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Abstract
We extend the standard reinforcement learning
framework to random time horizons. While the
classical setting typically assumes finite and deter-
ministic or infinite runtimes of trajectories, we ar-
gue that multiple real-world applications naturally
exhibit random (potentially trajectory-dependent)
stopping times. Since those stopping times typi-
cally depend on the policy, their randomness has
an effect on policy gradient formulas, which we
(mostly for the first time) derive rigorously in this
work both for stochastic and deterministic poli-
cies. We present two complementary perspectives,
trajectory or state-space based, and establish con-
nections to optimal control theory. Our numerical
experiments demonstrate that using the proposed
formulas can significantly improve optimization
convergence compared to traditional approaches.

1. Introduction
The goal in reinforcement learning is to identify policies π
that maximize the expected return

J(π) = Eπ

[
N∑

n=0

rn(Sn, An)

]
, (1)

where the states Sn and the actions An run until a time N .
While the classical framework considers the case where N
is either finite and deterministic or infinite, runtimes can as
well be random. To name two examples, one could consider
robots that aim to reach a target in a noisy environment or
one could play a game whose terminating state depends on
reaching a certain level. Furthermore, considering stochastic
policies (as commonly done in practice in order to balance
exploration and exploitation) leads to the fact that runtimes
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are random even in deterministic environments. In all those
cases the termination depends on previous (random) choices
and is therefore random itself. However, the common liter-
ature has so far largely ignored the fact that runtimes can
be random. In particular, policy gradient theorems typically
assume that they are either deterministic or infinite (Sutton
& Barto, 2018). Nonetheless, it is intuitively evident that
considering random times should have an effect on opti-
mization formulas since the runtimes mostly depend on the
current policy such that in principle one should be careful
with taking gradients (cf. Nota & Thomas (2020)).

In this work, we close this theoretical gap and systemati-
cally investigate the effect of random time horizons in re-
inforcement learning problems. Our contributions can be
summarized as follows:

• We extend the typical reinforcement learning frame-
work to random time horizons, including (determinis-
tic) finite and infinite runtimes as special cases.

• We state corresponding (random time) policy gradient
theorems both for deterministic and stochastic policies.

• This allows us for the first time to rigorously derive
a trajectory-based gradient estimator for random time
horizons (for stochastic as well as deterministic poli-
cies) in discrete time.

• For deterministic policies we derive a novel model-
based policy gradient formula, which does not rely
on learning the Q-value function as in actor-critic ap-
proaches.

• In multiple numerical experiments, we systematically
investigate the effect of incorporating the randomness
of the time horizon in the gradient computation. For
most cases we can see significant performance im-
provements of our gradient formulas compared to the
standard ones, in particular in terms of convergence
speed.

1.1. Related work

Gradient based on-policy optimization in reinforcement
learning has been pioneered by Sutton et al. (1999), where
a policy gradient theorem for infinite time horizons and
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discrete state spaces has been suggested. In Silver et al.
(2014) it has been extended to deterministic policies and
continuous state-spaces, still in infinite time. In the seminal
monograph from Sutton & Barto (2018) random runtimes
are mentioned, however, not studied. To the best of our
knowledge, the only work that studies trajectory-dependent
random runtimes is from Bojun (2020). However, it solely
focuses on discrete state and action spaces and considers
only stochastic policies, mostly relying on Markov chain
theory for proving the statements. Our work, in contrast,
operates in continuous spaces and adds formulas for deter-
ministic policies. For further work on random time horizons
in reinforcement learning, we refer to Mandal et al. (2023)
and Chen et al. (2024), who, however, only study trajectory-
independent stopping times.

We further refer to Nota & Thomas (2020), who show that
taking heuristic versions of policy gradients (e.g. dropping
discount factors without motivation) might lead to wrong
expressions and that in general one should be careful with
employing algorithms that are not backed by theory. Also,
we refer to White (2017), who unifies finite and infinite
time horizons by introducing generalized (transition-based)
discount factors, which might in principle be enhanced to
random time problems.

Finally, we want to mention that random time horizons are
more popular in stochastic optimal control settings, which
consider deterministic policies and are typically stated in
continuous time (Pham, 2009). We want to highlight Rib-
era Borrell et al. (2024), who derive trajectory-based gradi-
ent estimators for random time optimal control problems.
In fact, for discrete times, we can generalize their result to
non-Gaussian transition densities. We refer to Lie (2021),
who analyzes convexity properties of cost functionals with
random stopping times, and to Zhou et al. (2021), who sug-
gest an algorithm valid for random stopping times in optimal
control that is inspired by the actor-critic method. Lastly,
we refer to Schütte et al. (2023) for random stopping time
problems and related optimization methods in molecular dy-
namics and to Quer & Ribera Borrell (2024) who approach
optimal control problems appearing in molecular dynamics
applications with reinforcement learning techniques.

1.2. Outline of the article

In Section 2 we formally state the reinforcement learning
setting allowing for random runtimes. Section 2.1 comments
on taking either trajectory or state-space perspectives on
this setting. Using both perspectives, we then derive policy
gradient theorems incorporating random time horizons in
Section 2.2. In Section 3 we compare our novel gradient
formulas to classical formulas in numerical experiments.
Finally, Section 4 concludes and provides an outlook for
future research.

2. Reinforcement learning with random time
horizons

In the following we will formally introduce the reinforce-
ment learning setting we consider in this article. Further
details on the notation can be found in Appendix A. We
consider the continuous state-space S ⊂ Rds and the contin-
uous action space A ⊂ Rda and define a time-discrete
Markov decision process M = (S,A, rn, ρ0, p) on the
probability space (Ω,F ,P). Here the reward function
rn : S×A → R provides the signal that is received after be-
ing in state Sn ∈ S and having taken action An ∈ A at time1

n ∈ N. The function ρ0 : S → R≥0 represents the initial
probability density of the states and p : S×S×A → R≥0 is
the time-homogeneous (state-action) transition probability
density. To be more precise, let Λ ⊂ S , then the probability
of starting in a set Λ is given by

P(S0 ∈ Λ) =

∫
Λ

ρ0(s)ds (2)

and the probability of transitioning into the set Λ condi-
tioned on being in state s ∈ S and having chosen action
a ∈ A at time n ∈ N is given by

P(Sn+1 ∈ Λ | Sn = s, An = a) =

∫
Λ

p(s′, s, a)ds′. (3)

A policy is a decision rule determining which action An ∈
A to take when being in state Sn ∈ S at time n ∈ N. In this
work, we consider stationary Markovian policies, i.e., for
every time step the decision rule is the same and the choice
of the action at time n does not depend on the previous states
S0, . . . , Sn−1 of the trajectory. We distinguish between two
types of policies:

• A deterministic policy µ : S → A is a function that
directly maps each state to an action.

• A stochastic policy π : S×A → R≥0 is the probability
density of taking an action in a given state. To be more
precise, let M ⊂ A, then the probability to choose an
action in M when being in state s ∈ S is given by

P(An ∈ M | Sn = s) =

∫
M

π(s, a)da. (4)

Remark 2.1 (Deterministic as stochastic policy). Formally,
a deterministic policy µ can be expressed as a stochastic
policy via π(s, a) = δ(µ(s)− a), where δ is the Dirac delta
distribution. In the sequel, we will therefore often only refer
to the stochastic policy π and only mention the deterministic
policy µ explicitly when necessary.

1In principle, the reward function can be explicitly time-
dependent, however, for random time horizons one typically
chooses it to be time-independent.
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The goal in reinforcement learning is to identify policies π
that maximize the expected return (i.e. cumulative reward)

J(π) = Eπ

[
N∑

n=0

rn(Sn, An)

]
. (5)

We note that the randomness of the return depends on the
policy π and the densities ρ0, p defined before. For nota-
tional convenience, only the learnable π is included in the
subscript of the expectation operator (see Appendix A for
more details). Typically, one either considers N to be fixed
and deterministic2 or N = ∞. In the latter case one has to
discount the reward function, e.g. via rn(s, a) = γnr(s, a),
where γ ∈ (0, 1) is a discount factor and r : S × A → R
is not explicitly time-dependent. In this paper we general-
ize this setting to time horizons N that can be random. In
practice, N often depends on the (random) trajectory and is
defined as the first time reaching a predefined set of terminal
states T ⊂ S, i.e.

N := min{n ∈ N : Sn ∈ T }. (6)

We note that, due to the dependency on the trajectory, N
also depends on the policy π. Throughout this paper, we
assume that N is almost surely finite, i.e. P(N < ∞) = 1.

Interestingly, as noted already in Derman (1970) (see also
Chapter 5.3 in Puterman (2014)), the discounted infinite
horizon case can be considered as a random time hori-
zon problem3. For convenience, we state the proof in Ap-
pendix C.

Lemma 2.2 (Random time perspective on discounted infi-
nite time problem). Let Nγ be a geometrically distributed
random variable with success probability 1 − γ, where
γ ∈ (0, 1). Then, choosing N = Nγ and rn = r in objec-
tive (5) is equivalent to choosing N = ∞ and rn = γnr.

A notable conclusion is that infinite time horizon problems
can in fact be seen as problems that are finite with proba-
bility one. To be precise, they can be interpreted as random
time horizon problems where the trajectory can be arbitrarily
long, however, (almost surely) not infinitely long. We note,
however, that the equivalence only holds in expectation and
numerical implications might have to be studied further,
cf. Paternain (2018), Zhang et al. (2020) and Mandal et al.
(2023).

2Markov decision processes with finite runtimes are often
called episodic, whereas infinite time processes are called continu-
ing. For the episodic case, some works include random, wheres
some assume deterministic runtimes. However, computational
consequences for random runtimes are typically not studied.

3We note, however, that due to the time-dependent reward func-
tion, the starting time matters for infinite time horizon problems in
this setting.

2.1. Trajectory vs. state-space perspective

As commonly done, let us in the following assume the re-
ward function to be not explicitly time-dependent, i.e. we
set rn = r. For the reinforcement learning problem defined
above, we can consider two complementary perspectives,
leading to different formulas and different implementations.
We can either average the reward function (5) over trajecto-
ries, such that the expectation is taken w.r.t. discrete path
measures, or we can view the problem on a state-space level,
not inherently incorporating any dynamics. Let us elaborate
in the following.

Trajectory perspective. This viewpoint is the one described
above, i.e., we consider trajectories (Sn, An)

N
n=0 that evolve

over time, given transition densities for the states and poli-
cies for the actions.

State-space perspective. In this viewpoint we define the
state-space density ρπ (sometimes also called on-policy
distribution) as the density of the process S under policy
π. Recall that the density is independent of time since we
consider stationary problems. It can be defined as follows.
First, we define the function ρπn s.t. for all Λ ⊂ S it holds∫

Λ

ρπn(s)ds = Pπ(Sn ∈ Λ), (7)

so it measures the probability of being in a state at a given
time4 (to be even more precise, the above probability means
Pπ(Sn ∈ Λ) = Pπ(Sn ∈ Λ, n ≤ N)). We can now define
the state-space density as the probability of being in a certain
state irrespective of the time via

ρπ :=
ηπ

Zπ
, ηπ :=

∞∑
n=0

ρπn, Zπ :=

∫
S
ηπ(s)ds. (8)

In other words, ρπ measures the frequency of visiting a
certain region at some point during the evolution of the tra-
jectory and thus does not contain time information anymore.
To make this observation more precise, the following lemma
shows that the (unnormalized) function ηπ defined in (8)
can be interpreted as counting how often trajectories stay in
certain regions of the space, see Appendix C for the proof.
Lemma 2.3. For a set Λ ⊂ S it holds∫

Λ

ηπ(s)ds = Eπ

[
N∑

n=0

1Λ(Sn)

]
(9)

and in particular

Zπ =

∫
S

ηπ(s)ds = Eπ [N + 1] . (10)

The state-space perspective is particularly prominent in re-
inforcement learning since it readily allows for off-policy

4We assume that the process S stops after N steps.

3



Reinforcement Learning with Random Time Horizons
Ze

ro
 p

ol
ic

y
Trajectory perspective State-space perspective

O
pt

im
al

 p
ol

ic
y

Figure 1. We illustrate trajectory and state-space perspectives on
the reinforcement learning problem. In the left panel, we plot three
trajectories that start at the black crosses, respectively, and run
until hitting the target set displayed in red under the dynamics
that is governed by a multi-well potential, see Section 3.3 for
details. The right-hand side displays the corresponding state-space
density ρπ , as defined in (8). In the first row we choose the initial
(deterministic) policy that only returns zero actions and in the
second row we consider the (learned) optimal policy according to
the problem defined in Section 3.3.

learning strategies, see, e.g., Degris et al. (2012); Mnih et al.
(2013); Lillicrap (2016). We refer to Agarwal et al. (2022)
for additional context on the state-space perspective in terms
of so-called occupational measures and refer to Figure 1 for
an illustration of trajectory and state-space perspectives.

We can now state the state-space version of the expected
return defined in (5), which has been derived in Theorem 4
in Bojun (2020) in a discrete space setting.

Proposition 2.4 (State-space expected return). Assuming
P(N < ∞) = 1, the expected return (5) can be written as

J(π) = Eπ[N + 1]E s∼ρπ

a∼π(s,·)
[r(s, a)] , (11)

where ρπ is the state-space density defined in (8).

Contrary to classical results, we note the appearance of the
expected runtime in (11), acting as a scaling factor. Loosely
speaking, with the change from the trajectory to the state-
space perspective one omits the dynamics and therefore the
runtime information, and Proposition 2.4 shows the correct
way of integrating this information back into the state-space
perspective. We refer to Appendix C for the proof and to
Remark C.1 for an alternative derivation, which might also
bring some further intuition.

For infinite time horizons, often the identity

J̄(π) = E s∼η̃π

a∼π(s,·)
[r(s, a)] (12)

is stated, where, in analogy to (8), η̃π :=
∑∞

n=0 γ
nρπn is

called discounted state distribution, see e.g. Silver et al.
(2014). We note, however, that η̃π is not a density since it is
not normalized, and the correct expression for the infinite
time case would be

J(π) =
1

1− γ
E s∼ρ̃π

a∼π(s,·)
[r(s, a)] , (13)

where ρ̃π is the normalized version of η̃π , thus aligning with
Lemma 2.2.

Remark 2.5 (Sampling from ρπ). While we call expecta-
tions w.r.t. ρπ state-space-based, we note that typically, in
order to approximate the expectations numerically, one still
needs to simulate trajectories. However, at the same time, as
mentioned before, the state-space perspective allows to read-
ily design off-policy learning strategies and to use replay
buffers (cf. Degris et al. (2012)).

2.2. Optimization and policy gradient theorems

The notorious question in reinforcement learning is how
to optimize the expected return (5) w.r.t. the policy π (for
stochastic policies) or w.r.t. the function µ (for deterministic
policies). In practice, we typically assume that π or µ are
parametrized by the parameter vector θ ∈ Rp, and we may
write πθ or µθ, respectively. For ease of notation, we often
omit the parameter dependence, however.

A quantity that often appears in the context of optimization
is the so-called Q-value function defined as the expected
return conditioned on a state-action pair,

Qπ(s, a) := Eπ

[
N∑

n=0

r(Sn, An)
∣∣∣S0 = s,A0 = a

]
. (14)

We note that starting at n = 0 holds without loss of general-
ity and one could also start at any other time, since the prob-
lem is time-autonomous. Further, one can define the value
function (or return-to-go) as V π(s) = Ea∼π(s,·) [Q

π(s, a)].
We note that for the expected return (5) it holds J(π) =
Es∼ρ0

[V π(s)] and refer to Appendix B for further details.

The following statement shows how one can compute gra-
dients w.r.t. stochastic policies of expected returns that
incorporate random stopping times. A proof can be found
in Appendix C.
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Proposition 2.6 (Policy gradient). For the gradient of the
expected return (5) it holds

∇θJ(πθ) = Eπ

[
N∑

n=0

∇θ log πθ(Sn, An)Q
π(Sn, An)

]
(15)

= Eπ[N + 1]E s∼ρπ

a∼π(s,·)
[∇θ log πθ(s, a)Q

π(s, a)] ,

(16)

where ρπ is the state-space density defined in (8).

We note that – analogous to Section 2.1 – Proposition 2.6
provides formulas following either a trajectory perspective,
stated in (15), or a state-space perspective, as in (16). For
the former we note that a rigorous derivation for random
time horizons has to the best of our knowledge not been
conducted before5. Further, we note that, in contrast to deter-
ministic stopping times, one cannot simply apply automatic
differentiation of the expected return w.r.t. the parameter θ
for optimization due to the policy-dependency of the run-
time. However, our formula (15) suggests the alternative
objective

Jeff(πθ, πϑ) := Eπϑ

[
N∑

n=0

log πθ(Sn, An)Q
πϑ(Sn, An)

]
,

(17)
which can be (auto-)differentiated w.r.t. θ, yielding
∇θJ(πθ) when setting ϑ = θ after differentiation, i.e.

∇θJeff(πθ, πϑ)
∣∣
ϑ=θ

= ∇θJ(πθ) (18)

(in practice we can simply detach Sn and An from the
computational graph; for the analog reasoning in the state-
space perspective see Appendix D). Further, we note that
the state-space-based formula (16) in fact also relies on
trajectories due to the definition of the Q-value function
in (14) – it has already been stated in Bojun (2020) in a
discrete space setting. To the best of our knowledge, the
state-space formula in a continuous state setting is novel.
Remark 2.7 (Interpretation as effective learning rate). As
for the expected return in Proposition 2.4, we note that the
expected stopping time appears as a scaling factor in the
state-space-based policy gradient formula (16). While one
could be tempted to argue that this acts only as a constant
multiplicative factor that can be absorbed into the learning
rate in gradient based optimization (as, e.g., argued in Sutton
& Barto (2018)), we note that Eπ[N + 1] depends on the
current policy and can therefore substantially vary during the
course of optimization. Conversely, omitting the factor leads

5In fact, assuming N to be deterministic yields the same
trajectory-based formula as in (15) and it is remarkable that the
dependency of N on π in the random stopping time case does not
add any extra term.

to a different effective learning rate in stochastic gradient
ascent. To be precise, let {γ(k)}k be a sequence of learning
rates, then we may update the parameters via

θ(k+1) = θ(k) + γ(k)∇θJ(πθ(k)). (19)

If we instead update

θ(k+1) = θ(k) + γ(k)∇θJ̃(πθ(k)) (20a)

= θ(k) + γ̃(k)∇θJ(πθ(k)), (20b)

where
∇θJ̃ := ∇θJ/Eπ

θ(k)
[N + 1] (21)

is the (wrong) gradient with omitted scaling factor, then
γ̃(k) = γ(k)/Eπ

θ(k)
[N + 1] is the effective learning rate

relating to gradient ascent relying on the correct gradient.
We note that this learning rate may substantially vary with
changing expected runtimes in the course of the optimiza-
tion and refer to Section 3 for experiments investigating
its effect on the optimization performance. Importantly,
we note that previous policy gradient theorems have either
stated the version without expected stopping time, i.e. have
considered (21) for finite time scenarios, or only dealt with
the infinite time horizon case (Sutton et al., 1999). Both
cases lead to incorrect formulas when being applied to ran-
dom time horizon problems.

For the trajectory-based policy gradient estimator (15) we
can additionally derive the following alternative versions,
which might be advantageous from a computational perspec-
tive and are proved in Appendix C.

Corollary 2.8 (Alternative trajectory-based versions of the
policy gradient). For the gradient of the expected return (5)
it holds

∇θJ(π) = Eπ

[
N∑

n=0

∇θ log πθ(Sn, An)

N∑
m=0

r(Sm, Am)

]
(22)

= Eπ

[
N∑

n=0

∇θ log πθ(Sn, An)

N∑
m=n

r(Sm, Am)

]
(23)

= Eπ

[
N∑

n=0

∇θ log πθ(Sn, An) (Q
π(Sn, An)− b(Sn))

]
,

(24)

where b : S → R is an arbitrary function (sometimes called
baseline).

For deterministic policies, the policy gradient takes a slightly
different form, which we state in the following. We note
that for infinite time horizons it has already been derived in
Silver et al. (2014), however, we have not seen a formula
for random time horizons before.
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Proposition 2.9 (Policy gradient for deterministic policies).
For the gradient of the expected return (5) it holds6

∇θJ(µθ) = Eµ

[
N∑

n=0

∇θµθ(Sn)
⊤∇aQ

µθ (Sn, a)
∣∣∣
a=µθ(Sn)

]
(25)

= Eµ[N + 1]Es∼ρµ

[
∇θµθ(s)

⊤∇aQ
µθ (s, a)

∣∣∣
a=µθ(s)

]
,

(26)

where ρµ is the state-space density defined in (8) (with
deterministic instead of stochastic policy).

For the deterministic policy gradient we can further derive
a version in the model-based setting, where we assume the
knowledge of the transition density p defined in (3).

Corollary 2.10 (Model-based policy gradient for determin-
istic policies). For the gradient of the expected return (5) it
holds

∇θJ(µθ) = Eµ

[
N∑

n=0

∇θµθ(Sn)
⊤
(
∇ar(Sn, a)

+ V µ(Sn+1)∇a log p(Sn+1, Sn, a)
)∣∣∣

a=µθ(Sn)

] (27)

= Eµ[N + 1]E s∼ρµ,
s′∼pµ(·,s)

[
∇θµθ(s)

⊤
(
∇ar(s, a)

+ V µ(s′)∇a log p(s
′, s, a)

)∣∣∣
a=µθ(s)

]
.

(28)

We note that the alternative versions stated in (22) and (23)
for stochastic policies hold for deterministic policies only
in the model-based and not in the model-free case, see
Corollary C.5 in the appendix.
Remark 2.11 (Relation to stochastic optimal control). The
trajectory-based formula (27) is equivalent to the control
cost gradient in stochastic optimal control problems, e.g.
stated in Ribera Borrell et al. (2024), when using certain
Gaussian transition densities, see also Remark C.4 in Ap-
pendix C. We also note that in Quer & Ribera Borrell (2024)
a version of (27) is heuristically derived after assuming
N to be deterministic. To the best of our knowledge, the
presented model-based policy gradient formula with ran-
dom time horizons has not been proved in the discrete time
setting yet.

3. Numerical experiments
In this section we compare the previously discussed gra-
dient estimators on numerical examples. In particular, we

6We denote with ∇θµθ the Jacobian matrix of µθ .

compare trajectory and state-space based formulas and in-
vestigate the effect of neglecting the factor Eπ[N + 1] in
the policy gradient (PG) computations. To be precise, for
all our experiments we compute the gradient either with
the trajectory-based expression (15) (trajectory PG), by the
state-space expression (16) (state-space PG), or by the mod-
ified state-space expression (21), which omits the scaling
factor and is therefore, strictly speaking, an incorrect gra-
dient (state-space PG (biased)). We refer to Remark 2.7
for interpreting this incorrect formula as an effective learn-
ing rate that changes over the course of optimization. Cru-
cially, note that this effective learning rate is highly problem-
specific and can not be controlled easily – this is an obvi-
ous downside of the gradient (21). In order to assure fair
comparisons, we first search for the optimal learning rate
for each gradient approach in all of our experiments and
use standard stochastic gradient ascent for optimization (in
order to not have interacting effects with sophisticated op-
timization methods). We refer to Algorithms 1-4 in Ap-
pendix D for further computational details. The code can be
found at https://github.com/riberaborrell/
rl-random-times.

3.1. Modified continuous mountain car problem

The mountain car problem is a classical benchmark in rein-
forcement learning, where the goal is to reach the top of a
mountain by leveraging gravitational energy additional to
the car’s acceleration (Singh & Sutton, 1996). We con-
sider the state space S = Dpos × Dvel ⊂ R2, where
Dpos = [−1.2, 0.6], Dvel = [−0.07, 0.07] and the action
space A = [−1, 1] ⊂ R. The target set is defined as
T = [0.45,∞) × R and the deterministic dynamics7 is
described via the function h : S ×A → S, given by

v′ = v + 0.0015 a− 0.0025 cos(3x),

x′ = x+ v′,
(29)

where the state variable s = (x, v)⊤ has a position and a
velocity part. Compared to the typical problem, we consider
trajectories that only stop when reaching the target set and
make the problem slightly harder as we aim for reaching
this goal quickly by integrating the runtime into the reward
function,

r(s, a) :=

{
−1− 0.1a2 if s /∈ T ,

0 if s ∈ T .
(30)

We consider a Gaussian stochastic policy whose mean and
covariance are given by a feed-forward neural network with
3 layers and 32 hidden units per layer. We refer to Ap-
pendix E.2 for further details. In Figure 2 we compare the

7We can think of the transition density defined in (3) as a Dirac
delta distribution p(s′, s, a) = δ(s′ − h(s, a)).
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Figure 2. We display the performance of the three different policy gradients (PG) on the mountain car problem described in Section 3.1.
In the left plot, the negative expected return is investigated for different learning rates, the different transparency values indicate different
runs. For the performance plots, we always choose the best respective learning rate. The second plot shows the effective learning rates,
see Remark 2.7 for an explanation (we always display a moving average above the raw data). We see that for the biased methods, the
effective learning rate increases significantly over the course of the optimization. The two plots on the right-hand side display the negative
expected return – once per gradient step and once per computational time (in minutes). We see that the PG formulas incorporating the
expected hitting time perform significantly better. For the biased formula, the algorithm stops at some point due to increased trajectory
lengths and related memory issues.

three different policy gradient formulas and see that the
ones incorporating the expected stopping time perform sig-
nificantly better. This can be explained with the effective
learning rate of the biased method, which increases signif-
icantly during the optimization due to the change of the
expected hitting times (from N ≈ 104 to N ≈ 102). We
highlight that this behavior is problem-specific and cannot
be known a priori.

3.2. Two-joint robot arm (reacher)

The reacher environment contains a two-joint robot arm
whose goal is to move its fingertip close to the target.
It operates on continuous state and action spaces S =
[−1, 1]4 × R6 ⊂ R10, A = [−1, 1]2 ⊂ R2. The dynamics
is deterministic and the initial state is sampled, see Towers
et al. (2024) for details. Since the original reacher environ-
ment is posed for infinite time horizons, we define the target
set such that trajectories terminate if the positions s9, s10 of
the fingertip are near the target and the angular velocities
s7, s8 of the two arms are low enough,

T = {s ∈ S : ∥(s7, s8)∥ ≤ 2, ∥(s9, s10)∥ ≤ 0.05}. (31)

We consider the (slightly modified) reward function

r(s, a) :=

{
−1− ωcontrol∥a∥2 if s /∈ T ,

0 if s ∈ T ,
(32)

where ωcontrol = 0.1, again including a penalty for long run-
times as to motivate the robot to operate quickly, however,
with small actions. We again consider a Gaussian stochastic
policy, see Appendix E.3 for details. In Figure 3 we can see
that our PG formulas lead to faster convergence compared
to the classical (biased) formula.

3.3. Importance sampling of hitting times in molecular
dynamics

Finally, we consider a problem that is relevant for the esti-
mation of rare events in the context of molecular dynamics
(Hartmann et al., 2017). The goal is to identify a deter-
ministic policy that allows for the effective simulation of
reaching a target set T ⊂ S by shortening trajectories and
reducing the variance of corresponding Monte Carlo estima-
tors (Hartmann & Schütte, 2012). To this end, we consider
d-dimensional state and action spaces S = A = Rd, a
Gaussian transition density defined by

p(·, s, a) = N
(
s+ (a−∇U(s))∆t, σ2∆t Id

)
, (33)

where U : Rd → R is a so-called potential function that
is given by the specific problem and ∆t > 0 is a step size.
The reward function is given by

r(s, a) =

{
−∆t− 1

2∥a∥
2∆t if s /∈ T ,

0 if s ∈ T .
(34)

Intuitively, (34) can be interpreted as aiming to minimize the
runtime N , while keeping the actions small. This problem
has already been studied with reinforcement learning meth-
ods in Quer & Ribera Borrell (2024). In our experiments we
consider U(s) =

∑d
i=1 αi(s

2
i − 1)2, where αi quantifies

the amount of metastability in the i-th dimension, as well as
σ =

√
2 and ∆t = 10−2. For the gradient computations we

rely on the model-based formulas stated in Corollary 2.10.

We consider d = 20 and choose α1 = 5, α2 = 2, αi = 0.5,
for i = {3, . . . , 20} as well as T = T̃ × Rd−2, where

T̃ = {(s1, s2) ∈ S : s1, s2 > 0, U(s) ≤ 0.25}, (35)

see also Figure 1 for an illustration. As described above, we
first search for a suitable learning rate for each approach.
In the first panel in Figure 4 we plot the performance de-
pendence on the learning rate. As expected, the trajectory
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10 5 10 4 10 3 10 2 10 1 100
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State-space PG (ours)
State-space PG (biased)
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Computational time
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10 3 Effective learning rate

Trajectory PG (ours)
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Figure 3. We display the performance of the three different policy gradients (PG) on the reacher problem described in Section 3.2. As
before, the left plot shows the performance w.r.t. to different learning rates, from which we choose the best learning rate for each method.
In the second plot we can see that the effective learning rate for the biased state-space PG, which ignores the expected hitting time, is
rather small at the beginning and increases over the course of the optimization. This then results in slower convergence to the optimal
performance, as can be seen in the plot on the right-hand side.

10 4 10 3 10 2 10 1 100 101

Learning rate

101

6 × 100

Negative expected return
Trajectory DPG (ours)
State-space DPG (ours)
State-space DPG (biased)

0 50 100 150 200 250 300 350 400
Computational time

10 4

10 3

10 2 Effective learning rate

0 50 100 150 200 250 300 350 400
Computational time

101

Negative expected return

Figure 4. We consider importance sampling of hitting times in molecular dynamics as described in Section 3.3 and compare the three
different deterministic policy gradients (DPG). We display the performance depending on the learning rate as well as the effective learning
rate and the negative expected return over the course of the optimization. We see that biased state-spaced PG converges more slowly
compared to our DPG methods.

and state-space based gradient computations yield similar
results – they only differ due to statistical effects. The scaled
state-space gradient, on the other hand, yields very different
results. For each approach, we choose the optimal learn-
ing rate. As noted in Remark 2.7, the scaled state-space
approach has an effective learning rate that depends on the
current expected stopping time. In the second panel we
plot this quantity over the course of the optimization. Since
the stopping times get shorter during the optimization, the
effective learning rate increases. Consequently, this leads
to slower optimization, since especially in the beginning
the effective learning rate is comparatively small, see the
third panel. In fact, the formulas that incorporate the stop-
ping time (and thus provide the correct gradient) converge
roughly twice as fast.

4. Conclusion and outlook
In this work, we have suggested a theoretical framework for
reinforcement learning problems with random time horizons.
In our experiments, we have seen that the related (mostly
novel) policy gradient formulas can lead to improved and
accelerated performance. Crucially, we can explain those

performance improvements with the formulas we derived.
We anticipate that our framework will allow to design ad-
vanced optimization algorithms that cleverly integrate the
random time dependency, potentially combined with off-
policy algorithms, leading to further improvements on state-
of-the-art problems in the future. In particular, we envision
integrations of our corrections for random time horizons into
methods such as trust region policy optimization (Schulman
et al., 2015) and proximal policy optimization (Schulman
et al., 2017). Furthermore, we think that the connection of
reinforcement learning to (stochastic) optimal control prob-
lems – studying e.g. continuous-time perspectives (Wang
et al., 2020), path space measures (Nüsken & Richter, 2021)
or diffusion models (Berner et al., 2024) – will be fruitful
both for further theoretical insights and novel numerical
algorithms.
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A. Notation and setting
As stated in Section 2, we denote with M = (S,A, rn, ρ0, p) a time-discrete Markov decision process, where S ⊂ Rds

is the state space, A ⊂ Rda is the action space, rn is the reward function, ρ0 is the initial probability density of the states
(defined in (2)) and p is the time-homogeneous (state-action) transition density (defined in (3)). Further, we consider
the stochastic policy π or the deterministic policy µ. The dynamics of the Markov decision process is defined via
S0 ∼ ρ0 as well as An ∼ π(Sn, ·) and Sn+1 ∼ p(·, Sn, An) for each n ∈ {0, . . . , N − 1}, and we call the resulting set
{S0, A0, S1, A1, . . . , SN} a state-action trajectory and {S0, . . . , SN} a (state) trajectory.

For the expectation operator we write Eπ if the random variables in the expectation depend on the policy π, however note
that the randomness not only depends on π, but also on the initial density ρ0 and the transition density p, i.e. for a function
φ : (S ×A)N × S → S and random variables S0, A0, . . . , SN , and for fixed N , we write

Eπ [φ(S0, A0, . . . , SN )] = Eρ0,p,π [φ(S0, A0, . . . , SN )] (36a)

=

∫
(S×A)N×S

ρ0(s0)

(
N−1∏
n=0

π(sn, an)p(sn+1, sn, an)

)
ds0da0 . . . dsN−1daN−1dsN . (36b)

In our work, the stopping N is typically considered to be random, so the expectation is also over N , i.e.

Eπ [φ(S0, A0, . . . , SN )] = Eρ0,p,π,N [φ(S0, A0, . . . , SN )] (37a)

=

∞∑
m=0

P(N = m)

∫
(S×A)m×S

ρ0(s0)

(
m−1∏
n=0

π(sn, an)p(sn+1, sn, an)

)
ds0da0 . . . dsm−1dam−1dsm, (37b)

where P(N = m) is the probability of N having the value m and we use the convention
∏−1

n=0(·)n = 1. This probability is
typically dependent on the dynamics, and therefore the policy, and is thus unknown. For deterministic policies we write Eµ

(even though µ : S → A is a deterministic function). Also, note that for state-space expectations stated e.g. in (11) we write
E s∼ρπ

a∼π(s,·)
[·] to denote Es∼ρπ [Ea∼π(s,·)[·]].

Further, we assume that π or µ are parametrized by the parameter vector θ ∈ Rp, and we may interchangeably write π = πθ

or µ = µθ for ease of notation. We write ∇θ to denote the gradient w.r.t. the parameter vector θ and for any s ∈ S we write
∇θµθ(s) to denote the Jacobian matrix of µθ(s) w.r.t. θ.

B. Additional background on reinforcement learning
Let us consider the (state-action) reward function8 rn : S × A → R and recall that it provides the signal that is received
after being in state Sn ∈ S and having taken action An ∈ A at time n ∈ N. In our work we consider a time-independent
reward function and we denote it by r. We define the return (from step n onward) by

Gn =

N∑
m=n

r(Sm, Am) (38)

and denote G0 by the (initial) return. We define the expected (initial) return (sometimes also called objective function) as

J(π) = Eπ

[
N∑

n=0

r(Sn, An)

]
. (39)

We note that starting at n = 0 holds without loss of generality and one could also start at any other time, since the problem is
time-autonomous. Further, we can define the value function (or return-to-go) as the expected return conditioned on starting
at state s ∈ S,

V π(s) := Eπ

[
N∑

n=0

r(Sn, An)
∣∣∣S0 = s

]
. (40)

8In principle, the reward function can also depend on the following next state.
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We can further condition on applying the action a ∈ A, and define the so-called Q-value function as

Qπ(s, a) := Eπ

[
N∑

n=0

r(Sn, An)
∣∣∣S0 = s,A0 = a

]
. (41)

We note that it holds J(π) = Es∼ρ0
[V π(s)] and V π(s) = Ea∼π(s,·) [Q

π(s, a)]. For all expressions we have the Bellman
equation9, e.g.

J(π) = Eπ

[
r(S0, A0) +

N∑
n=1

r(Sn, An)

]
(42a)

= Eπ

[
r(S0, A0) +Eπ

[
N∑

n=1

r(Sn, An)
∣∣∣S1

]]
(42b)

= Eπ [r(S0, A0) + V π(S1)] . (42c)

Analogously, it holds for all s ∈ T c

V π(s) = Eπ [r(S0, A0) + V π(S1)|S0 = s] , (43a)

=

∫
A
π(s, a)

(
r(s, a) +

∫
S
p(s′, s, a)V π(s′)ds′

)
da, (43b)

and

Qπ(s, a) = r(s, a) +Eπ [Q
π(S1, A1)|S0 = s,A0 = a] (44a)

= r(s, a) +

∫
S
p(s′, s, a)

∫
A
π(s′, a′)Qπ(s′, a′)da′ds′. (44b)

For deterministic policies the above equations reduce to

V µ(s) = r(s, µ(s)) +Eµ [V
µ(S1)|S0 = s] (45a)

= r(s, µ(s)) +

∫
S
p(s′, s, µ(s))V µ(s′)ds′, (45b)

and

Qµ(s, a) = r(s, a) +Eµ [Q
µ(S1, µ(S1))|S0 = s,A0 = a] (46a)

= r(s, a) +

∫
S
p(s′, s, a)Qµ(s′, µ(s′))ds′. (46b)

= r(s, a) +

∫
S
p(s′, s, a)V µ(s′)ds′. (46c)

Further, note that in control theory the value function denotes the optimal cost-to-go, i.e. the optimal value of the cost
functional w.r.t. all possible controls. In contrast, in reinforcement learning the term value function is used for any arbitrary
policy. If the policy is optimal it is called optimal value function.

In practice, one often chooses π = N (µ, σ2 Id), for which µ and σ are learnable functions. We note that with σ approaching
the zero function x 7→ 0, i.e. with reducing the stochasticity of the stochastic policy, π approaches a Dirac distribution and
therefore a deterministic policy, see also Remark 2.1 in the main text and Theorem 2 in Silver et al. (2014).

C. Proofs and additional statements
Proof of Lemma 2.2. First note the following re-ordering of sums, containing the sequences {ai}i and {bj}j . It holds that

∞∑
i=0

ai

i∑
j=0

bj = lim
l→∞

l∑
i=0

ai

i∑
j=0

bj = lim
l→∞

l∑
j=0

bj

l∑
i=j

ai =

∞∑
j=0

bj

∞∑
i=j

ai. (47)

9Note that for the infinite time horizon case the value function is scaled by the discount factor γ.
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Assuming that Nγ ∼ Geom(1− γ) with γ ∈ (0, 1), we have that P(Nγ = m) = γm(1− γ) and can compute

Eπ

 Nγ∑
n=0

r(Sn, An)

 = ENγ

Eπ

 Nγ∑
n=0

r(Sn, An)

 (48a)

=

∞∑
m=0

P(Nγ = m)Eπ

[
m∑

n=0

r(Sn, An)

]
(48b)

= Eπ

[ ∞∑
n=0

r(Sn, An)(1− γ)

∞∑
m=n

γm

]
(48c)

= Eπ

[ ∞∑
n=0

γnr(Sn, An)

]
, (48d)

where we used the tower property in the first line, the fact that Nγ does not depend on the policy in (48b) and identity (47)
in (48c). We can further check that

P(Nγ = ∞) = lim
m→∞

P(Nγ = m) = lim
m→∞

γm(1− γ) = 0. (49)

Proof of Lemma 2.3. Recalling the definitions (7) and (8),

ηπ :=

∞∑
n=0

ρπn,

∫
Λ

ρπn(s)ds = Pπ(Sn ∈ Λ), (50)

we compute

∫
Λ

ηπ(s)ds =

∞∑
n=0

∫
Λ

ρπn(s)ds =

∞∑
n=0

Pπ(Sn ∈ Λ) =

∞∑
n=0

Eπ [1Λ(Sn)] = Eπ

[ ∞∑
n=0

1Λ(Sn)

]
= Eπ

[
N∑

n=0

1Λ(Sn)

]
.

(51)

Further, we note that choosing Λ = S yields

Zπ =

∫
S
ηπ(s)ds = Eπ [N ] + 1. (52)

Proof of Proposition 2.4. Let us first define the n-step transition function pπn(s
′, s) via

∫
Λ

pπn(s
′, s)ds′ = Pπ (Sn ∈ Λ|S0 = s) . (53)

Note that we have∫
S
pπn(s

′, s)ds′ = Pπ (Sn ∈ S|S0 = s) = Pπ (Sn ∈ S, n ≤ N |S0 = s) = Pπ (n ≤ N |S0 = s) , (54)
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so it is only a density conditioned on the fact that n ≤ N . We can now compute

Eπ

[
N∑

n=0

r(Sn, An)

]
= Eπ

[ ∞∑
n=0

1[n,∞)(N)r(Sn, An)

]
(55a)

=

∫
S

∫
S

∫
A

∞∑
n=0

r(s, a)π(s, a)pπn(s, s̄)ρ0(s̄) ds̄dsda (55b)

=

∫
S

∫
A
r(s, a)π(s, a)

∞∑
n=0

∫
S
pπn(s, s̄)ρ0(s̄) ds̄dsda (55c)

=

∫
S

∫
A
r(s, a)π(s, a)

∞∑
n=0

ρπn(s) dsda (55d)

=

∫
S

∫
A
r(s, a)π(s, a)ηπ(s) dsda (55e)

= Eπ[N + 1]E s∼ρπ

a∼π(s,·)
[r(s, a)] , (55f)

where in the last line we used
ηπ = ρπ

∫
S
ηπ(s)ds = ρπ Eπ[N + 1] (56)

via definition (8) and Lemma 2.3. Note that the sum in (55b) switches from a sum until the (potentially random) time N to
an infinite sum since the transition probability pπn defined in (54) encodes not only the states, but also a potential stopping of
corresponding trajectories and thus encodes the potential randomness of N .

Remark C.1 (Alternative derivation of state-space expected return). The state-space based formula for the expected return
stated in Proposition 2.4 can also be derived as follows. The trajectory-based formula

J(π) = Eπ

[
N∑

n=0

rn(Sn, An)

]
, (57)

stated in (5), can be approximated by K trajectories via

1

K

K∑
k=1

N(k)∑
n=0

r(S(k)
n , A(k)

n ), (58)

noting that each trajectory has a different length, namely N (k) + 1 steps in the k-th trajectory. We note that we can consider
the particles

B :=

K⋃
k=1

N(k)⋃
n=0

{
S(k)
n , A(k)

n

}
(59)

as an unbiased sample from the action-state-space density ρπ(s)π(s, a), defined in (8). Let us merge the two indices of the
elements of B and write

B =

M⋃
m=1

{
S̃(m), Ã(m)

}
, (60)

noting that M =
∑K

k=1(N
(k) + 1). We can now write the sample estimator of the trajectory-based expected return (58) as

1

K

K∑
k=1

N(k)∑
n=0

r(S(k)
n , A(k)

n ) =
1

K

M∑
m=1

r(S̃(m), Ã(m)) =
M
K

M

M∑
m=1

r(S̃(m), Ã(m)). (61)

Now, noting that M/K converges to Eπ[N + 1] for K → ∞ by the law of large numbers, we conclude that (61) converges
to the state-space expected return

J(π) = Eπ[N + 1]E s∼ρπ

a∼π(s,·)
[r(s, a)] , (62)

as stated in (11).
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Lemma C.2 (Unrolling for stochastic policies). For any l ≥ 1 it holds that

∇θV
π(s) =

l−1∑
n=0

∫
S
pπn(s

′, s)

∫
A
∇θπθ(s

′, a)Qπ(s′, a)dads′ +

∫
S
pπl (s

′, s)∇θV
π(s′)ds′. (63)

Proof. For the sake of notational convenience, let us define the shorthand notation

hθ(s, a) := ∇θπθ(s, a)Q
π(s, a). (64)

We prove Lemma C.2 via induction over l. Let us start by the initial case l = 1. Recalling that V π(s) = Ea∼π(s,·) [Q
π(s, a)],

we can compute

∇θV
π(s) =

∫
A

(
∇θπθ(s, a)Q

π(s, a) + πθ(s, a)∇θQ
π(s, a)

)
da (65a)

=

∫
A
hθ(s, a)da+

∫
A
πθ(s, a)∇θ

(
r(s, a) +

∫
S
p(s′, s, a)V π(s′)ds′

)
da (65b)

=

∫
A
hθ(s, a)da+

∫
A
πθ(s, a)

∫
S
p(s′, s, a)∇θV

π(s′)ds′da (65c)

=

∫
A
hθ(s, a)da+

∫
S
pπ1 (s

′, s)∇θV
π(s′)ds′, (65d)

where we use the Bellman equation stated in (44) and where pπ1 is defined in (53). The expression (65) coincides with (63)
for l = 1. Let us now assume that (63) holds for l − 1. We can compute

∇θV
π(s) =

l−2∑
n=0

∫
S
pπn(s

′, s)

∫
A
hθ(s

′, a)dads′ +

∫
S
pπl−1(s

′, s)∇θV
π(s′)ds′ (66a)

=

l−2∑
n=0

∫
S
pπn(s

′, s)

∫
A
hθ(s

′, a)dads′ +

∫
S
pπl−1(s

′, s)

(∫
A
hθ(s

′, a)da+

∫
S
pπ1 (s

′′, s′)∇θV
π(s′′)ds′′

)
ds′

(66b)

=

l−1∑
n=0

∫
S
pπn(s

′, s)

∫
A
hθ(s

′, a)dads′ +

∫
S

∫
S
pπl−1(s

′, s)pπ1 (s
′′, s′)∇θV

π(s′′)ds′ds′′ (66c)

=

l−1∑
n=0

∫
S
pπn(s

′, s)

∫
A
hθ(s

′, a)dads′ +

∫
S
pπl (s

′′, s)∇θV
π(s′′)ds′′, (66d)

where we have used (65) in the second line. Since (66d) conincides with (63) we have proved the statement by induction.

Proof of Proposition 2.6. We assume that the gradient of the value function with respect to the policy parameters is bounded,
i.e., for any θ ∈ Rp there exists an Lθ > 0 such that

sup
s∈S

||∇θV
π(s)|| ≤ Lθ. (67)

Then it holds

lim
l→∞

∫
S
pπl (s

′, s)||∇θV
π(s′)||ds′ ≤ lim

l→∞
Lθ Pπ(l ≤ N | S0 = s) = 0, (68)

by assumption of the (potentially random, but almost surely finite) time N . In the limit l → ∞, the expression from
Lemma C.2 therefore turns into

∇θV
π(s) =

∞∑
n=0

∫
S
pπn(s

′, s)

∫
A
∇θπθ(s

′, a)Qπ(s′, a)dads′. (69)
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Further, we can compute

∇θJ(πθ) =

∫
S
ρ0(s0)∇θV

π(s)ds0 =

∫
S
ρ0(s0)

∞∑
n=0

∫
S
pπn(s, s0)

∫
A
∇θπθ(s, a)Q

π(s, a)dadsds0 (70a)

=

∫
S
ηπ(s)

∫
A
∇θπθ(s, a)Q

π(s, a)dsda (70b)

= E[N + 1]

∫
S
ρπ(s)

∫
A
πθ(s, a)∇θ log πθ(s, a)Q

π(s, a)dsda (70c)

= E[N + 1]E s∼ρπ

a∼πθ(s,·)
[∇θ log πθ(s, a)Q

π(s, a)] , (70d)

where we have again used

ηπ = ρπ
∫
S
ηπ(s)ds = ρπ Eπ[N + 1] (71)

via definition (8) and Lemma 2.3. Finally, by choosing10 r(s, a) = ∇θ log πθ(s, a)Q
π(s, a) in Proposition 2.4 and using

identity (70), we readily get

∇θJ(πθ) = Eπ

[
N∑

n=0

∇θ log πθ(Sn, An)Q
π(Sn, An)

]
. (72)

Proof of Corollary 2.8. We first note that for an arbitrary function φ : (S ×A)n+1 → R it holds

Eπ [φ(S0, A0, . . . , An, Sn)Q
π(Sn, An)] = Eπ

[
φ(S0, A0, . . . , An, Sn)Eπ

[
N∑

m=n

r(Sm, Am)

∣∣∣∣∣Sn, An

]]
(73a)

= Eπ

[
Eπ

[
φ(S0, A0, . . . , An, Sn)

N∑
m=n

r(Sm, Am)

]]
(73b)

= Eπ

[
φ(S0, A0, . . . , An, Sn)

N∑
m=n

r(Sm, Am)

]
, (73c)

where we used the tower property, the fact that φ(S0, A0, . . . , Sn, An) is Fn-measurable and the Markov property. Equality
(23) now follows from choosing φ(S0, A0 . . . , Sn, An) = ∇θ log π(Sn, An) and summing over n. For this choice we can
even show that

Eπ [∇θ log π(Sn, An)Q
π(Sn, An)] = Eπ

[
∇θ log π(Sn, An)

N∑
m=0

r(Sm, Am)

]
, (74)

which implies (22). This can be seen by defining the n-step transition function pπn(s
′, s, a), in analogy to (53), via∫

Λ

pπn(s
′, s, a)ds′ = Pπ (Sn ∈ Λ|S0 = s,A0 = a) , (75)

and noting that for m < n it holds

E [∇θ log π(Sn, An)r(Sm, Am)] (76a)

=

∫
S

∫
A

∫
S

∫
A
ρm(sm)π(sm, am)r(sm, am)pπn−m(sn, sm, am)∇θ log π(sn, an)π(sn, an)dsmdamdsndan

(76b)

=

∫
S

∫
A

∫
S
ρm(sm)π(sm, am)r(sm, am)pπn−m(sn, sm, am)

(∫
A
∇θ log π(sn, an)π(sn, an)dan

)
dsmdamdsn

(76c)

= 0,

10Note that Proposition 2.4 holds for any arbitrary function r : S ×A → R.
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since ∫
A
∇θ log π(sn, an)π(sn, an)dan = ∇θ

∫
A
π(sn, an)dan = 0. (77)

We can readily prove (24) in the state-space perspective by noting that

∇θJ(πθ) =

∫
S
ηπ(s)

∫
A
∇θπθ(s, a)Q

π(s, a)dsda =

∫
S
ηπ(s)

∫
A
∇θπθ(s, a)(Q

π(s, a)− b(s))dsda (78)

since ∫
A
b(s)∇θπθ(s, a)da = b(s)∇θ

∫
A
πθ(s, a)da = 0. (79)

Then, by choosing r(s, a) = ∇θ log πθ(s, a)(Q
π(s, a)−V π(s)) in Proposition 2.4, we arrive at (24) in the trajectory-based

perspective.

Lemma C.3 (Unrolling for deterministic policies). For any l ≥ 1 it holds that

∇θV
µ(s) =

l−1∑
n=0

∫
S
pµn(s

′, s)∇θµθ(s
′)⊤∇aQ

µ(s′, a)
∣∣∣
a=µθ(s′)

ds′ +

∫
S
pµl (s

′, s)∇θV
µ(s′)ds′. (80)

Proof. The proof of the unrolling lemma for deterministic policies follows the same idea as for stochastic policies stated in
Lemma C.2. In analogy to (53), let us define the n-step transition function pµn(s

′, s) via∫
Λ

pµn(s
′, s)ds′ = Pµ (Sn ∈ Λ|S0 = s) . (81)

As before, let us first consider l = 1. Recalling the Bellman equation, V µ(s) = r(s, µ(s)) +Eµ [V
µ(S1)|S0 = s], stated

already in (45), we can compute

∇θV
µ(s) = ∇θ

(
r(s, µθ(s)) +

∫
S
p(s′, s, µθ(s))V

µ(s′)ds′
)

(82a)

= ∇θµθ(s)
⊤∇ar(s, a)

∣∣∣
a=µθ(s)

+

∫
S

(
p(s′, s, µθ(s))∇θV

µ(s′) +∇θµθ(s)
⊤∇ap(s

′, s, a)
∣∣∣
a=µθ(s)

V µ(s′)

)
ds′

(82b)

= ∇θµθ(s)
⊤∇a

(
r(s, a) +

∫
S
p(s′, s, a)V µ(s′)ds′

) ∣∣∣
a=µθ(s)

+

∫
S
p(s′, s, µθ(s))∇θV

µ(s′)ds′
(82c)

= ∇θµθ(s)
⊤∇aQ

µ(s, a)
∣∣∣
a=µθ(s)

+

∫
S
pµ1 (s

′, s)∇θV
µ(s′)ds′. (82d)

For notational convenience, let us define

φθ(s) := ∇θµθ(s)
⊤∇aQ

µ(s, a)
∣∣∣
a=µθ(s)

. (83)

For the induction step, we can then compute

∇θV
µ(s) =

l−2∑
n=0

∫
S
pµn(s

′, s)φθ(s
′)ds′ +

∫
S
pµl−1(s

′, s)

(
φθ(s

′) +

∫
S
pµ1 (s

′′, s′)∇θV
µ(s′′)ds′′

)
ds′ (84a)

=

l−1∑
n=0

∫
S
pµn(s

′, s)φθ(s
′)ds′ +

∫
S

∫
S
pµl−1(s

′, s)pµ1 (s
′′, s′)∇θV

µ(s′′)ds′′ds′ (84b)

=

l−1∑
n=0

∫
S
pµn(s

′, s)φθ(s
′)ds′ +

∫
S
pµl (s

′, s)∇θV
µ(s′)ds′, (84c)

where we used (82) in the first line.
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Proof of Proposition 2.9. The proof is analog to the one of Proposition 2.6. First, we see that in the limit of l → ∞, the
second summand of (80) vanishes. We can then compute

∇θJ(µθ) =

∫
S
ρ0(s0)∇θV

µ(s0)ds0 (85a)

=

∫
S
ρ0(s0)

( ∞∑
n=0

∫
S
pµn(s, s0)∇θµθ(s)

⊤∇aQ
µ(s, a)

∣∣∣
a=µθ(s)

ds

)
ds0 (85b)

=

∫
S
ηµ(s)∇θµθ(s)

⊤∇aQ
µ(s, a)

∣∣∣
a=µθ(s)

ds (85c)

= Eµ[N + 1]Es∼ρµ

[
∇θµθ(s)

⊤∇aQ
µ(s, a)

∣∣∣
a=µθ(s)

]
, (85d)

where we have used
ηµ = ρµ

∫
S
ηµ(s)ds = ρµEµ[N + 1] (86)

via definition (8) and Lemma 2.3 (however, replacing the stochastic policy π with the deterministic policy µ). Finally, by
choosing r(s, a) = ∇θµθ(s)

⊤∇aQ
µ(s, a)|a=µθ(s) in the deterministic policy version of Proposition 2.4 and using identity

(85d), we readily get

Eµ

[
N∑

n=0

∇θµθ(Sn)
⊤∇aQ

µθ (Sn, a)
∣∣∣
a=µθ(Sn)

]
. (87)

Proof of Corollary 2.10. Using the Bellman equation (46), we can compute

∇aQ
µ(s, a) = ∇ar(s, a) +

∫
S
∇ap(s

′, s, a)V µ(s′)ds′ (88a)

= ∇ar(s, a) +

∫
S
∇a log p(s

′, s, a)p(s′, s, a)V µ(s′)ds′ (88b)

= ∇ar(s, a) + Es′∼p(·,s,a) [∇a log p(s
′, s, a)V µ(s′)] . (88c)

Using Proposition 2.9, we get

∇θJ(µθ) = Eµ

[
N∑

n=0

∇θµθ(Sn)
⊤∇aQ

µθ (Sn, a)
∣∣∣
a=µθ(Sn)

]
(89a)

= Eµ

[
N∑

n=0

∇θµθ(Sn)
⊤ (∇ar(Sn, a) + Es′∼p(·,Sn,a) [∇a log p(s

′, Sn, a)V
µ(s′)]

) ∣∣∣
a=µθ(Sn)

]
(89b)

= Eµ

[
N∑

n=0

∇θµθ(Sn)
⊤ (∇ar(Sn, a) + Eµθ

[∇a log p(Sn+1, Sn, a)V
µ(Sn+1)])

∣∣∣
a=µθ(Sn)

]
(89c)

= Eµ

[
N∑

n=0

∇θµθ(Sn)
⊤ (∇ar(Sn, a) +∇a log p(Sn+1, Sn, a)V

µ(Sn+1))
∣∣∣
a=µθ(Sn)

]
, (89d)

where we used the tower property in the last line. The second equality follows from plugging in (88) into the second equation
of Proposition 2.9.

Remark C.4 (Connection to stochastic optimal control gradient). From Corollary 2.10 we can recover the gradient estimator
of stochastic optimal control problems with random stopping times, as for instance stated in Corollary 3.3 in Ribera Borrell
et al. (2024). To this end, we realize that the continuous time SDE

dXµ
s = (b+ σµ) (Xµ

s ) dt+ σ(Xµ
s ) dWs, (90)
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where W is standard Brownian motion, b : Rd → Rd an arbitrary drift and σ : Rd → Rd×d is the diffusion matrix, can be
discretized via the Euler-Maruyama scheme

Sn+1 = Sn + (b+ σµ) (Sn)∆t+ σ(Sn)ξn+1

√
∆t, (91)

with step size ∆t > 0 and Gaussian increment ξn+1 ∼ N (0, Id). Calling the terminal time T = N∆t, the continuous
control costs

J(µ) = E

[∫ T

0

(
f +

1

2
∥µ∥2

)
(Xµ

s ) dt+ g(XT )

]
(92)

correspond to r(s, a) = −
(
f(s) + 1

2∥a∥
2
)
∆t1T c(s)− g(s)1T (s) in the discrete setting (5) and we can thus compute

∇ar(s, a) = −a∆t1T c(s), (93)

∇a log p(Sn+1, Sn, a) = σ−1(Sn) (Sn+1 − (Sn + (b+ σa) (Sn)∆t)) = ξn+1

√
∆t. (94)

We can therefore see that (27) from Corollary 2.10 corresponds to the time-discretized version of Corollary 3.3 in Rib-
era Borrell et al. (2024). We highlight that a derivation in discrete time including random stopping times has not been
rigorously done before (cf. Hartmann & Schütte (2012), where it has been conjectured that the formula is inexact due to the
random time).

Corollary C.5 (Alternative trajectory-based versions of the model-based policy gradient for deterministic policies). For the
gradient of the expected return (5) it holds

∇θJ(µθ) = Eµ

[
N∑

n=0

∇θµθ(Sn)
⊤
(
∇ar(Sn, a) +

N∑
m=0

r(Sm, µθ(Sm))∇a log p(Sn+1, Sn, a)
)∣∣∣

a=µθ(Sn)

]
(95)

= Eµ

[
N∑

n=0

∇θµθ(Sn)
⊤
(
∇ar(Sn, a) +

N∑
m=n+1

r(Sm, µθ(Sm))∇a log p(Sn+1, Sn, a)
)∣∣∣

a=µθ(Sn)

]
(96)

= Eµ

[
N∑

n=0

∇θµθ(Sn)
⊤∇a

(
Qµθ (Sn, a)

∣∣∣
a=µθ(Sn)

− b(Sn)
)]

. (97)

where b : S → R is an arbitrary function (sometimes called baseline).

Proof of Corollary C.5. The proof of the alternative versions of the deterministic policy gradient follows the same idea as
for stochastic policies stated in Corollary 2.8.

We first note that for an arbitrary function φ : Sn+2 → R it holds

Eµ [φ(S0, . . . , Sn+1)V
µ(Sn+1)] = Eµ

[
φ(S0, . . . , Sn+1)Eµ

[
N∑

m=n+1

r(Sm, µ(Sm))

∣∣∣∣∣Sn, An

]]
(98a)

= Eµ

[
Eµ

[
φ(S0, . . . , Sn+1)

N∑
m=n+1

r(Sm, µ(Sm))

]]
(98b)

= Eµ

[
φ(S0, . . . , Sn+1)

N∑
m=n+1

r(Sm, µ(Sm))

]
, (98c)

where we used the tower property, the fact that φ(S0, . . . , Sn+1) is Fn+1-measurable and the Markov property. Equality
(96) now follows from choosing φ(S0, . . . , Sn+1) = ∇θµθ(Sn)

⊤∇a log p(Sn+1, Sn, a)
)∣∣∣

a=µθ(Sn)
. For this choice we can

even show that

Eµ

[
∇θµθ(Sn)

⊤V π(Sn+1)∇a log p(Sn+1, Sn, a)
∣∣
a=µθ(Sn)

]
= Eµ

[
∇θµθ(Sn)

⊤
N∑

m=0

r(Sm, µθ(Sm))∇a log p(Sn+1, Sn, a)
∣∣
a=µθ(Sn)

]
,

(99)
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which implies (95). This can be seen by using the n-step transition function pµn(s
′, s, µ(s)), which is stated in Corollary 2.8

for stochastic policies, here denoted by pµn(s
′, s), as well as by noting that for m < n+ 1 it holds

Eµ

[
∇θµθ(Sn)

⊤r(Sm, µθ(Sm))∇a log p(Sn+1, Sn, a)
∣∣
a=µθ(Sn)

]
(100a)

=

∫
S

∫
S

∫
S
ρm(sm)r(sm, µ(sm))pµn−m(sn, sm)∇θµ(sn)

⊤pµ1 (sn+1, sn)∇a log p(sn+1, sn, a)
∣∣
a=µ(sn)

dsmdsndsn+1

(100b)

=

∫
S

∫
S
ρm(sm)r(sm, µ(sm))pµn−m(sn, sm)∇θµ(sn)

⊤
(∫

S
pµ1 (sn+1, sn)∇a log p(sn+1, sn, a)

∣∣
a=µ(sn)

dsn+1

)
dsmdsn

(100c)

= 0,

since for any tuple (s′, s, a) ∈ S × S ×A it holds that∫
S
∇a log p(s

′, s, a)p(s′, s, a)ds′ =

∫
S
∇ap(s

′, s, a)ds′ = ∇a

∫
S
p(s′, s, a)ds′ = 0. (101)

We can readily prove (97) in the state-space perspective by noting that

∇θJ(µθ) =

∫
S
ηµ(s)∇θµθ(s)

⊤∇aQ
π(s, a)

∣∣
a=µθ(s)

ds =

∫
S
ηµ(s)∇θµθ(s)

⊤∇a(Q
π(s, a)− b(s))

∣∣
a=µθ(s)

ds. (102)

By choosing r(s, a) = r(s, µθ(s)) = ∇θµθ(s)∇a(Q
µ(s, a) − b(s))

∣∣
a=µθ(s)

in Proposition 2.4 we arrive at (97) in the
trajectory-based perspective.

D. Computational details
In this section we provide computational details that are necessary for the numerical approximation of the gradients discussed
in the main part.

For policy gradients of stochastic policies we consider non-actor-critic approaches where the Q-value function is estimated,
but not learned. The alternative objectives corresponding to the trajectory PG stated in (22) and to the state-space PG stated
in (16) are given by

J traj
eff (πθ, πϑ) := Eπϑ

[
N∑

n=0

log πθ(Sn, An)

N∑
m=0

r(Sm, Am)

]
, (103)

J state
eff (πθ, πϑ) := Eπϑ

[N + 1]E s∼ρπϑ

a∼πϑ(s,·)
[log πθ(s, a)Q

πϑ(s, a)] . (104)

We refer to Algorithms 1 and 2 for implementational details.

For policy gradients of deterministic policies we consider non-actor-critic approaches as well. Recall that this is possible due
to the model-based formulas provided in (27) and (95). Moreover, we have assumed that the state-action probability density
is Gaussian and is motivated by a controlled SDE (see Remark C.4). The corresponding alternative objectives are given by

J traj
eff (µθ, µϑ) := Eµϑ

[
N∑

n=0

µθ(Sn)
⊤
(
∇ar(Sn, a)

∣∣
a=µϑ(Sn)

+

N∑
m=0

r(Sm, µϑ(Sm))ξn+1

√
∆t
)]

, (105)

J state
eff (µθ, µϑ) := Eµϑ

[N + 1] E s∼ρµϑ ,
s′∼pµϑ (·,s)

[
µθ(s)

⊤
(
∇ar(s, a)

∣∣
a=µϑ(s)

+ V µϑ(s′)ξn+1

√
∆t
)]

. (106)

We refer to Algorithms 3 and 4 for implementational details and note that algorithm Algorithm 3 is already sketched in Quer
& Ribera Borrell (2024).

E. Experimental details and additional experiments
In this section we provide further details on the numerical examples presented in Section 3.
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Algorithm 1 Trajectory Policy Gradient (REINFORCE with random time horizon).
1: Initialize stochastic policy πθ with random parameters.
2: Choose a gradient based optimization algorithm, a learning rate λ, a sample size K, and a stopping criterion.
3: repeat
4: Simulate K samples of trajectories following the policy πθ, where the k-th trajectory has runtime N (k).
5: Estimate alternative objective stated in (103) and compute the gradient via automatic differentiation

Ĵ traj
eff =

1

K

K∑
k=1

N(k)∑
n=0

log πθ(S
(k)
n , A(k)

n )

N(k)∑
m=0

r(S(k)
m , A(k)

m ).

6: Update policy network parameters based on the optimization algorithm.
7: until stopping criterion is fulfilled.

Algorithm 2 State-space Policy Gradient.
1: Initialize stochastic policy πθ with random parameters.
2: Choose a gradient based optimization algorithm, a learning rate λ, a sample size K for the trajectories, a sample size M

for the experiences and a stopping criterion.
3: repeat
4: Simulate K samples of trajectories following the policy πθ, where the k-th trajectory has runtime N (k).
5: Compute estimate Ẑπ = 1

K

∑K
k=1 N

(k) + 1.
6: for each time step n do
7: Compute return G

(k)
n =

∑N(k)

m=n r(S
(k)
m , A

(k)
m ) and store the tuple (S

(k)
n , A

(k)
n , G

(k)
n ) in memory.

8: Sample M experiences from memory {S̃(m), Ã(m), G̃(m)}Mm=1, where S̃(m), Ã(m) are unbiased samples from ρπ

and π(S̃(m), ·), respectively, and G̃(m) estimates Qπ(S̃(m), Ã(m)).
9: Estimate alternative objective stated in (104) and compute the gradient via automatic differentiation

Ĵ state
eff = Ẑπ 1

M

M∑
m=1

log πθ(S̃
(m), Ã(m))G̃(m).

10: Update policy network parameters based on the optimization algorithm.
11: Empty memory.
12: until stopping criterion is fulfilled.

Algorithm 3 Trajectory and model-based Deterministic Policy Gradient.
1: Initialize deterministic policy µθ with random parameters.
2: Choose a gradient based optimization algorithm, a learning rate λ, a sample size K, and a stopping criterion.
3: repeat
4: Simulate K samples of trajectories following the policy µθ.
5: Estimate alternative objective stated in (105) and compute the gradient via automatic differentiation

Ĵ traj
eff =

1

K

K∑
k=1

(
N(k)∑
n=0

µθ(S
(k)
n )⊤

(
∇ar(S

(k)
n , a)

∣∣
a=µϑ(S

(k)
n )

+

(
N(k)∑
m=0

r(S(k)
m , µϑ(S

(k)
m ))

)
ξ
(k)
n+1

√
∆t

))
.

6: Update the parameters θ based on the optimization algorithm.
7: until stopping criterion is fulfilled.
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Algorithm 4 State-space and model-based Deterministic Policy Gradient.
1: Initialize deterministic policy µθ with random parameters.
2: Choose a gradient based optimization algorithm, a learning rate λ, a sample size K for the trajectories, a sample size M

for the experiences and a stopping criterion.
3: repeat
4: Simulate K trajectories following the policy µθ and store them in memory.
5: Compute estimate Ẑµ = 1

K

∑K
k=1 N

(k) + 1.
6: for each time step n do
7: Compute return G

(k)
n+1 =

∑N
m=n+1 r(S

(k)
m , µθ(S

(k)
m )) and store the tuple (S

(k)
n , S

(k)
n+1, ξ

(k)
n+1, G

(k)
n+1) in memory.

8: Sample M experiences from memory {S̃(m), S̃′(m)ξ̃(m), G̃(m)}Mm=1 where S̃(m) is an unbiased sample from ρµ,
ξ̃(m) ∼ N (0, Id), and G̃(m) estimates V µ(S̃′(m)).

9: Estimate alternative objective Jeff given in (106) and compute the gradient via automatic differentiation

Ĵ state
eff = Ẑµ 1

M

M∑
m=1

µθ(S̃
(m))⊤

(
∇ar(S̃

(m), a)
∣∣
a=µϑ(S̃(m))

+ G̃(m)ξ̃(m)
√
∆t

)

10: Update policy network parameters based on the optimization algorithm.
11: Empty memory.
12: until stopping criterion is fulfilled.

E.1. Architecture of the neural networks

Let din, dout ∈ N+ be the input and output dimensions of the feed-forward network φθ : Rdin → Rdout defined by

φθ(x) = ρout(ALρ(AL−1ρ(· · · ρ(A1x+ b1) · · · ) + bL−1) + bL), (107)

where L is the number of layers d0 = din, dL = dout, Al ∈ Rdl×dl−1 and bl ∈ Rdl , 1 ≤ l ≤ L are the weights and the bias
vectors for each layer and ρ, ρout : R → R are the inner and outer nonlinear activation functions applied componentwise.
The collection of matrices Al and vectors bl contains the learnable parameters θ ∈ Rp. For all the experiments we choose
the inner and outer activation functions ρ = tanh and ρout = Id if not otherwise stated.

For the stochastic policy experiments described in Sections 3.1 and 3.2 we consider a Gaussian stochastic policy π(s, ·) =
N (µ(s), σ2(s) Id), for which µ and σ are learnable functions represented by two L = 3 layer feed-forward neural networks
sharing the first L = 2 layers (a so-called two-head neural network). To guarantee that σ2 Id is positive definite, the final
activation function of the corresponding neural network is chosen as ρσout = x+

√
x2 + 1.

To ensure that the initial output of the networks is close to zero, the final layer weights and biases are initialized by sampling
from the uniform distribution U(−5× 10−3, 5× 10−3). We also note that each experiment requires only one CPU core,
and the maximum value of allocated memory is set to 64 GB.

E.2. Modified continuous mountain car problem

For the experiment described in Section 3.1 we consider a Gaussian stochastic policy for which µ and σ are represented
by a two-head neural network (see details in Appendix E.1) with L = 3 layers and d1 = d2 = 32 units. We compare
the three different policy gradient formulas by implementing Algorithm 1 (trajectory PG), Algorithm 2 (state-space PG)
and Algorithm 2 without estimating the Zπ-factor (state-space PG unbiased) for a batch of K = 100 trajectories, a
batch of experiences containing all the information in the memory (M = 100% of the memory size), and we stop the
optimization algorithm after I = 5× 104 gradient iterations. The best performing learning rates for each gradient approach
are λtraj = λstate = 10−4, λbiased

state = 5× 10−2, respectively. Note that for λbiased
state ≥ 10−1 the optimization algorithm fails

due to high instabilities which lead to long trajectories and hence exceed the allowed allocated memory.

E.3. Two-joint robot arm (reacher)

For the experiment described in Section 3.2 we consider a Gaussian stochastic policy with L = 3 layers and d1 = d2 = 32
units and compare the performance of Algorithm 1 (trajectory PG), Algorithm 2 (state-space PG), and Algorithm 2 without
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estimating the Zπ-factor (state-space PG unbiased) for K = 100 trajectories, M = 100% of experiences in memory, and
I = 104 gradient iterations. The best performing learning rates for each gradient approach are λtraj = λstate = 5× 10−4,
λbiased
state = 5× 10−2, respectively.

E.4. Importance sampling of hitting times in molecular dynamics

For the experiment described in Section 3.3 we consider a deterministic policy represented by a neural network with L = 2
layers and d1 = 32. We compare the three different model-based policy gradient formulas for deterministic policies by
implementing Algorithm 3 (trajectory DPG), Algorithm 4 (state-space DPG) and Algorithm 4 without estimating the
Zµ-factor (state-space DPG unbiased) for K = 500 trajectories, M = 100% of experiences in memory, and I = 5× 104

gradient iterations. The best performing learning rates for each gradient approach are λtraj = λstate = 2 × 10−3,
λbiased
state = 5× 10−1, respectively.
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