
Projective Equivariant Networks via Second-order
Fundamental Differential Invariants

Yikang Li1, Yeqing Qiu2,3, Yuxuan Chen4, Lingshen He1, Lexiang Hu1, Zhouchen Lin1,5∗
1State Key Lab of General AI, School of Intelligence Science and Technology, Peking University

2School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen
3Shenzhen Research Institute of Big Data

4Khoury College of Computer Sciences, Northeastern University
5Institute for Artificial Intelligence, Peking University

liyk18@pku.edu.cn, yeqingqiu@link.cuhk.edu.cn, chen.yuxuan7@northeastern.edu
lingshenhe@pku.edu.cn, hulx@stu.pku.edu.cn, zlin@pku.edu.cn

Abstract

Equivariant networks enhance model efficiency and generalization by embedding
symmetry priors into their architectures. However, most existing methods, pri-
marily based on group convolutions and steerable convolutions, face significant
limitations when dealing with complex transformation groups, particularly the
projective group, which plays a crucial role in vision. In this work, we tackle the
challenge by constructing projective equivariant networks based on differential
invariants. Using the moving frame method with a carefully selected cross section
tailored for multi-dimensional functions, we derive a complete and concise set of
second-order fundamental differential invariants of the projective group. We pro-
vide a rigorous analysis of the properties and transformation relationships of their
underlying components, yielding a further simplified and unified set of fundamental
differential invariants, which facilitates both theoretical analysis and practical appli-
cations. Building on this foundation, we develop PDINet, the first framework for
deep projective equivariant networks, achieving full projective equivariance without
discretizing or sampling the group. Empirical results on the projectively trans-
formed STL-10 and Imagenette datasets show that PDINet achieves improvements
of 11.39% and 5.66% in accuracy over the respective standard baselines under
out-of-distribution settings, demonstrating its strong generalization to complex
geometric transformations.

1 Introduction

Incorporating symmetry as an inductive bias into neural networks has emerged as a powerful approach
to enhance model efficiency and generalization. Convolutional neural networks (CNNs) [Krizhevsky
et al., 2012, Simonyan and Zisserman, 2015, He et al., 2016, Chen et al., 2017], which are among
the most widely used architectures in deep learning, owe much of their success to the inherent
translational equivariance. Building on this idea, Cohen and Welling [2016a] proposed Group
Equivariant CNNs (G-CNNs), which generalize equivariance to broader transformations like rotations
and reflections. Equivariant networks achieve symmetry incorporation by constructing network layers
whose outputs transform in a predictable pattern under group actions applied to the inputs.

The development of equivariant networks began with G-CNNs, whose feature map can be seen as a
function on a group. Although G-CNNs have proven effective in various tasks [Worrall and Brostow,
2018, Esteves et al., 2019, Lafarge et al., 2021, Shamsolmoali et al., 2021], they are less suited

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

💡

Figure 1: An illustration of a projective transformation: when a planar object is projected onto another
plane, a projective transformation occurs.

to continuous groups, as handling such groups typically requires group sampling or discretization,
which introduces approximation errors and computational complexity. Then, steerable CNNs [Cohen
and Welling, 2016b, Weiler and Cesa, 2019] were proposed to overcome these limitations by viewing
features as fields that transform according to specified group representations. In this framework,
G-CNNs can be interpreted as a special case where the group representation is chosen to be the regular
representation. Steerable CNNs are capable of handling continuous groups such as SO(2) and SO(3)
directly, thereby significantly broadening the scope of equivariant networks to include real-world
symmetries beyond discrete groups [Weiler et al., 2018, Wang et al., 2020, Wang and Walters, 2022].
However, for more complex non-compact Lie groups such as the projective group, deriving closed-
form steerable basis filters becomes intractable, inherently limiting the applicability of steerable
CNNs. To address this, MacDonald et al. [2022] enabled group convolutions over finite-dimensional
Lie groups by computing the integral on the Lie algebra, thus introducing a projective equivariant
model, homConv. However, this method still relies on group sampling, which results in exponential
memory growth with increasing network depth, thereby hindering scalability to deeper architectures.
Mironenco and Forré [2024] improved sampling efficiency via group decompositions, but focused
solely on affine subgroups like Rn ⋊ GL+(n,R) and Rn ⋊ SL(n,R), without addressing more
complex groups such as the projective group. Recently, Li et al. [2024, 2025] proposed InvarLayer
and steerable EquivarLayer that construct affine equivariant networks based on invariants, enabling
closed-form and sampling-free affine equivariance. However, these works remain specialized to the
affine group and do not yet generalize to more complex non-compact groups like the projective group.

Actually, projective transformations play a fundamental role in computer vision [Mohr and Triggs,
1996, Birchfield, 1998, Hartley and Zisserman, 2003], as they capture the relationships between
objects and their images under perspective projections (see Figure 1). Achieving equivariance on
projective transformations is especially critical in practical applications such as mobile robot naviga-
tion, 3D scene analysis, and camera pose estimation, where accurately handling perspective effects
and viewpoint changes can significantly enhance model robustness and accuracy [Lee et al., 2000,
Hartley and Zisserman, 2003, Mur-Artal et al., 2015, Schönberger et al., 2016]. Early on, Suk and
Flusser [2004] proposed a projective invariant feature extraction method based on projective moment
invariants. Nevertheless, the invariants are formulated as infinite series of moment products, leading
to significant computational overhead and intractable error analysis in practical implementations. To
overcome this limitation, Li et al. [2018] proposed an alternative framework that constructs projective
invariants using finite combinations of weighted moments, where the weights are derived from
relative projective differential invariants. Note that moment-based projective invariants are essentially
global image descriptors, which makes them inappropriate for constructing equivariant operators
that act locally on feature fields for capturing fine-grained spatial patterns. Instead, differential
invariants inherently hold the property of acting locally at each spatial position, which makes them
a natural foundation for building equivariant operators [Sangalli et al., 2022, 2023, Li et al., 2024,
2025]. While Olver [2023] has proposed a systematic framework for the computation of projective
differential invariants via the moving frame method, it requires at least third-order derivatives because

2

the projective action is not free at second order for scalar functions. Besides, they only consider
single-channel cases, and the extension to multi-dimensional cases needs more complex expressions
involving high-order derivatives, which limits their practicality in computation and applications on
color images.

In this work, we construct projective equivariant networks based on differential invariants, achieving
full projective equivariance without relying on group discretization or sampling. This overcomes
the depth limitations of homConv [MacDonald et al., 2022] and enables effective scaling to deeper
architectures. A core challenge lies in deriving concise and practical projective differential invariants.
To support color images and multi-channel intermediate features in modern neural networks, we focus
on the differential invariants for multi-dimensional functions. In this case, the projective group acts
freely on the second-order jet space, allowing us to derive a complete set of second-order fundamental
differential invariants using the moving frame method [Olver, 2015], which can express any second-
order invariant of the projective group. However, the choice of cross section used to define the moving
frame significantly affects the form of the resulting invariants. While a direct extension of the cross
section in [Olver, 2023] to the multi-dimensional case is theoretically valid, it leads to prohibitively
long expressions with hundreds of terms, rendering them impractical. Instead, we propose a new cross
section tailored to the multi-dimensional structure, which involves up to second-order derivatives,
yielding a much more concise set of fundamental differential invariants. Further analysis reveals that
these fundamental invariants are composed of a set of simpler components. By exploring the algebraic
properties and transformation relationships of these components, we further simplify invariants into a
unified set of fundamental invariants, facilitating both practical use and theoretical analysis. Based
upon these simplified invariants, we design learnable equivariant operators by combining them with
parameterized multi-layer perceptrons (MLPs), and embed the operators into standard neural network
backbones to build PDINet, the first framework for deep projective equivariant networks free from
group sampling. Empirical evaluations under challenging out-of-distribution settings demonstrate the
strong generalization ability of our model to complex geometric transformations.

We summarize our main contributions as follows:

• We employ the moving frame method to derive a complete set of second-order fundamental
differential invariants of the projective group for multi-dimensional functions, enabling
support for color images and multi-channel features.

• We conduct an in-depth analysis of the algebraic structure and transformation properties of
these invariants, resulting in a further simplified and unified set of fundamental invariants
that facilitate both theoretical understanding and practical computation.

• We develop PDINet based on second-order projective differential invariants. It is the first
time that deep networks achieve full projective equivariance without relying on group
discretization or sampling, thus allowing effective scaling to deeper architectures.

• Numerical experiments on projectively deformed STL-10 and Imagenette2 under out-of-
distribution settings demonstrate the effectiveness of our model, with improvements of
11.39% and 5.66% over the standard baseline results, showcasing its strong generalization
capability under complex geometric transformations.3

2 Method

2.1 Basic concepts and notations

To begin with, we introduce some basic concepts and notations necessary for our formulation. An
image can be viewed as a continuous function u(x, y) defined on a 2D plane. For example, an
RGB image corresponds to a three-dimensional function. Likewise, intermediate features in neural
networks can also be interpreted as functions, and each layer can be seen as an operator that maps
one function to another.

A central concept in this work is equivariance. If the output of an operator undergoes a corresponding
transformation when the input is transformed, it is referred to as equivariance. The formal definition
is as follows:

2Imagenette is a publicly available dataset downloaded from https://github.com/fastai/imagenette.
3Our code is available at https://github.com/Liyk127/PDINet.

3

Definition 1 An operator ψ : F1 → F2 is said to be equivariant with respect to a group G if

g · ψ(u) = ψ(g · u), ∀g ∈ G,u ∈ F1, (1)

where F1 and F2 are the input and output function spaces, respectively.

Let X denote the domain, U = Rn be the range of a function, and U (d) = U × U1 × · · · × Ud be
the derivative space up to order d. A group action g · x on the domain naturally induces an action
on functions, defined as (g · u)(x) = u(g−1 · x), which models how geometric transformations
deform images. This action further extends to derivatives through prolongation to the jet space
X × U (d). For example, the first-order prolongation of the action on X × U (1) can be expressed as:
(x,u(x),∇u(x)) 7→ (x̃, ũ(x̃),∇ũ(x̃)), where x̃ ≜ g · x and ũ ≜ g · u, with ũ(x̃) = u(x).

A differential invariant is a quantity that remains unchanged under the prolonged group action. The
definition is given below.

Definition 2 Given a group G acting on X , a d-th order differential invariant is a function I :
X × U (d) → R such that

I(g · (x,u(d))) = I(x,u(d)), ∀g ∈ G, (x,u(d)) ∈ X × U (d), (2)

where g · (x,u(d)) denotes the prolonged group action on the jet space X × U (d).

The definition can be extended to the multi-dimensional case. Specifically, we call I = (I1, . . . , Ik)⊤
an k-dimensional differential invariant. In addition, we define relative differential invariants,
which may transform with a weight function under the group action:

R(g · (x,u(d))) = w(g,x) · R(x,u(d)), (3)

where w(g,x) is a scalar weight depending on the group element g and the point x. Notably,
differential invariants are closely tied to equivariance, as a (multi-dimensional) differential invariant
I yields an equivariant operator Î(u)(x) ≜ I(x,u(d)) satisfying Î(g · u) = g · Î(u).
In this work, we focus on constructing such differential invariants and using them to build projective
equivariant operators for neural networks.

2.2 Method of moving frames

The method of moving frames is a powerful technique for deriving differential invariants [Olver,
2003, 2015]. We begin with the definition of a moving frame.

Definition 3 [Olver, 2015] Let G be a Lie group acting on a manifold M. A moving frame is a map
η : M → G such that

η(g · z) = η(z) · g−1, g ∈ G, z ∈ M. (4)

Given a moving frame, the invariantization of a function F : M → R is defined as

ι(F)(z) ≜ F (η(z) · z), (5)

which converts an arbitrary functionF into a group-invariant function satisfying ι(F)(g·z) = ι(F)(z).
More generally, we can define an invariant as I(g · z) = I(z), g ∈ G, z ∈ M. In our context, the
manifold of interest is the jet space M = X × U (n) and we focus on differential invariants.

A necessary and sufficient condition for the existence of a moving frame is that the group G acts
freely and regularly on the manifold M. Under this condition, a moving frame can be constructed
via a cross section, as described below:

Theorem 4 [Olver, 2015] Let G be a r-dimensional Lie group acting freely and regularly on a
m-dimensional manifold M. Given local coordinates z = (z1, . . . , zm) on M, let K be a cross
section of the form K = {z1 = c1, z2 = c2, . . . , zr = cr} ⊂ M, where ci are constants. Then for
z ∈ M, there exists a unique g ∈ G such that g · z ∈ K. Defining η(z) = g, namely η(z) · z ∈ K,
yields a map η : M → G, which is a moving frame.

4

Here, the group action is said to be free if for any g ∈ G, g · z = z implies g = e, where e is the
identity element of the group. Usually, the group action can be made free by increasing the order of
the jet space. The action is regular if the orbits form a regular foliation, which is typically satisfied
in common groups.

With a moving frame obtained from Theorem 4, we can construct a complete set of fundamental
invariants, meaning any invariant can be expressed as a combination of these fundamental invariants.

Theorem 5 [Olver, 2015] Let η : M → G be a moving frame from Theorem 4 and define w(g, z) ≜
g · z. Then

w(η(z), z) = (c1, c2, . . . , cr, wr+1(η(z), z), . . . , wm(η(z), z)), (6)

where I1(z) ≜ wr+1(η(z), z), . . ., Im−r(z) ≜ wm(η(z), z) constitute a complete system of func-
tionally independent invariants, called fundamental invariants.

This theorem provides a method to construct fundamental invariants via the moving frame and
indicates that the number of fundamental invariants is m − r. In the following sections, we will
leverage these results to derive projective differential invariants.

2.3 Projective transformation

Projective transformations are ubiquitous in the visual world as two different views of the same
planar object can be related by a 2D projective transformation. A standard projective group action
is described by the projective special linear group PSL(3,R) acting on the 2D projective plane
RP2, which can be interpreted as the set of equivalence classes of points (x, y, p) ∼ (cx, cy, cp)
for any c ̸= 0. Points in RP2 with p ̸= 0 can be represented in inhomogeneous coordinates as
(x, y), corresponding to the homogeneous coordinate (x, y, 1). Thus, the action of a projective
transformation on 2D coordinates can be written as

x̃ =
αx+ βy + γ

ρx+ σy + τ
, ỹ =

λx+ µy + ν

ρx+ σy + τ
, (7)

where the transformation is parameterized by the coefficient matrix

P =

(
α β γ
λ µ ν
ρ σ τ

)
. (8)

Since the transformation is defined up to a nonzero scaling factor, we can normalize by requiring
the determinant of P to be 1, i.e., ∆ = det(P) = 1. Thus, there are 8 independent degrees of
freedom. The transformation reduces to an affine transformation when ρ = σ = 0, while a pure
projective transformation, characterized by ρ2+σ2 ̸= 0, exhibits nonlinear behavior. Thus, projective
transformations represent a more general and complex class of geometric transformations.

For an n-dimensional function u(x, y), the projective transformation of coordinates induces a natural
action on the function, ũ(x̃, ỹ) = u(x, y), which can be further prolonged to its derivatives. We
denote the derivatives of the i-th component function u[i] as

u
[i]
jk ≜ Dj

xD
k
yu

[i], (9)

where Dx and Dy are the differentiation operators with respect to x and y, respectively. Under a
projective transformation, these derivatives transform as

u
[i]
jk 7→ ũ

[i]
jk = Dj

x̃D
k
ỹ ũ

[i], (10)

with the transformed differential operators given by

Dx̃ =
ρx+ σy + τ

∆
(((µρ− λσ)x+ µτ − νσ)Dx + ((µρ− λσ)y − λτ + νρ)Dy) , (11)

Dỹ =
ρx+ σy + τ

∆
(((ασ − βρ)x− βτ + γσ)Dx + ((ασ − βρ)y + ατ − γρ)Dy) . (12)

5

2.4 Projective differential invariants of multi-dimensional functions

The projective group action is not free on the second-order jet space for scalar functions, requiring
prolongation to the third-order jet space to achieve freeness. This leads to complex formulations
[Olver, 2023], which may limit the practicality of the resulting invariants due to their complexity
and computational cost. Moreover, in practice, third-order derivatives are harder to estimate reliably
from data than lower-order ones. In this work, we focus on multi-dimensional functions, which
naturally align with applications such as color image processing. In this setting, the group action
is free on the second-order jet space, allowing the existence of second-order differential invariants.
Using the method of moving frames, we can derive these invariants, where the choice of cross
section significantly influences the simplicity of the resulting expressions. Although the cross section
proposed by Olver [2023] can be extended to the multi-dimensional case, the resulting invariants
tend to be lengthy, typically involving hundreds of terms, which makes them less practical. Instead,
we propose an alternative cross section that leverages multiple dimensions while relying only on
derivatives up to second order, yielding invariants with significantly more concise and tractable forms.

Specifically, we choose the following cross section:

K = {x = y = 0, u[1]x = 1, u[1]y = 0, u[2]x = 0, u[2]y = 1, u[1]xx = u[1]xy = 0}. (13)

Hereafter, we use the standard shorthand notation for partial derivatives, e.g., ux, uy, uxx, uxy, uyy.
The above cross section defines 8 normalization equations, which, together with the constraint ∆ = 1,
determine all group parameters, thereby establishing the moving frame η. The detailed derivation of
the moving frame is provided in the Appendix.

With the moving frame η constructed, we can then apply the invariantization process according
to Theorem 5 to obtain a complete set of fundamental differential invariants. For the coordinates
involved in the cross section, we have

ι(x) = 0, ι(y) = 0, ι(u[1]x) = 1, ι(u[1]y) = 0,

ι(u[2]x) = 0, ι(u[2]y) = 1, ι(u[1]xx) = 0, ι(u[1]xy) = 0.

The remaining coordinates of the second-order jet space yield the following differential invariants:

ι(u[1]yy) =
T111
J 2
12

, (14)

ι(u[2]xx) =
T222
J 2
12

, (15)

ι(u[2]xy) = −T212 + 2T122
2J 2

12

, (16)

ι(u[2]yy) =
T121 + 2T112

J 2
12

, (17)

ι(u[i]x) = −J2i

J12
, 3 ≤ i ≤ n, (18)

ι(u[i]y) =
J1i

J12
, 3 ≤ i ≤ n, (19)

ι(u[i]xx) =
J12T2i2 + J2iT212

J 3
12

, 3 ≤ i ≤ n, (20)

ι(u[i]xy) = −2J12T1i2 + 2J12T21i + 3J2iT112
J 3
12

, 3 ≤ i ≤ n, (21)

ι(u[i]yy) =
J12T1i1 + 2J1iT112

J 3
12

, 3 ≤ i ≤ n, (22)

where Jij and Tijk are two key quantities defined as:

Jij ≜ u[i]x u
[j]
y − u[j]x u

[i]
y , (23)

Tijk ≜ u[i]xxu
[j]
y u

[k]
y + u[i]yyu

[j]
x u

[k]
x − u[i]xy(u

[j]
x u

[k]
y + u[k]x u[j]y), (24)

satisfying Jii = 0, Jij = −Jji, and Tijk = Tkji.

6

The invariants (14)-(22), together with the obvious zeroth-order invariants

S0 = {u[i] | 1 ≤ i ≤ n},
form a complete set of second-order fundamental differential invariants of the projective group.
Compared to projective invariants for scalar functions [Olver, 2023], our results involve up to
second-order derivatives and are expressed in a more concise form.

2.5 Fundamental components of projective differential invariants

In the previous subsection, we have derived a complete set of second-order fundamental differential
invariants. While relatively concise, their expressions are asymmetric and depend on the specific
choice of the first two dimensions used in the cross section. To obtain a simpler, more unified, and
elegant formulation, we conduct a deeper analysis of the fundamental components of these invariants.
This enables us to further simplify their structure while preserving completeness.

Note that the numerators and denominators in (14)-(22) are all relative invariants. Thus, we focus on
the properties of these relative invariants, as absolute invariants can be obtained by taking the ratio of
two relative invariants with the same weight. Moreover, since the expressions are built from the basic
quantities Jij and Tijk, we will delve into their transformation properties and algebraic relationships.

We first present three classes of simplified relative differential invariants of the projective group.

Theorem 6 Let W = (ρx+σy+τ)3

∆ . Then the following quantities are relative differential invariants
of the projective group:

• For i ̸= j, Jij is a relative differential invariant of weight W .

• For 1 ≤ i ≤ n, Tiii is a relative differential invariant of weight W 2.

• For 1 ≤ i, j ≤ n, Tiji + 2Tiij is a relative differential invariant of weight W 2.

These relative invariants are not functionally independent; rather, they can be transformed into one
another. Given that there are 6n − 6 second-order fundamental differential invariants according
to Section 2.4, we expect a complete and independent set of relative invariants to contain 6n − 5
elements. To this end, we investigate the transformation rules among the relative invariants and aim
to identify a minimal generating set sufficient to express all fundamental differential invariants. We
start with the transformation properties of Jij .

Theorem 7 For any indices 1 ≤ i1, i2, i3, i4 ≤ n, the following equation holds:

Ji1i2 · Ji3i4 + Ji1i3 · Ji4i2 + Ji1i4 · Ji2i3 = 0. (25)

This implies that for any four distinct indices i1, i2, i3, i4, the six pairwise combinations of Jij

are dependent such that once any five are known, the remaining one can be determined. Based on
Theorem 7, we can construct a subset of {Jij | i ̸= j} that is sufficient to express all Jij .

Theorem 8 Define the following sets of relative invariants:

S1 ≜ {J12,J23, . . . ,Jn−1,n}, (26)

S2 ≜ {J13,J24, . . . ,Jn−2,n}. (27)

Then S1 ∪ S2 is a generating set for the collection {Jij | i ̸= j}, meaning that any Jij can be
expressed as a functional combination of these elements.

According to Theorem 7, Ji,i+3 can be written in terms of Ji,i+1,Ji+1,i+2,Ji+2,i+3,Ji,i+2, and
Ji+1,i+3, all of which belong to S1 ∪ S2. By induction, any Jij can thus be recovered from the
generating set. A complete and rigorous proof is provided in the Appendix.

Before establishing the transformation relationships for Tijk, we provide a more compact representa-
tion of Jij and Tijk to clarify their structural relationships:

Jij = g⊤
i Qgj , (28)

Tijk = g⊤
i Q

⊤HjQgk, (29)

7

Hidden Layer

÷ Relative Projective Invariants

 Projective Invariants

Figure 2: A single layer of PDINet. (1) Compute projective invariants from relative projective
invariants. (2) Combine these invariants with an MLP to produce equivariant outputs.

where gi ≜
(
u
[i]
x , u

[i]
y

)⊤
is the gradient of the i-th component function, Hj is the Hessian matrix of

the j-th component function, and Q is a fixed orthogonal matrix defined as:

Q ≜

(
0 1
−1 0

)
.

Notably, {Jij} can be used to establish the transformation relationships between the gradients.

Lemma 9 For any distinct indices i, j, k, the gradient gk can be expressed in terms of gi and gj as:

gk =
Jkj

Jij
gi +

Jki

Jji
gj . (30)

Using Lemma 9 and the form of Tijk in (29), we derive the transformation rule for Tijk given {Jij}.

Theorem 10 Let i ̸= k, and let i′, j, k′ be arbitrary indices. Then Ti′jk′ can be expressed as:

Ti′jk′ =
Ji′kJk′k

J 2
ik

Tiji −
Ji′kJk′i + Ji′iJk′k

J 2
ik

Tijk +
Ji′iJk′i

J 2
ik

Tkjk. (31)

This result implies that, for a fixed j, the triplet {Tiji, Tijk, Tkjk} serves as a generating set for
{Ti′jk′ | 1 ≤ i′, k′ ≤ n}, provided {Jij} is known.

With the transformation relationships for Jij and Tijk established, we can now construct a minimal
set of relative invariants that suffices to express all the relative invariants in Theorem 6.

Theorem 11 Define the following sets of relative invariants:

S3 ≜ {T111, T222, . . . , Tnnn}, (32)

S4 ≜ {T121 + 2T112, T131 + 2T113, . . . , Tn−1,n,n−1 + 2Tn−1,n−1,n}, (33)

S5 ≜ {T212 + 2T221, T323 + 2T332, . . . , Tn,n−1,n + 2Tn,n,n−1}. (34)

Then S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 can express all the relative invariants in Theorem 6.

It can be shown (see the Appendix) that the fundamental differential invariants (14)-(22) can be
expressed via the relative invariants in Theorem 6. Therefore, we arrive at the following conclusion:

Theorem 12 The union S ≜ S0∪S1∪S2∪S3∪S4∪S5 forms a complete set of relative differential
invariants to express all second-order differential invariants of the projective group.

This set contains exactly 6n− 5 elements, matching the expected minimal number needed to express
all second-order fundamental differential invariants. Compared to the invariants derived in Section 2.4,
the current formulation is further simplified and independent of the specific choice of the first two
dimensions in the cross section, exhibiting a more unified structure. Moreover, while the original
invariants involve polynomials of degree up to five, the present set only contains at most cubic
expressions, resulting in lower computational complexity.

8

2.6 Projective equivariant networks

As discussed before, with a set of relative invariants obtained, we can convert them into absolute
invariants by dividing each by another relative invariant with the same weight. We apply this
procedure to relative invariants in S to construct a complete set of fundamental differential invariants.

Specifically, we select R0 = 1
n (J12 + J23 + . . . + Jn1) as the denominator, which is a relative

invariant of weight W . We keep the elements in S0 unchanged, divide the elements in S1 ∪ S2 by
R0, and divide those in S3 ∪ S4 ∪ S5 by R2

0. This yields a set of differential invariants sufficient to
express all second-order fundamental differential invariants. In fact, this set with 6n− 5 invariants
may contain one redundant element, but completeness is of greater concern. To avoid division by
zero, we add a positive constant ϵ to the denominator during division, enhancing numerical stability.

Let I = (I1, . . . , IN)⊤ denote the set of differential invariants we obtained, which naturally induces
an equivariant operator Î . Theoretically, the invariants I1, . . . , IN are sufficient to express all
second-order differential invariants. In practice, we leverage the expressive power of neural networks
to combine I1, . . . , IN using a two-layer MLP to produce the output [Li et al., 2024, 2025]. This
leads to a learnable equivariant operator:

uout = hθ ◦ Î(uin), (35)

where hθ is an MLP parameterized by θ. By integrating this operator into standard network architec-
tures, we can build projective equivariant models. We refer to the resulting model as the Projective
Differential Invariant Network (PDINet), as illustrated in Figure 2.

3 Experiments

For empirical evaluation, we conduct image classification tasks under out-of-distribution settings,
where models are trained on the original dataset and tested on images deformed by projective
transformations. We adopt ResNet-18 [He et al., 2016] as the backbone and replace its convolutional
layers with our equivariant operators defined in (35) to construct a projective equivariant network,
PDINet. As the main counterpart, we consider homConv, a projective equivariant model proposed
by MacDonald et al. [2022]. To ensure a fair comparison, we attempted to implement homConv
using the same backbone. However, homConv relies on group sampling, which leads to exponential
memory growth with network depth, resulting in out-of-memory (OOM) issues. Therefore, we follow
the original network configuration of MacDonald et al. [2022] and reduce the number of samples to
avoid OOM. In addition, we also include ResNet-18 trained with projective data augmentation (DA)
as a reference baseline.

3.1 Proj-STL-10

STL-10 [Coates et al., 2011] is a dataset containing 5000 training images and 8000 test images. Each
image has a resolution of 96× 96 with RGB channels. We apply random projective transformations
to the test set to generate the Proj-STL-10 dataset. Models are trained on the original STL-10 dataset
(or with projective data augmentation for the DA baseline) and evaluated on Proj-STL-10, forming
a challenging out-of-distribution setting that assesses the model’s ability to generalize beyond the
training distribution.

Table 1: Test accuracy (%) on Proj-STL-10.

Model Accuracy # Params
ResNet-18 39.73±0.33 11.18M
ResNet-18 with DA 48.73±0.53 11.18M
homConv 20.88±0.32 376K
PDINet (ours) 51.12±0.47 8.90M

Each experiment is repeated five times with different random seeds, and we report the average
accuracy and standard deviation in Table 1. PDINet substantially outperforms the standard ResNet-
18 on the transformed test set, achieving an 11.39% improvement in accuracy. While projective
data augmentation considerably enhances ResNet-18’s robustness, PDINet still achieves the highest
accuracy. In contrast, homConv performs poorly due to its restriction on network depth.

9

3.2 Proj-Imagenette

Imagenette is a ten-class subset of the ImageNet dataset [Deng et al., 2009], consisting of 9469 training
images and 3925 test images. All images are adapted to a uniform resolution of 256× 256 for model
input. We apply random projective transformations to the test set to generate the Proj-Imagenette
dataset, while keeping the training set unchanged. This setup simulates an out-of-distribution scenario
and evaluates the model’s ability to generalize to geometric transformations.

Table 2: Test accuracy (%) on Proj-Imagenette.

Model Accuracy # Params
ResNet-18 65.64±0.39 11.18M
ResNet-18 with DA 70.77±0.76 11.18M
homConv 25.72±0.52 376K
PDINet (ours) 71.30±0.45 8.90M

Each experiment is repeated five times with different random seeds, and we report the mean ± standard
deviation of test accuracy in Table 2. The results demonstrate that PDINet retains strong performance
under distribution shift, outperforming the standard ResNet-18 by 5.66%. It confirms the effectiveness
of the projective equivariance of our model in enhancing out-of-distribution generalization. Although
ResNet-18 with DA reduces the performance gap, it still lags behind PDINet. Meanwhile, the shallow
homConv model struggles to handle higher-resolution inputs due to its limited depth.

Detailed experimental settings and implementation details can be found in the Appendix.

4 Conclusion

In this work, we propose PDINet, a framework for projective equivariant networks, based on
second-order differential invariants of the projective group. Our method overcomes the exponential
memory growth encountered by homConv [MacDonald et al., 2022], enabling effective scaling to
deeper networks. Leveraging the moving frame method and a carefully chosen cross section tailored
to multi-dimensional functions, we derive a complete and concise set of second-order projective
fundamental differential invariants. Further analysis reveals transformation relationships among
projective invariants, allowing us to obtain a unified and simplified formulation that enhances both
theoretical clarity and computational efficiency. Building upon these invariants, we design a learnable
projective equivariant operator that can be seamlessly integrated into various network architectures.
It is the first time to achieve full projective equivariance in deep networks without group sampling or
discretization. Experiments under out-of-distribution settings demonstrate the strong generalization
ability of our model. With the prevalence and significance of projective transformations in vision,
PDINet holds promising potential for broader applications in computer vision.

One limitation of our approach is that the second-order invariants we derive vanish in the one-
dimensional case, preventing the direct application of PDINet to grayscale images. In addition, this
work focuses on group actions on scalar fields and does not yet cover more general cases involving
arbitrary group representations, which we consider a valuable direction for future research.

Acknowledgments

Z. Lin was supported by National Key R&D Program of China (2022ZD0160300), the NSF China
(No. 62276004) and the State Key Laboratory of General Artificial Intelligence.

References
Stan Birchfield. An introduction to projective geometry (for computer vision). Unpublished note,

Stanford University, 14, 1998.

Georg Bökman, Axel Flinth, and Fredrik Kahl. In search of projectively equivariant networks.
Transactions on Machine Learning Research, 2023.

10

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages
834–848, 2017.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth International Conference on Artificial Intelligence
and Statistics, 2011.

Taco S Cohen and Max Welling. Group equivariant convolutional networks. In International
Conference on Machine Learning, 2016a.

Taco S Cohen and Max Welling. Steerable CNNs. In International Conference on Learning
Representations, 2016b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition,
2009.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Carlos Esteves, Yinshuang Xu, Christine Allen-Blanchette, and Kostas Daniilidis. Equivariant multi-
view networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
2019.

Mark Fels and Peter J Olver. Moving coframes: II. regularization and theoretical foundations. Acta
Applicandae Mathematica, 55:127–208, 1999.

Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing convolutional
neural networks for equivariance to Lie groups on arbitrary continuous data. In International
Conference on Machine Learning, 2020.

Marc Finzi, Max Welling, and Andrew Gordon Wilson. A practical method for constructing equivari-
ant multilayer perceptrons for arbitrary matrix groups. In International Conference on Machine
Learning, 2021.

Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. SE(3)-transformers: 3D roto-
translation equivariant attention networks. In Advances in Neural Information Processing Systems,
2020.

Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge
University Press, 2003.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2016.

Lingshen He, Yuxuan Chen, Zhengyang Shen, Yiming Dong, Yisen Wang, and Zhouchen Lin.
Efficient equivariant network. In Advances in Neural Information Processing Systems, 2021.

Lingshen He, Yuxuan Chen, Zhengyang Shen, Yibo Yang, and Zhouchen Lin. Neural ePDOs: Spa-
tially adaptive equivariant partial differential operator based networks. In International Conference
on Learning Representations, 2022.

Boce Hu, Xupeng Zhu, Dian Wang, Zihao Dong, Haojie Huang, Chenghao Wang, Robin Walters,
and Robert Platt. Orbitgrasp: SE(3)-equivariant grasp learning. arXiv preprint arXiv:2407.03531,
2024.

Boce Hu, Heng Tian, Dian Wang, Haojie Huang, Xupeng Zhu, Robin Walters, and Robert Platt.
Push-grasp policy learning using equivariant models and grasp score optimization. arXiv preprint
arXiv:2504.03053, 2025a.

11

Boce Hu, Dian Wang, David Klee, Heng Tian, Xupeng Zhu, Haojie Huang, Robert Platt, and Robin
Walters. 3D equivariant visuomotor policy learning via spherical projection. arXiv preprint
arXiv:2505.16969, 2025b.

Lexiang Hu, Yikang Li, and Zhouchen Lin. Explicit discovery of nonlinear symmetries from dynamic
data. In International Conference on Machine Learning, 2025c.

Lexiang Hu, Yikang Li, and Zhouchen Lin. Governing equation discovery from data based on
differential invariants. In ICML 2025 2nd AI for Math Workshop, 2025d.

Lexiang Hu, Yikang Li, and Zhouchen Lin. Symmetry discovery for different data types. Neural
Networks, 188:107481, 2025e.

Lexiang Hu, Yisen Wang, and Zhouchen Lin. Incorporating arbitrary matrix group equivariance into
KANs. In International Conference on Machine Learning, 2025f.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 2012.

Maxime W Lafarge, Erik J Bekkers, Josien PW Pluim, Remco Duits, and Mitko Veta. Roto-translation
equivariant convolutional networks: Application to histopathology image analysis. Medical Image
Analysis, 68:101849, 2021.

Jongmin Lee, Byungjin Kim, and Minsu Cho. Self-supervised equivariant learning for oriented
keypoint detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022.

Wang-Heun Lee, Kyoung-Sig Roh, and In-So Kweon. Self-localization of a mobile robot without
camera calibration using projective invariants. Pattern Recognition Letters, 21(1):45–60, 2000.

Erbo Li, Hanlin Mo, Dong Xu, and Hua Li. Image projective invariants. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 41(5):1144–1157, 2018.

Yikang Li, Yeqing Qiu, Yuxuan Chen, Lingshen He, and Zhouchen Lin. Affine equivariant networks
based on differential invariants. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2024.

Yikang Li, Yeqing Qiu, Yuxuan Chen, and Zhouchen Lin. Affine steerable equivariant layer for
canonicalization of neural networks. In International Conference on Learning Representations,
2025.

Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3D atomistic
graphs. In International Conference on Learning Representations, 2022.

Risheng Liu, Zhouchen Lin, Wei Zhang, and Zhixun Su. Learning PDEs for image restoration via
optimal control. In Proceedings of the European Conference on Computer Vision, 2010.

Risheng Liu, Zhouchen Lin, Wei Zhang, Kewei Tang, and Zhixun Su. Toward designing intelligent
PDEs for computer vision: an optimal control approach. Image and Vision Computing, 31(1):
43–56, 2013.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic,
Thomas Y Hou, and Max Tegmark. KAN: Kolmogorov–Arnold networks. In International
Conference on Learning Representations, 2025.

Lachlan E MacDonald, Sameera Ramasinghe, and Simon Lucey. Enabling equivariance for arbitrary
Lie groups. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022.

Mircea Mironenco and Patrick Forré. Lie group decompositions for equivariant neural networks. In
International Conference on Learning Representations, 2024.

Thomas W Mitchel, Noam Aigerman, Vladimir G Kim, and Michael Kazhdan. Möbius convolutions
for spherical CNNs. In ACM SIGGRAPH 2022 Conference Proceedings, 2022.

12

Roger Mohr and Bill Triggs. Projective geometry for image analysis. In XVIIIth International
Symposium on Photogrammetry & Remote Sensing (ISPRS’96), 1996.

Joseph L Mundy and Andrew Zisserman. Geometric invariance in computer vision. MIT Press, 1992.

Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: A versatile and accurate
monocular slam system. IEEE Transactions on Robotics, 31(5):1147–1163, 2015.

Peter J Olver. Applications of Lie groups to differential equations, volume 107. Springer Science &
Business Media, 1993.

Peter J Olver. Moving frames. Journal of Symbolic Computation, 36(3-4):501–512, 2003.

Peter J Olver. Modern developments in the theory and applications of moving frames. London Math.
Soc. Impact150 Stories, 1:14–50, 2015.

Peter J Olver. Projective invariants of images. European Journal of Applied Mathematics, 34(5):
936–946, 2023.

Peter J Olver, Guillermo Sapiro, and Allen Tannenbaum. Affine invariant detection: edge maps,
anisotropic diffusion, and active contours. Acta Applicandae Mathematica, 59:45–77, 1999.

David W Romero and Jean-Baptiste Cordonnier. Group equivariant stand-alone self-attention for
vision. In International Conference on Learning Representations, 2021.

Mateus Sangalli, Samy Blusseau, Santiago Velasco-Forero, and Jesús Angulo. Differential invariants
for SE(2)-equivariant networks. In IEEE International Conference on Image Processing, 2022.

Mateus Sangalli, Samy Blusseau, Santiago Velasco-Forero, and Jesus Angulo. Moving frame net:
SE(3)-equivariant network for volumes. In NeurIPS Workshop on Symmetry and Geometry in
Neural Representations, 2023.

Johannes L Schönberger, Enliang Zheng, Jan-Michael Frahm, and Marc Pollefeys. Pixelwise view
selection for unstructured multi-view stereo. In European Conference on Computer Vision, pages
501–518, 2016.

Pourya Shamsolmoali, Masoumeh Zareapoor, Jocelyn Chanussot, Huiyu Zhou, and Jie Yang. Rotation
equivariant feature image pyramid network for object detection in optical remote sensing imagery.
IEEE Transactions on Geoscience and Remote Sensing, 60, 2021.

Zhengyang Shen, Lingshen He, Zhouchen Lin, and Jinwen Ma. PDO-eConvs: Partial differential
operator based equivariant convolutions. In International Conference on Machine Learning, 2020.

Zhengyang Shen, Tao Hong, Qi She, Jinwen Ma, and Zhouchen Lin. PDO-s3DCNNs: Partial
differential operator based steerable 3D CNNs. In International Conference on Machine Learning,
2022.

Zhengyang Shen, Yeqing Qiu, Jialun Liu, Lingshen He, and Zhouchen Lin. Efficient learning of
scale-adaptive nearly affine invariant networks. Neural Networks, 174:106229, 2024.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

Ivan Sosnovik, Michał Szmaja, and Arnold Smeulders. Scale-equivariant steerable networks. In
International Conference on Learning Representations, 2019.

Tomas Suk and Jan Flusser. Projective moment invariants. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(10):1364–1367, 2004.

Dian Wang and Robin Walters. SO(2) equivariant reinforcement learning. In International Conference
on Learning Representations, 2022.

Rui Wang, Robin Walters, and Rose Yu. Incorporating symmetry into deep dynamics models for
improved generalization. In International Conference on Learning Representations, 2020.

13

Maurice Weiler and Gabriele Cesa. General E(2)-equivariant steerable CNNs. In Advances in Neural
Information Processing Systems, 2019.

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco S Cohen. 3D steerable
CNNs: Learning rotationally equivariant features in volumetric data. In Advances in Neural
Information Processing Systems, 2018.

Daniel Worrall and Gabriel Brostow. Cubenet: Equivariance to 3D rotation and translation. In
Proceedings of the European Conference on Computer Vision, 2018.

Jianke Yang, Robin Walters, Nima Dehmamy, and Rose Yu. Generative adversarial symmetry
discovery. In International Conference on Machine Learning, 2023.

Jianke Yang, Nima Dehmamy, Robin Walters, and Rose Yu. Latent space symmetry discovery. In
International Conference on Machine Learning, 2024.

Linfeng Zhao, Xupeng Zhu, Lingzhi Kong, Robin Walters, and Lawson LS Wong. Integrating
symmetry into differentiable planning with steerable convolutions. In International Conference on
Learning Representations, 2022.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction strictly follow the paper’s contribu-
tions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Section 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

15

Justification: All theorems in Section 2 are presented with the full set of assumptions. We
also provide the complete proofs in the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the information for experimental reproduction in Section 3 and
the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will make the data and code publicly available upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so ?No? is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the experimental setup and implementation details in Section 3
and the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are reported for all results in Section 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper focuses on the research of equivariant deep learning algorithms, and
we do not foresee immediate positive or negative societal outcomes.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

18

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: For the code and dataset used in the paper, we respect the license and terms of
use, and cite the relevant papers properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

19

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

20

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Related work

A.1 Differential invariants

Differential invariants are quantities involving derivatives that remain unchanged under the action
of a given transformation group [Olver, 1993]. They have proven useful in various image analysis
applications [Mundy and Zisserman, 1992, Olver et al., 1999, Hartley and Zisserman, 2003, Li et al.,
2018]. Leveraging the connection between differential invariants and symmetric partial differential
equations (PDEs) [Olver, 1993], Liu et al. [2010, 2013] constructed learnable PDEs as linear
combinations of differential invariants, achieving shift and rotation equivariance. This connection
has also been explored for symmetry-informed discovery of governing PDEs [Hu et al., 2025d]. The
method of moving frames offers a systematic framework for deriving differential invariants given
a transformation group [Fels and Olver, 1999, Olver, 2003, 2015]. Based on this approach, Olver
[2023] provided a characterization of differential invariants of the projective group. However, since
the projective group does not act freely on the second-order jet space of scalar functions, Olver [2023]
prolonged the group action to the third-order jet space, resulting in complex expressions that are
computationally expensive and difficult to estimate from data due to the involvement of higher-order
derivatives. Differently, our work focuses on multi-dimensional functions, where the projective
group acts freely on the second-order jet space. This allows us to derive a complete and concise set
of second-order fundamental differential invariants, which we further simplify through structural
analysis.

A.2 Equivariant networks

Early developments in equivariant networks primarily focused on designing architectures that are
equivariant to discrete groups, such as cyclic or dihedral groups. A representative approach is the
G-CNN [Cohen and Welling, 2016a] framework, which models feature maps as functions defined
on a group and implements convolution-like operations via discrete permutations over the input
domain. Building upon this viewpoint, subsequent works [Shen et al., 2020, Romero and Cordonnier,
2021, He et al., 2021] developed a broader range of group-equivariant operators beyond standard
group convolutions. To achieve equivariance with respect to continuous groups, steerable CNNs
[Cohen and Welling, 2016b, Weiler and Cesa, 2019] were proposed, which treat feature maps as
fields transforming according to specified group representations. This framework enables principled
handling of Euclidean groups in 2D and 3D settings [Weiler and Cesa, 2019, Fuchs et al., 2020, Wang
et al., 2020, Zhao et al., 2022, Shen et al., 2022, Liao and Smidt, 2022, Hu et al., 2024, 2025a,b], by
explicitly encoding the group action on the feature spaces.

Symmetries are ubiquitous and can be leveraged in model design, either from prior knowledge or
discovered from data [Yang et al., 2023, 2024, Hu et al., 2025c,e]. However, generalizing equiv-
ariant architectures to high-dimensional Lie groups, such as the projective group, poses significant
challenges. For such groups, deriving explicit steerable basis filters is often intractable, limiting the ap-
plicability of steerable CNNs, while G-CNN based methods require group discretization or sampling,
introducing scalability issues. Bökman et al. [2023] explored equivariance in a projective sense and
achieved equivariant models with respect to projective representations of certain simple groups, rather
than the full projective group. Another related effort is Möbius Convolution (MC) [Mitchel et al.,
2022], which achieves equivariance to spherical Möbius transformations for geometry and spherical
image processing tasks. While both MC and our method aim to build equivariant models under certain
projective group actions, MC operates on the Riemann sphere under the complex-valued SL(2,C),
whereas our work considers planar projective transformations governed by SL(3,R), corresponding
to the commonly studied projective transformations in vision. Additionally, EMLP [Finzi et al., 2021]
and EKAN [Hu et al., 2025f] incorporate arbitrary matrix group equivariance into MLPs and KANs
[Liu et al., 2025], respectively, but they target linear transformations on vectors or tensors and are
not directly suitable for image inputs. Shen et al. [2024] combined rotation-equivariant networks
with data augmentation to obtain nearly affine invariant features, without achieving full equivariance.
LieConv [Finzi et al., 2020] attempts to handle Lie group equivariance by sampling from the Haar
measure, but struggles to extend to complex groups due to inaccessibility to the Haar measure. To
mitigate this problem, MacDonald et al. [2022] performed group convolutions by computing the
integral on the Lie algebra, resulting in a projective equivariant model, homConv. Nevertheless, it
suffers from exponential memory growth as network depth increases, making it impractical for deep
networks. Mironenco and Forré [2024] improved sampling efficiency via group decompositions, but

I

their method remains constrained to affine subgroups. Besides these two mainstream approaches,
G-CNNs and steerable CNNs, Li et al. [2024, 2025] resorted to another route by constructing equiv-
ariant networks based on differential invariants, achieving affine equivariance without requiring group
sampling or discretization. However, their method is confined to affine groups and does not generalize
to the projective group. In particular, projective differential invariants for multi-channel inputs have
not yet been developed, and the SupNorm normalization technique used to construct affine invariants
cannot be directly extended to the projective group. In our work, we target projective equivariance
by deriving a complete set of second-order fundamental differential invariants for multi-channel
inputs using a tailored moving frame construction. Through algebraic analysis, we obtain simplified
projective invariants for practical use, which enable the construction of deep projective equivariant
networks without relying on sampling or discretizing the group.

B Detailed proofs

In this section, we provide the detailed derivation of the moving frame and complete proofs of
Theorems 8, 11, and 12.

For completeness, we briefly comment on the results that can be verified primarily through direct
computation, while omitting the detailed algebraic steps:

• Theorem 6 follows directly from the definitions of Jij and Tijk, together with the trans-
formation rules for first- and second-order derivatives under the group action derived from
(11)-(12), followed by straightforward simplification.

• Theorem 7 and Lemma 9 can be verified by substituting the definition of Jij and expanding
the expressions algebraically.

• Theorem 10 can be proved by rewriting Ti′jk′ in the compact form g⊤
i′ Q

⊤HjQgk′ as shown
in (29), then applying Lemma 9 to express the gradient vectors gi′ and gk′ in terms of gi

and gk, and simplifying the resulting expression.

B.1 Derivation of the moving frame

We begin by setting x̃ = ỹ = 0, yielding

γ = −αx− βy, (36)
ν = −λx− µy. (37)

Next, imposing ũ[1]x̃ = 1, ũ
[1]
ỹ = 0 gives

α = u[1]x (ρx+ σy + τ), (38)

β = u[1]y (ρx+ σy + τ). (39)

Similarly, enforcing ũ[2]x̃ = 0, ũ
[2]
ỹ = 1 leads to

λ = u[2]x (ρx+ σy + τ), (40)

µ = u[2]y (ρx+ σy + τ). (41)

We then apply the conditions ũ[1]x̃x̃ = ũ
[1]
x̃ỹ = 0, which yield the equations for σ and τ .

σ = ρ
J12(u

[1]
yyu

[2]
x − u

[1]
xyu

[2]
y) + u

[2]
y T112

−u[1]x T212 + 2u
[2]
x T112

, (42)

τ = ρ
x(u

[1]
x T212 − 2u

[2]
x T112) + y(u

[1]
y T212 − 2u

[1]
y T112)

−u[1]x T212 + 2u
[2]
x T112

. (43)

Finally, setting ∆ = 1 determines the parameter ρ as:

ρ =
u
[1]
x T212 − 2u

[2]
x T112

2J 7/3
12

. (44)

With all the parameters now fully determined, we obtain the moving frame η.

II

B.2 Proof of Theorem 8

Proof. Define Jk ≜ {Ji,i+k | 1 ≤ i ≤ n− k}, k = 1, 2, . . . , n− 1. To prove the theorem, it suffices
to show that each Jk for 1 ≤ k ≤ n− 1 can be expressed in terms of elements from S1 ∪ S2.

We proceed by mathematical induction on k.

Base case (k = 1, 2): This holds by definition, as J1 = S1 and J2 = S2.

Inductive step: Assume that for all k ≤ l − 1 with l ≥ 3, each set Jk can be expressed in terms of
elements from S1 ∪ S2. We aim to show that Jl can also be written using elements from S1 ∪ S2.

By the induction hypothesis, the following quantities can all be expressed by elements in S1 ∪ S2:

Ji,i+1, Ji,i+l−1, Ji+1,i+l−1, Ji+1,i+l, Ji+l−1,i+l.

For any Ji,i+l ∈ Jl, note that when l ≥ 3, the indices i, i + 1, i + l − 1, i + l are distinct. By
Theorem 7, it follows that Ji,i+l can be expressed as a function of these five relative invariants.
Hence, Ji,i+l can be expressed by elements in S1 ∪ S2.

By the principle of mathematical induction, all Jk for any 1 ≤ k ≤ n − 1 can be generated from
S1 ∪ S2, completing the proof. □

B.3 Proof of Theorem 11

Proof. Recall that Jij has been established in Theorem 8, and Tiii is already included in S3. So we
focus on proving that Tiji+2Tiij can be expressed in terms of elements from S1∪S2∪S3∪S4∪S5.
Define

T+
k ≜ {Ti,i+k,i + 2Ti,i,i+k | 1 ≤ i ≤ n− k} , (45)

T−
k ≜ {Ti,i−k,i + 2Ti,i,i−k | k + 1 ≤ i ≤ n} . (46)

Our goal is to show that each element in T+
k and T−

k for 1 ≤ k ≤ n− 1 can be expressed in terms
of elements from S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5. We present the proof for T+

k ; the case of T−
k follows

analogously due to index symmetry.

We proceed by mathematical induction on k.

Base case (k = 1): This holds by definition, as T+
1 = S4.

Inductive step: Assume that for all k ≤ l−1 with l ≥ 2, each element in T+
k can be expressed in terms

of elements from S1∪S2∪S3∪S4∪S5. We aim to show that every element Ti,i+l,i+2Ti,i,i+l ∈ T+
l

can also be expressed using this union. From the transformation rule in Theorem 10, we have:

Ti,i+l,i + 2Ti,i,i+l (47)
=(C1Ti+l−1,i+l,i+l−1 − C2Ti+l−1,i+l,i+l + C3Ti+l,i+l,i+l) + 2 (C4Tiii − C5Ti,i,i+l−1) (48)

=C1(Ti+l−1,i+l,i+l−1 + 2Ti+l−1,i+l−1,i+l)−
1

2
C2(2Ti+l−1,i+l,i+l + Ti+l,i+l−1,i+l)

+ C3Ti+l,i+l,i+l + 2C4Tiii − C5(2Ti,i,i+l−1 + Ti,i+l−1,i)

− 2C1Ti+l−1,i+l−1,i+l +
1

2
C2Ti+l,i+l−1,i+l + C5Ti,i+l−1,i, (49)

where the coefficients are defined as:

C1 =
J 2
i,i+l

J 2
i+l−1,i+l

, C2 =
2Ji,i+lJi,i+l−1

J 2
i+l−1,i+l

, C3 =
J 2
i,i+l−1

J 2
i+l−1,i+l

,

C4 =
Ji+l,i+l−1

Ji,i+l−1
, C5 =

Ji+l,i

Ji,i+l−1
. (50)

By the induction hypothesis, 2Ti,i,i+l−1 + Ti,i+l−1,i ∈ T+
l−1 can be expressed using elements from

S1∪S2∪S3∪S4∪S5. In addition, it holds that Tiii ∈ S3, Ti+l−1,i+l,i+l−1+2Ti+l−1,i+l−1,i+l ∈ S4,

III

and 2Ti+l−1,i+l,i+l + Ti+l,i+l−1,i+l ∈ S5. The only remaining terms are:

− 2C1Ti+l−1,i+l−1,i+l +
1

2
C2Ti+l,i+l−1,i+l + C5Ti,i+l−1,i (51)

=− 2C1Ti+l−1,i+l−1,i+l +
1

2
C2Ti+l,i+l−1,i+l

+ C5(C1Ti+l−1,i+l−1,i+l−1 − C2Ti+l−1,i+l−1,i+l + C3Ti+l,i+l−1,i+l) (52)
=C5C1Ti+l−1,i+l−1,i+l−1, (53)

which can be expressed in terms of S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 as well. Hence, the full expression for
Ti,i+l,i + 2Ti,i,i+l is a combination of elements in S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5.

Therefore, by the principle of mathematical induction, all elements in T+
k for any 1 ≤ k ≤ n− 1 can

be generated from the given sets. □

B.4 Proof of Theorem 12

Proof. To prove Theorem 12, it suffices to show that all second-order fundamental differential
invariants of the projective group, namely the quantities in (14)-(22), along with the set S0, can
be expressed in terms of the elements in S. Since S0 ⊂ S, we may disregard S0 in the following
discussion.

Moreover, Theorem 11 has established that all relative invariants given in Theorem 6 can be generated
by elements in the union S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ⊂ S. Therefore, it remains to prove that the
expressions (14)-(22) can be written in terms of the relative invariants from Theorem 6.

Among these fundamental invariants, (14)-(19) can be directly expressed using the relative invariants
from Theorem 6. Thus, it remains to focus on the final three expressions (20)-(22). Since the
denominators are already included in the set S, it suffices to consider only the numerators:

J12T2i2 + J2iT212, 3 ≤ i ≤ n, (54)
2J12T1i2 + J12T21i + 3J2iT112, 3 ≤ i ≤ n, (55)
J12T1i1 + 2J1iT112, 3 ≤ i ≤ n. (56)

We now show that each of these numerators can indeed be expressed using the relative invariants in
Theorem 6.

For (54), we have

J12T2i2 + J2iT212 (57)
=J12(T2i2 + 2T22i) + J2i(T212 + 2T221)− 2J12T22i − 2J2iT221 (58)
=J12(T2i2 + 2T22i) + J2i(T212 + 2T221)− 2J12(C6T221 + C7T222)− 2J2iT221 (59)
=J12(T2i2 + 2T22i) + J2i(T212 + 2T221)− 2J12C7T222, (60)

where the coefficients are defined as:

C6 =
Ji2

J12
, C7 =

Ji1

J21
. (61)

For (55), we first rewrite T1i2 as:

T1i2 =C8T1i1 + C9T1ii (62)

=C8(T1i1 + 2T11i) +
1

2
C9(2T1ii + Ti1i)− 2C8T11i −

1

2
C9Ti1i (63)

=C8(T1i1 + 2T11i) +
1

2
C9(2T1ii + Ti1i)

− 2C8(C6T111 + C7T112)−
1

2
C9(C

2
6T111 + 2C6C7T112 + C2

7T212), (64)

where the coefficients are defined as:

C8 =
J2i

J1i
C9 =

J21

Ji1
. (65)

IV

Similarly, we rewrite T21i as:

T21i = C6T211 + C7T212. (66)

Substituting these into (55), we have:

2J12T1i2 + J12T21i + 3J2iT112 (67)

=2J12

(
C8(T1i1 + 2T11i) +

1

2
C9(2T1ii + Ti1i)

)
+ 2J12

(
−2C8(C6T111 + C7T112)−

1

2
C9(C

2
6T111 + 2C6C7T112 + C2

7T212)
)

+ J12(C6T211 + C7T212) + 3J2iT112 (68)

=2J12

(
C8(T1i1 + 2T11i) +

1

2
C9(2T1ii + Ti1i)

)
−
(
4J12C6C8 + J12C9C

2
6

)
T111. (69)

For (56), we have:

J12T1i1 + 2J1iT112 (70)
=J12(T1i1 + 2T11i) + 2J1iT112 − 2J12T11i (71)
=J12(T1i1 + 2T11i) + 2J1iT112 − 2J12(C6T111 + C7T112) (72)
=J12(T1i1 + 2T11i)− 2J12C6T111 (73)

This completes the proof that all second-order fundamental differential invariants in (14)-(22) are
expressible in terms of the relative invariants in Theorem 6, and thus can be generated by S. □

C Implementation details of PDINet

While our theoretical foundation is developed in the continuous setting, practical applications involve
discrete image data defined on grid points, where derivatives must be approximated numerically. To
this end, we estimate spatial derivatives using Gaussian derivatives [Li et al., 2018, He et al., 2022,
Li et al., 2024]. For example, the partial derivative with respect to x is computed via convolution
as ∂f

∂x ≈ f ∗ ∂Gσ

∂x , where Gσ is a Gaussian kernel with zero mean and standard deviation σ. In our
implementation, we set σ = 0.99 and use a kernel size of 9.

As mentioned in Subsection 2.6, we construct projective invariants by dividing each relative invariant
by a designated relative invariant R0 or R2

0, which is computed from the input image. To prevent
division by zero, we add a positive constant ϵ to the denominator. We set ϵ = 1. After obtaining the
invariants, we apply SupNorm normalization [Li et al., 2024, 2025], which preserves equivariance
and is beneficial for training stability. Then we combine the invariants using a two-layer MLP, which
is implemented as a sequence of two 1× 1 convolutions with a ReLU activation function in between.

Given a standard convolutional network architecture, we construct a projective equivariant network
by replacing each convolutional layer with our equivariant operator. If a convolutional layer has
stride greater than 1, we insert an average pooling layer with a kernel size equal to the stride before
the second 1 × 1 convolutional layer in the equivariant operator. Additionally, we also apply the
same pooling when computing R0 to ensure resolution consistency between the numerator and
denominator. Figure 3 shows the training loss curve on the STL-10 dataset, demonstrating stable
optimization behavior of PDINet during training.

D Experimental details

All experiments are conducted on a single NVIDIA RTX 3090 GPU. Each experiment is repeated
five times with independently generated test sets using random projective transformations, and we
report the mean accuracy and standard deviation.

Experiments on Proj-STL-10. Models are trained on the 5000 samples of the STL-10 training set
and tested on the 8000 samples of the Proj-STL-10 test set, which is generated by applying projective
transformations to each sample in the STL-10 test set. Specifically, we decompose a projective
transformation into an affine transformation followed by horizontal and vertical pure projections,

V

Figure 3: Training loss curve of PDINet on the STL-10 dataset.

defined as (x̃, ỹ)⊤ = (x
1+c1x

, y
1+c1x

)⊤ and (x̃, ỹ)⊤ = (x
1+c2y

, y
1+c2y

)⊤, respectively. The affine
transformation consists of random rotation between −90◦ and 90◦, scaling in the range [0.9, 1.1],
shear within ±4◦, and translation within [−0.1, 0.1], while the projection parameters c1 and c2
are uniformly sampled from [−0.0001, 0.0001]. All images are normalized by channel-wise mean
subtraction and standard deviation division. Following [Sosnovik et al., 2019], data augmentation
during training includes 12-pixel zero-padding followed by random cropping to 96 × 96, random
horizontal flipping, and Cutout [DeVries and Taylor, 2017] with a single 32 × 32 hole. We train
the models for 1000 epochs using SGD optimizer with Nesterov momentum of 0.9 and a batch size
of 64. The initial learning rate is set to 0.1 and decayed by a factor of 0.2 at epochs 300, 400, 600,
and 800. For the DA baseline, since the projective group is a complex non-compact group and the
specific range or distribution of transformation parameters in test scenarios is typically unknown,
we adopt a considerably wide range of geometric transformations. Specifically, we apply random
rotation between −180◦ and 180◦, scaling in the range [0.3, 1.7], shear within ±45◦, translation
within [−0.1, 0.1], and projection parameters c1, c2 uniformly sampled from [−0.002, 0.002]. For
homConv, we use the Adam optimizer following the original setup of [MacDonald et al., 2022], as
training with SGD fails to converge, while keeping other hyperparameters identical to those described
above.

Experiments on Proj-Imagenette. Models are trained on the 9469 samples of the Imagenette training
set and evaluated on the 3925 samples of the Proj-Imagenette test set. The Proj-Imagenette dataset is
generated by applying projective transformations to each test image in the original Imagenette dataset,
following the same procedure as Proj-STL-10. All images are normalized by subtracting the per-
channel mean and dividing by the per-channel standard deviation. During training, data augmentation
includes random resized cropping to 224× 224 and random horizontal flipping. We train the models
for 100 epochs using AdamW optimizer with a batch size of 64. The initial learning rate is set to 0.002
and decayed via a cosine annealing scheduler. The same strategy as in experiments on Proj-STL-10 is
used for the DA baseline, while homConv is also trained with Adam as in [MacDonald et al., 2022].

E Additional experiments

E.1 Equivariance error

Table 3: Equivariance error across different image resolutions.

Image size 16× 16 32× 32 64× 64 128× 128 256× 256
Equivariance error (%) 0.34 0.14 0.08 0.04 0.02

Theoretically, the projective equivariance of our operators is rigorously guaranteed by the fundamental
properties of differential invariants. In implementation, however, derivatives are estimated on discrete
grids, which inevitably introduces minor equivariance errors. To quantitatively evaluate this effect,

VI

we follow the protocol in [MacDonald et al., 2022] and define the equivariance error as

Error =
∥g · ψ(u)− ψ(g · u)∥2

∥g · ψ(u)∥2
,

where ψ denotes the equivariant layer and g is a random projective transformation. Since the projective
equivariance of PDINet is intrinsic and does not rely on training, we measure this error using a
randomly initialized equivariant layer. We compute the error on the Imagenette test set, resizing
images to multiple resolutions. As shown in Table 3, the equivariance error remains consistently small
across all resolutions and decreases monotonically with increasing image size, which is expected due
to more accurate derivative approximation at higher resolutions.

To further visualize equivariance, Figure 4 compares the features g · ψ(u) and ψ(g · u), showing that
they are nearly identical and thus confirming the commutativity between the equivariant layer and
projective transformations.

Equivariant Layer

Projective
Transformation

Equi
varia

nt La
yer

ProjectiveTransformation

Figure 4: Visualization of projective equivariance: the features g ·ψ(u) and ψ(g ·u) remain consistent,
illustrating the commutativity between the equivariant layer of PDINet and projective transformations.

E.2 Computational complexity

Our projective equivariant layer exhibits linear growth in both time and space complexity with
respect to the input size. Specifically, the computation includes estimating derivatives, computing
differential invariants, and combining differential invariants, each with linear complexity. To quantify
the overhead, we compare PDINet and ResNet-18 in terms of memory usage and FLOPs using
torchstat, and report the results in Table 4. As shown, both models exhibit linear scaling with input
resolution, highlighting the scalability of our model to higher-resolution inputs. While PDINet
consumes slightly more memory than ResNet-18, it requires fewer FLOPs.

To provide an explicit runtime comparison, we further evaluate both models on the same hardware
by measuring the total time required to process 1000 RGB images (224 × 224) with a batch size
of 100. Each experiment is repeated five times, and the mean and standard deviation are reported
in Table 5. Despite its lower theoretical FLOPs, PDINet runs slower in practice, primarily due to
the highly optimized low-level implementations of ResNet-18. We expect this gap can be narrowed
through further engineering and implementation optimization.

E.3 Application on keypoint detection

To further demonstrate the practical benefit of PDINet, we conduct an additional experiment on
keypoint detection, a task that inherently involves projective distortions and thus provides a natural

VII

Table 4: Memory usage and FLOPs of ResNet-18 and PDINet at different input resolutions.

Memory (MB) FLOPs
Input Size ResNet-18 PDINet ResNet-18 PDINet
32× 32 0.53 0.93 3.72× 107 3.65× 107

64× 64 2.10 3.73 1.49× 108 1.46× 108

128× 128 8.38 14.91 5.94× 108 5.84× 108

256× 256 33.50 59.63 2.38× 109 2.33× 109

512× 512 134.00 238.50 9.51× 109 9.34× 109

Table 5: Runtime comparison on 1000 RGB images (224× 224) with batch size 100.

Model ResNet-18 PDINet
Runtime (s) 3.61±0.35 6.84±0.44

setting to evaluate the effectiveness of built-in projective equivariance. We integrate PDINet as the
backbone into the REKD [Lee et al., 2022] framework for keypoint detection. To reduce confounding
factors, we simplify the pipeline by removing the orientation estimation branch (which depends on
steerable filters) and retain only the keypoint detection component. A three-layer PDINet is used and
compared against a CNN baseline with the same architecture. The number of channels is adjusted
to keep the parameter counts on the same order of magnitude, with PDINet using fewer parameters
overall.

We evaluate both models on the viewpoint split of the HPatches dataset, which includes 59 scenes.
Each scene contains a reference image and five target images captured from different viewpoints,
resulting in projective distortions between image pairs. We follow the setup of Lee et al. [2022]
for data construction and loss formulation, and train each model for 20 epochs using the AdamW
optimizer with a cosine learning rate schedule (initial learning rate 0.01). A downsampling pyramid
with scaling factor 1.2 is applied during training, and a symmetric pyramid with scaling factor

√
2

(plus an identity branch) is used at inference, with two levels of down-sampling and up-sampling.

We report the Repeatability metric, which measures the consistency of keypoint detection under
viewpoint changes. A higher value indicates better robustness. As shown in Table 6, PDINet achieves
higher repeatability than the baseline while using fewer parameters, suggesting that built-in projective
equivariance enhances geometric consistency in keypoint detection. This supplementary experiment
complements our main results and demonstrates the broader applicability of PDINet to real-world
tasks.

Table 6: Keypoint detection results on the HPatches viewpoint split.

Model Repeatability ↑ # Params

CNN 42.1 8.3K
PDINet 45.2 3.2K

F Discussion

While PDINet consistently outperforms the baselines in our main experiments, some misclassifications
still occur. We believe these errors are largely attributable to the nature of synthetically generated
data. Synthetic projective transformations involve interpolation and padding, which can introduce
aliasing, distortions, and unnatural edges, especially under strong shearing, scaling or non-orthogonal
rotations. Such artifacts can interfere with the model’s ability to maintain equivariance and thus
degrade performance. In addition, since PDINet relies on differential invariants that depend on
discrete approximations of derivatives, image resolution may also affect performance. For example,
PDINet performs better on Proj-Imagenette than on Proj-STL-10, may partially attributed to the
higher resolution enabling more accurate derivative estimation.

VIII

We expect that applying PDINet to real-world data at higher resolutions with naturally occurring
projective distortions would help mitigate these artifacts and better demonstrate its full potential. In
practical scenarios, such as multiview settings involving planar objects, transformations between
different viewpoints are well modeled by projective mappings, making PDINet naturally suited
for these cases. While exact equivariance may not strictly hold for non-planar or 3D objects,
the projective inductive bias still contributes to improved robustness by approximately preserving
geometric structure under near projective transformations. Exploring such extensions, including more
general 3D settings, is a promising direction for future work.

Another avenue for exploration is to extend our method to other transformation groups. According to
the general theory of differential invariants [Olver, 1993], such invariants exist for any regular Lie
group action on a smooth manifold, for example, SL(2,C) acting on the sphere, which corresponds
to Möbius transformations. In principle, our framework can be adapted to these settings by deriving
the appropriate differential invariants and designing corresponding equivariant architectures. While
identifying explicit, concise, low-order, and numerically stable invariant forms for different groups
(e.g., the Möbius group) is highly non-trivial, our experience suggests that recognizing relative
invariants as atomic components can greatly facilitate the construction and simplification of a
complete and practical invariant basis.

IX

	Introduction
	Method
	Basic concepts and notations
	Method of moving frames
	Projective transformation
	Projective differential invariants of multi-dimensional functions
	Fundamental components of projective differential invariants
	Projective equivariant networks

	Experiments
	Proj-STL-10
	Proj-Imagenette

	Conclusion
	Related work
	Differential invariants
	Equivariant networks

	Detailed proofs
	Derivation of the moving frame
	Proof of Theorem 8
	Proof of Theorem 11
	Proof of Theorem 12

	Implementation details of PDINet
	Experimental details
	Additional experiments
	Equivariance error
	Computational complexity
	Application on keypoint detection

	Discussion

