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ABSTRACT

Sequence-to-sequence (seq2seq) models have been widely used for natural lan-
guage processing, computer vision, and other deep learning tasks. We find that
seq2seq models trained with early-stopping suffer from issues at the token level.
In particular, while some tokens in the vocabulary demonstrate overfitting, oth-
ers underfit when training is stopped. Experiments show that the phenomena are
pervasive in different models, even in fine-tuned large pretrained-models. We
identify three major factors that influence token-level fitting, which include token
frequency, parts-of-speech, and prediction discrepancy. Further, we find that ex-
ternal factors such as language, model size, domain, data scale, and pretraining
can also influence the fitting of tokens.

We release our code for model and analysis on https://github.com/xxxx.

1 INTRODUCTION

Deep learning models tend to overfit because of their strong capacity and a massive number of
parameters (Brownlee, 2018 [Li et al.l 2019; Rice et al., [2020; Bejani & Ghatee), [2021). Studies
suggest regularization and early stopping to control the generalization error caused by overfitting
(Hastie et al., [2009; Zhang et al.l 2017} |Chatterjee & Zielinskil [2022). Previous studies mainly
analyze the generalization issue on image classification task (Arpit et al., 2017 [Zhang et al.,|2021)),
where the learning target is relatively simple. In contrast, NLP task such as machine translation
(Zhang et al., 2015} |Singh et al.l [2017) is more complex with regard to the learning targets, which
involve a sequence of tokens.

Natural languages exhibit a long-tailed distribution of tokens (Powers,|1998)). The long-tail phenom-
ena have been associated with performance degradation of NLP tasks (Gong et al.l |2018; Raunak
et al., 2020; |Yu et al., |2022), where the rare (low frequency) tokens are ascribed as hard learning
targets and popular (high frequency) tokens as easy learning targets. These criteria of easiness of
learning targets are intuitive but coarse-grained, which are not associated with the training dynamics.
In this paper, we study the easiness of tokens as learning targets from the perspective of overfitting
and underfitting. Intuitively, the learning on hard tokens will be slower than that on easy tokens,
which may result in underfitting on hard tokens and overfitting on easy tokens, as illustrated by
Figure |Il We propose two measures to quantify fitting — fitting-offset and potential-gain. Fitting-
offset measures the offset of the best fit from the early-stopping point, which reflects the degree
of overfitting or underfitting. Potential-gain measures the accuracy gap between the early-stopping
checkpoint and the best fit, which also estimates the accuracy decrease caused by overfitting or
underfitting.

We use machine translation as our test bed, training models on English-German benchmark datasets,
including News and Europarl domains. Our extensive experiments uncover multiple new and
counter-intuitive findings: 1) Both overfitting and underfitting occur in a trained seq2seq model.
2) High-frequency tokens are expected to overfit, but some are found underfitted, and low-frequency
tokens are expected to underfit, but some are found overfitted. 3) Large pretrained models reduce
underfitting effectively during fine-tuning but are less effective on overfitting. Besides, we propose a
direct indicator of easiness — prediction discrepancy, using the probability difference of predictions
made by full context and local context as a criterion to group tokens.

In addition to tokens, sentences have also been considered as learning targets, where curriculum
learning methods distinguish sentences as easy or hard (Kocmi & Bojar, [2017; [Platanios et al.,
2019; | Xu et al., 2020). For example, the length of a sentence is used as a criterion to identify easy
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Figure 1: Seq2seq models trained with early stopping may suffer
from overfitting or underfitting.

sentences from hard ones, where the easy (short) sentences are first learned and then the hard (long)
sentences. Using our metrics, we find that the length of a sentence is not a good indicator of easy or
hard sentences from the perspective of overfitting and underfitting.

2 RELATED WORK

Previous studies compare the fitting of real data and noise data, demonstrating that real data is easier
to learn and has a faster convergence speed than noise data (Zhang et al, 2017; |Arpit et al., 2017}
Chatterjee & Zielinski, 2022)). The different convergence speeds also provide an explanation of how
early stopping prevents the memorization of noise data. However, these works do not compare the
fitting among different learning targets inside the real data, neither between different samples nor
between different parts of each sample. In this paper, we conduct experiments on a more complex
seq2seq task instead of simple classification. We study the fitting of token-level learning targets,
demonstrating that both overfitting and underfitting occur when training seq2seq models.

There are few works studying overfitting and underfitting in NLP. Sun et al.| (2017} report that com-
plex structure leads to overfitting in structured prediction. Wolfe & Caliskan| (2021)) demonstrate
that low-frequency names exhibit bias and overfitting in the language model. |Varis & Bojar| (2021)
illustrate that machine translation models generalize poorly on the test set with unseen sentence
length. These works discuss overfitting issues on specific conditions, such as complex structure,
frequent names, and unseen length. In comparison, we conduct a systematic analysis of the gen-
eral phenomena of overfitting and underfitting in language. Specifically, we propose quantitative
measures, identify major factors, and conduct statistical hypothesis testing on the phenomena.

3 EXPERIMENTAL SETTINGS

3.1 DATASETS

We experiment on two machine translation benchmark datasets. We use the News corpus as a major
dataset for our experiments and analysis, and we use the Europarl corpus for the comparison of
different domains and data scales.

News We use News Commentary v11 for training, newstest2015 for validation, and newstest2016
for testing. The English-German machine translation dataset contains 236, 287 sentence pairs for
training, 2, 169 pairs for validation, and 2, 999 pairs for testing.

Europarl We use English-German Europarl v7, following[Bao et al.[(2021)) to split the train, valida-
tion, and test sets. The dataset contains contains 1, 666, 904 sentence pairs for training, 3, 587 pairs
for validation, and 5, 134 pairs for testing.

We tokenize the sentences using MOSES (Koehn et al.,[2007). We use truecase and a BPE (Sennrich
et al.l 2015) with 30,000 merging operations. We use separate embedding tables for source and
target languages in the model.
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3.2 MODEL CONFIGURATIONS

We study the overfitting and underfitting issues on three model configurations.

Base Model We use the standard Transformer base model (Vaswani et al.,|2017), which has 6 layers,
8 heads, 512 output dimensions, and 2048 hidden dimensions. We train the model with a learning
rate of 5 x 1074, a dropout of 0.3, a label smoothing of 0.1, and an Adam optimizer (Kingma & Ba,
2014]).

Big Model Following the standard Transformer big model (Vaswani et al., 2017), we use 6 layers,
16 heads, 1024 output dimensions, and 4096 hidden dimensions. We train the model with a learning
rate of 3 x 1074, a dropout of 0.3, a label smoothing of 0.1, and an Adam optimizer.

Pretrained Large Model We use mBART25 (Liu et al., 2020), which has the similar setting as
BART large model (Lewis et al., |2020), using 12 layers, 16 heads, 1024 output dimensions, and
4096 hidden dimensions. We fine-tune the model with a learning rate of 3 x 1075, a dropout of 0.3,
an attention-dropout of 0.1, a label smoothing of 0.2, and an Adam optimizer.

For each experiment, we train 40 models using random seeds from 1 to 40, obtaining 40 samples for
the significance test. During the training of the base or big model, we keep the last 20 checkpoints for
analysis, where the checkpoint of early-stopping is the 10-th of the 20 checkpoints. For mBART?25,
we keep the last 10 checkpoints, and the early-stopping checkpoint is at the 5-th of the checkpoints.

3.3 EVALUATION METRIC

Measures We propose two measures: fitting-offset and potential-gain.

Fitting-offset represents how far (i.e., number of epochs) the best fit of a group of tokens diverges
from the point of early stopping. In this paper, we use epoch as its unit because we evaluate the
model using the validation set at the end of each training epoch. As Figure [2] shows, for the easy
tokens, the fitting-offset is negative, denoting overfitting, where the best fit is before the early-
stopping epoch. For the hard tokens, the fitting-offset is positive, denoting an underfitting, where
the best fit is after the early-stopping epoch. Using fitting-offset, we can quantify the degree of
overfitting and underfitting.

Potential-gain represents the potential accuracy increase if we move the best fit to the early-stopping
epoch. We calculate the measure by subtracting the accuracy of the early-stopping checkpoint from
the accuracy of the best fit. Using this measure, we can quantitatively estimate the potential benefits
by fixing the overfitting or underfitting issue.

Significance Test Since the distribution of fitting-offset is unknown, we use a non-parametric sign-
test (Dixon & Mood} |1946; Hodges, |1955)) to test our hypothesis. We train the model N times to
obtain [V observations on the fitting-offset. The hypothesis about the overfitting and underfitting can
be expressed by

{ Hy : fitting-offset = 0, there is not overfitting or underfitting; )

H, : fitting-offset £ 0, there is overfitting or underfitting.

If Hy is true, the N observations are expected to be half positive and half negative. The total number
of positive observations IV, follows a binomial distribution, through which we decide the rejection
region according to a significance level a.

Grouping Ideally, we can calculate the two measures on each token to tell which tokens are over-
fitted and which tokens are underfitted at the early-stopping epoch. However, direct observation of
each token is noisy and does not show obvious patterns. We group the tokens and average the valid
losses to reduce the noise, through which the pattern emerges, and we obtain stable measures.
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4 TOKEN-LEVEL RESULTS

4.1 FITTING OF RARE TOKENS IN SEQ2SEQ MODEL TRAINING

Previous studies suggest that long-tail token distribution affects the performance of NLP tasks (Gong
et al., 2018; Raunak et al., 2020; |Yu et al., [2022)). We hypothesize that the low-frequency tokens
underfit during training and conduct verification experiments as follows.

Settings We experiment on the News English-German translation dataset, using a Transformer base
model (Vaswani et al., [2017). We categorize the target tokens into high/medium/low-frequency
according to their distribution in the training set, with balanced probability mass on the three buckets.

Hypothesis Testing For each group of high/medium/low-frequency tokens, we measure the fitting-
offset using the checkpoints of each model, obtaining 40 samples of fitting-offset for each group.
We test our hypothesis on each group using a sign-test, as described in Eq. [T} As a result, we obtain
a p-value of 1.9 x 1075 for high-frequency and 7.5 x 10~!! for low-frequency, which strongly
supports the hypothesis that the high/low-frequency tokens either overfit or underfit.

Further as Figure [3] shows, the average fitting-offset for high-frequency tokens is —3.7 with a stan-
dard deviation of 3.4. The negative value of the fitting-offset indicates that the high-frequency tokens
overfit, where the best fit happens at an average of 3.7 epochs, before the early-stopping point. The
average fitting-offset for low-frequency tokens is 5.8 with a standard deviation of 3.3. The positive
value of the fitting-offset indicates underfitting, where the best fit happens at 5.8 epochs, after the
early-stopping point on average.

Based on this evidence, we conclude that

Both overfitting and underfitting occur at the token level when training seq2seq models.

Analysis The significant divergence of fitting-offset between the high/low-frequency tokens sug-
gests that the frequency of tokens has a significant influence on their fitting. We quantify the in-
fluence using the potential-gain. In particular, take the low-frequency tokens as an example. The
potential-gain is 0.73, which means that the average accuracy is expected to be increased from 45.61
to 46.34 if we move the best fit to the early-stopping epoch. The potential-gain of the high-frequency
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Figure 7: Fitting-offset of tokens grouped by frequency and parts-of-speech.

Table 2: Potential-gain for each category grouped by frequency and parts-of-speech. The column is
in a format of “averaged-accuracy potential-gain”, where the “+” in the potential-gain indicates an
increase in the accuracy and the “-” indicates a decrease in the accuracy. We mark potential-gains
bigger than 0.5 with the bold font to indicate their significance.

Frequency Function Symbol Number Verb Adj/Adv Noun

High 56.82 +0.15  84.77 +0.59 nan +nan 59.13+1.09 71.02 +1.67 60.87 +0.89
Med 49.59 +0.16  69.63 +3.41 73.47+1.50 47.64+40.12 4456 +0.24 59.21 +0.76
Low 4376 +1.38  72.24 +43.55 74.84 +1.20  36.25+0.51 41.18 +0.43  48.03 +0.88

tokens is 0.05, and that of the medium-frequency tokens is 0.23, which is relatively smaller than that
of the low-frequency tokens, suggesting underfitting of the low-frequency tokens is the major issue.

4.2 LINGUISTIC FACTORS TO TOKEN-LEVEL FITTING

In section [A.1] we find that the high-frequency tokens tend to overfit and the low-frequency tokens
tend to underfit in the seq2seq model as a group. In order to further understand a fine-grained
correlation between the frequency and the fitting of a token, we further split the high/low-frequency
tokens into smaller groups and conduct experiments on the specific categories. Linguistic factors
are considered in the detailed experiments.

Parts-of-speech (POS) We speculate that parts-of-speech, as an important linguistic feature, may
provide a different perspective to study the overfitting and underfitting issues. We group tokens
according to their parts-of-speech as listed in Table[I] Specifically, we first obtain POS tagging on
each word using spaCy ﬂ Then we map the POS of words to tokens by labeling all the tokens of a
word with the same POS. Last, we group these tokens according to their POS. Take the group Noun
as an example. We group tokens with the POS of NOUN, PRON, and PROPN into one category,
naming Noun. We aggregate the major parts of speech into six groups according to their functional
similarity, as shown in the Table.

As Figure 6] shows, parts-of-speech has a significant influence on the fitting of tokens. The function
words are most likely to overfit, which is likely because they are close-set and easier to learn from
the linguistic perspective. On the contrary, nouns are most likely to underfit, which can be due to
the openness of the set and the challenging context dependencies.

The potential-gain of nouns is 0.69, increasing the accuracy from 52.38 to 53.07. The potential-
gains of numbers, symbols, verbs, and adj/adv words are 1.09, 0.58, 0.26, and 0.22, respectively.
Surprisingly, the potential-gain of function words is negligible, even though they obviously overfit.
We attribute it to the overall high frequency of function words because sufficient training samples
reduce the negative impact of overfitting. It is confirmed by the detailed potential-gains shown in
Table[2] where the function words with low frequency have a much higher potential-gain of 1.38.

Frequency and Parts-of-speech We combine frequency and POS to make a detailed analysis of the
high/low-frequency tokens. As Figure[7shows, frequency and POS work independently. Among the
high-frequency tokens, the function words tend to overfit, while adjvs and nouns tend to underfit.
Among the low-frequency tokens, the symbols tend to overfit, while the adjvs and nouns tend to

"https://spacy.io/
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by discrepancy and frequency.

underfit. Based on this evidence, we arrive at a counter-intuitive conclusion that
In a seq2seq model, the high-frequency tokens (popular tokens) mostly overfit but can also underfit

and the low-frequency tokens (rare tokens) mostly underfit but can also overfit.

When we look into the potential-gains, as shown in Table [2} we see higher potential-gains than in
the previous section. The potential-gain of low-frequency function words, symbols, and numbers
are 1.38, 3.55, and 1.20, respectively. The potential-gains on med-frequency symbols and numbers
are 3.41 and 1.50, respectively. Overall the high-frequency tokens have low potential-gains, and
the verbs and adjvs have potential-gains of 1.09 and 1.67, respectively. These results demonstrate
that combining the frequency and linguistic factors reveals stronger overfitting and underfitting,
forecasting higher potential-gains in specific categories.

4.3 USING PREDICTION DISCREPANCY AS A MEASURE FOR TOKEN-LEVEL FITTING

Given that neither frequency nor parts of speech are decisive factors, we consider one additional fac-
tor, which relies on the context. We use prediction discrepancy to measure the degree of dependence
on long context, which is calculated as

Dj = |P(Yj|Y<j, X) = P(Y;[Yj-1, X)], 2)

where X is the source sequence, and Y is the target. For each token Y}, we predict it using its
full context Y. ; and its local context Y;. We use the discrepancy between these two predictions to
indicate its dependence on long context. We train an altered Transformer model to do the predictions
using two decoders, where one decoder uses the full context of a target while another decoder uses
the local context. The two decoders share the same token embedding table and encoder. According
to the value of discrepancy, we categorize the tokens into three groups, with big, medium, and small
discrepancy, respectively.

Results As Figure 4] shows, the big-discrepancy tokens have an average fitting-offset of —2.7 with
a standard deviation of 3.0. The medium-discrepancy tokens have an average fitting-offset of 1.0
with a standard deviation of 2.1. The small-discrepancy tokens have an average fitting-offset of 8.2
with a standard deviation of 1.8, showing a trend to exceed the boundary of 10. In comparison with
frequency, the bigger range of the average fitting-offsets and the smaller standard deviations suggest
that discrepancy is a better indicator than frequency. This indicates that the discrepancy is a good
indicator of overfitting and underfitting.

The potential-gain of the small-discrepancy tokens is 0.63, increasing the average accuracy of the
tokens from 75.85 to 76.48. In comparison with the potential-gain of 0.75 for the low-frequency
tokens, which increases the average accuracy from 45.61 to 46.34, the baseline accuracy of small-
discrepancy is much higher, suggesting the effectiveness of discrepancy in discovering fitting issues
among high accuracy predictions.

Discrepancy and Frequency Intuitively, discrepancy and frequency are two independent factors,
given that discrepancy relies on context and frequency relies on the token itself. As Figure
shows, the most significant difference between high-frequency and med/low-frequency tokens is
that med/small discrepancy tokens with high frequencies tend to overfit, while the med/small dis-
crepancy tokens with med/low frequencies tend to underfit.

In addition, as shown in Table [3] when frequency and discrepancy are combined to predict the
overfitting and underfitting, the biggest potential-gain of low-frequency tokens increases from 0.73
to 0.86, suggesting that frequency and discrepancy are two independent factors.
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Table 4: Potential-gain for each category grouped by discrepancy and parts-of-speech.
Discrepancy Function Symbol Number Verb Adj/Adv Noun
Big 4543 -0.07 83.38+0.51 31.58+2.72 20.31+0.12 13.38-0.10 20.58-0.06
Med 58.33 +0.08 78.79+0.96 36.49 +2.02 39.69 +0.25 29.51+0.14 33.30 +0.93
Small 77.06 +0.44 77.98 +1.63 89.20 +1.15 69.90 +0.84 71.93 +0.75 77.08 +0.85

Discrepancy and Parts-of-speech (POS) As Figure [7| shows, discrepancy and POS also work or-
thogonally. Overall, tokens with a smaller discrepancy have a larger fitting-offset, which consistently
appears on numbers, verbs, adjvs, and nouns. Function words and symbols show a different pattern
that the med-discrepancy tokens tend to have smaller fitting-offset than high-discrepancy.

Looking into Table [d] we can see that small-discrepancy tokens have a potential-gain of 1.63 and
1.15 on symbols and numbers, respectively. The potential-gain of numbers on big/med-discrepancy
tokens are 2.72 and 2.02, respectively, suggesting the effectiveness of combining the two factors.

Summary We have identified three independent factors that affect token-level fitting in seq2seq
model training, including frequency, parts-of-speech, and discrepancy. While the former two are
internal to the token, the third is external and context-dependent. These indicate that the fitting of
tokens results from interestingly complex factors.

5 EASY SENTENCES VS HARD SENTENCES

Curriculum learning starts with easy sentences and then with hard sentences (Kocmi & Bojar}, 2017}
Zhang et al.,|2018; Platanios et al.,|2019; Xu et al.,[2020;|Zhou et al., 2020), whereas different criteria
are used to measure the difficulty of sentences. Among these criteria, the length-of-sentence is the
simplest and most popular one, which hypothesizes that short sentences will be easy to learn and
long sentences will be hard to learn. We test the hypothesis by evaluating whether short sentences
overfit and long sentences underfit in a trained seq2seq model.

Length-of-sentence We categorize sentences into short/medium/long sentences according to the
sentence length that each bucket is allocated with almost the same number of sentences. On the
News dataset, the length of short sentences is between 1 and 18 tokens, the length of medium
sentences between 19 and 31, and the length of long sentences between 32 and 792.

Hypothesis Testing. We test our hypothesis using sign-test on News English-German dataset, ob-
taining a p-value of 3.6 x 10~ for short-sentence, 2.1 x 10~° for medium-sentence, and 2.6 x 10~3
for long-sentence, which indicates overfitting or underfitting. The fitting-offset has an average of
1.95, 2.0, and 1.38 for short/medium/long-sentences, respectively. The positive fitting-offsets sug-
gest that they overfit in the trained models. However, as Figure [5] shows, the degree of overfitting
and underfitting is less than that of frequency (Figure[3)) and discrepancy (Figure ).

Summary The above experiments suggest that although the length-of-sentence can differentiate
easy sentences from hard sentences, its effectiveness may not be as significant as other factors such
as frequency, discrepancy, and parts-of-speech. More surprisingly, short sentences are more likely
to underfit than long sentences, which is also confirmed by experiments on pretraining settings in
section[6] suggesting that we could not simply judge the short-sentences as easy and long-sentences
as hard.
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Figure 10: The distribution of fitting-offset on pretraining setting.

6 FINE-TUNING OF PRETRAINED LANGUAGE MODELS

Fine-tuning on a large pretrained model has become the dominant setting for NLP tasks
[& Toutanova, 2019; [Lewis et al.l [2020; [Brown et al. 2020} [Liu et al) 2020). We investigate the
overfitting and underfitting issues, particularly in the pretraining setting.

Hypothesis Testing We first test whether the overfitting and underfitting issues exist under the pre-
training setting. We experiment by fine-tuning mBART?25 on the News English-German dataset.

First, we evaluate frequency as an indicator of overfitting and underfitting. As Figure [T0a] shows,
we obtain a p-value of 1.2 x 10~2 and an average fitting-offset of —1.48 on high-frequency tokens,
suggesting the tendency of overfitting on high-frequency tokens. Results on medium/low-frequency
tokens do not show significance, although the average fitting-offsets of 0.08 on medium-frequency
tokens suggest slight underfitting.

Next, we consider length-of-sentence. As Figure ETLB] shows, the fine-tuning tends to overfit for
long-sentence and we obtain a p-value of 1.1 x 10~ and an average fitting-offset of —1.2 on long-
sentences. It suggests obvious overfitting of long sentences, which is counter-intuitive because it is
widely assumed that long-sentence is harder to learn than short-sentence.

Last, we examine parts of speech. As Figure shows, fine-tuning on function words tends to
overfit and that on nouns underfit, which is consistent with the result on non-pretraining setting
(Figure[6). A difference is that the fine-tuning of verbs shows underfitting, which is not significantly
observed in the non-pretraining settings. We obtain a p-value of 5.8 x 1072 and an average fitting-
offset of 0.8 on verbs, suggesting an observable underfitting on verbs. The issue on function words
is more significant than on verbs, on which we obtain a p-value of 4.3 x 1075 and an average
fitting-offset of —2.3, suggesting significant overfitting on function words.

The experiments above confirm that the overfitting and underfitting issues exist in the pretraining
setting, although it is not as significant as that in the non-pretraining settings. In addition, it shows
that overfitting is the major issue in comparison with underfitting. We attribute it to the effectiveness
of large pretraining to prevent underfitting.

7 ADDITIONAL FACTORS TO THE FITTING ISSUE

Most of the figures and tables for this section are placed in Appendix [A]

The Language As a comparison of languages, we study the issues on the News dataset but with
a reversed direction of languages, translating German to English instead of English to German.
As Figure [IT] shows, our observations on target English tokens are consistent with previous ob-
servations on target German tokens. First, the high-frequency tokens tend to overfit, while the
low-frequency tokens tend to underfit. Second, the big-discrepancy tokens tend to overfit, while
the small-discrepancy tokens tend to underfit. Third, the function words tend to overfit, while the
nouns tend to underfit. Last, we also obtain bigger potential-gains by combining the factors and the
most significant potential-gains happen on the consistent categories, such as low-frequency symbols,
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Figure 11: The Language: Fitting-offset of English tokens evaluated on News German-English
dataset.

high-frequency adj/advs, and big/med-discrepancy numbers, as the bold numbers in Table[3] [6} and
[l show.

The Model Size To evaluate the influence of model size, we conduct experiments with a big model
on the News English-German dataset. As Figure [[5]shows, the distribution of fitting-offset on each
category is very close to that of the base model but with a smaller range. We attribute it to the faster
convergence of bigger model (Li et al.,|2020). One significant difference between the big model and
the base model is that the fitting-offset of symbols moves toward the negative region, suggesting
overfitting for symbols in the big model. We attribute it to the stronger memorization ability of the
bigger model.

The Domain Previous experiments are done on the News dataset. To justify that the phenomena
are not domain specific, we conduct the same experiments on the Europarl English-German dataset,
which is from the Europarl domain. We randomly sample 250, 000 sentence pairs from the Europarl
training set for a fair comparison with the News dataset, which contains 236, 287 samples.

As Figure [T shows, the observations described in “The Language” block hold but with slight dif-
ferences in the distribution of fitting-offset of tokens grouped by parts-of-speech, in comparison
with Figure [f] evaluated on News dataset. The major difference happens in verbs, adjvs, and nouns,
reflecting a different distribution of topics of Europarl in comparison with News.

The Data Scale Intuitively, overfitting and underfitting should be more severe on small datasets. For
comparison, we test on a bigger dataset from Europarl. We sample 500, 000 sentence pairs from the
Europarl training set in comparison with the model trained using 250, 000 samples.

As Figure [I7] shows, the observations described in “The Language” block still hold but the range
of the distribution increases. Looking into the potential-gains, we see that they decrease by about
1/4 compared to that of the experiments with 250, 000 samples. The results suggest that the fitting-
offset is more challenging to measure, and the potential-gain decreases when the model is trained
on a larger dataset, which is expected due to the larger dataset reducing overfitting and underfitting.

8 CONCLUSION

We study overfitting and underfitting issues of learning targets in the context of neural machine
translation. Our experiments demonstrate that overall rare tokens tend to underfit and frequent
tokens overfit. We explored detailed factors related to the overfitting and underfitting issues and
identified three major influencing factors, which include frequency, parts-of-speech, and discrep-
ancy. This shows that fitting is the result of a complex interaction between multiple factors. Further
experiments demonstrate that the issues exist as a general problem for both non-pretraining and pre-
training settings. Future work includes the investigation of strategies to alleviate the overfitting and
underfitting issues.
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A APPENDIX

We present experimental results of the additional factors here, prefixing the name of each factor on
the caption.
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Figure 13: The Language: Fitting-offset of tokens grouped by frequency and POS.
Table 6: The Language: Potential-gain for tokens grouped by frequency and POS.
Frequency  Function Symbol Number Verb Adj/Adv Noun
High 64.8 +0.15  80.08 +0.86 nan +nan 64.51 +1.20 38.24 +1.93  49.15 +4.01
Med 49.82 +0.13  66.23 +1.67 69.43 +1.29 47.03 +0.38  55.78 +0.34  61.54 +0.21
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12



Under review as a conference paper at ICLR 2023

= 10
e 8 Part-of-speech
S 67 14 B Func
2 4 ¢ == Symb
g ot--- -1----==== - mm——mm==e-q-q-1-{------| HEE Num
o —27 ! B Verb
o 4
£ -6 . B Adjv
£ _g
" -10 . : . EEE Noun
Big Med Small
Discrepancy

Figure 14: The Language: Fitting-offset of tokens grouped by discrepancy and POS.

Table 7: The Language: Potential-gain for tokens grouped by discrepancy and POS.
Discrepancy  Function Symbol Number Verb Adj/Adv Noun
Big 55.19+0.10  77.67 +0.58 28.34 +1.78 20.76 +0.04  15.50-0.20  16.61 +0.19
Med 63.84 +0.03  75.72 +1.05 38.57 42.92 32.44-0.10 29.21 +0.35 26.49 +0.92
Small 71.99 +0.20 75.22 +1.32 86.89 +1.08 6593 +1.14 72.88 +0.81 72.12 +1.20
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Figure 15: The Model Size: Fitting-offset of German tokens evaluated on News English-German
with big model.
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Figure 16: The Domain: Fitting-offset of tokens evaluated on Europarl English-German (250, 000
samples).
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Figure 17: The Data Scale: Fitting-offset of tokens evaluated on Europarl English-German (500, 000
samples)..
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