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ABSTRACT

Encouraged by the remarkable achievements of language and vision foundation
models, developing generalist robotic agents through imitation learning, using
large demonstration datasets, has become a prominent area of interest in robot
learning. The efficacy of imitation learning is heavily reliant on the quantity
and quality of the demonstration datasets. In this study, we aim to scale up
demonstrations in a data-efficient way to facilitate the learning of generalist robotic
agents. We introduce AdaDemo (Adaptive Online Demonstration Expansion),
a general framework designed to improve multi-task policy learning by actively
and continually expanding the demonstration dataset. AdaDemo strategically
collects new demonstrations to address the identified weakness in the existing
policy, ensuring data efficiency is maximized. Through a comprehensive evaluation
on a total of 22 tasks across two robotic manipulation benchmarks (RLBench and
Adroit), we demonstrate AdaDemo’s capability to progressively improve policy
performance by guiding the generation of high-quality demonstration datasets in a
data-efficient manner.

1 INTRODUCTION
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Figure 1: Comparison of data efficiency be-
tween AdaDemo (adaptively expanding the demo
dataset) and Uniform (collecting more demon-
strations uniformly). After achieving a mediocre
success rate 57% on RLBench and 62% on
Adroit, Uniform only gains slightly better success
rate with a huge increase in demonstration num-
bers. While the baseline’s performance plateaus,
AdaDemo continues improving multi-task perfor-
mance iteratively. Overall, it achieves better per-
formance with only 1/2 the data on RLBench and
1/3 on Adroit. This data efficiency could translate
into substantial cost savings in large-scale demon-
stration collection.

The recent unprecedented success of language and vi-
sion foundation models (Brown et al., 2020; Kirillov
et al., 2023) have highlighted the importance of scal-
ing up datasets as a key strategy for solving challeng-
ing tasks. This insight has similarly influenced the
field of robotics, where the development of robotic
foundation models through imitation learning, utiliz-
ing large datasets of demonstrations, has emerged as
a prominent area of interest (Bousmalis et al., 2023;
Brohan et al., 2022; 2023; Ahn et al., 2022). How-
ever, the success of these robotic foundation models
is significantly dependent on the quantity, quality,
and diversity of the demonstration data. Meanwhile,
recent efforts of collecting large-scale robot demon-
stration datasets, such as RT-1 (Brohan et al., 2022)
and Open X-Embodiment (Collaboration, 2023), re-
quire extensive time and resources, involving years
of data collection by numerous human teleoperators,
which proves to be costly. Given these considerations,
it is both crucial and timely to explore this question:
how to scaling up demonstrations in a data-efficient
manner for learning generalist robotic agents?

In this work, we delve into the direction of actively
expanding the demonstration dataset. Imitation learn-
ing (Pomerleau, 1988) is a widely-used method in
training generalist robotic agents, which typically
relies on datasets that are pre-collected and static.
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Despite various efforts to improve the demonstration datasets through data augmentation (Krizhevsky
et al., 2012; He et al., 2019) and dataset re-distribution methods (Bronstein et al., 2023; Jiang et al.,
2021), such approaches remain fundamentally limited by the original dataset. Our study introduces a
significant paradigm shift: rather than collecting the demonstration dataset once and using it forever,
we propose actively and continuously expanding the dataset by collecting new demonstrations to
boost the performance of the learned agent. In the context of embodied AI, it is usually feasible to col-
lect new demonstrations by interacting with the environments, especially in simulated environments,
where the cost of interactions is relatively low.

We study the problem of data-efficient demonstration expansion in a multi-task visual policy learning
setup, where the objective is developing a single generalist policy capable of executing a variety of
tasks. This setup aligns the recent trend of creating versatile agents that can handle a broad spectrum
of challenges (Ahn et al., 2022; Brohan et al., 2022; 2023). A straightforward idea to expand the
demonstration dataset is to uniformly collect more demonstrations across all tasks. However, our
observations indicate that while this approach can improve policy performance in certain scenarios, it
lacks data efficiency and tends to reach a performance plateau easily (see Fig. 1). To improve the data
efficiency in demonstration expansion, a crucial intuition is that the new demonstrations should target
scenarios where the current policy fails. Stemming from this intuition, we propose a framework
named AdaDemo (Adaptive Online Demonstration Expansion) that is grounded in three core
principles: 1) prioritizing the collection of demonstrations for tasks with low policy performances;
2) within each task, focusing on acquiring demonstrations for the initial states where the policy
underperforms; and 3) adapting sampling strategies in training to emphasize challenging tasks. By
adopting this framework, we aim to tailor the demonstration expansion process to precisely address
the weaknesses of the existing policy, thereby avoiding collecting unnecessary demonstrations.

The effectiveness of AdaDemo was evaluated through a series of multi-task visual policy learning
experiments on two robotic manipulation benchmarks: RLBench (James et al., 2020) and Adroit
(Rajeswaran et al., 2017), including a total of 22 tasks. These experiments demonstrate AdaDemo’s
capability to progressively improve policy performance by generating high-quality demonstration
datasets in a data-efficient manner, as depicted in Fig. 1. Notably, AdaDemo exhibits significant data
efficiency, particularly at points where performance plateaus. Compared to the baseline, it achieves
better performance with only 1/2 the data on RLBench and 1/3 on Adroit. This efficiency could
translate into substantial cost savings, especially in large-scale demonstration collection.

To summarize, our contributions go as follows:
1. We propose AdaDemo, a data-efficient demonstration expansion framework, designed to

improve multi-task visual policy learning by adaptively expanding the demonstration dataset and
employing an appropriate sampling strategy for training.

2. Through extensive experiments on two robotic manipulation benchmarks, including a total of
22 tasks, we demonstrate the effectiveness of AdaDemo in expanding demonstration datasets in a
data-efficient way.

2 RELATED WORK

Data Augmentation in Policy Learning Data augmentation is a widely utilized technique in machine
learning that derives additional data samples by applying varied transformations to the existing data.
In the context of policy learning, specialized techniques have been proposed: prior works (Laskin
et al., 2020; Kostrikov et al., 2020; Yarats et al., 2021) discuss enhancing the robustness of visual
policies by applying image-based data augmentation techniques to observations. On the other hand,
some recent studies (Mandlekar et al., 2023; Pitis et al., 2022) propose to add additional trajectories
by adapting existing demonstration trajectories to novel situations. While data augmentation can
produce novel data instances, these instances are intrinsically limited in informational value as they
are derived from the original dataset. AdaDemo distinguishes itself from these approaches by directly
collecting new demonstrations to address the weakness of the learned policy.

Data Collection for Foundation Models Foundation models, such as large language models (Brown
et al., 2020), vision language models (Radford et al., 2021), generalist agents (Reed et al., 2022),
and robotic agents (Brohan et al., 2022; 2023), usually rely on datasets that are pre-collected and
static. This means the data collection phase is conducted once, with the dataset then used forever.
Although straightforward to implement, this one-off approach to data collection can restrict the
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models’ potential for learning and adaptation. Recently, there has been a shift towards training
foundation models using dynamically expanding datasets. For instance, SAM (Kirillov et al., 2023)
employs a bootstrapping approach, leveraging pre-trained segmentation models to help annotate a
more extensive dataset, which is then used to train stronger models. Similarly, in the robotics field,
RoboCat (Bousmalis et al., 2023) utilizes a pre-trained policy to collect additional demonstrations for
new tasks or robots, enlarging the dataset for subsequent agent training. Compared to these methods,
AdaDemo prioritizes data efficiency by selectively targeting data collection efforts towards scenarios
where the current policy underperforms, rather than indiscriminately adding data.

Online Policy Learning In contexts where online interaction is feasible, a straightforward strategy
for policy learning is using reinforcement learning (RL) (Haarnoja et al., 2018). However, due to the
sample efficiency issue and the unstable training dynamics, RL is rarely used in training large-scale
policies. Also, online imitation learning (Yan et al., 2021; Chen et al., 2022; Liu et al., 2019; Mu
et al., 2024) presents a viable approach for leveraging online interactions in policy learning. Many of
these methods are based on DAgger (Ross et al., 2011), which requires an expert to provide action
supervision for all encountered states during interactions. The requirement for an expert capable of
providing immediate supervision across all possible states can be impractical, making such methods
less feasible for a wide range of applications. In contrast, AdaDemo simplifies this requirement
by only requiring a demonstration collector for the initial states of tasks. This more manageable
assumption positions AdaDemo as a less demanding alternative compared to methods like DAgger.

3 PROBLEM SETUP

In this paper, we study a multi-task setting where a single visual policy (generalist) is trained to solve
multiple tasks, each having variants in terms of different goals and initial states. This setup mirrors
practical scenarios, such as a robotic arm performing diverse tasks like stacking plates and opening
drawers, depending on the given instructions and observed objects. We assume that tasks come with
a success metric, allowing us to verify the task completion and compute the success rate of the policy.

To train the multi-task visual policy, we employ behavior cloning (Pomerleau, 1988), a widely
adopted algorithm in learning generalist robotic agents (Bousmalis et al., 2023; Brohan et al., 2022).
Behavior cloning serves as a general foundation that can accommodate various modern visual policy
learning architectures (Shridhar et al., 2023; Goyal et al., 2023). Following prior work, we assume
the demonstration dataset in behavior cloning has the format: D0 := {D1

0, ...,DM
0 }, where M is the

number of tasks, the superscript denotes the index of the task, and the subscript 0 denotes this is
an initial pre-collected demonstration dataset. The demonstration dataset of each task m contains a
set of demonstration trajectories τ : Dm

0 := {τm0 , τm1 , ...}. For each demonstration τ , it contains a
goal description g and a sequence of transition: τ := ⟨g, {(o0, a0), (o1, a1), ...}⟩, where g is a goal
description (e.g., language or low-dim vectors) and oi is a visual observation, , which serves as the
input of the visual policy. ai is an action, which provides the supervision for output of visual policy.

An important aspect of our problem setup is the flexibility in collecting demonstration, which can
be sourced through varied methods such as task and motion planning, state-based reinforcement
learning, or teleoperation from human demonstrators. We assume access to a demonstration collector
to generate demonstrations for any state from the initial state distribution of the tasks. Note that the
demonstration collector only needs to handle the initial states of tasks, thus the assumption is less
demanding than methods like DAgger, which require an oracle providing action supervision across
all possible states. Such a demonstration collector is also feasible in real world via teleoperation (Fu
et al., 2024) or real-world motion planning (Danielczuk et al., 2021; Fishman et al., 2023).

Generating demonstrations for all states is significantly more challenging than focusing on initial
states, because most human-designed tasks are typically solvable from the initial states. For instance,
in a “Stacking Cup” task, it is feasible to generate demonstrations where cups are initially standing on
a table. However, if a cup is knocked down or falls from the table during the task execution, creating
a demonstration for that state becomes difficult or impossible. Thus, our assumption is more realistic,
only requiring a demonstration collector capable of handling initial task states.

4 ADAPTIVE ONLINE DEMO EXPANSION

4.1 OVERVIEW
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Figure 2: AdaDemo iteratively expands the demon-
stration dataset through online evaluation of the trained
policy, adaptively collecting additional demonstrations
to target cases where the multi-task policy most needs
improvement.

We aim to actively and continuously expand
the demonstration dataset for training generalist
robotic agents, particularly, for multi-task visual
policy learning. Contrary to the conventional
use of pre-collected and static datasets in imi-
tation learning (Pomerleau, 1988), AdaDemo
(Adaptive Online Demonstration Expansion),
differentiates itself by adopting an online and
adaptive method. It operates over multiple itera-
tive rounds to progressively improve the demon-
stration dataset, and consequently, the perfor-
mance of the policy. Before delving into the
technical details, we first highlight the key prop-
erties of AdaDemo below:

4.1.1 ONLINE DEMONSTRATION
EXPANSION

AdaDemo advocates the concept of online expansion of the demonstration dataset to overcome the
limitations associated with pre-collected and static datasets in imitation learning. By incorporating
new demonstrations, it becomes possible to address the weakness of the learned policy by directly
providing additional supervision. This strategy is also supported by recent successes in foundation
models (Kirillov et al., 2023; Bousmalis et al., 2023), suggesting that expanding the dataset is a potent
method for enhancing model performance.

4.1.2 ITERATIVE IMPROVEMENT PROCESS

AdaDemo employs an iterative approach, progressively incorporating new demonstrations into the
dataset with each round. This iterative process offers several key advantages over the bulk accu-
mulation of demonstrations: 1) Data efficiency: With the policy re-evaluated at each round, it is
possible to specifically collect new demonstrations that address the current policy’s weakness, thus
eliminating the collection of unnecessary demonstrations; 2) Adaptability to Dynamic Budgets:
Resource budgets for demonstration collection may vary over time. This iterative approach accommo-
dates such fluctuations, allowing for the initial use of available resources and the integration of new
demonstrations as more resources become available; 3) Alignment with Current Research: The
iterative expansion of data is a strategy that has been utilized in modern foundation models (Kirillov
et al., 2023), underscoring its effectiveness and relevance to current practices in the field.

4.1.3 ADAPTIVE DEMONSTRATION EXPANSION

Instead of indiscriminately adding data, AdaDemo strategically focuses on demonstrations that are
likely to yield the most significant improvements in policy performance, thus ensuring enhanced data
efficiency. The adaptiveness is mainly grounded in three core principles: 1) Emphasizing collecting
more demonstrations for initial states where the current policy fails (Sec. 4.2); 2) Prioritizing the
collection of demonstrations for tasks where the current policy gets low success rates (Sec. 4.3); 3) to
efficiently utilize the additional data, AdaDemo adapts the sampling strategy in training to emphasize
tasks considered more challenging, ensuring that the model is continually exposed to and learns from
the most demanding scenarios (Sec. 4.4).

In summary, AdaDemo actively expands the demonstration dataset for training generalist robotic
agents. It emphasizes an online, iterative, and adaptive strategy to expand the dataset, ensuring that
each newly incorporated demonstration is strategically selected to boost the policy’s capability across
a diverse range of tasks. See Fig. 2 for a visual illustration of our framework. The full framework is
summarized in Algorithm 1. In the following subsections, we delve into the details of the three core
principles mentioned in Sec. 4.1.3.

4.2 DEMO COLLECTION ON FAILED INITIAL STATES

One core principle of AdaDemo is to focus on collecting demonstrations for tasks specifically from
those initial states where the current policy falters. To systematically identify these failed initial states,
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we evaluate the multi-task policy on each task, pinpointing specific initial states where the current
policy cannot successfully complete the task. For the sake of brevity, we treat the goal description
as a part of the initial state of a task. Focusing on these failed initial states ensures that the newly
collected demonstrations provide direct guidance for solving scenarios where the policy previously
failed, thereby enhancing the data efficiency without wasting resources on collecting demonstrations
for initial states the policy already navigates successfully.

Algorithm 1 Adpative Online Demo Expansion
Require: Initial demonstration dataset for M tasks D0 :=
{D0

0,D1
0, ...,DM

0 }, where demonstration dataset for task
k Dk

0 := {τk
0 , τ

k
1 , ...}; Demonstration collector G;

1: Train a multi-task policy π on D0 by imitation learning
2: for each round i do
3: Determine a target number of success episodes Ei for

this round according to the budget
4: for each task T k do
5: Dk

i ← {}
6: Counter c← 0
7: repeat
8: Random sample an initial state s in task T k

9: Evaluate π on s
10: if π failed on s then
11: Collect a demo trajectory on s: τ ← G(s)
12: Dk

i ← Dk
i ∪ {τ}

13: else
14: c← c+ 1
15: until c = Ei

16: Di ← {D0
i ,D1

i , ...,DM
i }

17: Merge the datasets from all rounds D ←
⋃i

j=0Di

18: Re-train π on D with the selected sampling strategy

In practice, we evaluate the policy on the
default initial state distribution for each
task. Upon encountering an initial state
that leads to an unsuccessful episode, we
engage a demonstration collector to gener-
ate an expert demonstration trajectory from
that specific initial state.

Our framework is compatible with a vari-
ety of tools for expert demonstration col-
lection, including task and motion planning
systems, state-based reinforcement learn-
ing, model-predictive control, and even hu-
man teleoperation. The key requirement
for these tools is their capability to com-
plete the task from a given initial state. In
cases where a demonstration collector fails
to complete a task from a particular ini-
tial state, we can either opt for retrying
the collection process a few more times, or
choose to skip collecting a demonstration
for that specific initial state. This flexible
approach accommodates the reality of im-
perfect demonstration collectors, ensuring our framework’s broad applicability.
4.3 DEMO COLLECTION ON UNSOLVED TASKS

With the above strategy for collecting new demonstrations within a task, a critical consideration
emerges: how should we allocate our demonstration collection budget across various tasks? Specifi-
cally, we need to decide the number of demonstrations to collect for each task.

Our guiding principle is straightforward: prioritize the collection of demonstrations for tasks that
remain unsolved, i.e., the tasks where the current policy gets low success rates. These tasks are crucial
in improving the overall performance across all tasks, because they offer large room for improvement.
For each task, we keep evaluating the policy until it reaches a predetermined number of successful
episodes. During this process, demonstrations are collected from the initial states where the policy
fails, as described in Sec. 4.2.

Consequently, tasks with lower success rates naturally lead to more failures during the evaluation,
thereby getting more new demonstrations. This approach creates a direct correlation between the
task’s difficulty (gauged by its success rate) and the number of demonstrations collected for this task.
It ensures a concentrated effort on those tasks where the current policy underperforms, leading to a
more efficient and focused data-collection process.

To provide a quantitative analysis, the formula for estimating the number of demonstrations Nk
demo

required for each task k is given by Nk
demo = E

SRk − E,, where SRk denotes the success rate of
the current policy on task k, and E is a hyperparameter specifying the target number of success
episodes, which could be adjusted based on the available resource budget. In practice, we also impose
a cap on the demonstrations to be collected per task. The rationale behind this is to prevent the
potential endless evaluation process to reach a target number of successful episodes for some tasks
with extremely low success rates.

4.4 SAMPLING STRATEGY IN THE COLLECTED DATASET

Beyond increasing the number of demonstrations, it is also crucial to optimize the use of the expanded
dataset through a suitable sampling strategy during training. A simplistic strategy might involve
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uniformly sampling across the entire dataset. However, this method unintentionally biases towards
tasks with longer trajectories, which does not necessarily correlate with their actual importance to the
overall policy performance. To address this bias, we need to adopt alternative sampling strategies that
more accurately prioritize demonstrations which are crucial for enhancing policy performance. One
possible approach could be to ensure uniform sampling with respect to tasks, granting each task an
equal chance of being selected. This method offers a more balanced distribution compared to uniform
sampling with respect to the entire dataset, but falls short in highlighting the significance of the more
difficult tasks, which are vital for the overall policy performance.

Therefore, we adopt a strategy that draws samples uniformly with respect to the demonstration
trajectories, i.e., the sampling probability of each task’s data is proportional to the number of
demonstration trajectories in the dataset. This method aligns with our focused approach of collecting
more demonstrations for unsolved tasks. By sampling in this manner, we naturally place more
emphasis on these unsolved tasks within the learning process. This not only ensures that harder
tasks receive more attention, but also maximizes the utility of the additional demonstrations we have
collected. In practice, we also set a minimum sampling weight for each task to avoid some tasks with
a very small number of demonstrations being undersampled during training.

This sampling strategy plays a crucial role in our framework, guaranteeing that the expanded demon-
stration dataset is fully utilized, thereby directly supporting our objective of achieving maximal data
efficiency.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

The goal of our experimental evaluation is to study whether AdaDemo can effectively expand the
demonstration dataset in a data-efficient manner, thereby enhancing the learned multi-task visual
policy. Conceptually, AdaDemo is expected to be compatible with a variety of core components
within the learning system, including the demonstration collector, network architecture, and type of
controller. To confirm AdaDemo’s wide-ranging applicability, our experimental designs incorporate
variations across these dimensions:

• 2 Demonstration collectors: Task and Motion Planning (TAMP), and state-based RL
• 2 Controllers: Keyframe-based end-effector control, and joint position control
• 2 Network architectures: Vision Transformer (Goyal et al., 2023), and Convolutional Neural

Network (Hansen et al., 2022).
• A total of 22 tasks across 2 benchmarks: RLBench (James et al., 2020) (table-top robotic

manipulation, 18 tasks) and Adroit (Rajeswaran et al., 2017) (dexterous manipulation, 4 tasks).
Fig. 4 shows sample tasks from each benchmark.

We summarize the key details of our setups as follows.

5.1.1 ENVIRONMENTS: RLBENCH

Task Description We follow the standard setting used in (Shridhar et al., 2023; Goyal et al., 2023).
A 7-DoF Franka Panda robot equipped with a parallel gripper is directed to solve a total of 18 tasks,
including pick-and-place, tool use, drawer opening, and high-accuracy peg insertions. Each task
includes several variations specified by the associated language description. The visual observations
are from four RGB-D cameras positioned at the robot’s front side, left shoulder, right shoulder, and
wrist, each providing a resolution of 128 × 128.

Demonstration Collector The demonstrations are collected by a task and motion planning (TAMP)
system from RLBench (James et al., 2020). Notably, this TAMP system can only solve the tasks from
the default task initial states. It lacks the capacity to tackle the tasks from certain intermediate states.

Visual Policy and Controller In our RLBench experiments, we employ RVT (Goyal et al., 2023)
as the backbone visual policy. RVT features a multi-view transformer architecture and performs
keyframe-based control, predicting actions at low frequency that specify the next keyframe’s end-
effector pose. A motion planner then directs the end effector to this predicted pose. The original RVT
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(a) RLBench (showing 4 of 18 tasks)

(b) Adriot (showing 2 of 4 tasks)

Figure 4: Tasks: We consider chal-
lenging and diverse robotic manipula-
tion tasks spanning two benchmarks:
RLBench (table-top robot arm manip-
ulation) and Adroit (dexterous manip-
ulation).

Initial Round 1 Round 2 Round 3
• AdaDemo • Uniform • AdaDemo • Uniform • AdaDemo • Uniform

Put in Drawer 85.3±8.3 80.0±4.0 80.0±17.4 72.0±12.0 70.7±31.1 82.7±12.2 94.7±2.3
Drag Stick 78.7±15.1 78.7±16.2 82.7±23.1 97.3±2.3 65.3±22.7 92.0±4.0 58.7±40.3
Turn Tap 92.0±4.0 90.7±2.3 96.0±4.0 92.0±10.6 93.3±2.3 96.0±4.0 93.3±2.3

Slide Block 56.0±8.0 33.3±8.3 54.7±22.0 16.0±4.0 29.3±18.0 17.3±6.1 13.3±8.3
Open Drawer 78.7±8.3 85.3±8.3 76.0±10.6 85.3±6.1 81.3±6.1 80.0±4.0 74.7±4.6

Put in Cupboard 34.7±8.3 61.3±4.6 58.7±8.3 64.0±6.9 65.3±2.3 77.3±12.9 60.0±13.9
Sort Shape 29.3±2.3 28.0±4.0 36.0±8.0 40.0±4.0 40.0±4.0 41.3±10.1 37.3±8.3
Put in Safe 76.0±4.0 78.7±8.3 90.7±2.3 86.7±6.1 93.3±2.3 93.3±2.3 93.3±4.6

Push Buttons 74.7±4.6 86.7±2.3 88.0±0.0 92.0±4.0 96.0±4.0 96.0±4.0 98.7±2.3
Close Jar 29.3±6.1 45.3±2.3 38.7±12.2 58.7±4.6 48.0±10.6 48.0±6.9 48.0±13.9

Stack Blocks 13.3±8.3 29.3±10.1 17.3±12.9 37.3±9.2 25.3±2.3 46.7±2.3 37.3±8.3
Place Cups 1.3±2.3 0.0±0.0 0.0±0.0 2.7±2.3 8.0±0.0 1.3±2.3 4.0±4.0
Place Wine 92.0±4.0 84.0±8.0 94.7±2.3 78.7±4.6 85.3±2.3 90.7±6.1 92.0±4.0
Screw Bulb 38.7±4.6 50.7±8.3 49.3±4.6 57.3±2.3 58.7±18.0 78.7±4.6 62.7±8.3

Sweep to Dustpan 45.3±11.5 52.0±4.0 48.0±6.9 48.0±12.0 46.7±11.5 45.3±2.3 57.3±4.6
Insert Peg 9.3±4.6 13.3±6.1 4.0±4.0 21.3±4.6 16.0±8.0 12.0±0.0 16.0±4.0

Meat off Grill 96.0±4.0 97.3±2.3 96.0±0.0 97.3±2.3 96.0±0.0 94.7±4.6 100.0±0.0
Stack Cups 4.0±4.0 37.3±8.3 20.0±21.2 54.7±6.1 29.3±6.1 60.0±6.9 45.3±20.5

Average SR 51.9 57.3 57.3 61.2 58.2 64.1 60.4
Average # Demo 20 49.4 50 91.0 100 191.2 200

Table 1: RLBench Results: “SR” stands for success rate, and “Average
# Demo” indicates the average number of demonstrations allocated per
task. “Uniform” refers to the baseline where demonstrations are uniformly
collected across all tasks and initial states. SRs are averaged over 3 random
seeds. All agents are evaluated for 100 episodes on each task.

Initial Round 1 Round 2 Round 3 Round 4 Round 5
• AdaDemo • Uniform • AdaDemo • Uniform • AdaDemo • Uniform • AdaDemo • Uniform • AdaDemo • Uniform

Relocate 0.6±0.4 1.9±0.7 0.9±0.7 6.0±1.7 6.0±3.1 18.6±4.0 12.3±0.9 28.8±1.3 25.2±5.5 32.2±6.2 23.6±9.6
Door 50.0±3.1 55.2±8.5 55.7±6.6 70.1±3.3 70.5±3.2 73.7±3.5 76.1±1.2 77.2±3.0 79.7±3.8 83.0±3.9 74.4±4.1
Pen 35.8±1.4 42.7±1.9 39.8±0.7 53.5±2.4 55.5±5.5 66.6±6.4 64.3±4.9 68.9±1.3 63.0±3.2 74.8±1.5 74.6±3.2

Hammer 95.7±4.9 97.2±1.6 98.9±1.7 98.8±1.0 97.7±1.8 97.6±1.7 97.5±2.4 97.7±3.5 97.7±2.6 97.3±4.4 96.9±4.7

Average SR 45.6 49.2 48.8 57.1 57.4 64.2 62.5 68.2 66.4 71.8 67.4
Average # Demo 20 37.8 40 99.0 100 290.0 300 997.0 1000 2994.3 3000

Table 2: Adroit Results: For definitions of specific terms, please refer to Table 1.

(as well as its predecessor (Shridhar et al., 2023; James & Davison, 2022)) has a legacy issue leading
to that makes the training dataset unnecessarily large. By refining the data processing scripts, we
have mitigated this, resulting in a more storage-efficient RVT with a minor performance trade-off.
Importantly, since the same modifications are consistently applied across all our RLBench experi-
ments, we ensure a fair comparison between AdaDemo and baselines. Additionally, to accommodate
the increasing demonstration data, we also raise the number of epochs to ensure that the model
adequately fits the data.

5.1.2 ENVIRONMENTS: ADROIT

Task Description Adroit tasks are introduced in (Rajeswaran et al., 2017), where a 24-DoF
ADROIT hand is tasked to master four dexterous manipulation skills: object relocation, in-hand
manipulation, tool use, and opening doors. The visual observations are acquired from a pre-defined
camera with a resolution of 256 × 256.

Demonstration Collector The demonstrations are collected by a well-trained state-based RL agent.
It is a common practice to employ state-based RL agents for demonstration collection, followed by
rendering to images (Mu et al., 2021; Gu et al., 2023; Wan et al., 2023). This approach is favored
because generally it is easier to train a state-based agent compared to a visual agent.

Visual Policy and Controller In our Adroit experiments, we utilize LfS (Hansen et al., 2022) as the
backbone visual policy. This approach employs a CNN enhanced with random shifting augmentation
to generate actions at a high frequency, controlling the absolute joint positions of the dexterous
hand. For the sake of simplicity, the observation space is limited to a single image frame rather than
multiple frame stacking. Originally, the four tasks in Adroit have different action dimensions since
certain tasks constrain the free movement of the robot hand. To learn a single multi-task policy,
we set a unified action space as 6D movement of the root link and the 24-DoF joint control signal.
Contrary to (Hansen et al., 2022), which evaluates the policy at every epoch and selects the top three
performances, we evaluate and report solely on the final policy’s performance to avoid cherry-picking.
It is crucial to note that these adjustments make our results not directly comparable to (Hansen et al.,
2022). However, by employing the same visual policy backbone across all experiments, we ensure
fair comparisons between our framework and the baselines.
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5.2 EXPERIMENTAL RESULTS

This subsection aims to substantiate two key points: 1) AdaDemo can progressively improve the
performance of the multi-task visual policy across multiple rounds; 2) Compared to the uniform
approach of data collection across all tasks and initial states, AdaDemo can expand the demonstration
datasets in a more data-efficient manner.

We implemented AdaDemo on the RLBench and Adroit benchmarks, with results presented in Fig. 1,
Table 1 and 2. In these results, “Uniform” denotes the baseline method for expanding demonstrations,
where demonstrations are evenly distributed across all tasks and initial states. Despite appearing
simplistic, this uniform collection strategy is actually widely used in multi-task policy learning (Goyal
et al., 2023; Shridhar et al., 2023; James & Davison, 2022). For each round, we trained visual policies
of the same architectures but utilized datasets collected separately by AdaDemo and the baseline, with
the baseline dataset being comparable or slightly larger in size. The same demonstration collector
was employed across both methods to ensure a fair comparison.

Fig. 1 shows a clear trend: the average performance of the multi-task visual policy can be progressively
improved by expanding the demonstration datasets. Additionally, AdaDemo outperforms the baseline
in two respects:

• Data Efficiency: AdaDemo demonstrates remarkable data efficiency, particularly at junctures
where performance tends to plateau. It surpasses the baseline by requiring only 1/2 data for
RLBench and 1/3 for Adroit. This efficiency could translate into significant cost reductions,
especially in scenarios of large-scale data collection.

• Performance Upper Bound: While the baseline method quickly hits performance plateaus,
AdaDemo consistently improves the multi-task performance, broadening the performance gap
between the two approaches with each round. This trend indicates a greater potential in performance
upper bound as the demonstration dataset is scaling up.

Tables 1 and 2 offer more detailed insights into performance differences. The RLBench results
indicate that AdaDemo consistently outperforms the baseline in terms of average performance across
tasks, although it does not lead in every single task. We hypothesize that the performance drop in
certain RLBench tasks might be related to the issue of conflicting gradients in multi-task learning, as
studied in (Yu et al., 2020; Shi et al., 2023; Liu et al., 2021). AdaDemo’s strategy of accumulating
more demonstrations for harder tasks means that when gradients from these tasks do not align well
with those from other tasks, following their gradient direction might adversely affect the performance
on other tasks. Intuitively, focusing more on some tasks naturally detracts attention from others,
and hence might hurt performance on other tasks. This effect appears more pronounced in the
RLBench experiments, where the gradients may be noisier due to a relatively small average number
of demonstrations per task (∼ 200), particularly impacting the easier tasks. Conversely, in the Adroit
benchmark, which comprises a larger average number of demonstrations per task (∼ 3000) and only
four tasks, the issue of gradient conflict is potentially less severe. Here, AdaDemo outperforms the
baseline across all tasks, with the Hammer task being an exception (given its relative ease, all learned
policies perform nearly optimally).

We noted that the contribution to the overall performance improvement is concentrated in a few tasks,
such as “Relocate” and “Door” in Adroit, as well as “Put in Cupboard” and “Stack Cups” in RLBench.
These tasks, which are generally hard, significantly benefit from our adaptive demonstration expansion
strategy. By allocating more demonstrations to these tasks, rather than to easier ones, AdaDemo
enhances both data efficiency and overall performance. However, it is important to note that the most
difficult tasks (e.g., “Place Cups” and “Insert Peg”) do not exhibit notable improvement with our
adaptive demonstration expansion strategy. This is mainly due to these tasks being somewhat beyond
the model’s capabilities under the current setup. In such cases, exploring improvements to the model
architecture or control method could be a worthwhile direction.

5.3 ABLATION STUDY

We conduct an ablation study to examine the importance of the three guiding principles (Sections
4.2, 4.3, and 4.4) underlying AdaDemo. These principles, denoted as A, B, and C, are delineated as
follows:
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• A: Collecting demonstrations on unsolved tasks.
• B: Collecting demonstrations on failed initial states.
• C: Sampling data uniformly with respect to the demonstration trajectories.

To evaluate the influence of each principle, we start with the variant that uses none of these principles,
and add one principle at one time, to create four variants. This ablation study allows us to dissect
the specific role and importance of each component towards improving a multi-task visual policy,
utilizing a comparable amount of data. The ablated variants are:

• None of ABC: This variant is the same as the “Uniform” baseline mentioned above, where
demonstrations are uniformly collected across all tasks and initial states, without the targeted
strategies of AdaDemo.

• A: Here, we collect demonstrations across tasks with the same number as in our full framework,
but unlike our proposed approach, these demonstrations are sourced from all initial states, not just
the failed ones.

• A + B: This variant combines the collection of more demonstrations on unsolved tasks (A) with the
focus on failed initial states (B). However, unlike our full framework, it employs uniform sampling
with respect to tasks, not demonstration trajectories.

• A + B + C: Our complete framework incorporates all three principles, providing a reference to
compare against the ablated variants.

All the variants are applied on RLBench, and the results are shown in Table 5. Analyzing the
experimental results, we observe that each principle contributes to the overall performance gain,
albeit to varying degrees. Notably, principle B, which emphasizes collecting demonstrations on failed
initial states, appears to have a more substantial impact than principles A (focusing on unsolved
tasks) and C (uniform sampling w.r.t. demonstration trajectories). This finding highlights the critical
role of targeted demonstration collection in areas where the policy currently fails, underscoring the
importance of addressing specific weaknesses in the policy for effective learning.

6 LIMITATIONS • Uniform A A+B • AdaDemo
(A+B+C)

Put in Drawer 94.7±2.3 80.0±10.6 97.3±4.6 82.7±12.2
Drag Stick 58.7±40.3 84.0±20.8 88.0±4.0 92.0±4.0
Turn Tap 93.3±2.3 88.0±6.9 94.7±2.3 96.0±4.0

Slide Block 13.3±8.3 21.3±26.6 17.3±4.6 17.3±6.1
Open Drawer 74.7±4.6 73.3±11.5 81.3±4.6 80.0±4.0

Put in Cupboard 60.0±13.9 64.0±10.6 70.7±4.6 77.3±12.9
Sort Shape 37.3±8.3 49.3±2.3 38.7±8.3 41.3±10.1
Put in Safe 93.3±4.6 90.7±6.1 92.0±8.0 93.3±2.3

Push Buttons 98.7±2.3 94.7±2.3 97.3±2.3 96.0±4.0
Close Jar 48.0±13.9 45.3±9.2 58.7±8.3 48.0±6.9

Stack Blocks 37.3±8.3 42.7±4.6 48.0±12.0 46.7±2.3
Place Cups 4.0±4.0 2.7±2.3 0.0±0.0 1.3±2.3
Place Wine 92.0±4.0 89.3±9.2 86.7±8.3 90.7±6.1
Screw Bulb 62.7±8.3 64.0±10.6 65.3±8.3 78.7±4.6

Sweep to Dustpan 57.3±4.6 42.7±12.9 44.0±0.0 45.3±2.3
Insert Peg 16.0±4.0 21.3±2.3 22.7±4.6 12.0±0.0

Meat off Grill 100.0±0.0 98.7±2.3 96.0±0.0 94.7±4.6
Stack Cups 45.3±20.5 45.3±18.9 48.0±6.9 60.0±6.9

Average SR 60.4 61.0 63.7 64.1
Average # Demo 200 191.2 191.2 191.2

Figure 5: Ablation Study: A, B, C denote the 3 core princi-
ples in AdaDemo, see Sec. 5.3 for a detailed explanation.

We would like to discuss a few limitations
of our work. Firstly, AdaDemo requires
policy evaluation to determine the scenar-
ios for collecting new demonstrations, and
this cost is not precisely accounted for in
comparison to baselines. Nevertheless, it
is important to note that the primary cost
arises from the demonstration collection
itself, which potentially involves human ef-
fort. Policy evaluation, by contrast, is a
more autonomous procedure, and its costs
are likely to be much lower than those in-
curred by demonstration collection. Sec-
ondly, AdaDemo assumes the availability
of a success metric for tasks, a condition
readily met in simulations but potentially
hard in the real world. However, obtaining
success signals in the real world is still fea-
sible, and it has been achieved by methods
like visual detection/tracking (Kalashnikov
et al., 2018) or employing large vision-
language models (Du et al., 2023).
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