 2: False positive rates (FPR, %) on Probe Set 1 and false negative rates (FNR, %) on Probe Set
2. Higher values indicate stronger shortcut reliance.

Model Param. Probe Set 1 (FPR) Avg. Probe Set 2 (FNR)
Fire Gun Blood Knife

Qwen2.5-VL [1] 7B 80.0 65.0 67.5 57.5 67.5 77.5
Qwen2.5-VL [1] 32B 67.5 47.5 60.0 50.0 56.3 60.0
LLaVA-1.5 [17] 7B 85.0 80.0 77.5 72.5 78.8 82.5
LLaVA-1.5 [17] 13B 75.0 62.5 65.0 60.0 65.6 75.0
LLaVA-NeXT-Video [18] 7B 82.5 70.0 67.5 55.0 68.8 72.5
LLaVA-NeXT-Video [18] 34B 67.5 52.5 62.5 47.5 57.5 57.5
InternVL3 [49] 8B 75.0 72.5 65.0 60.0 68.1 80.0

between visual content and anomaly-related or normality-related texts. As a first step, we examine
whether the presence or absence of specific objects, which are objectively observable factors, alters
the model’s prediction. This perspective allows us to probe whether the model’s output reflects
scene-aware understanding or merely shallow vision-text statistical associations.

Co-occurrence Statistics. We conduct a statistical analysis on the LAION-CC-SBU dataset [17],
which contains 558K image-text pairs and serves as part of the pretraining corpus for LLaVA [17, 18].
We begin by using GPT [24] to generate 3k candidate anomaly-related and normality-related textual
phrases. These phrases are manually reviewed to ensure semantic clarity and accurate categorization.
For each associated image, we apply YOLOv5 to detect objects and extract corresponding visual
instances. We then compute co-occurrence statistics by counting how frequently each detected object
appears in images whose captions contain either anomaly-related or normality-related phrases.

Table 1 presents the object-level co-occurrence statistics for the top 8 visual objects with the high-
est abnormal phrase co-occurrence, along with 2 counter-shortcut examples (e.g., chef knife) that
often appear in normal contexts. We report the abnormal and normal co-occurrence counts, total
occurrences, the abnormal-to-normal ratio, and the normalized abnormal frequency (NAF). To further
quantify the bias, we compute a Bias Score using log-ratio scaling. The two metrics are defined as:

NAF =
Abn. Count

Abn. Count + Norm. Count
, Bias Score = log2

(
Abn. Count + 1

Norm. Count + 1

)
(2)

Higher values for both metrics indicate stronger co-occurrence bias toward abnormal semantics.

Probe Setting. To assess whether LVLMs rely on shortcut correlations, we construct two diagnostic
probe sets. Probe Set 1 targets false positives by inserting anomalous-looking objects—fire, gun,
blood, and knife—into semantically normal scenes, with 40 samples per object selected based on
Table 1. Probe Set 2 targets false negatives by placing normal-looking objects in semantically
abnormal contexts, also comprising 40 samples. In total, we generate 200 samples using frames
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Table 3: Co-occurrence statistics of visual patterns with anomaly- and normality-related textual
phrases. Bias scores reflect preference toward anomaly.

Level Visual Pattern Abn. Count Norm. Count Abn./Norm.
Ratio

Bias
Score

Inter-
action

person driving a car 143 312 0.46 -0.79
person lying on sidewalk 298 19 15.7 3.97
person hitting another 377 8 47.1 5.89
person walking a dog 21 231 0.09 -3.46

Temporal

people running 321 74 4.34 2.53
person jumping 114 27 4.22 2.48
person standing still 9 198 0.05 -4.46
people walking slowly 35 310 0.11 -3.15

P
ro

b
a
b

il
it

y

Only Fire Fire + Knife

P
r
o
b

a
b

il
it

y

(a) Comparison of probabilities in knife and fire scenarios. (b) Comparison of probabilities in different hitting scenarios. 

∆ = 0.74

P
ro

b
a
b

il
it

y

Boxing in the Ring Fighting in an Alley

P
ro

b
a
b

il
it

y

Figure 2: Effect of object combination and interaction-level co-occurrence on predicted anomaly
probabilities. The presence of frequently co-occurring objects or interactions leads to high anomaly
scores, even in semantically normal scenes, highlighting the influence of co-occurrence bias.

from VAD benchmarks [2, 44, 50] and Wan 2.1 [31], ensuring temporal consistency to avoid visual
artifacts. We report false positive and false negative rates across multiple LVLMs.

Observations. As shown in Table 2, all models exhibit substantial false positive rates on the shortcut
probe set, with even the strongest models, such as Qwen2.5-VL (32B), misclassifying over 50% of
anomalous-looking-but-normal samples. Models like LLaVA 1.5 (7B) and InternVL3 (8B) reach false
positive rates as high as 78.8% and 68.1%, respectively, indicating a strong reliance on object-level
co-occurrence shortcuts. While scaling model size provides moderate improvements (e.g., Qwen2.5-
VL 32B vs. 7B), the bias remains persistent across architectures. Notably, only LLaVA-NeXT-Video
(34B) achieves a false negative rate below 60%, further confirming that models struggle to perform
scene-aware reasoning about anomalies.

Insight. The results reveal a hallucination pattern: LVLMs tend to detect anomalies based on
superficial vision-text co-occurrence learned during pretraining, rather than performing scene-aware
reasoning. This shortcut behavior persists across architectures and model scales.

3.2 Beyond Object-Level: Analyzing Multi-Level Co-occurrence in VAD Hallucination

The previous analysis shows that LVLMs hallucinate anomalies based on object-level co-occurrence.
Building on this finding, we further examine whether such shortcut reliance extends to more complex
semantic structures. Specifically, we investigate whether hallucinations persist at higher semantic
levels, including object combinations, interaction patterns, and temporal dynamics.

Combination-Level. To examine whether hallucination extends beyond individual objects, we
construct combination-level probes by pairing object categories that exhibit strong anomaly-related
co-occurrence, as identified in Table 1. Specifically, we conduct experiments on Qwen2.5-VL (7B)
by inserting knife into the previously constructed fire samples from Probe Set 1, while ensuring the
overall scene semantics remain normal. As shown in Figure 2(a), the predicted anomaly probability
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significantly increases after inserting knife, even though the scene remains a semantically normal
kitchen. This confirms that hallucination is not limited to isolated visual triggers but can be further
reinforced by frequently co-occurring object combinations.

Interaction-Level. Beyond static object presence, we examine whether hallucinations can also be
triggered by specific interaction patterns between objects or people. We focus on visually ambiguous
interactions, such as driving, hitting, or walking, which are highly context-dependent and can appear
either normal or abnormal depending on the scene. To quantify such interaction-level co-occurrence,
we use GLIP [15] to detect interactions in videos associated with anomaly-related or normality-related
text descriptions. The resulting co-occurrence statistics are summarized in Table 3.

Based on Table 3, we select the highly biased interaction pattern person hitting another and place
it in two different contexts: a street alley to represent a semantically abnormal scene, and a boxing
ring to represent a normal one. As shown in Figure 2(b), the model assigns significantly higher
anomaly scores to both the street and boxing ring scenarios. This demonstrates that interaction-level
co-occurrence can also interfere with the model’s judgment, leading to hallucinations.

(a) Evaluation on Qwen2.5-VL-7B
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Figure 3: Frame-wise anomaly probabilities on
a temporal probe.

Temporal-Level. We further investigate whether
hallucinations can be caused by temporal patterns
that frequently co-occur with anomaly-related
descriptions. To quantify this, we use Video-
MAE [30] to extract motion categories from
videos and compute their co-occurrence with
anomaly- and normality-related texts. The result-
ing statistics are shown in Table 3.

To probe whether temporal co-occurrence leads
to hallucination, we construct an abnormal scene
where a person stands still in the middle of a busy
road. This visual pattern frequently co-occurs
with normality-related text, yet it constitutes a
clear semantic anomaly in this context. Unlike
previous cases, LVLMs such as Qwen2.5-VL [1]
and LLaVA-1.5 [17] are not misled by the co-
occurrence and identify the scene as abnormal.

To understand this behavior, we visualize frame-
level anomaly probabilities. As shown in Figure 3,
the models initially predict normality but gradu-
ally detect the anomaly as the sequence unfolds.
This indicates that temporal progression provides
additional semantics for scene-aware reasoning.

Insight. Hallucinations in VAD extend beyond object-level to co-occurrence patterns involving object
combinations, interactions, and temporal dynamics. While combination and interaction patterns often
reinforce false positives, temporal information can both mislead and correct model predictions.

4 Proposed Method: Direct Preference Optimization for VAD

To address the issue revealed in Section 3, we propose VAD-DPO, a Direct Preference Optimization
approach for VAD. VAD-DPO reformulates detection as a preference alignment task, encouraging
the model to favor outputs consistent with semantic correctness, thereby guiding it to reason based on
scene-level semantics rather than relying on superficial statistical shortcuts.

4.1 Preliminary

Direct Preference Optimization (DPO) [26] aligns model behavior with human preferences by directly
optimizing over preference pairs without reinforcement learning or external reward models. Given
a multi-modal input (x, v) and two candidate responses yw (preferred) and yl (less preferred), the
model πθ defines a conditional distribution πθ(y|x, v). DPO encourages the model to increase the
relative likelihood of the preferred output while regularizing divergence from a reference model πref,
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initialized from the same checkpoint. The training objective is derived from the Bradley-Terry model:

LDPO = − log σ

(
β · log πθ(yw | x, v)

πref(yw | x, v)
− β · log πθ(yl | x, v)

πref(yl | x, v)

)
, (3)

where σ(·) is the sigmoid function and β controls the sharpness of preference alignment.

4.2 Optimization Objective for VAD

Building on recent advances in multimodal preference optimization [16, 48, 11], we formulate
anomaly detection as a direct preference optimization problem. To explicitly break shortcut reliance,
we construct counter-example preference pairs from existing datasets [50, 44] and further synthesize
additional pairs with Wan2.1 [31], where clips are visually similar but semantically contrasting. For
instance, both “a person hitting another in a boxing ring” and “a person hitting another in a street alley”
involve the same high-frequency interaction pattern (hitting), which co-occurs with anomaly-related
cues. However, only the latter should be judged anomalous. By training the model to prefer the
semantically correct response yw over the incorrect yl, VAD-DPO enforces reasoning grounded in
scene semantics rather than superficial correlations.

Formally, let (x, v) denote the textual prompt and video input, and (yw, yl) be two candidate outputs.
Following the DPO objective, the VAD-specific loss is:

LVAD-DPO = − log σ

(
β · log πθ(yw | x, v)

πref(yw | x, v)
− β · log πθ(yl | x, v)

πref(yl | x, v)

)
. (4)

To further stabilize training and preserve strong preference for semantically valid clips, we adopt an
anchored objective [32]:

LAnc = − log σ

(
β · log πθ(yw | x, v)

πref(yw | x, v)

)
. (5)

The final loss combines contrastive and anchored terms:

Ltotal = LVAD-DPO + γ · LAnc, (6)

where γ balances the contribution of anchoring. Through counter-example preference pairs, VAD-
DPO directly targets the co-occurrence shortcut issue, compelling the model to distinguish visually
similar but semantically distinct contexts. This preference-based supervision shifts the model from
surface-level correlations toward robust reasoning over scene semantics, thereby mitigating shortcut-
driven hallucinations in LVLM-based VAD.

4.3 LVLM-based Video Anomaly Detection

During inference, we adopt the evaluation protocol of LAVAD [42], which consists of two stages. (1)
Frame Sampling and Scoring: For each video segment, we uniformly sample 8 frames and pair
each with a scoring-style prompt, following [42]. For example, we ask the LVLM: “If you were a law
enforcement agency, how would you rate the scene on a scale from 0 to 1, where 0 denotes a standard
scene and 1 indicates suspicious activities?” The model directly outputs a numerical score, which
is taken as the anomaly score of the frame. (2) Score Refinement and Assignment: The sparse
frame-level scores are refined through a weighted aggregation mechanism. Specifically, we exploit
temporal attention weights from the decoding process to propagate scores from sampled frames to
their neighbors, producing a dense per-frame anomaly score sequence across the entire video.

5 Experiments

5.1 Experiment Setup

Datasets. We evaluate our method on six real-world surveillance datasets commonly used in VAD:
ShanghaiTech [19], UCF-Crime [28], XD-Violence [35], NWPU Campus [2], MSAD [50], and
HIVAU-70K [44]. ShanghaiTech [19] features 13 surveillance views from a campus scene. UCF-
Crime [28] contains over 1,900 hours of videos across 13 crime categories. XD-Violence [35]
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Table 4: Comparison of frame-level AUC (%) with state-of-the-art LVLMs and VAD methods on
ShanghaiTech, UCF-Crime, XD-Violence, NWPU Campus, and MSAD.

Method Params SHTech UCF-Crime XD-Violence NWPU Campus MSAD
Qwen2.5-VL [1] 7B 79.4 78.8 83.2 71.9 75.9
LLava-1.5 [17] 13B 76.3 72.8 79.6 70.3 75.1
LLaVA-NeXT-Video [18] 7B 78.8 75.4 81.5 72.6 78.6
LAVAD [42] 13B 81.8 80.3 85.4 71.1 79.4
A-Guardian [6] 7B 80.9 76.1 85.0 72.3 80.9
AnomalyRuler [39] 7B 84.6 78.6 83.1 69.9 81.1
Hawk [29] 7B 80.8 81.9 80.7 72.5 78.9
Holmes-VAU [44] 2B 85.2 84.5 86.3 70.8 81.6

VAD-DPO (Ours) 2B 87.2 86.2 88.5 79.1 85.4

Table 5: False positive rates (FPR, %) on Probe Set 1 and false negative rates (FNR, %) on Probe Set
2. Higher values indicate stronger shortcut reliance.

Model Param. Probe Set 1 (FPR) Avg. Probe Set 2 (FNR)
Fire Gun Blood Knife

LAVAD [42] 13B 85.0 82.5 80.0 87.5 82.5 82.5
A-Guardian [6] 7B 77.5 80.0 85.0 85.0 81.9 80.0
AnomalyRuler [39] 7B 82.5 87.5 90.0 80.0 81.9 82.5
Hawk [29] 7B 90.0 80.0 77.5 72.5 85.0 77.5
Homles-VAU [44] 2B 75.0 80.0 72.5 72.5 75.0 80.0

VAD-DPO(Ours) 2B 15.0 12.5 17.5 7.5 13.1 12.5

includes 4,754 video clips from movies, online sources, and CCTV, focusing on violence detection.
NWPU Campus [2] provides 43 scenes, with a majority involving scene-dependent anomalies.
MSAD [50] comprises data from 14 scenes and 500 viewpoints, offering large-scale scene diversity.
HIVAU-70K [44], built upon UCF-Crime and XD-Violence, is tailored for LVLM-based VAD with
multi-granularity segmentation and rich textual descriptions.
Evaluation Metrics. To comprehensively evaluate LVLMs in VAD, we consider both detection
performance and reasoning ability. For detection, we report Area Under the ROC Curve (AUC) as
the main metric. In addition, we report false positive rate (FPR) on Probe Set 1 and false negative
rate (FNR) on Probe Set 2.
Implementation Details. We set the learning rate to 1e-4 and adopt a cosine learning rate scheduler
with a warm-up ratio of 0.05. The default value of γ is set to 1 in Equation 6. All models are trained
for a single epoch.

5.2 Main Results

While most existing LVLM-based VAD methods [42, 6, 39, 29] operate in a training-free or zero-
shot setting, Holmes-VAU [44] is the only work that explores supervised fine-tuning of an LVLM.
Accordingly, we implement VAD-DPO on Qwen2-VL (2B) [34], aligning with the parameter scale
of Holmes-VAU to ensure a fair comparison.

Detection Performance. We evaluate the frame-level detection performance of VAD-DPO on five
benchmark datasets and compare it with state-of-the-art LVLM-based VAD methods as well as
representative open-source LVLMs. For methods that did not report frame-level AUC on these
benchmarks, we reproduce the results using their publicly released weights and code, without any
modification. As shown in Table 4, VAD-DPO achieves the highest AUC scores across all benchmark
datasets, outperforming both 7B and 13B LVLMs despite using only 2B-scale parameters. Compared
to Holmes-VAU [44], VAD-DPO achieves at least a 2% improvement in AUC across all benchmarks,
with a notable gain of 8.3% on NWPU Campus. The NWPU Campus dataset contains scene-
dependent anomalies, which require the model to understand contextual semantics. The significant
improvement on this benchmark demonstrates that VAD-DPO effectively guides the model to perform
scene-aware reasoning, rather than relying on superficial statistical shortcuts.
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System Prompt: Determine whether an 

abnormal event occurs in the given video.

Prediction of Qwen2.5-VL-7B:

Prediction of LLaVA-NeXT-Video-7B:

Prediction of Ours:

Yes, a police car is approaching in the scene, indicating that an abnormal event is occurring.

… … …Scene Semantic: A normal traffic intersection 

where a police car is on routine patrol.

High-frequency co-occurring object with anomaly-related text: Police Car 

Prediction of LLaVA-1.5-13B:

Yes, a police car appears at the intersection, which may indicate that an abnormal event has occurred.

Yes, the appearance of a police car at the intersection may indicate a potential anomaly.

No, the pedestrian is walking through the intersection normally, and a police car is slowly approaching. No 

anomaly is detected in the scene.

Figure 4: Qualitative comparison illustrating hallucination in LVLM-based VAD. While Qwen2.5-
VL-7B, LLaVA-NeXT-Video-7B, and LLaVA-1.5-13B incorrectly predict an anomaly due to the
presence of a high-frequency co-occurring object (police car), our method accurately identifies the
scene as normal based on contextual understanding.

Performance on Shortcut Probes. Table 5 extends the results in Table 2 by including both domain-
specific expert models [44, 29], which are fine-tuned on VAD datasets, and training-free LVLM-based
methods [42, 6, 39]. All results are obtained using released code and checkpoints, without retraining
or manual tuning. We use a fixed threshold of 0.5 across all models to compute false positive and
false negative rates, ensuring fair comparison despite differences in output score distributions.

Although the expert models are trained specifically for VAD, they still exhibit high hallucination rates.
We attribute this to the scarcity of true anomaly samples in existing datasets, which biases supervised
fine-tuning toward spurious co-occurrence patterns. In contrast, VAD-DPO reduces the average false
positive rate from over 75% in expert models to only 13.1%, an absolute reduction of more than 80%,
highlighting its effectiveness in overcoming shortcut reliance. Training-free methods [42, 6, 39] also
suffer from severe hallucinations, which is expected given their dependence on earlier-generation
LVLMs. For example, LAVAD [42] relies on BLIP2 with LLaMA-2-13B, MMeval uses Vicuna-7B,
and AnomalyRuler employs Mistral-7B-Instruct-v0.2. These models lack sufficient multimodal
reasoning capability and thus perform consistently worse than our approach.

Qualitative Results. Figure 4 illustrates the superior qualitative performance of our proposed VAD-
DPO in detection and reasoning. Compared to other baselines, VAD-DPO accurately understands
and focuses on the anomalous events within the video. In contrast, other LVLMs are influenced by
statistical correlations learned during pre-training, which leads them to generate descriptions centered
around frequently co-occurring patterns.

5.3 Ablation Study and Analysis

Table 6: AUC (%) on NWPU Campus
under different training paradigms.

Training Paradigm AUC
Instruction Tuning [44] 69.2
PPO [27] 72.3
DPO [26] 73.7
VAD-DPO (Ours) 79.1

Effect of Preference Alignment. To evaluate the effec-
tiveness of preference alignment in VAD-DPO, we con-
duct ablation studies on the NWPU Campus dataset. Us-
ing the pre-trained Qwen2-VL (2B) as the baseline, we
compare the effects of different training strategies, in-
cluding instruction tuning, Proximal Policy Optimization
(PPO) [27], standard DPO [26], and VAD-DPO. All meth-
ods are trained on the same data from HIVAU-70K [44]
for a fair comparison.

As shown in Table 6, VAD-DPO significantly outperforms all other training paradigms, achieving an
AUC of 79.1%. Instruction tuning performs worst (69.2%) due to its lack of guidance for contextual
reasoning. PPO improves slightly (72.3%) but suffers from the difficulty of defining effective reward
functions. Standard DPO achieves 73.7% but fails to explicitly guide the model to understand why
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the preferred response aligns with the input video or why the rejected response should be discouraged.
In contrast, VAD-DPO directly guides the model to suppress preferences for high-frequency patterns
when they are contextually irrelevant, effectively mitigating reliance on statistical shortcuts.

𝛾
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(a) Evaluation on UCF-Crime (b) Evaluation on XD-Violence

(c) Evaluation on NWPU Campus (d) Evaluation on MSAD 

Figure 5: Ablation studies on γ.

Effect of γ. As shown in Figure 5, we investigate the
impact of different γ values on the performance of VAD-
DPO. Across four benchmarks—UCF-Crime, XD-Violence,
NWPU Campus, and MSAD—we observe that smaller γ
values significantly improve detection performance, indicat-
ing effective mitigation of hallucinations. However, as γ
increases, performance gradually degrades due to excessive
suppression of co-occurrence patterns, which impairs the
model’s reasoning ability. To balance these effects, we set
γ to 1 by default, aiming to reduce the model’s reliance on
statistical shortcuts during reasoning without compromising
anomaly detection performance.

Table 7: Generalization of VAD-DPO.
Benchmark Qwen2-VL Ours
MVBench [14] 63.2 63.6
PerceptionTest [25] 53.9 54.5
EgoSchema [23] 54.9 55.1
Video MME [7] 60.4 61.2

Generalization of VAD-DPO. We evaluate the result-
ing VAD-DPO model on four general-purpose video
understanding benchmarks, including egocentric ac-
tion recognition, schematic reasoning, and video
question answering. As shown in Table 7, VAD-DPO
achieves consistent improvements over the original
Qwen2-VL-2B. This suggests that preference tuning
not only preserves generalization ability, but may also
enhance it by strengthening semantic grounding. Overall, the results demonstrate that VAD-DPO
maintains robust generalization even when trained on a relatively small but carefully constructed set
of preference pairs.

6 Conclusion

In this paper, we investigate the behavior of LVLMs in video anomaly detection from the perspective
of co-occurrence between visual instances and textual phrases. By analyzing pre-training datasets
and conducting probe experiments, we reveal a hallucination phenomenon in LVLM-based VAD:
LVLMs tend to rely on statistical shortcuts learned during pre-training rather than performing scene-
aware contextual reasoning when identifying anomalies. Further controlled studies demonstrate
that co-occurrence at the combination and interaction levels exacerbates this issue. To address this
problem, we propose VAD-DPO, which formulates VAD as a pairwise preference optimization task.
Specifically, the model is trained on visually similar video clips with contrasting anomaly labels
to encourage alignment with semantic consistency rather than co-occurrence shortcuts. Extensive
experiments across six benchmark datasets validate the effectiveness of our method.

Future Work. Recent advances such as GRPO provide promising directions for the future develop-
ment of LVLMs, we believe there remains significant potential in adapting GRPO-style optimization
to video anomaly detection. In particular, future work may explore: (1) tailoring group-wise ranking
strategies in GRPO to better capture the semantic that are central to VAD; (2) integrating task-specific
reward models, to stabilize training and prevent semantic drift; and (3) scaling GRPO with larger
corpora to fully leverage its potential.
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to have some path to reproducing or verifying the results.
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
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6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Justification: Please refer to Section 3.1, Section 3.2, Section 5.1 and Appendix A.3.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please refer to Section 5.2 and Appendix A.4.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research conform, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Appendix C.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All existing assets used in this paper, including datasets (e.g., UCF-Crime,
XD-Violence, ShanghaiTech, Avenue, NWPU Campus, and MSAD) and pre-trained LVLMs
(e.g., Qwen-VL, LLaVA, InternVL), are properly cited in the paper. Each dataset is used
in accordance with its published license or terms of use. The versions of the datasets and
models used are stated in Section 5.1 and Section 5.2, respectively. URLs and licenses are
included where publicly available, and we strictly follow the original license terms for all
repackaged or redistributed assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Please refer to Section 4.2, Section 5.1, and Appendix A.3. We include part of
the core code in the supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We employed GPT-based large language models in a non-standard but auxiliary
role to assist with filtering textual phrases related to normal or anomalous events during the
construction of co-occurrence statistics and probe datasets. This usage is not essential to the
core methodology and could be replaced by manual annotation. However, it helped reduce
annotation cost and improved consistency by mitigating subjective bias. The use of LLMs
has been explicitly documented in Section 3.1.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

In this appendix, we provide additional experimental results, implementation details, probe dataset
construction methods, and further qualitative and quantitative analyses to support the claims made in
the main paper. These materials are organized as follows:

▶ Section A Supplementary Analyses and Technical Details: We provide supplementary analy-
ses and technical details, including probe design, co-occurrence statistics, implementation details,
extended results, and more qualitative examples.

▶ Section A.1 Diagnostic Probe Construction and Examples: We detail the construction process
of diagnostic probe datasets, including visual examples for both false positives and false negatives.

▶ Section A.2 High-Level Co-occurrence Statistics and Analysis: We present the high-level
co-occurrence statistics across object combinations, interaction patterns, and temporal dynamics,
along with quantitative evaluations that extend our analysis beyond the object level.

▶ Section A.3 Training and Implementation Details: We describe the training and implementa-
tion details of VAD-DPO, including model initialization, optimization settings, and computational
resources used.

▶ Section A.4 Additional Experimental Results: We report additional experimental results, includ-
ing reasoning performance and the performance of implementing VAD-DPO on InternVL3.

▶ Section A.5 Comparisons with Methods for Mitigating Hallucination: We further clarify our
contribution, discuss hallucination in LVLMs, and compare with related work.

▶ Section A.6 More Qualitative Examples: We show more qualitative examples comparing VAD-
DPO and baseline models under various scenarios, highlighting differences in reasoning behavior.

▶ Section B Limitations: We discuss the limitations of our current approach, including model scale
and residual hallucination effects, and outline possible directions for future work.

▶ Section C Broader Societal Impacts: We discuss the broader societal impacts of our work,
highlighting the potential benefits in safety-critical applications.

A Supplementary Analyses and Technical Details

A.1 Diagnostic Probe Construction and Examples

To evaluate whether LVLMs rely on co-occurrence-driven shortcuts rather than truly understanding
scene semantics, we construct two diagnostic probe sets designed to induce controlled hallucination
scenarios. This section complements the analysis in Section 3.1 by providing detailed descriptions of
how these probe sets are constructed, their underlying rationale, and the evaluation protocol used to
assess hallucination behavior across different LVLMs.

Details of Co-occurrence Statistics. As described in Section 3.1, we conduct this analysis using
the LAION-CC-SBU dataset. We begin by using GPT to generate approximately 3k candidate
textual phrases that are potentially associated with anomaly or normality. These phrases are manually
reviewed to ensure semantic clarity and proper categorization. We then match these phrases against
LAION captions to identify text-image pairs where a caption contains a candidate phrase. For each
matched image, we apply YOLOv5 to detect objects and filter out low-confidence detections to ensure
statistical robustness. This process allows us to compute co-occurrence statistics by measuring how
frequently certain visual objects appear in images whose captions express either anomaly-related or
normality-related concepts. In this way, the co-occurrence patterns are estimated from large-scale
real-world data with careful semantic control.

GPT-generated Textual Phrases. To construct our probing datasets, we use GPT-4 to generate a
diverse set of 3k candidate textual phrases related to anomaly and normality. We prompt the model
with instructions such as: Generate a list of concise phrases that describe either abnormal or normal
events in video scenes. Some example outputs include:

• Anomaly-related: “a person holding a knife”, “fire spreading rapidly”, “man lying motionless
on the ground”.
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• Normality-related: “people walking across a street”, “children playing in a park”, “car
driving along a road”.

We manually review and filter these phrases to ensure semantic clarity and diversity.

Probe Set 1: False Positive Induction. This set aims to test whether models incorrectly predict
anomalies when anomalous-looking objects are introduced into semantically normal scenes. Based
on the object-level co-occurrence statistics in Table 1, we identify four visual objects, fire, gun, blood,
and knife, that exhibit strong abnormality bias. For each object, we manually select 40 base scenes
from VAD datasets where the original context is clearly normal. We then use image editing or video
generation techniques [31] to insert the target object in a visually realistic way, ensuring that the
modified frame still maintains normal semantics overall. These modified clips are used to test the
model’s hallucination susceptibility.

Probe Set 2: False Negative Induction. To evaluate whether LVLMs overlook semantic anomalies
when scenes contain superficially benign objects, we design a second probe set. We select 40
semantically abnormal situations where abnormality arises from scene context rather than object
presence. Into these scenes, we insert neutral or high-frequency objects associated with normality (e.g.,
tree, chef knife) that may distract or bias the model toward false negatives. Examples include inserting
a peaceful-looking object into a street fight, or placing a daily-use item in a chaotic environment.

Dataset Sources and Consistency. The probe videos are derived from two sources. First, we select
representative examples from three real-world datasets—NWPU Campus [2], HIVAU-70K [44], and
MSAD [50]—which serve as the base scenes. Second, we construct edited versions of these samples
using Wan2.1 [31], enabling controlled insertion of objects or contextual modifications to induce
hallucination. We ensure that temporal consistency is preserved after object insertion by verifying
motion cues and avoiding visual artifacts. Each probe video contains a sequence of frames with
minimal modification outside the target region to isolate the effect of co-occurrence-driven bias.

Human Validation Protocol. Our goal in constructing probe samples is to simulate scenes where the
most plausible and commonsense interpretation is normal, despite the presence of anomaly-related
objects. For example, a video depicting a man barbecuing in a backyard may include a "fire" object,
yet the overall scene is semantically normal. To ensure the normality, we applied a strict human
validation protocol:

• Manual Screening: All videos are reviewed by multiple annotators to ensure that the inserted
object does not introduce unintended anomaly cues beyond its visual presence.

• Exclusion of Ambiguous Cases: We filter out videos in which the anomaly-related object
could reasonably support multiple semantic interpretations (e.g., police cars in tense crowd
scenes).

While we acknowledge a degree of subjectivity is inevitable, this validation protocol is designed to
minimize such ambiguity.

Evaluation Protocol. We evaluate multiple LVLMs of varying sizes and architectures (Qwen2.5-VL,
LLaVA-1.5, LLaVA-NeXT-Video, InternVL3) on both probe sets. For Probe Set 1, we report false
positive rates (FPR), indicating hallucination susceptibility when no actual anomaly exists. For Probe
Set 2, we report false negative rates (FNR), measuring the model’s failure to detect context-based
anomalies. Results are summarized in Table 2, showing that models consistently exhibit higher error
rates in these carefully constructed edge cases.

Visual Examples. Figure A.1 provides representative examples from both probe sets, including
four cases from Probe Set 1 and two from Probe Set 2. These examples illustrate how high-bias
or contextually misleading objects are inserted into real scenes to construct controlled test cases.
To protect privacy, all visible faces in the frames have been masked. We acknowledge that simply
applying masks may not be sufficient to fully eliminate potential ethical and privacy concerns. In
future releases of our probe sets, we plan to adopt full-face blurring or visual obfuscation techniques
to further enhance privacy protection.

A.2 High-Level Co-occurrence Statistics and Analysis

Overview. This section provides implementation details and quantitative analysis of high-level
co-occurrence patterns that may lead to hallucinations in LVLM-based VAD systems. Specifically,
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*Caption: A man is having a barbecue. *Caption: A soldier is engaged in shooting practice.

*Caption: A medical operation is in progress. *Caption: A worker is unpacking a package.
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*Caption: A pedestrian pushed another person down. *Caption: A man tried to climb a tree, sneaking around.

Figure A.1: Representative examples from the diagnostic probe sets. The top row shows four samples
from Probe Set 1, where high-bias objects (e.g., fire, gun) are inserted into semantically normal scenes
to induce false positives. The bottom row shows two samples from Probe Set 2, where contextually
abnormal scenes contain visually benign elements that may mislead the model toward false negatives.
All visible faces have been masked to preserve privacy.

we elaborate on the statistical construction of object combinations, interaction patterns, and temporal
dynamics, and report the corresponding anomaly prediction behaviors.

Object Combination Co-occurrence. We identify object pairs with high anomaly-related co-
occurrence frequency based on conditional probabilities computed from the HIVAU-70K dataset.
Among them, knife and fire form a frequently co-occurring pair in anomalous contexts. To test
whether their combination induces hallucination, we insert knife into fire scenes (originally labeled as
normal) while keeping the scene semantics unchanged (e.g., a kitchen). Quantitative results show
that adding knife increases the predicted anomaly probability significantly, despite the absence of
actual anomalies.

Interaction-Level Co-occurrence. We use GLIP [15] to extract subject-verb-object interactions
from video-text pairs and compute their anomaly association via normalized co-occurrence counts.
The pattern person hitting another is selected due to its strong anomaly correlation. To isolate the
effect of context, we embed the same interaction into two settings: a street alley and a boxing ring. In
both, models incorrectly predict high anomaly scores, confirming interaction-level hallucination even
in semantically normal contexts.

Temporal Dynamics Co-occurrence. Motion patterns are extracted using VideoMAE [30] and
aligned with anomaly/normality tags through co-occurrence analysis. The motion pattern standing
still is often associated with normality in the training data. We construct a probe where a person
remains stationary in the middle of a busy road. While the scene is clearly anomalous, we observe
that some models initially assign low anomaly scores, which only rise after several frames, indicating
delayed recognition due to misleading temporal priors.

Summary. These results demonstrate that hallucination in LVLMs extends beyond object-level
triggers to include more complex semantic structures. Object combinations, interaction patterns,
and temporal motion—when biased by training co-occurrence—can each mislead the model into
incorrect anomaly predictions, despite semantically normal visual input.

A.3 Training and Implementation Details

We provide additional details regarding the training setup and implementation of VAD-DPO.
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Model Initialization. All experiments are conducted using the Qwen2-VL [34] backbone with 2B
parameters. The reference model πref is initialized from the same checkpoint and frozen throughout
training. We use the official HuggingFace implementation with minor modifications to support
preference-based finetuning.

Training Details. We use mixed-precision training (fp16) and a batch size of 16 preference pairs per
GPU. All models are trained for a single epoch using the AdamW optimizer with a learning rate of
1e-6 and cosine decay schedule (warm-up ratio 0.05). The alignment sharpness factor β is set to 0.1
following DPO best practices [26], and γ is set to 1 unless otherwise specified.

Preference Pair Construction. Preference pairs (yw, yl) are constructed from HIVAU-70K [44],
MSAD [50], and NWPU Campus [2]. Each pair consists of two video clips with similar visual content
but differing semantics—only one clip is contextually anomalous. These clips are selected based on
manual inspection of anomaly labels and scene descriptions, ensuring high semantic contrast with
minimal visual confounds. In total, we curate 1,000 such preference pairs for training. To ensure
both semantic contrast and visual alignment, most pairs are sourced in one of two ways: (1) from the
same scene where different but visually similar behavior patterns (e.g., walking vs. running) occur
under normal and anomalous contexts, or (2) from different real-world scenes that share the same
surface-level activity (e.g., standing still) but differ in contextual interpretation. This construction
strategy helps isolate the causal semantics of anomaly, making the preference signal more robust and
interpretable.

Training Time and Resources. All training is performed on an internal cluster equipped with
2 NVIDIA A100 GPUs (80GB memory each), using distributed data parallelism via PyTorch’s
‘torch.distributed‘ module. VAD-DPO model is trained for one full epoch over the 1,000 constructed
preference pairs, which corresponds to approximately 90,000 optimization steps (given pair-wise
sampling and batching). The end-to-end training process takes around 16 GPU-hours.

To reduce data loading bottlenecks, all video clips are pre-extracted into frame sequences and cached
on local SSDs. Training uses mixed precision (fp16) to improve memory efficiency and reduce
training time by 30% compared to full precision.

Table A.1: Comparison of reasoning performance with state-of-the-art LVLMs on HIVAU-70k.
BLEU, CIDEr, and ROUGE scores are reported at clip-level (C), event-level (E), and video-level (V).

Method Params BLEU ↑ CIDEr ↑ ROUGE ↑
C E V C E V C E V

Video-ChatGPT [22] 7B 0.152 0.068 0.066 0.033 0.011 0.013 0.153 0.048 0.079
Video-LLaMA [43] 7B 0.151 0.079 0.104 0.024 0.014 0.017 0.156 0.067 0.090
LLava-1.5 [17] 7B 0.316 0.097 0.189 0.115 0.018 0.028 0.176 0.077 0.091
LLAVA-Next-Video [18] 7B 0.435 0.091 0.120 0.102 0.015 0.031 0.198 0.080 0.106
Qwen2.5-VL [1] 7B 0.481 0.154 0.263 0.146 0.030 0.059 0.201 0.107 0.169
Holmes-VAU [44] 2B 0.913 0.804 0.566 0.467 1.519 1.437 0.329 0.370 0.355

VAD-DPOHolmes 2B 0.923 0.881 0.645 0.688 1.984 1.832 0.561 0.596 0.573

A.4 Additional Experimental Results

In Section 5, we evaluated the detection performance of VAD-DPO on mainstream benchmark
datasets as well as its results on the constructed probe sets. In this appendix, we further report
supplementary results, including reasoning performance on HIVAU-70K [44] and detection results
on the XD-Violence dataset [35] using AP as the evaluation metric. Following [44], we assess the
quality of generated descriptions on clip-, event-, and video-level test samples using BLEU, CIDEr,
METEOR, and ROUGE scores.

Reasoning Performance. To ensure fair comparison and isolate the effect of fine-tuning, we
implement VAD-DPO using Holmes-VAU [44] as the LVLM, denoted as VAD-DPOHolmes. We com-
pare VAD-DPO with state-of-the-art LVLMs, including Video-ChatGPT [22], Video-LLaMA [43],
LLaVA-1.5 [17], LLaVA-NeXT-Video [18], Qwen2.5-VL [1], and Holmes-VAU [44]. As shown in
Table A.1, VAD-DPO achieves the highest scores across all metrics, reflecting its ability to guide
the model to reason based on scene semantics rather than relying on co-occurrence patterns, thereby
generating descriptions that are more consistent with the visual context.
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Figure A.2: Qualitative comparison illustrating hallucination in LVLM-based VAD. While Qwen2.5-
VL-7B, LLaVA-NeXT-Video-7B, LLaVA-1.5-13B, and InternVL-8B incorrectly predict an anomaly
due to the presence of high-frequency co-occurring objects or patterns, our method accurately
identifies the scene as normal by leveraging contextual understanding. Green boxes indicate correct
predictions, red boxes indicate incorrect predictions, and purple highlights mark high-frequency
co-occurring objects or patterns that may induce hallucination.

Robustness to High-Level Co-occurrence. Following the analysis in Section 3.2, we further
evaluate VAD-DPO’s robustness to high-level co-occurrence patterns. Specifically, we examine two
challenging settings: (1) frequent co-occurrence of high-bias object combinations, and (2) identical
interactions occurring in different scene contexts. For each case, we measure the anomaly probability
predicted by VAD-DPO to assess whether the model is misled by co-occurrence patterns or correctly
grounds its judgment in scene semantics.

As shown in Figure A.2, VAD-DPO consistently provides accurate anomaly predictions in both
settings. It successfully avoids false alarms when object combinations appear in normal contexts,
and correctly identifies anomalies when the same interaction becomes semantically abnormal in a
different scene. These results validate VAD-DPO’s robustness to high-level shortcut cues and its
ability to make context-aware, semantically grounded predictions.

Table A.2: Performance of VAD-DPO on InternVL3-1B compared
to baseline LVLMs

LVLM Param NWPU
AUC ↑

Probe Set 1
FPR ↓

Probe Set 2
FNR ↓

InternVL3 8B 71.2 70.0 75.0
InternVL3 1B 69.3 75.0 80.0

VAD-DPO
(InternVL3) 1B 76.3 24.4 27.5

Results on Different LVLMs.
To further evaluate our proposed
approach, we apply VAD-DPO
to InternVL3-1B [49]. We select
InternVL3-1B for fine-tuning to
maintain a parameter scale com-
parable to Qwen2-VL-2B. The
results are summarized in Ta-
ble A.2. Specifically, VAD-DPO
improves the average frame-level
AUC of InternVL3-1B on VAD
benchmark by more than 10%, while reducing hallucination-induced error rates from 75.0% to
24.4% on Probe Set 1 and from 80.0% to 27.5% on Probe Set 2. Despite having significantly fewer
parameters, InternVL3-1B fine-tuned with VAD-DPO outperforms the off-the-shelf InternVL3-8B
on both standard VAD benchmarks and hallucination-sensitive probe sets. These results demonstrate
that our method is effective not only for Qwen-based models but also generalizes well to other LVLM
architectures.

A.5 Comparisons with Methods for Mitigating Hallucination

Co-occurrence has been identified as a cause of object hallucination in prior VLM studies. However,
we argue that the nature of co-occurrence and its resulting failure mode in VAD are fundamentally
different, which constitutes the core focus of our work. Object hallucination typically arises from
object-context co-occurrence. In contrast, VAD hallucination stems from object-label co-occurrence:
the model does not invent nonexistent objects but correctly detects real ones (e.g., a fire in the scene)
and mistakenly classifies them as anomalous solely due to their frequent co-occurrence with anomaly
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labels during training. This represents a more severe form of shortcut learning, where the model
bypasses contextual reasoning and directly maps object presence to anomaly prediction. Our work
therefore addresses a VAD-specific challenge: not whether an object exists, but what its presence
signifies in a dynamic, context-dependent scene.

A.6 More Qualitative Examples

To further demonstrate the effectiveness of VAD-DPO in mitigating hallucination and enhancing scene
understanding, we provide additional qualitative examples across diverse scenes. By comparing VAD-
DPO with baseline models, we highlight its ability to produce context-aware and semantically aligned
predictions, especially in cases where conventional LVLMs tend to rely on shortcut correlations.

System Prompt: Determine whether an 

abnormal event occurs in the given video.

Prediction of Qwen2.5-VL-7B:

Prediction of LLaVA-NeXT-Video-7B:

Prediction of Ours:

No, a pedestrians is simply walking across the road, and everything appears normal in the scene.

… … …Scene Semantic: An abnormal event: pedestrians 

are crossing the road without a crosswalk.

High-frequency co-occurring pattern with normal-related text: Walking

Prediction of LLaVA-1.5-13B:

No, people are casually walking, and there is no indication of any abnormal activity.

No, a walking pedestrian is visible, and nothing unusual seems to be occurring.

Yes, a pedestrian is crossing the street without a crosswalk, which constitutes an abnormal event.

Prediction of InternVL3-8B:

No, the scene just shows an individual crossing the street on foot, which seems typical.

System Prompt: Determine whether an 

abnormal event occurs in the given video.

Prediction of Qwen2.5-VL-7B:

Prediction of LLaVA-NeXT-Video-7B:

Prediction of Ours:

Yes, a police car is approaching in the scene, suggesting that something abnormal might be taking place.

… … …Scene Semantic: A normal campus road where 

a police car is on routine patrol.

High-frequency co-occurring object with anomaly-related text: Police Car 

Prediction of LLaVA-1.5-13B:

Yes, the presence of a police car on the road implies that an unusual incident could be happening..

Yes, the police car’s appearance in the scene points toward possible emergency activity.

No, the scene shows pedestrians walking calmly in the distance and a police car entering routinely—no 

abnormal event is occurring.

Prediction of InternVL3-8B:

Yes, a police car is approaching in the scene, suggesting that something abnormal might be taking place.

Figure A.3: Qualitative comparison illustrating hallucination in LVLM-based VAD. While Qwen2.5-
VL-7B, LLaVA-NeXT-Video-7B, LLaVA-1.5-13B, and InternVL-8B incorrectly predict an anomaly
due to the presence of high-frequency co-occurring objects or patterns, our method accurately
identifies the scene as normal by leveraging contextual understanding. Green boxes indicate correct
predictions, red boxes indicate incorrect predictions, and purple highlights mark high-frequency
co-occurring objects or patterns that may induce hallucination.

B Limitations

In this section, we discuss the current limitations of our proposed approach, potential avenues
for future improvements, and the broader societal impacts of our work. While our method has

26



demonstrated significant gains in both anomaly detection and reasoning quality, there remain areas
where further research is warranted.

Limitation 1: Model scale and resource constraints. Due to computational constraints, our
experiments with VAD-DPO are limited to 2B-scale vision-language models. Although results
already show strong improvements over larger baselines, it is unclear whether our findings generalize
consistently to larger LVLMs or highly parameterized architectures.

Future Work. We plan to extend VAD-DPO to larger models such as Qwen2.5-VL-7B or LLaVA-
Next-Video-7B, and examine whether preference optimization at scale can yield even more robust
mitigation of hallucinations and further enhance reasoning capacity under complex scene semantics.

Limitation 2: Residual hallucination effects. Despite effectively reducing shortcut-driven hal-
lucinations, VAD-DPO does not eliminate all forms of hallucination. Beyond co-occurrence bias,
hallucinations can still arise from other sources such as strong language priors or modality dominance,
where the model overly trusts textual cues even when they conflict with visual evidence.

Future Work. Future efforts could investigate hallucination attribution across different causal
factors by disentangling the contributions of visual, textual, and cross-modal signals. One promis-
ing direction is to incorporate introspective decoding or modality-aware routing mechanisms that
explicitly modulate information flow based on semantic consistency across modalities.

Limitation 3: Shortcut-driven bias and fairness risks. While VAD-DPO effectively mitigates
shortcut reliance by optimizing preference alignment, it does not explicitly address group-sensitive
fairness concerns. Shortcut-driven hallucinations—such as associating high-frequency visual cues
(e.g., fire, police cars) with anomaly semantics—can lead to biased predictions in surveillance
scenarios. Such bias may disproportionately affect certain environments or communities by incorrectly
flagging contextually normal activities as anomalous, raising potential fairness and ethical risks in
real-world deployment.

Future Work. Future research should extend VAD-DPO toward fairness-aware anomaly detec-
tion. Promising directions include incorporating demographic-sensitive fairness objectives when
annotations include individual-level attributes (e.g., age, clothing, or ethnicity), analyzing disparate
false alarm rates across population groups or geographic regions, and integrating preference opti-
mization with fairness-oriented training strategies such as adversarial debiasing or group reweighting.
Furthermore, we plan to explicitly connect shortcut-driven hallucination risks with broader societal
implications to ensure that robustness and fairness are jointly promoted in safety-critical applications.

C Broader Societal Impacts

Our work contributes to improving the robustness and interpretability of video anomaly detection
systems, especially in safety-critical applications such as surveillance, autonomous monitoring,
and emergency response. By reducing hallucination-induced false alarms and promoting visu-
ally grounded reasoning, VAD-DPO can enhance the trustworthiness and reliability of AI-assisted
decision-making in real-world deployments. More broadly, this work takes a step toward addressing
a core challenge in the deployment of large vision-language models: the misalignment between
statistical correlations and semantic correctness. By explicitly training models to prefer semantically
consistent responses over shortcut-driven predictions, VAD-DPO offers a principled way to mitigate
one of the most pervasive limitations of current multimodal AI systems. In doing so, our approach
supports the development of more transparent and accountable AI, where the decision-making pro-
cess is easier to interpret, verify, and trust. We believe these directions are particularly valuable as
foundation models continue to be adopted in domains where model outputs carry real consequences
for public safety, resource allocation, and ethical oversight.

Nevertheless, we acknowledge that improved reasoning capabilities in surveillance systems may also
raise concerns regarding increased surveillance reach or misuse in privacy-sensitive contexts. To
mitigate such risks, all probe data used in this study have been anonymized, with visible faces masked
to protect personal identity. We also recognize that masking alone may not be sufficient to eliminate
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potential privacy risks; thus, future releases of our probe sets will adopt stronger anonymization
techniques such as full-face blurring or obfuscation.

Finally, we emphasize the importance of clearly defining deployment boundaries and ensuring
appropriate regulatory oversight. Responsible use of video anomaly detection technologies must
prevent potential misuse or overreach in surveillance scenarios that could raise concerns about civil
liberties and human rights. Careful consideration of ethical guidelines and governance frameworks
will be essential to align technical progress with societal values.
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