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Abstract

Multi-armed bandit algorithms minimize experimentation costs required1

to converge on optimal behavior. They do so by rapidly adapting2

experimentation effort away from poorly performing actions as feedback is3

observed. But this desirable feature makes them sensitive to confounding.4

We highlight, for instance, that popular bandit algorithms cannot address5

the problem of identifying the best action when day-of-week effects may6

confound inferences. In response, this paper formulates a general model of7

contextual bandit experiments with nonstationary contexts, which act as8

the confounders for inferences and can be also viewed as the distribution9

shifts in the earlier periods of the experiments. In addition, this general10

model allows the target distribution or population distribution that is11

used to determine the best action to be different from the empirical12

distribution over the contexts observed during the experiments. The13

paper proposes deconfounded Thompson sampling, which makes simple, but14

critical, modifications to the way Thompson sampling is usually applied.15

Theoretical guarantees suggest the algorithm strikes a delicate balance16

between adaptivity and robustness to confounding and distribution shifts.17

It attains asymptotic lower bounds on the number of samples required to18

confidently identify the best action — suggesting optimal adaptivity — but19

also satisfies strong performance guarantees in the presence of day-of-week20

effects and delayed observations — suggesting unusual robustness.21

1 Paper Summary22

Multi-armed bandit algorithms are designed to adapt their experimentation rapidly as23

evidence is gathered. By quickly shifting measurements away from less promising actions24

or ‘arms’, they focus measurement effort where it is most useful. This desirable feature25

can make these same algorithms brittle in the face of delayed observations or confounding26

factors. We highlight this challenge through an example of a week-long experiment where27

observations are influenced by specific day-of-week effects.28

Example 1 (Day-of-week effects). In any period t ∈ [T] := {1, · · · , T}, the decision-maker29

observes context Xt ∈ [7], selects arm It ∈ [k], and observes a noisy reward Rt that reflects the30

performance of the chosen arm in the current context. For concreteness, one might imagine that a31

period corresponds to a customer visiting an online retailer, the context indicates the day of the week,32

an arm indicates the price set for a particular product, and the reward is the resulting revenue. The33

context at time t is Xt = dt/me, meaning the first m periods are Sunday, the next m are Monday34
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and so on. Assume that Rt = θIt ,Xt + Wt where Wt | θ, It ∼ N(0, 1) is independent Gaussian noise35

and θ ∈ R7k is an unknown parameter vector that encodes the day and arm specific mean rewards.36

By intelligently adapting measurement effort, the decision-maker hopes to identify the arm37

I∗(θ) = arg max
i∈[k]

θi,1 + · · ·+ θi,7

7
(1)

that maximizes expected revenue if employed throughout the entire week. The goal is to learn a single38

price and not a sequence of seven prices to charge on separate days of the week. Such predictable price39

variations might, for instance, lead to unintended strategic customer behavior if implemented across40

many future weeks.41

The decision-maker begins with prior belief under which θ ∼ N(µ, Σ). This might, for instance, arise42

from a latent variable model where θi,x = θidio
i,x + θarm

i + θ
day
x is determined by an effect θidio

i,x that is43

idiosyncratic to a specific arm and day, an effect θarm
i associated with the chosen arm, and a shared44

day-of week effect θ
day
x . Placing an independent normal prior on the idiosyncratic, arm-specific, and45

day-specific effects induces a structured covariance matrix Σ. When the idiosyncratic terms have46

large variance, the decision-maker must guard against almost arbitrary non-stationary patterns. If47

these are believed to have smaller magnitude, the decision-maker may be able rule out some very poor48

arms early in the experiment.49

Day-of-week effects are a standard concern when practitioners run A/B tests [Kohavi et al.,50

2020], so it is concerning that popular bandit algorithms like Thompson sampling and upper51

confidence bound [Lattimore and Szepesvári, 2020] fail in this example. The issue is that52

these algorithms either risk confounding by ignoring contextual information or aim to find53

the best action for every specific context, which is often not the experimenter’s goal (see54

the discussion of coarse segmentation below). In light of this discussion, it may not be55

surprising that many real life experiments implement uniformly random arm selection. This56

experimental design is highly robust, but it is inefficient when there are many arms and57

some can be quickly identified as inferior. The adaptivity of multi-armed bandit algorithms58

is important in those settings.59

We propose deconfounded Thompson sampling (DTS). This method involves simple but critical60

modifications to Thompson sampling — an algorithm that is widely used in industry61

in academia. Our results suggest that DTS strikes a delicate balance: it is aggressive in62

shifting measurement effort away from alternatives that appear inferior while being robust63

to observed confounders like the day-of-week effects in Example 1.64

1.1 A Model of Contextual Bandit Experiments65

We formulate a general model of contextual bandit experiments that encompasses Example66

1 as a special case. The model captures the defining features of Example 1 including:67

• Coarse segmentation: The ultimate decision-rule (1) pools together all seven contexts68

into a single segment over which decisions are held constant. If we think of the69

customers as belonging to one of seven different groups, then specifying a price for70

each day would be the most granular segmentation and (1) specifies the coarsest.71

In settings where the context contains all information available about a customer,72

coarse segmentation reduces data requirements, reduces the risk of bias, and avoids73

complex strategic incentives that occur when customers’ interactions affect their74

future service. In practice, products, public policies, and health interventions are75

often designed to serve a segment of the population (e.g. rural millennials) without76

being specialized to each individual.77

• Nonstationary confounders: The experimenter needs to account for day-of-week78

effects in order to correctly infer which arm is best. They may need to model79

granular contextual information when performing inference even if they want to80

employ a coarse segmentation for the decisions they implement. The nonstationary81
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contexts act as the confounders for inferences and can be also viewed as the82

distribution shifts in the earlier periods of the experiments.83

• Pure exploration: In the lingo of the multi-armed bandit literature, what we have84

described is a “pure-exploration” problem [Bubeck et al., 2009]. In common bandit85

formulations, experimentation continues indefinitely but is costly only if suboptimal86

action is selected. In our formulation, one hopes to quickly stop the experimentation87

process and commit to given strategy for selecting actions going forward. This is88

natural in settings where the process of experimentation is inherently costly, as it is89

in clinical trials or many public policy experiments. Even in internet experiments,90

the dominant workflow involves running a finite length experiment to validate or91

select among alternatives. After an option is selected, engineering resources might92

be invested toward productionizing it. One salient feature of the model is that the93

target distribution or population distribution that is used to determine the best94

action can be different from the empirical distribution over the contexts observed95

during the experiments.96

We formulate a general model that combines these features. A decision-maker experiments97

across a sequence of periods. In each, they observe a context vector, select from a finite set98

of possible actions, and observe a reward whose probability distribution depends on the99

chosen context and action. After the experimentation process stops, the decision-maker100

commits to a given strategy for selecting actions going forward. Specifically, they pick101

among a class of candidate policies, each of which is a rule that prescribes an action for102

every context. Restricting the class of candidate policies enforces coarse segmentation. The103

decision-maker’s choice is judged by how it performs on average under contexts drawn104

from a population distribution, effectively capturing how that policy will perform when105

employed throughout an extremely large number of remaining periods. We assume the106

population distribution is known, which would be essential if the contexts observed during107

the experiment are not representative of the distribution anticipated in the future. More108

generally, web companies typically have rich historical data on their users and should not109

try to estimate this population’s attributes separately in each experiment they run.110

1.2 Failure of Popular Bandit Algorithms111

The two most popular approaches to (stochastic) multi-armed bandit problems are upper112

confidence bound (UCB) and Thompson sampling (TS) algorithms [see e.g. Slivkins et al.,113

2019, Lattimore and Szepesvári, 2020]. UCB selects the arm with the highest UCB on its114

mean reward. TS is a randomized strategy under which the probability of sampling an arm115

is “matched” to the posterior probability that arm is optimal. Both algorithm have been116

applied to a variety of complex and interesting online decision-making problems.117

We show that neither TS nor UCB, as usually applied, can address Example 1. In problems118

with contexts, TS and UCB aim to select an action that could plausibly maximize the119

expected reward earned in the current context. UCB does this by forming a confidence120

bound on each arm’s performance under the current context and TS performs probability121

matching with respect to the optimal arm in the current context. These strategies do not122

gather sufficient information about arms that are suboptimal on the current day but might123

be optimal throughout the week. They also could waste measurement effort on arms124

that appear almost certain to offer suboptimal average performance throughout the week.125

Heuristic versions of TS or UCB that disregard contextual information when performing126

inference would risk confounding due to un-modeled day-of-week effects.127

A potential adaptation of UCB to Example 1 would form UCBs on the weeklong average128

reward in (1). We show this may sample only a single arm on a given day because UCBs do129

not diminish until later days are observed. As a result, the data it collects cannot be used to130

identify the best arm in (1), regardless of the length of the problem’s time horizon.131
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1.3 Deconfounded Thompson Sampling132

Our proposed algorithm makes two modifications to Thompson sampling as it is usually133

defined in contextual bandit problems. The first makes the algorithm suitable for learning134

about a target policy with coarse segmentation. In the setting of Example 1, rather than135

perform probability matching with respect to the best action for the current day, it performs136

probability matching with respect to the arm with best performance throughout the week as137

in (1). More generally, the proposed algorithm performs probability matching with respect138

to the action prescribed at the current context by the target policy in the policy class. This139

idea limits exploration to important distinctions between the candidate policies. The second140

modification makes the algorithm suitable for pure-exploration problems by adapting the141

top-two sampling strategy of Russo [2020]. This modification explores suboptimal arms142

more aggressively by running Thompson sampling until two distinct actions are drawn143

and then randomly picking among those “top-two”. We call this algorithm deconfounded144

Thompson sampling (DTS). Unlike standard TS, it can control for confounding factors145

without segmenting its decisions on the basis of those confounders.146

1.4 Theoretical Results147

It is difficult to give a single theoretical analysis that illuminates all the issues that are148

relevant in practice. Instead, we focus on a single algorithm and prove three distinct results149

that stress different capabilities. All results study simple regret [Bubeck et al., 2009], which150

measures the shortfall in the expected future per-period reward earned by the decision-151

maker’s selected policy relative to the best the best policy in the policy class. We elaborate152

on the results below:153

1. Robustness to delay and confounding: Our first result removes the assumption that154

contexts are drawn i.i.d. For analytical tractability, we assume a Gaussian linear155

model governs reward observations and focus on a best-arm learning problem,156

where the goal is to identify the best fixed arm to employ in the future. Example157

1 serves as a special case. We study the expected simple regret incurred by DTS,158

conditioned on an arbitrary sequence of contexts. We provide a bound that depends159

only on the information contained in the contexts and is completely independent160

of the order in which they arrive, demonstrating robustness to non-stationary161

confounders that are modeled by the algorithm. This result also allows for an162

arbitrary delay in observing reward realizations.163

2. Adapting optimally to the problem instance: Our next result fixes some arbitrary164

parameter vector and studies expected simple regret conditioned on this vector165

being the true draw from nature. This can be thought of as a “frequentist” bound,166

whereas the previous two were “Bayesian.” This section again imposes the167

assumption that contexts are drawn i.i.d. and, for analytical tractability, again168

assumes a Gaussian linear model governs reward observations and focuses on a169

best-arm learning problem. A fundamental lower bound shows how the expected170

sample size of an adaptive experiment must grow in order to guarantee some171

vanishing level of simple regret. The sampling requirements are milder for problem172

instances where some arms are far from optimal and can be effectively discarded173

with few samples. We prove that DTS meets attains this asymptotic lower bound.174

In this sense it optimally adapts its experimentation to the problem instance.175

It may not be difficult to design an algorithm that attains one of the results above. It is176

remarkable, however, that these distinct properties are satisfied simultaneously by one177

simple heuristic algorithm. Attaining both simultaneously seems to require a delicate178

balance between robustness and adaptivity.179
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A Problem Formulation201

After running an experiment, a decision-maker must select among k arms. The performance202

of an arm depends on the context in which it is employed. Each context is represented by a203

d dimensional feature vector and the set of possible contexts is denoted by X . For each arm204

i ∈ [k] := {1, · · · , k}, there is an uncertain arm specific parameter θ(i), which we model as205

a draw θ(i) ∼ N(µ1,i, Σ1,i) from a multi-variate Gaussian prior. We let θ = (θ(1), · · · , θ(k))206

denote the concatenation of the vectors. A linear function µ(θ, i, x) = 〈θ(i) , x〉 determines207

the performance of arm i in context x ∈ X .208

We assume the decision-maker has access to a probability distribution w over contexts that209

encodes the frequency with which they expect contexts to occur in the future. We call this210

either the target distribution or the population distribution, where the latter suggests that w211

denotes the characteristics of a population of individuals. If employed across a large number212

of future periods, arm i would generate average reward213

µ(θ, i, w) := ∑
x∈X

w(x)〈θ(i), x〉 = 〈θ(i) , Xpop〉 where Xpop := ∑
x∈X

w(x)x. (2)

In Example 1, Xpop is the vector (1/7, · · · , 1/7) and µ(θ, i, w) is the average that appears in214

Equation (1). If the decision-maker knew θ, the optimal arm to employ in the future would215

be I∗ = I∗(θ) ∈ arg maxi∈[k] µ(θ, i, w).216

For technical or notational convenience, we make several additional assumptions. First, we217

assume X is finite (though possibly enormous), which allows us later to analyze a lower218

bound on performance that is expressed through a finite dimensional optimization problem.219

Second, we assume that the arm-specific parameters θ(i) are drawn independently across220

arms, allowing us to track beliefs separately across arms in the analysis. Assume also that221

the prior covariance matrix Σ1,i is the same for each arm i and is positive definite. We denote222

this by Σ1.223

Sequential learning. The decision-maker can reduce uncertainty about θ through224

experimentation. In each period, t ∈N, they select an arm It ∈ [k] in some context Xt ∈ X225

and observe a real valued reward signal Rt = 〈θ(It) , Xt〉+Wt, where Wt | θ, Xt ∼ N(0, σ2) is226

Gaussian noise drawn independently across time. Rewards are observed after a lag of L > 1227

periods. The information available when choosing It is the history Ht = (X1:t, I1:t−1, R1:t−L).228

Formally, the action It must be chosen as a function of Ht and some random seed ξt that is229

independent of all else. We assume the context sequence (Xt)t∈N is independent of θ, so230

that the decision-maker cannot passively learn the impact of their actions by observing the231

contexts.232

The distribution of θ(i) conditioned on Ht is multivariate Gaussian with covariance and233

mean given by Σt,i = Σ1,i and µt,i = µ1,i for t 6 L and234

Σt,i =

(
Σ−1

1 + σ−2
t−L

∑
`=1

1{I` = i}X`X>`

)−1

µt,i = Σt,i

(
Σ−1

1 µ1,i +
t−L

∑
`=1

1{I` = i}X`R`

)
.

(3)
for t > L. Posterior beliefs about θ induce posterior beliefs about I∗. We set αt,i = P(I∗ = i |235

Ht) for any period t ∈N and arm i ∈ [k]. Since µ(θ, i, w) is a linear function of θ(i), it also236

has a Gaussian posterior. We write µ(θ, i, w) | Ht ∼ N(mt,i, s2
t,i) where237

s2
t,i = X>popΣt,iXpop mt,i = 〈Xpop , µt,i〉. (4)

Notice that the Latin alphabet is used for the posterior parameters of the scalar quantity238

µ(θ, i, w) and the Greek alphabet is used for the posterior parameters of the vector θ(i).239
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Performance measures. Let H+
T = (X1:T , I1:T , R1:T) denote all information generated by a240

T–period experiment, including the delayed reward outcomes. The non-negative random241

variable242

∆T = µ(θ, I∗, w)− µ(θ, Î+T , w)

measures the shortfall in future performance caused by selecting the greedy decision at243

time T by Î+T ∈ arg maxi∈[k] E
[
µ(θ, i, w) | H+

T
]

with only the incomplete information about244

θ accrued after T measurements. We call ∆T the simple regret at time T, after Bubeck et al.245

[2009]. Having in mind policy decisions where µ(θ, i, x) denotes the utility generated for246

an individual with features x, Athey and Wager [2021] call this the utilitarian regret. Notice247

that the decision Î+T can be made using the full results of the experiment H+
T while a248

measurement decision It must be made in real-time based on partial information Ht.249

The goal in the problem, informally, is to experiment intelligently so that simple regret is250

small after using as few measurements as possible. This objective is can be formalized in251

several ways. We focus on two ways of studying performance that allow for clear analytical252

insight into specific properties of deconfounded Thompson sampling:253

1. (Fixed budget and Bayesian) In Section D, we study the expected simple regret254

E [∆T | X1:T = x1:T ] at some finite time T, conditioned on the sequence of realized255

contexts X1:T := (X1, · · · , XT) taking on some specific value. This expectation256

integrates over most randomness in the problem, including over the prior257

distribution, and emphasizes dependence on the observed contexts and their order.258

Our goal in this section is to show that deconfounded TS satisfies an important259

robustness property other adaptive algorithms do not: roughly speaking, we have a260

result of the form E [∆T | X1:T = x1:T ] 6 Õ(
√

k/T), where the big-O hides a natural261

dependence on the second moment 1
T ∑T

t=1 xtx>t but has no dependence on context262

order.263

2. (Adaptive stopping and frequentist) In Section E, we aim to verify that the algorithm264

adapts its measurement effort optimally, in an appropriate sense, as it learns265

about the true problem instance. To do this, we study performance conditional266

on the unknown parameter θ but integrate over the distribution of the contexts267

(X1, X2, · · · ), which we assume to drawn i.i.d. Following the style of result in Russo268

[2020], Glynn and Juneja [2004] or Kaufmann et al. [2016], we would hope to show269

that E [∆T | θ] goes to zero at an exponential rate T grows, and that the problem-270

dependent exponent is in appropriate sense the best-possible among adaptive271

algorithms. This is called the “fixed-budget” formulation in the literature on the272

best-arm identification literature, because there is a hard constraint on the number273

of samples (i.e T) that can be collected that must be satisfied with probability one.274

Unfortunately, the sharp asymptotic limits in that setting are poorly understood,275

even in problems without contexts. We instead look at formulations in which there276

is a soft-constraint on the number of measurements. There we study performance277

at a adaptively chosen stopping time τ, which essentially, stops once the posterior278

expectation of simple regret is small. We study the combined cost E [cτ + ∆τ | θ]279

as c→ 0, measuring the expected number of samples required to deliver vanishing280

simple regret. This formulation follows classic work of Chernoff et al. [1959]; very281

similar results follow if one instead imposes a constraint on the simple regret or282

the probability of incorrect selection, which is called the “fixed-confidence” setting.283

Kaufmann et al. [2016].284

B Deconfounded Thompson Sampling285

Deconfounded Thompson sampling (DTS) can be defined succienctly. At each time period286

t ∈N, it selects an arm to measure through the following procedure:287

Continue sampling from αt until two distinct arms are chosen.288

Flip a (biased) coin to select among these two.289
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Recall that αt ∈ Rk is defined by αt,i = P(I∗ = i | Ht). We explain below how to efficiently290

sample from this distribution. Throughout the paper, we take βt ∈ (0, 1] to be the probability291

the first sample from αt is played. By default, we recommend an unbiased coin ( βt = 1/2)292

but this is discussed further below.293

DTS can be understood as making two modifications to Thompson sampling in contextual294

bandits:295

1. Changing the learning target: Thompson sampling for contextual bandits usually296

samples an action according to the probability it maximizes the mean reward297

in the current context. In particular, one sets P(It = i | Ht) = P(i =298

arg maxi∈[k] µ(θ, i, Xt) | Ht). DTS is instead based on sampling from the posterior299

distribution of the arm I∗, which is the arm that maximizes the average reward300

in the target population rather than in the current context. Defining αt carefully301

controls for confounders while directing exploration toward learning about the302

target arm of interest.303

2. Resampling: Consider a problem without contexts. Then standard TS draws It from304

αt, without resampling. This algorithm is designed to maximize the reward earned305

throughout the experiment, implicitly imagining that the experimentation process306

never ends. But it performs poorly if there is an interest also in being able to rapidly307

stop and commit confidently to a decision. To understand the issue, imagine that308

αt,1 = .95, so the algorithm believes there is a 95% chance that arm 1 is optimal.309

Then TS plays arm 1 in roughly 19/20 periods, making it very slow to gather310

information about alternatives. TS would be very slow to reach 99% confidence as311

result and this is exacerbated if even higher confidence is desired.312

To overcome this issue, Russo [2020] suggests a “top-two sampling” version of TS,313

which continues drawing arms from TS until two distinct options are drawn and314

then flips a biased coin to select among these two. To understand the resampling315

step, imagine that αt,1 → 1 as t → ∞. In this limit, the first sample from αt316

is nearly always arm 1 and this is played with probability βt. Otherwise, an317

arm is chosen by resampling, and the chance of picking arm j > 1 is roughly318

P(It = j | It 6= 1) ∼ αt,j
1−αt,1

= P(I∗ = j | I∗ 6= 1). Resampling shifts 1− βt fraction319

of measurement effort away from arm 1 and assigns it to the strongest challengers.320

In particular, a challenger is sampled according to its conditional probability of321

being optimal.322

By default in this paper, we have in mind that DTS is implemented with a fair coin (βt = 1/2).323

Fixing a higher bias might be helpful to a practitioner. This would focus more measurement324

effort on the most promising arm, providing more confidence about the rewards it generates325

and reducing the expected regret incurred during the experiment. On the other hand, a326

longer experiment might be required to reach confidence about the best arm if a high bias is327

used. We discuss in Section E how the bias might be tuned adaptively as data is observed to328

maximize certain asymptotic performance measures.329

Notable features of DTS. Before proceeding, it is worth highlighting a few important330

features of DTS. First, let us draw a contrast with another popular strategy, UCB algorithms.331

These are based on the principle of optimism in the face of uncertainty. The decision-maker332

responds to uncertainty by playing whichever action is best in the best plausible model333

given current information. Notice that DTS, by default, randomizes in the face of uncertainty.334

Indeed, with a symmetric prior, one would have α1,1 = · · · = α1,k = 1/k and so the initial335

arm I1 is sampled uniformly at random. As information is gathered, beliefs are updated336

and the decision-maker is becomes less likely to sample inferior arms. The algorithm’s337

randomization gives it a chance of sampling all plausibly optimal arms in all contexts. This338

appears to be critical to some of its robustness properties.339

Another striking feature of the algorithm is that decisions at time t do not depend on the340

context at time t. That decisions are context independent in this way could offer substantial341
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practical benefits. Even if contexts are logged, enormous engineering resources might be342

required to develop a system that observes contexts and responds in real time. For instance,343

assessing Xt could easily require querying several different datasets containing the current344

user’s interaction history and then applying a trained machine learning algorithm that345

generates a compact feature vector from this history. With a context independent algorithm,346

this could be done without substantial latency requirements.347

Efficient computation. Following conventional implementation of Thompson sampling,348

a generic approach sampling from αt, is to sample a parameter vector θ̃ from the349

posterior distribution of θ and then to find the arm arg maxi∈[k] µ(θ̃, i, w) that is best under350

this sample.The structure of Gaussian linear belief models allows for an even cleaner351

implementation of DTS. Because the population average reward of arm i, µ(θ, i, w), has a352

Gaussian posterior with posterior parameters given in (4), one can directly perform inference353

on the population average rewards.354

The pseudocode below almost perfectly mirrors top-two TS in problems without contexts,355

except that the posterior parameters (mt+1,i, s2
t+1,i) are updated in a manner that controls356

for observed confounders, reflects the target population of contexts, and may be affected357

by delayed observations. By default, we imagine βt = 1/2, but the pseudocode allows for358

adaptive tuning of the coin’s bias.359

A possible concern is that it might take an enormous number of samples until the top-two360

arms differ (i.e. until I(1)t 6= I(2)t ). However, each fresh sample has chance 1− α
t,I(1)t

of361

generating a different arm, so this while-loop is expected to require many iterations only if362

the the posterior has already concentrated on a single action. In that case, it makes sense363

to terminate the experiment. When the posterior concentrates, there are also a variety of364

asymptotic approximations that could be used to calculate selection probabilities and avoid365

repeated sampling.366

Algorithm 1: DTS allocation rule in Gaussian best-arm learning

Input prior parameters (µ1,i, Σ1,i)i∈[k], population weights Xpop and noise variance σ2.
for t = 1, 2, · · · do

Sample νi ∼ N(mt,i, s2
t,i) for i ∈ [k] and set I(1)t = arg maxi∈[k] νi;

do
Sample νi ∼ N(mt,i, s2

t,i) for i ∈ [k] and set I(2)t = arg maxi∈[k] νi;

while I(1)t = I(2)t ;
Flip coin Ct ∈ {0, 1} with bias P(Ct = 1) = βt ;

Play arm It = I(1)t Ct + I(2)t (1− Ct);
Gather delayed observation o = (It−L, Xt−L, Rt−L) .;
Calculate posterior parameters mt+1,i, s2

t+1,i for i ∈ [k] according to (4) to reflect o;
Calculate new tuning parameter βt+1 if using adaptive tuning;

end

367

C Failure of Alternative Bandit Algorithms368

This section provides examples showing that alternative bandit algorithms can fail for369

simple examples within the scope of our problem formulation. Most interesting, perhaps, is370

that a deconfounded UCB algorithm cannot address a simplified version of the example with371

day-of-week effects described in the introduction. Past theory on TS highlights connections372

to UCB, so any theory of DTS in that example will need to push well beyond current373

understanding. We also show the failure of a context unaware algorithm and a usual374

contextual bandit algorithm.375
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What does it mean that these algorithms ‘fail’? We show formally that simple regret is376

bounded as E [∆T ] > c, where c is some absolute numerical constant that does not depend377

on T. Regardless of the time dedicated to experimentation, the data the collected by these378

algorithms is inadequate and cannot be used to make near-optimal decisions. The examples379

we describe are meant to give insight into what can go wrong with alternative algorithms380

and the subtleties of designing an algorithm like DTS. They are purposefully simplistic.381

C.1 Deconfounded UCB382

Consider the following simplification of Example 1. Here, there are two contexts instead of383

seven and we restrict to the case of two actions.384

Example 2 (Day of week effects). The context set is X = {1, 2} and there are k = 2 arms. The385

reward at time t is Rt = θ
(It)
Xt

+Wt where each θ
(i)
x is independent and Gaussian and Wt ∼ N(0, σ2)386

is i.i.d Gaussian noise. Observations are not subject to delay (i.e L = 1). The the goal is to identify387

the best arm under equal context weights w:388

I∗ = arg max
i∈[2]

θ
(i)
1 + θ

(i)
2

2
.

The context sequence is non-random, with Xt = 1 for t 6 bT/2c, Xt = 2 for t > bT/2c.389

Consider a UCB analogue of our Thompson sampling based algorithm. Reflecting that the390

true goal is to select an arm with strong performance throughout the week, not on a specific391

day, it plays the arm with the highest UCB on its average performance throughout the week:392

393

It ∈ arg max
i∈[k]

mt,i + z · st,i for all t ∈N. (5)

where mt,i and st,i are defined in (4) and z > 0 is a tuning parameter. When z = 1.645, the394

term mt,i + z · st,i measures the 95% quantile of the posterior distribution. Like DTS, this can395

be thought of as a deconfounded UCB, which still selects the arm with the highest upside but396

accounts for observed confounders when performing inference.397

The next result shows formally that deconfounded UCB fails to collect adequate data,398

regardless of the length of the time horizon. The issue is that the UCB in (5) is sometimes399

higher for action 2 for each of the first T/2 periods. Action 1 is then never sampled in400

context 1, so learning is incomplete. This holds true regardless of how z is set and holds for401

time dependent tuning parameters. The issue is that, unlike common bandit settings, UCBs402

do not diminish when actions are repeatedly sampled in a single context.403

Lemma 1. Consider Example 2. Suppose that the components of the vector θ = (θ
(i)
x )i∈[2],x∈[2] are404

independent with θ
(1)
x ∼ N(0, 1) and θ

(2)
x ∼ N(0, 2) for x ∈ {1, 2}, and σ2 = 0. If (5) holds, then405

there is an absolute numerical constant c > 0 such that E [∆T ] > c for any T ∈N.406

C.2 Context Unaware Algorithms407

Our next example highlights the risk of confounding for an algorithm that does not model408

day-of-week effects when performing inference. We set s̃2
t,i =

(
1 + σ−2 ∑t−1

`=1 1(I` = i)
)−1

409

and m̃t,i = s̃2
t,i

(
∑t−1
`=1 1(I` = i)R`

)
. We define these expressions for σ2 = 0 by taking the410

limit as σ2 ↓ 0. In particular, we set s̃2
t,i = 0 if arm i has been played previously and m̃t,i411

to be 0 if arm i was never played previously and to be the the empirical average reward412

otherwise. These are the posterior updating equations if θ
(i)
1 ∼ N(0, 1) and the algorithm413

(incorrectly) ignores day of week effects and assumes θ
(i)
2 = θ

(i)
1 almost surely.414
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Based on this, define context unaware Thompson sampling. It chooses an arm at time t415

according to416

It = arg max
i∈[2]

νt,i where νt,i | Ht ∼ N(m̃t,i , s̃2
t,i). (6)

In the above equation νt,1 and νt,2 are sampled independently. The next lemma formalizes417

that this algorithm risks confounding. The same result applies to a context unaware form418

UCB, which forms UCBs based on m̃t,i and s̃2
t,i. A context-unaware top-two TS algorithm419

fails in a similar way in problems with more than two actions.420

Lemma 2 (Failure of context unaware Thompson sampling). Consider Example 2. Suppose421

the components of the vector θ = (θ
(i)
x )i∈[2],x∈[2] are independent with θ

(1)
x ∼ N(0, 1) and θ

(2)
x ∼422

N(0, 2) for x ∈ {1, 2}, and σ2 = 0. If (6) holds then there exists an absolute numerical constant423

c > 0 such that for all T ∈N, E [∆T ] > c.424

C.3 Contextual Bandit Algorithms425

The goal in our formulation is to select among a very restricted set of decision-rules: those426

that choose a common action, irrespective of context. Experimentation should be tailored to427

this objective. Here, we give insight into potential failures when the exploration algorithm428

is designed with a different learning target in mind. Consider the following example. There429

are three actions, and the decision-maker would like to identify the best action to employ on430

average, across all contexts. Imagine that the context set describes two customer segments.431

Action 1 appeals to one segment, but is highly unappealing to the other. For action 2,432

the situation is reversed. Action 3 is not ideal for either segment, but is also not disliked433

by either. When personalization is inappropriate or costly, action 3 may be the preferred434

communal option.435

The next example does not align with our formulation, because we take the prior distribution436

to be non-Gaussian. Similar issues can arise with a Gaussian prior, but its unbounded nature437

always allows for a nonzero– even if very small – chance that the mainstream action is better438

even for a specific segment.439

Example 3 (A mainstream action). Consider a problem with k = 3 arms and 2 contexts given440

as X = {1, 2}. The population distribution w is uniform over X and (Xt)t∈N are drawn i.i.d441

from w. The components of the parameter vector θ = (θ0, θ1, θ2) are drawn independently with442

θ0 ∼ Uniform ([0, 1]) and θx ∼ Uniform ({1, 2}) for x ∈ [2]. Rewards are noiseless, with443

Rt = µ(θ, It, Xt). Observations are not subject to delay (i.e. L = 1). Action 3’s performance is444

insensitive to the context, and it always generates mean-reward µ(θ, 3, x) = θ0. Actions 1 and 2445

generate mean rewards in context x ∈ X given by446

µ(θ, 1, x) = 1/2 + (1/2)1(θx = 1), µ(θ, 2, x) = 1/2 + (1/2)1(θx = 2).

The next lemma formalizes that contextual Thompson sampling, which selects an action447

according to the posterior probability it is the optimal action for the current context, has448

simple regret that does not vanish even as the horizon grows. The same result applies to449

appropriate contextual versions of UCB. The simple reason is that action 3 is never sampled,450

because it does not maximize the reward in either context. This means no information about451

θ0 is gathered and the decision-maker cannot determine whether action 3 is the best arm452

to select. If the goal is to identify the best policy within a restricted class, the exploration453

algorithm needs to be designed so that it gathers the right information for this task. The454

proof follows from this argument and is omitted for brevity.455

Lemma 3. (Failure of contextual Thompson sampling) Suppose that P(It = i | Ht) =456

P(I∗(θ; Xt) = i | Ht) for each i ∈ [k]. Under Example 3, there is an absolute numerical constant457

c > 0 such that for all T ∈N, E [∆T ] > c.458
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D Result 1: Robustness to Delay and Confounding459

In this paper, we provide the first of two guarantees for DTS. The focus here is on460

assurances of robustness. We do this by establishing generic bounds on simple regret461

that essentially mirror regret guarantees satisfied when actions are selected uniformly at462

random. The challenge is to show that the adaptivity of DTS does not make the algorithm’s463

performance brittle, in contrast to the algorithms described in Section C. In the next section,464

we complement this study of robustness with a study of the adaptivity benefits of DTS.465

D.1 Performance Guarantee466

Because we do not require contexts to be i.i.d, there is no guarantee that the observed context467

sequence provides the information required to select the best-arm. We measure this through468

the quantity469

V(X1:T) = X>pop

(
Σ−1

1 + σ−2
T

∑
t=1

XtX>t

)−1

Xpop. (7)

The matrix
(

Σ−1
1 + σ−2 ∑T

t=1 XtX>t
)−1

appearing in (7) would be the posterior covariance470

matrix of θ(i) at the end of the experimentation horizon if that arm were played in every471

period. We similarly think of V(X1:T) as the posterior variance Var(µ(θ, i, w) | H+
T ) of the472

population effect of arm i if we observed the reward it generated in every period of the473

experiment. Notice that what makes the day-of-week effects in Example 2 challenging is the474

order in which contexts arrive. But observing a single arm throughout the entire experiment475

would be informative, and so V(X1:T) would be small if T were large.476

If arms were selected uniformly at random, we might expect the posterior variance of each477

one to scale roughly as k ·V(X1:T), reflecting that information is divided equally across the478

arms. The next result establishes a simple regret bound for DTS that scales as
√

k ·V(X1:T).479

One can think of this result as indicating a robustness property: the algorithm can cope with480

arbitrary context order and delayed reward observations, offering a guarantee matching481

what we would attain under a uniform allocation even when the context order and delay482

are severe. Of course, DTS is actually a highly adaptive algorithm, so it is subtle to show it483

satisfies this kind of robustness property and avoids the pitfalls described in Section C.484

For random variables X and Y, let H(X) and H(X|Y) denote the Shannon entropy and485

conditional Shannon entropy of X.486

Proposition 1. Suppose that ‖Xt‖2 6 1 almost surely for t ∈ N. If DTS applied with tuning487

parameters satisfying inft∈N βt > 1/2 almost surely, then for any T ∈N,488

E [∆T | X1:T ] 6
√

2ι · k ·H(I∗ | H+
T ) ·V(X1:T)

where ι = max
{

9 log
(

dλmax(Σ1)
[
λmax

(
Σ−1

1

)
+ T

])
· λmax(Σ1) , 9

}
.489

Under a natural condition that ensures the context sequence contains sufficient information490

about the population distribution, the next corollary of Proposition 1 gives a simple-491

regret bound that scales as Õ
(√

k/T
)
. Notice that this result is nearly-independent of492

the dimension of the linear model d. If Xt ∼ w, then E
[
XtX>t

]
= XpopX>pop + Cov(Xt). In493

this sense, if context vectors have high variance in every direction, the bound 1
T ∑T

t=1 xtx>t �494

XpopX>pop may underestimate the information they provide and make this corollary495

conservative.496
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Corollary 1. Under the conditions of Proposition 1, for any sequence x1:T ∈ X T , with497

1
T ∑T

t=1 xtx>t � XpopX>pop,498

E [∆T | X1:T = x1:T ] 6 σ

√
2ι · k ·H(I∗ | H+

T )

T
6 σ

√
2ι · k · log(k)

T

where ι is given in Proposition 1.499

E Result 2: Adaptivity and Asymptotic Optimality500

Like most popular multi-armed bandit algorithms, DTS allocates measurement effort501

adaptively. As time proceeds, it learns about the quality of different policies or502

arms. By shifting most measurements away from clearly inferior alternatives, it focuses503

experimentation effort where it is most useful. The previous section showed, although504

adaptivity makes other natural algorithms brittle in the face of nonstationary confounders,505

DTS has certain robustness guarantees. This section aims to formalize that DTS also adapts506

its measurement effort very effectively and, in a sense, optimally in a meaningful special case507

of our formulation.508

E.1 Asymptotic Optimality Notion509

We assess how effectively the algorithm uses its limited measurements, essentially, by510

understanding the rate at which simple regret decays as measurements are gathered. Among511

the several natural ways of studying this, we focus on one that allows for a sharp and512

enlightening asymptotic theory. We build on asymptotic limits of sequentially designed513

experiments that have been understood since classic work of Chernoff et al. [1959]. We514

allow the decision-maker to decide adaptively when to stop collecting measurements. The515

total cost incurred is cτ + ∆τ , where τ denotes the chosen stopping time, c > 0 is a cost516

per-period of experimentation, and ∆τ is the simple-regret of the final decision.517

We study the expected cost incurred under problem instance θ0, given by518

E [cτ + ∆τ | θ = θ0] . (8)

In this section, we focus on the parameter class519

Θ ,

{
θ ∈ Rdk : arg max

i∈[k]
µ(θ, i, w) is unique

}
.

In other words, each parameter in Θ corresponds to a problem instance with a unique best520

arm under the population distribution.521

Sharp results can be established through asymptotic analysis as c tends to zero. This is a522

regime where the cost of gathering one more observation is negligible relative to the cost523

committing to a sub-optimal final decision. It arises naturally if one imagines the final524

decision will later be implemented for a very large number of periods. We establish a525

kind of uniform optimal guarantee, roughly showing that DTS minimizes (8) to first-order526

asymptotically for every specific instance θ0. This is only possible under an algorithm that527

tailors its experimentation optimally to θ0 as information is gathered.528

This theory requires an appropriate stopping rule is used. Attaining the exact optimal529

constant also requires tuning the βt parameter as information about θ0 is acquired. We530

discuss how this can be done with low computational cost and also discuss robustness with531

some non-adaptive choices of β.532

Our result directly builds on previous analyses that have established similar results for533

top-two sampling rules [Russo, 2020, Qin et al., 2017]. It may be surprising, however, that534

these results extend to a contextual setting with linear models, given that more complex535
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exploration rules are often required to attain asymptotic optimality results in problems with536

parametric dependencies [See e.g. Lattimore and Szepesvari, 2017].537

E.2 Notation538

Recall the definitions of mt,1 =
〈

Xpop , E
[
θ(i) | Ht

]〉
and s2

t,i = Var (µ(θ, i, w) | Ht) given539

in . Since the analysis in this section is conditioned on θ, it is helpful to develop analogous540

notation for these quantities when an improper prior is used. Were an improper prior is541

used, µt,i and σ2
t,i would have the formulas:542

m̂t,i = X>pop

[
t

∑
`=1

1(I` = i)X`X>`

]−1 t

∑
`=1

1(I` = i)X`Rt

ŝ2
t,i = X>pop

[
σ−2

t

∑
`=1

1(I` = i)X`X>`

]−1

Xpop.

Note that m̂t,i is simply the inner product of Xpop with the least-squares estimate for θ(i). If543

the chosen arms {I`} were fixed in advance rather than selected adaptively, then ŝ2
t,i would544

be the formula for the sampling variance of m̂t,i.545

It will be important to measure the strength of evidence that one arm outperforms another in546

the population. For this purpose, consider the natural test of the null hypothesis µ(θ, i, w) 6=547

µ(θ, j, w). The classic test would be based on the z-score for the difference in means,548

Zt,i,j :=
mt,i − µt,j√

s2
t,i + s2

t,j

. (9)

Each Zt,i,j follows a normal distribution with unit variance when I1, · · · , It−1 are chosen549

non-adaptively.550

E.3 Lower Bound551

Let S = {v ∈ Rk
+ : ∑k

i=1 vi = 1} denote the k− 1 dimensional probability simplex. Define552

the complexity measure Γ(θ) by553

Γ(θ)−1 = sup
p:X→S

min
i 6=I∗

1
2σ2

(µ(θ, I∗, w)− µ(θ, i, w))2

X>pop

(
E
[
p(X1, I∗)X1X>1

]−1
+ E

[
p(X1, i)X1X>1

]−1
)

Xpop

(10)

where p is a stochastic kernel, which is associates any x ∈ X with an element p(x, ·) ∈ X .554

In this optimization problem, we imagine the experimenter the action at time t by sampling555

from p(·|Xt). The problem (10) seeks a measurement rule p that maximizes the growth556

rate of the minimal z-score minj 6=I∗ Zt,I∗ ,j. One can then think of Γ(θ)−1 as determining a557

fundamental limit on the rate at which an experimenter can gather evidence against all558

alternative arms. A peculiar feature of this complexity term is that actually optimizing over559

p as (10) prescribes would requiring knowing θ, which is circular as uncertainty about θ is560

point of experimenting in the first place. Nevertheless this complexity measure serves to561

produce a valid lower bound, as evidenced by the next proposition. The lower bound here562

applies ideas that has been known since Chernoff et al. [1959], but our proof specifically563

applies inequalities of Kaufmann et al. [2016].564

Proposition 2. If565

E [cτ + ∆τ | θ = θ0] 6 O(c log(1/c)) for all θ0 ∈ Θ,

as c→ 0, then566

E [cτ + ∆τ | θ = θ0] > Γ(θ0)[c + o(1)] log(1/c) for all θ0 ∈ Θ. (11)
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The idea of this lower bound is that any algorithm that outperforms (11) on some instance567

must attain a loss an an order of magnitude larger on some other instance. The result is shown,568

essentially, by establishing that any algorithm with uniformly vanishing simple regret —569

meaning E[∆τ | θ = θ0] = o(1) for all θ0 — must gather an expected number of samples570

that scales as E[τ | θ = θ0] > Γ(θ0)(log(1/c) + o(1)).571

E.4 Optimality of Context Independent Sampling frequencies572

The lower bound above turns out to be tight. It is matched by adaptive algorithms that573

learn as information is gathered to adjust their measurement proportions rapidly enough574

toward proportions that attain the maximum in (10). As such, the form of the solution is of575

particular importance. Here we show a striking simplification. The maximal information576

rate in (10) can be attained by context independent allocation, which samples each arm with a577

probability that is independent of context. One we reduce a context-independent allocations,578

it is easy to characterize the solution in terms of the first-order necessary conditions of579

optimality. Equations (12) and (13) are known for problems without contexts [Glynn and580

Juneja, 2004].581

Lemma 4 (Optimality of context independent sampling frequencies). Suppose X is finite.582

There exists a vector p∗ = p∗(θ) ∈ S such that the rule given by p(x, i) = p∗i for all x ∈ X attains583

the supremum in (10). The vector p∗ is the unique solution to the k nonlinear equations:584

µ(θ, I∗, w)− µ(θ, i, w)√
(p∗I∗)

−1 + (p∗i )
−1

=
µ(θ, I∗, w)− µ(θ, j, w)√

(p∗I∗)
−1 + (p∗j )

−1
∀i, j 6= I∗ (12)

p∗I∗ =
√

∑
i 6=I∗

(p∗i )
2 (13)

Then Equation (10) becomes585

Γ(θ)−1 =
1

2‖Xpop‖A

(µ(θ, I∗, w)− µ(θ, i, w))2

(p∗I∗)
−1 + (p∗i )

−1 ∀i 6= I∗

where A = σ2 (E[X1X>1 ]
)−1.586

We refer to equation (12) as imposing information balance. It essentially ensures that the587

z-scores Zt,I∗ ,j grow at an equal rate for arms j 6= I∗, balancing the evidence against each588

suboptimal arm.589

E.5 Adaptive Tuning590

We will show that DTS automatically gathers information in a manner that satisfies an591

information balance property like Equation (12). By shifting measurement effort away592

from clearly inferior arms and toward those that could more plausibly be the best arm, the593

algorithm automatically balances the rate of information acquisition. The precise fraction of594

measurement effort that (13) suggests should be assigned to the optimal arm is not satisfied595
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automatically, however. In order to do that, the tuning parameter βt needs to be adjusted596

properly.597

Algorithm 2: Adaptive Tuning Algorithm

Input posterior means of expected reward (mt,i)i∈[k].
if Ît is not unique then

Set βt = βt−1
end
else

Obtain the unique optimal solution x ∈ S of the empirical version of Equations (12)
and (13) with (µ(θ, i, w))i∈[k] and I∗ replaced by (mt,i)i∈[k] and Ît, respectively:

mt, Ît
−mt,i√

x−1
Ît

+ x−1
i

=
mt, Ît
−mt,j√

x−1
Ît

+ x−1
j

∀i, j 6= Ît (14)

x Ît
=
√

∑
i 6= Ît

x2
i (15)

Set βt = x Ît
end

598

Efficient Implementation of the Tuning Algorithm For each i ∈ [k], we define ∆t,i ,599

mt, Ît
−mt,i. Equation (14) implies there exists y such that600

1 + x Ît
x−1

i

∆2
t,i

= y, ∀i 6= Ît.

Clearly y > maxi 6= Ît
∆−2

t,i and601

x Ît

xi
= ∆2

t,iy− 1, ∀i 6= Ît. (16)

Together with Equation (15), Equation (16) implies602

∑
i 6= Ît

(
∆2

t,iy− 1
)−2

= 1.

We can solve this fixed-point equation for y using, for example, bisection search or Newton’s603

method. Notice that if Newton’s method is used, one may wish to save the value of y solved604

in the previous time period, which provides an effective initial point for finding an updated605

value of y. Finally ∑i∈[k] xi = 1 and Equation (16) imply606

x Ît
=

1

1 + ∑i 6= Ît

(
∆2

t,iy− 1
)−1 ,

which is the value assigned to βt.607

E.6 DTS Attains the Lower Bound608

We now show that when βn is tuned as suggested in the previous section, and an appropriate609

stopping rule is employed, DTS matches the fundamental lower bound in (11).610

We consider the empirical selection rule611

Ît ∈ arg max
i

µ̂t,i (17)
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that selects the arm with highest performance under a least-squares estimate. Similar results612

can be developed if the Bayes selection rule were used instead, which essentially uses613

ridge-regression rather than least-squares.614

Developing stopping rules is itself an area of active research. We do not try to advance that615

literature, and instead focus on a very simple candidate that is sufficient for the results we616

wish to prove. Recall that the z-score Zt, Ît ,j measures the strength of evidence that arm Ît617

outperforms arm j in the population. The stopping rule618

τ = inf

{
t ∈N : min

j 6= Ît

Zt, Ît ,j > γt

}
where γt = Φ−1

(
1− c

t2k

)
, (18)

stops at the first time all z-scores exceed a threshold. The threshold was picked to ensure a619

probability of incorrect selection less than c. The specific choice of γt is based on a Bonferroni620

correction to account for multiple hypothesis testing and could likely be reduced through621

more granular analysis.622

The next proposition gives two upper bounds.623

Proposition 3. Under the selection rule (17), the stopping rule (18), and allocation rule DTS with624

βt defined by Algorithm 2, for any θ0 ∈ Θ,625

E [cτ + ∆τ | θ = θ0] 6 Γ(θ0)[c + o(1)] log(1/c) as c→ 0.

If instead the allocation rule is DTS with fixed β = 1/2, then for any θ0 ∈ Θ,626

E [cτ + ∆τ | θ = θ0] 6 2Γ(θ0)[c + o(1)] log(1/c) as c→ 0.

This shows that DTS with adaptively tuned {βt} attains the exact optimal constant defined in627

Equation (10), which matches the lower bound in (11). In addition, DTS with non-adaptive628

choice of β = 1/2 achieves near-optimal statistical guarantee while reduces computational629

cost.630
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