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Abstract

Subgraph-based methods have proven to be effective and interpretable in predict-
ing drug-drug interactions (DDIs), which are essential for medical practice and
drug development. Subgraph selection and encoding are critical stages in these
methods, yet customizing these components remains underexplored due to the
high cost of manual adjustments. In this study, inspired by the success of neural
architecture search (NAS), we propose a method to search for data-specific com-
ponents within subgraph-based frameworks. Specifically, we introduce extensive
subgraph selection and encoding spaces that account for the diverse contexts of
drug interactions in DDI prediction. To address the challenge of large search
spaces and high sampling costs, we design a relaxation mechanism that uses an
approximation strategy to efficiently explore optimal subgraph configurations. This
approach allows for robust exploration of the search space. Extensive experiments
demonstrate the effectiveness and superiority of the proposed method, with the
discovered subgraphs and encoding functions highlighting the model’s adaptability.

1 Introduction

Precise prediction of drug-drug interactions (DDIs) is essential in biomedicine and healthcare
research [1]. Drug combination therapy [2] can enhance treatment effectiveness for certain diseases;
however, it also increases the risk of adverse drug reactions, potentially threatening patient safety [3].
Identifying DDIs through laboratory experiments is both costly and time-consuming [4, 5]. With
the success of deep learning, researchers have increasingly explored computational methods for
DDI prediction. Early approaches primarily relied on molecular fingerprint information [6] or
hand-engineered features [7], often neglecting the pre-existing interaction properties between drugs.

Considering drugs as nodes and their interactions as edges, DDI prediction can be framed as a
multi-relational link prediction problem within the constructed drug interaction network. Recent
advancements in graph neural networks (GNNs) [8, 9, 10, 11] have consistently achieved superior per-
formance in this task. Specifically, subgraph-based methods, such as SumGNN [12], EmerGNN [13],
and KnowDDI [14], have shown promising results by selecting subgraphs around query edges
and applying sophisticated encoding functions (message passing functions) to represent these sub-
graphs, Such methods transform the multi-relational link prediction task into a multi-type subgraph
classification problem. Figure 1 illustrates the pipeline of subgraph-based methods.

However, due to the dense nature [15, 16] of drug interaction networks and their complex in-
teraction semantics [17], existing hand-designed subgraph methods often fail to capture the nu-
anced but crucial information across different data inputs. In the initial phase of the reasoning
pipeline, the subgraph sampler must have the capability to customize the selection of drug sub-
graphs for different queries, thereby ensuring precise contextualization of the reasoning evidence.
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Figure 1: The pipeline of subgraph-based methods includes subgraph selection and subgraph encoding.
In this work, we focus specifically on searching for components within the red-dotted lines.

Table 1: Comparing with existing methods."-
" represents not applicable.

Method
Fine-grained

Subgraph
Selection

Data-specific
Encoding
Function

SEAL [18] % %

GraIL [19] % %

SumGNN [12] % %

SNRI [20] % %

KnowDDI [14] ! -

MR-GNAS [21] - !

AutoGEL [22] - !

CSSE-DDI ! !

Without customized subgraph selection, SumGNN
samples subgraphs using a fixed subgraph range k,
selecting the k-hop neighbors of each drug as associ-
ated subgraphs for predicting drug-drug interactions
(DDIs). This coarse-grained approach is straightfor-
ward and easy to implement, but it may introduce
noise or omit valuable information needed to reason
about diverse drug pair interactions.

In terms of encoding process, the encoding function
must be capable of modeling a wide variety of drug in-
teractions within the drug interaction network. Real-
world drug interactions exhibit complex mechanisms,
for instance, metabolism-based interactions display
asymmetric semantic patterns, whereas phenotype-
based interactions are symmetric. Manually designed
encoding functions are limited in their ability to ac-
commodate both types of distinct semantic patterns simultaneously [23]. Therefore, designing a
customized and data-adaptive subgraph-based pipeline is essential for effective DDI prediction.

Neural architecture search (NAS) [24, 25] has achieved remarkable success in designing data-specific
models, often surpassing architectures crafted by human experts in various fields, such as computer
vision [26], graph neural network [27], and knowledge graph learning [23]. However, effectively
selecting suitable subgraphs from the vast space of candidates and efficiently optimizing the joint
search process of subgraph selection and encoding remain open challenges.

In this paper, we leverage NAS to search for data-specific components in the subgraph-based pipeline.
Specifically, we design search spaces for pipeline components, including subgraph selection and
encoding spaces, to capture various drug interaction patterns. To enable efficient exploration of
the extensive subgraph selection space, we introduce a relaxation mechanism that continuously
selects subgraphs in a structured manner. Additionally, we propose a subgraph representation
approximation strategy to reduce the high cost of explicit subgraph sampling, enabling efficient and
robust search. Compared with existing methods in Table 1, our proposed Customized Subgraph
Selection and Encoding for Drug-Drug Interaction prediction (CSSE-DDI) achieves fine-grained
subgrpah selection and data-specific encoding functions, providing an efficient and precise method
for drug interaction prediction. Our main contributions are summarized as follows:

• We present CSSE-DDI, a searchable framework for DDI prediction that adaptively customizes
the subgraph selection and encoding processes. To the best of our knowledge, this is the first
application of NAS techniques to tailor an adaptive subgraph-based pipeline for the DDI prediction
task.

• We construct expressive search spaces to ensure precise capture of evidence for drug interaction
prediction. Additionally, we devise a relaxation mechanism to transform the discrete subgraph
selection space into a continuous form, enabling differentiable search. Simultaneously, we apply a
subgraph representation approximation strategy to mitigate the inefficiencies of explicit subgraph
sampling, thereby accelerating the search process.

• Extensive experiments on benchmark datasets demonstrate that our method, which searches
for customized pipelines, achieves superior performance compared to hand-designed methods.
Additionally, our approach effectively captures the underlying biological mechanisms of drug-drug
interactions.
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2 Related Works
Subgraph-based Link Prediction Recently, subgraph-based methods [18, 19, 28] have emerged
as a promising approach, showing superior performance in link prediction tasks. Different from
canonical GNNs, subgraph-based method extracts a subgraph patch for each training and test query,
learning a representation of the extracted patch for final prediction, as illustrated in Figure 1.

Existing works has primarily focused on designing more informative subgraphs and more expressive
encoding functions. However, they do not take into account customizing these components to deal
with various data. Specifically, in terms of subgraph sampler, current approaches lack fine-grained
and adaptive extraction for different query subgraphs. While PS2 [29] demonstrates the effectiveness
of identifying optimal subgraphs for each edge in homogeneous graph link prediction, there is no
comparable work in multi-relational graph link prediction. In dense DDI networks, fine-grained
identification of subgraph for different queries is even more crucial.

As for the encoding function, existing works overlook the importance of data-specific encoding, which
has been emphasized in recent literature [30, 27]. Customized encoding functions are especially
advantageous for drug interaction networks with complex and diverse interactions.

GNN-based DDI Prediction Recently, there has been growing interest in applying GNNs for
DDI prediction [8, 9]. However, these works execute message-passing functions over the entire
graph, which limits their ability to capture explicit local evidence for specific query drug pairs and
lack interpretability. In contrast, subgraph-based DDI prediction methods [12, 63, 13, 14] transform
the multi-relational link prediction problem into a subgraph classification problem by extracting
subgraphs around query nodes, achieving strong performance. Nevertheless, these works use the
same subgraph extraction strategy for all queries and rely on a fixed message-passing function to
handle complex DDIs, which limits their flexibility and adaptivity in dense DDI networks.

Graph Neural Architecture Search Graph neural architecture search (GNAS) [31] aims to find
high-performing GNN architectures using NAS techniques. Recent studies [30, 27] have explored
GNAS to create more expressive GNN models across various tasks. AutoDDI [32], for instance,
automatically designs GNN architectures to learn molecular graph representations of drugs for DDI
prediction. However, research on optimizing graph sampling for GNAS remains limited due to the
diversity of graph-structured data.

Regarding search strategy, early approaches explores the search space using reinforcement learn-
ing [33] or evolutionary algorithms [34], which is highly inefficient. One-shot approaches [35]
instead construct an over-parameterized network (supernet) and optimize it using gradient descent,
leveraging continuous relaxation of the search space to improve search efficiency. The recently pro-
posed few-shot NAS paradigm [36] further enhances supernet evaluation consistency by generating
multiple sub-supernets.

3 Proposed Method
3.1 Problem Formulation

Given a set of drugs V and interaction relations R among them, the drug interaction network is
denoted as GDDI = {(u, r, v) | u, v ∈ V, r ∈ R}, with each tuple (u, r, v) describes an interaction
between drug u and drug v. Consequently, drug-drug interaction (DDI) prediction can be framed
a multi-relational link prediction task within the drug interaction network GDDI. The objective is to
predict the types of interactions between two given drug nodes, which can be denoted as a query
(u, ?, v), i.e., given the query drug-pair entities u and v, to determine the interaction r that makes
(u, r, v) valid.

Moreover, instead of directly predicting on the entire graph GDDI, subgraph-based methods decouple
the prediction process into two stages: (1) selecting a query-specific subgraph and (2) encoding the
subgraph to predict interactions, as shown in Figure 1. The prediction pipeline then becomes

GDDI
Selection,(u,v)7−−−−−−−−−→ Gu,v

Encoding7−−−−−→ Yu,v, (1)

where the sampler selects a subgraph Gu,v conditioned on the given query (u, ?, v). Using this
subgraph Gu,v , the encoding function produces the final predictions Yu,v .

Building on previous analysis and existing research, and inspired by NAS, we propose to search
for data-adaptive subgraph selection and encoding components to obtain a customized subgraph
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pipeline. In Section 3.2, we first introduce the well-designed subgraph selection and encoding
spaces to ensure comprehensive coverage of cricual information in various drug interaction networks.
Further, in Section 3.3 we present a subgraph relaxation strategy and approximation mechanisms
for subgraph representations to facilitate efficient differentiable search. Finally, we develop a robust
search algorithm to address the customized search problem with stability and precision.

3.2 Search Space
3.2.1 Subgraph Selection Space

In practice, subgraph-based methods define the drug-pair subgraph between drug pairs as the union or
interaction of k-hop ego-network 2 of query drugs. Here, k is a key hyperparameter that determines
the range of message propagation aggregated by the central node. Selecting k is crucial to model
performance, as it dictates whether the model has access to high-quality evidence context for accurate
prediction.

Prior works [12, 37] typically utilize a fixed hyperparameter for all drug pairs, i.e., selecting the
union of a fixed k-hop ego-network for arbitrary queries. Nevertheless, this approach can lead to an
imprecise collection of evidence for interaction reasoning, potentially undermining the reasoning
process due to missing critical information or the inclusion of excessive irrelevant information.

Based on the above analysis, we define a drug-pair subgraph selction space containing a range of
subgraphs of different sizes for a given query (u, v):

Su,v = {Gi,ju,v |1 ≤ i, j ≤ η}, (2)

where Gi,ju,v is generated by taking the union of the i-hop ego-network of node u and the j-hop
ego-network of node v, i.e., Gi,ju,v = {z ∈ V | z ∈ (u ∪ Ni(u) ∪ v ∪ Nj(v))}, where Ni(u) and
Nj(v) are the i-hop and the j-hop neighbors of u and v, respectively. The threshold η constrains the
maximum subgraph range.

Since each drug-pair has a specific subgraph selection space, the overall size of space in the entire
graph is η2|E|, where |E| represents the number of edges in the drug interaction network. A larger |E|
result in a subgraph selection space that grows exponentially with the number of edges. Therefore,
efficiently searching for the optimal subgraph configurations for different queries is challenging.

3.2.2 Subgraph Encoding Space

For the automated design of the subgraph encoding function, we first adopt a unified message passing
framework [21, 38] comprising several key modules: the message-computing function MES, the
aggregation function AGG, the combination function COM, and the activation function ACT, as follows:

step 1: mu ← AGG(MES(hv,hr(u,v))v∈N1(u)
),

step 2: hu ← ACT(COM(hu,mu)),
(3)

where hu ∈ Rd and hr ∈ Rd represent the embeddings of node u and interaction r, respectively, and
mu is the intermediate message representation of u aggregated from its neighborhood N1(u).

A substantial amount of literature [39, 40, 41] has focused on manually designing these modules to
improve performance. However, such encoding functions are inflexible for handling diverse interac-
tion patterns across different drug interaction network. For example, interactions in DrugBank [42]
describe how one drug affects the metabolism of another one. The excretion of Acamprosate, for in-
stance, may be decreased when combined with Acetylsalicylic acid (Aspirin). Such interaction pattern
is asymmetric, meaning r(x, y) ; r(y, x). Conversely, interactions in the TWOSIDES dataset [43]
are primarily at the phenotypic level, such as headache or pain in throat, representing symmetric
patterns where r(x, y)⇒ r(y, x). These two relational semantics are distinctly different, and existing
hand-designed encoding functions struggle to capture such diverse semantics effectively [44, 23].

Here, we aim to perform an adaptive searching for the encoding function in the context of drug
interaction prediction. Based on the framework presented in Eq. (3), we design an expressive subgraph
encoding space with a set of candidate operations. Detailed explanations of these modules can be
found in the Appendix A.1.

2A k-hop ego-network of a node consists of the node and its k-hop neighbors.
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After encoding the subgraph Gu,v , we obtain the representation zu,v of the input subgraph Gu,v . The
predictor then maps the representation zu,v to the probability logits for different interactions between
drug pairs, i.e., yu,v = Wpredzu,v , where Wpred ∈ R2d×|R| is the parameter of the predictor.

3.3 Search Strategy
3.3.1 Search Problem

Based on the well-designed search space described above, we formulate a bi-level optimization
problem to adaptively search for the optimal configuration of subgraph-based pipelines.
Definition 1 (Customized Subgraph-based Pipeline Search Problem). Let A denote the subgraph
encoding space, Su,v represent the subgraph selection space for the query (u, v), α be a candi-
date encoding function in A, W represent the parameters of a model from the search space, and
W∗(Gu,v;α) denote the trained operation parameters. Let Dtra and Dval denote the training and
validation sets, respectively. The search problem is formulated as follows:

argmaxα∈A,Gu,v∈Su,v

∑
(u,r,v)∈Dval

M(W∗(Gu,v;α);Gu,v;α), (4)

s.t. W∗(Gu,v;α) =argminW
∑

(u,r,v)∈Dtra

L(W;Gu,v;α), (5)

where the classification loss L is minimized for all interactions, while the performance measurement
M is expected to be maximized.
In this work, we adopt the differentiable search paradigm [45] to solve the bi-level optimization
problem, which is widely used in recent NAS literature [46] and enables efficient exploration of the
search space. Nevertheless, our proposed subgraph selection space poses two technical challenges:
First, we cannot directly apply relaxation strategies, which is a prerequisite for differentiable NAS
methods, to make the discrete selection space continuous. This limitation arises because different
subgraphs in the selection space contain diverse nodes and edges, making it challenging to design
a relaxation function that unifies subgraphs of varying sizes. Second, to enable searching within
the subgraph selection space, we would need to first generate all subgraphs in the space. However,
sampling such a large number of subgraphs is computationally intractable.

To address these challenges, we design a subgraph selection space relaxation mechanism in Sec-
tion 3.3.2 . Additionally, we introduce an intuitive subgraph representation approximation strategy in
Section 3.3.3 to reduce the high costs associated with explicit sampling.

3.3.2 Relaxation of Subgraph Selection Space

Technically, as in existing NAS works [45, 47], one typically needs to relax the search space into
continuous form to enable effective backpropagation training. However, for the subgraph selection
space, the traditional continuous relaxation strategy is not directly applicable due to the structural
mismatch between graphs and vectors.

To address this, we first utilize encoding function f(·) to encode subgraphs with different scopes.
This approach provides all subgraphs with representations of the same dimension, making it feasible
to implement a relaxation strategy. Additionally, inspired by the reparameterization trick [48], we
adopt the Gumbel-Softmax function to facilitate differentiable learning over a discrete space:

ẑi,ju,v =
∑

1≤i,j≤η

exp(log(g(f(Gi,ju,v)) + Gi,j)/τ)∑η
i′,j′=1 exp(log(g(f(G

i′,j′
u,v )) + Gi′,j′)/τ)

f(Gi,ju,v), (6)

where g(·) scores the subgraph representations using multiple linear layers, Gi,j =
− log(− log(Ui,j)) is the Gumbel random variable, Ui,j is a uniform random variable, and τ is
the temperature parameter controlling sharpness. ẑi,ju,v is the mixed selection operation of subgraph
Gi,ju,v used to optimize searching process.

3.3.3 Subgraph Representation Approximation Strategy

To solving the optimization problem as Eq. (4) and (5), we need to explicitly sample all the candidate
subgraphs within the subgraph selection space Su,v for each query. However, one of the most
challenging aspects of subgraph-based approaches is their inefficient subgraph sampling process [49,
50, 51].
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Upon examining our subgraph selection space, we observe that all subgraphs are generated by
combining multi-hop ego-networks of the target nodes, encompassing multiple neighborhood hops.
Inspired by the k-subtree extractor [52], we apply an encoding function to the entire graph and use
the resulting node representations of u and v as the ego-network representations for these nodes. The
representation of the drug pair can then be obtained by concatenating the ego-network representations
of u and v. Formally, if we denote by f(GDDI, u, i) the i-layer hidden representation of node u
produced by encoding function applied to GDDI, then

f(Gi,ju,v) ≈ CONCAT(f(GDDI, u, i), f(GDDI, v, j)), (7)

The k-subtree extractor represents the k-subtree structure rooted at a given node, which mirrors the
structure as the k-hop ego-network. This approximation strategy only requires executing the encoding
function on the entire drug interaction network, thereby efficiently yielding subgraph representations
of varying scopes, which significantly improves the efficiency in solving the bi-level optimization
problem.

3.3.4 Robust Search Algorithm

Using the proposed subgraph selection relaxation mechanism, we can transform the overall discrete
search space in Definition. 1 into a continuous form, allowing the search problem to be solved by the
one-shot NAS paradigm. Additionally, our subgraph representation approximation strategy efficiently
obtains subgraph representations and reduces search costs

Following [53], we adopt the single path one-shot training strategy (SPOS) [54] to reduce the
computational cost of supernet training. However, the one-shot approach [55, 56, 45], i.e., using the
same supernet parameters W for all architectures, can decrease the consistency between the supernet’s
performance estimation and the ground-truth performance [57]. Inspired by few-shot NAS [36], we
propose a message-aware partitioned supernet training strategy to mitigate the coupling effect of
different message-computing operators [58]. By partitioning the superent to form sub-supernets based
on the type of message-computing function, this strategy improves the consistency and accuracy
of supernet, enabling the search algorithm more stable and robust. Algorithm 1 delineates the full
procedure, with further details provided in Appendix A.2.

Algorithm 1: The search algorithm of CSSE-DDI.
Input: Supernet S, number of partitions based on message computing function categories M (M = 4),

subsupernet Si, (i = 1, · · · ,M).
// supernet training phase

1 Train S by continuously sampling a single path until convergence;
// supernet partition phase

2 Partition S into M sub-supernets S1, · · · ,SM ;
// sub-supernet training phase

3 forall i = 1, · · · ,M do
4 Initialize Si with weights transferred from S;
5 Train Si by continuously sampling a single path until convergence;
6 end
// searching phase

7 Search the optimal encoding function from sub-supernets S1, · · · ,SM on validation data by natural
gradient descent;

8 Select the optimal subgraphs from sub-supernets S1, · · · ,SM on validation data by preserving the
subgraphs with the largest probabilities;

3.4 Comparison with Existing Works

While many works [12, 13, 14] have explored DDI prediction using subgraph-based methods, our
approach introduces two significant advancements. First, to the best of our knowledge, our method
(CSSE-DDI) is the first to customize the subgraph selection and encoding processes specifically
for subgraph-based DDI prediction. In contrast, previous methods rely on fixed subgraph selection
strategy to sample subgraphs and employ hand-designed functions for encoding, as summarized
in Table 1. Consequently, our method can adapt data-specific components within subgraph-based
pipelines, outperforming existing methods in both performance and efficiency (Section 4.2). Moreover,
our approach not only selects fine-grained drug-pair subgraphs that enhance interpretability through
potential pharmacokinetic and metabolic concepts (Section 4.6.1), but also searches for data-specific
encoding functions that accurately capture the semantic features of drug interactions (Section 4.6.2).
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4 Experiments
4.1 Experimental Setup

Datasets Experiments are conducted on two public benchmark DDI datasets: DrugBank [42] and
TWOSIDES [43]. Detailed descriptions of these datasets are presented in Appendix B.1.

Experimental Settings Following [13], we examine two DDI prediction task settings: S0 and S1.
Let the drug pairs for DDI prediction be denoted as (u, v). In the S0 setting, both drug nodes u and v
are present in the known DDI graph. Existing DDI prediction methods are typically evaluated in this
setting. In contrast, the S1 setting involves a pair (u, v) where one drug is known and the other is a
novel drug not represented in the known DDI graph. This scenario highlights the critical need for
DDI predictions involving new drugs in real-world applications.

Evaluation Metric We follow [12] to evaluate our method. For the DrugBank dataset, where
each drug pair contains only one interaction, we use the following metrics: F1 Score, Accuracy and
Cohen’s κ. For the TWOSIDES dataset, where multiple interactions may exist between a pair of
drugs, we consider the following metrics: ROC-AUC, PR-AUC and AP@50. Additional details are
provided in Appendix B.2.

Baselines We compare CSSE-DDI with the following representative DDI prediction method: (i)
GNN-based methods include Decagon [8], GAT [59], SkipGNN [9], CompGCN [60], ACDGNN [61],
and TransFOL [62]. (ii) Subgraph-based methods include SEAL [18], GraIL [19], SumGNN [12],
SNRI [20], KnowDDI [37] and LaGAT [63]. (iii) NAS-based method include MR-GNAS [21], and
AutoGEL [22].

We also compare our method with two variants, including CSSE-DDI-FS and CSSE-DDI-FF. The
configurations of these variants are as follows: (i) CSSE-DDI-FS: This variant omits fine-grained
subgraph selection for each query, using fixed k-layer drug node representations to generate the
subgraph representation. (ii) CSSE-DDI-FF: This variant does not search for the encoding function,
instead using a fixed encoding function backbone to capture semantic and topological features in the
drug interaction network. In this case, we employ a 3-layer CompGCN model as the backbone. For
all baselines, we obtain the results by rerunning the released codes.

Implementation We implement our method3 based on PyTorch framework [64]. Following existing
GNN-based methods [37], we select a 3-layer encoding function backbone for both datasets. The
maximum threshold η for the subgraph selection space is set to 3. More experimental details are
given in the Appendix B.3.

4.2 Performance Comparison in S0 settings

Table 2 shows the overall results across all benchmarks in S0 setting. As can be seen, CSSE-DDI
consistently outperforms all baselines on each dataset, demonstrating its effectiveness in searching for
data-specific subgraph-based pipelines for DDI prediction task. Among the baselines, subgraph-based
methods significantly outperform full-graph-based methods due to their enhanced ability to reason
over local subgraph contexts. Within the subgraph-based methods, SEAL, GraIL, SumGNN, and
SNRI use a fixed sample strategy to select subgraphs, which may not be optimal for different drug-pair
queries.

When it comes to NAS-based method, MR-GNAS and AutoGEL contain well-established search
spaces that embrace multi-relational message-passing schema, focusing primarily on automated
encoding function design using the one-shot NAS paradigm. While CSSE-DDI adopts a single path
supernet training strategy and a message-aware partitioning approach to search for data-adaptive
subgraph-based pipelines with stability and robustness, enabling the model to achieve excellent
performance across various datasets. Moreover, the consistent performance gains of CSSE-DDI over
its two variants validate the importance of jointly customizing subgraph-based pipeline components,
i.e., fine-grained subgraphs and data-specific encoding functions, to fit datasets rather than relying on
a fixed approach.

Figure 2 shows the learning curves of several competitive methods on both datasets, including
CompGCN, KnowDDI and the proposed CSSE-DDI. As can be seen, the searched models not only
outperform the baselines but also demonstrate a clear advantage in efficiency, highlighting that
enhancing model flexibility and adaptability is essential for improving performance and efficiency.

3Our code is available at https://github.com/LARS-research/CSSE-DDI.
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Table 2: CSSE-DDI achieves the best predictive performance compared to state-of-the-art baselines
in DDI prediction. Average and standard deviation of five runs are reported. For these metrics, higher
values always indicate better performance.

Model
Type

Dataset Dataset 1: DrugBank Dataset 2: TWOSIDES
Task Type Multi-class Multi-label

Methods F1 Score Accuracy Cohen’s κ ROC-AUC PR-AUC AP@50

GNN-
based

Decagon 57.35±0.26 87.19±0.28 86.07±0.08 91.72±0.04 90.60±0.12 82.06±0.45

GAT 33.49±0.36 77.18±0.15 74.20±0.23 91.18±0.14 89.86±0.05 82.80±0.17

SkipGNN 59.66±0.26 85.83±0.18 84.20±0.16 92.04±0.08 90.90±0.10 84.25±0.25

CompGCN 71.20±0.70 88.30±0.29 86.15±0.35 93.00±0.07 91.26±0.07 86.18±0.10

ACDGNN 86.24±0.93 90.53±0.38 87.81±0.33 93.69±0.47 92.12±0.21 87.45±0.24

TransFOL 89.97±1.64 91.92±0.89 90.92±0.72 94.16±0.62 93.52±0.53 88.13±0.39

Subgraph-
based

SEAL 48.82±0.98 76.61±0.26 71.91±0.59 90.74±0.22 90.11±0.17 84.13±0.13

GraIL 73.20±0.69 85.40±0.39 82.70±0.47 92.93±0.10 91.69±0.14 87.43±0.09

SumGNN 78.35±0.51 89.05±0.36 87.28±0.08 92.62±0.04 90.80±0.40 85.75±0.10

SNRI 85.57±0.32 90.15±0.21 88.94±0.36 93.12±0.18 92.64±0.12 87.53±0.11

KnowDDI 90.06±0.27 93.15±0.19 91.87±0.21 95.05±0.06 93.75±0.05 89.24±0.06

LaGAT 81.63±0.56 86.21±0.18 85.38±0.23 89.78±0.21 86.33±0.15 83.75±0.36

NAS-
based

MR-GNAS 74.24±0.45 88.17±0.24 87.31±0.11 93.85±0.07 91.80±0.03 87.16±0.05

AutoGEL 76.87±0.63 89.35±0.59 86.14±0.41 94.11±0.32 92.35±0.29 88.13±0.41

CSSE-DDI-FS 86.31±0.36 91.08±0.21 89.17±0.27 94.35±0.07 93.01±0.06 89.08±0.04

CSSE-DDI-FF 80.96±0.65 90.27±0.23 88.69±0.31 94.26±0.08 92.74±0.06 88.91±0.09

CSSE-DDI 92.08±0.22 95.56±0.15 94.72±0.26 95.47±0.02 94.21±0.05 89.76±0.05

4.3 Choices of Search Strategy
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Figure 2: Comparison on convergence between the searched
architectures by CSSE-DDI and human-designed methods.

To demonstrate the effectiveness of
our search strategy, we introduce two
variants with different search strate-
gies: (i) CSSE-DDI w/o MAP: This
variant uses only one trained supernet
to serve as a performance evaluator
for candidate architectures, instead of
generating multiple sub-supernets by
Message-Aware Partition (MAP) strat-
egy. (ii) CSSE-DDI w/o SPOS: This
variant utilizes the message-aware par-
tition strategy to jointly optimize the
supernet weights and architectural pa-
rameters, without using the Single
Path One-Shot (SPOS) strategy [54] .

Table 3: Performance of CSSE-DDI using different variants
of search algorithm.

Variant DrugBank TWOSIDES
CSSE-DDI w/o MAP 90.17±0.29 95.12±0.04

CSSE-DDI w/o SPOS 90.97±0.72 94.89±0.13

CSSE-DDI 92.08±0.22 95.47±0.02

In Table 3, we compare CSSE-DDI
with other variants. As can be seen,
the absence of either message-aware
partition strategy or sampling-based
NAS strategy negatively impacts per-
formance. The performance gains
achieved through the message-aware
partition strategy arise from using
multiple sub-supernets, which provide
more accurate performance estima-
tions to guide the search process. Regarding the SPOS strategy, it decouples supernet training
from architecture search, making it more efficient and robust in practice.
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4.4 Sensitivity Analysis of the Threshold η
Here, we analyze the effect of the threshold η used in subgraph selection space. Figure 3 shows
the impact of varying η. As can be observed, model performance continues to get better as
the threshold η grows. When the threshold η = 3, the model performance nears saturation,
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Figure 3: Performance given different hyperparameter η.

as larger thresholds do not lead to fur-
ther improvements. This is likely be-
cause most of the essential informa-
tion for DDI prediction is contained
within the 3-hop ego-subgraphs of
target drugs. Intuitively, larger sub-
graphs may provide additional use-
ful information. However, in prac-
tice, due to the inherent biases of the
search algorithm, achieving an opti-
mal model may be challenging. When
η is too large, it may introduce noise
and dilute the critical information. A
similar phenomenon has been found in the existing work SumGNN [12]. Besides, excessively large
thresholds η will only lead to unnecessary expansion of the search space and higher computational
costs.

4.5 Performance Comparison in S1 settings

To further validate the effectiveness of our method, we use the S1 setting in the EmerGNN [13] method,
to predict drug-drug interactions between emerging drugs and existing drugs. The experimental
results are shown in Table 4. A significant performance drop from the transductive setting (S0) to the
inductive setting (S1) demonstrates that DDI prediction for new drugs is more challenging. Although
Emergnn, which is specifically designed for new drug prediction, achieves optimal performance,
CSSE-DDI still demonstrates impressive results, outperforming existing GNN-based and subgraph-
based methods. This strong performance is largely due to the robust learning capability of NAS
technology in handling unknown data.

Table 4: Experimental results in S1 setting.

Dataset Dataset 1: DrugBank Dataset 2: TWOSIDES
Task Type Multi-class Multi-label

Methods F1 Score Accuracy Cohen’s κ ROC-AUC PR-AUC Accuracy

CompGCN 30.98±3.26 52.76±0.46 37.87±1.28 84.83±1.02 83.68±1.86 74.64±0.79

Decagon 11.39±0.79 32.56±0.92 20.29±1.33 57.49±1.75 59.38±1.09 52.27±1.48

SumGNN 26.57±1.59 44.30±1.04 40.24±1.26 80.02±2.17 78.42±1.62 69.81±1.77

KnowDDI 31.14±1.24 53.44±1.73 43.93±1.17 84.23±2.63 82.58±1.94 74.72±1.51

EmerGNN 58.13±1.36 69.53±1.97 62.19±1.62 87.42±0.39 86.20±0.71 79.23±0.54

CSSE-DDI 37.24±1.13 58.57±0.85 49.97±1.01 88.33±0.52 86.47±0.27 80.01±0.39

4.6 Case Study

4.6.1 Fine-grained Subgraph Selection

DB00682

DB00233

DB00945

DB06228

(DB00945, anticoagulant activities , DB00682)
Subgraph scope: (1,1)

DB00880

(DB00880, therapeutic efficacy , DB00562)
Subgraph scope: (1,2)

DB00562

DB00381

DB00289

DB00234

therapeutic 
efficacy

Figure 4: Visualization of the searched subgraphs corre-
sponding to the specific drug pairs.

We visualize exemplar query-specific
subgraphs from the DrugBank dataset
in Figure 4, highlighting domain
concepts such as pharmacokinetics,
metabolism, and receptor interactions.
As shown, CSSE-DDI can identify dis-
tinctive subgraphs containing seman-
tic information to support inference
for different queries, revealing pharma-
cokinetic and metabolic relationships.
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For example, to predict the interaction between DB00945 (Aspirin) and DB00682 (Warfarin), CSSE-
DDI searches out the subgraph scope (1, 1), as depicted on the left part of Figure 4. Firstly, it can be
seen from the figure that the therapeutic efficacy of DB00233 (Aminosalicylic acid) can decrease
when combined with DB00945 (Aspirin), suggesting similarity between the two drugs [65, 66] Given
that DB00233 (Aminosalicylic acid) may increase the anticoagulant activity of DB00682 (Warfarin)
and that DB00233 resembles DB00945 (Aspirin), it can be inferred that DB00945 (Aspirin) may
similarly increase the anticoagulant activity of DB00682 (Warfarin). This example demonstrates
that the identified subgraph contains sufficient semantic information to reason about the interaction
between DB00945 (Aspirin) and DB00682 (Warfarin).

4.6.2 Data-specific Encoding Function

CORR
SUM

MLP IDENTITY

CORR
MEAN

CONCAT RELU

MULT
MEAN

CONCAT IDENTITY

SUM
MEAN

CONCAT IDENTITY

MULT
MEAN

MLP RELU

MULT
SUM

CONCAT TANH

DrugBank TWOSIDES

Figure 5: The searched encoding functions on all benchmark
datasets.

Furthermore, we visualize the
searched structure of encoding
functions across all datasets in
Figure 5. It is clearly illustrated
that different combinations of the
designed operations, i.e., data-specific
encoding functions, are obtained.

In particular, the searched message-
computing functions contain more
CORR operations in the DrugBank
dataset, while more MULT functions
are searched in the TWOSIDES
dataset. The CORR function is non-
commutative [67], making it suitable
for modeling asymmetric interactions
(e.g., metabolic-based interactions) present in DrugBank. While MULT is suitable for modeling
symmetric relations (phenotype-based interactions) due to its exchangeability [68].

5 Conclusion

We propose a searchable framework, CSSE-DDI, for DDI prediction. Specifically, we design
refined search spaces to enable fine-grained subgraph selection and data-specific encoding function
optimization. To facilitate efficient search, we introduce a relaxation mechanism to convert the discrete
subgraph selection space into a continuous one. Additionally, we employ a subgraph representation
approximation strategy to accelerate the search process, addressing the inefficiencies of explicit
subgraph sampling. Extensive experiments demonstrate that CSSE-DDI significantly outperforms
state-of-the-art methods. Moreover, the search results generated by CSSE-DDI offer interpretability
in the context of drug interactions, revealing domain-specific concepts such as pharmacokinetics and
metabolism.
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A More Method Details

A.1 Subgraph Encoding Space

An expressive subgraph encoding space can be naturally designed by including human-designed
operations, the details of which are given in Table 5.

Table 5: The operations used in our search space.
Function name Operations

Message Computing Function SUB, MULT,
CORR, ROTATE

Aggregation Function SUM, MAX,MEAN

Combination Function MLP, CONCAT

Activation Function RELU, TANH,
IDENTITY

In particular, given the embedding hu of node u and the embedding hr of interaction r, the message
computing function takes the following form: MESSUB = hu − hr, MESMULT = hu ∗ hr, MESCORR =
hu ?hr, MESROTATE = hu ◦hr, where ? stands for the circular correlation operation [67], ◦ represents
the rotation operation [69].

A.2 Robust Search Algorithm

We adopt the single path one-shot (SPOS) training strategy to solve the customized search problem,
which decouple supernet training and architecture searching. In particular, definition 1 can be
transformed into a two-step optimaztion [54]:

argmaxα∈A,Gu,v∈Su,v

∑
(u,r,v)∈Dval

M(W∗;Gu,v;α), (8)

W∗ =argminW Eα∈A
∑

(u,r,v)∈Dtra

L(W;Gu,v;α), (9)

where W denotes the shared learnable weights in the supernet with its optimal value W∗ for all the
architectures in the overall search space.

Eq. (9),(8) represent the supernet training and architecture searching phase, respectively. In the
following, we will describe the detailed process of the two phases.

A.2.1 Supernet Training

In supernet training phase, a sub-model α is sampled according to the discrete distribution π(A).
Thus, Eq. (9) can be formulated as

W∗ =argminW Eα∼π(A)

∑
(u,r,v)∈Dtra

L(W;Gu,v;α), (10)

where the discrete distribution π(A) is set to uniform distribution.

First, we need to perform single path sampling to train the supernet until it converges. In the next step,
we need to partition the supernet into sub-supernets. which is a key step aiming to isolate operations
that are coupled with each other. This allows the supernet to be trained and converge more stably.

In our supernet, we use a message-aware partitions strategy due to the fact that the degree of
dissimilarity between the operations in the message computing function MES is much higher compared
with others. These operations focus on capture different semantic types of interactions, which has
been discussed in existing works [70, 69, 58]. Therefore, we partition four operations of the message
computing function of the first layer of the supernet, to improve the accuracy of the performance
estimation.

After partitioning operation, we initialize four sub-supernets with weights transferred from the
original supernet. Next, we train these sub-supernets to convergence by sampling single path. Here,
the supernet training phase is all done.
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A.2.2 Architecture Searching

After completing sub-supernet training phase, we have obtained well-trained supernet weights. In the
searching phase, Eq. (8) can be transformed as

argmaxGu,v∈Su,v

∑
(u,r,v)∈Dval

M(W∗;Gu,v;α), (11)

s.t. argmaxα∈A
∑

(u,r,v)∈Dval

M(W∗;Gu,v;α), (12)

For suugraph encoding function searching in Eq. (12), following [71], we adopt stochastic relaxation
on α and natural policy gradient strategy [72] to obtain the optimal subgraph encoding function α∗.
For subgraph selection in Eq. (11), we obtain the optimal subgraph G∗u,v by preserving the subgraph
with the largest probability pi,ju,v , i.e.,

zi,ju,v = f(Gi,ju,v), (13)

βi,ju,v = g(zi,ju,v), (14)

pi,ju,v =
exp(log(βi,ju,v + Gi,j)/τ)∑η

i′,j′=1 exp(log(β
i′,j′
u,v + Gi′,j′)/τ)

, (15)

G∗u,v = argmax
Gi,j
u,v

pi,ju,v(Gi,ju,v ∈ Su,v). (16)

B More Experiment Setting

B.1 Datasets

Experiments are performed on two public benchmark DDI datasets: DrugBank and TWOSIDES.

DrugBank DrugBank dataset contains 1,710 drugs and drug pairs, which are related to 86 types of
pharmacological interactions between drugs, such as increase of anticoagulant activity, decrease of
excretion rate and etc.

TWOSIDES TWOSIDES dataset contains 604 drugs and drug pairs with 200 drug side effects as
interaction labels. For each edge, it may be associated with multiple interactions.

The detailed descriptions for datasets are presented in Table 6 and Table 7.

Table 6: The statistics of the datasets.

Dataset #nodes #edges #interaction types

DrugBank 1,710 134641 86
TWOSIDES 604 57778 200

Table 7: Diverse semantic properties in drug-drug interactions.

Dataset Interaction Type Examples Semantic Property

DrugBank Metabolic levels-based #Drug1 may decrease the
excretion rate of #Drug2

asymmetry
(r(x, y) ; r(y, x))

TWOSIDES Phenotype-based Combination of #Drug 1 and
#Drug 2 may cause headaches

symmetry
(r(x, y)⇒ r(y, x))

B.2 Evaluation Metric

We follow [12] to evaluate our method. Specifically, in terms of the multi-class prediction on
DrugBank, we followc[12] and evaluate the performance by three metrics: (i) Macro F1 score (Macro
F1) is computed by taking the arithmetic mean (aka unweighted mean) of all the per-class F1 scores.
(ii) Accuracy (ACC) is calculated by dividing the number of correct predictions by the total prediction
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number. (iii) Coken’s Kappa (Cohen’s κ) measures inter-rater reliability. As to the multi-label
prediction on TWOSIDES, we consider the following measure and use the average performance
over all interaction types: (i) ROC-AUC (AUROC) stands for “Area Under the Curve (AUC)” of the
“Receiver Operating Characteristic (ROC)” curve. (ii) PR-AUC (AUPRC) is the average area under
precision-recall curve. (iii) AP@50 is the average precision at 50.

B.3 Implementation and Hyperparameters

All the experiments are implemented in Python with the PyTorch framework [64] and run on a server
machine with single NVIDIA RTX 3090 GPU with 24GB memory and 64GB of RAM. Our code is
added in the supplementary material.

For CSSE-DDI, we set the epoch to 400 for training supernet and set the epoch to 400 for training
sub-supernets. We set the the temperature parameter as 0.05. Repeat 5 times with different seeds, we
can get 5 candidates. The searched candidates are finetuned individually with the hyper-parameters.
In the stage of fine-tuning, we use the ReduceLROnPlateau scheduler to adjust the learning rate
dynamically. Each candidate has 10 hyper steps. In each hyper step, a set of hyperparameter will be
sampled from Table 8.

Table 8: Hyperparameters we used during the fine-tuning stage.
Hyperparameter Value range

Learning rate [10−3.1, 10−2.9]

Weight decay [10−5, 10−3]

C More Experimental Results

C.1 Subgraph Scope Distribution Analysis

We visualize the learned distributions of subgraph scope on all datasets by using CSSE-DDI in
Figure 6. By comparing the distributions across different benchmarks, we have the following
observation: CSSE-DDI can effectively learn different subgraph scope distributions for various
datasets. By identifing specific subgraph scopes for different queries, CSSE-DDI is able to precisely
control the extent of information propagation required for reasoning about the interactions of different
drug pairs. In addition, our method can skip some subgraph scopes if they are not optimal for any
queries. For example, no queries are assigned to the propagation scope (3, 3) on TWOSIDES dataset.
It is worth mentioning that our searched subgraph scopes are consistent with the sensitivity analysis
results for the hop of subgraph in SumGNN [12], which further validates the effectiveness of our
approach.

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)
Subgraph Scope Selection
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Figure 6: Distribution of the searched subgraph scopes by CSSE-DDI on all benchmark datasets.
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D Some Discussions about Checklist

D.1 Limitations

There are three limitations for CSSE-DDI. (1) CSSE-DDI is focused on method design rather than
system design. In the future, we will co-design the algorithm and the system to further improve the
efficiency. (2) At present, CSSE-DDI only search for data-specific components of subgraph-based
pipeline, while hyper-parameters are also important for DDI prediction. A promising direction is to
explore how to efficiently search network architectures and hyper-parameters simultaneously.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims made, including the
contributions made in our paper and important assumptions and limitations.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the limitations in Section D.1 of the Appendix.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our paper does not include theoretical results.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the complete code that runs correctly and hyperparameter con-
figurations in the supplemental material and Section B.3 to ensure reproducibility and
transparency.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the datasets, the complete code that runs correctly and hyperparam-
eter configurations in the supplemental material and Section B.3 to ensure reproducibility
and transparency.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the data splits, hyperparameter configurations, and other experi-
mental details in the supplemental material and Section B.3 to ensure reproducibility and
transparency.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All of the methods are run for five times on the different random seeds with
mean value and standard deviation reported on the testing data, as shown in Table 2.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the configuration of running environment in the supplemental
material and Section B.3 to ensure reproducibility and transparency.

24



Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We would claim that this work does not raise any ethical concerns. Besides, this
work does not involve any human subjects, practices to data set releases, potentially harmful
insights, methodologies and applications, potential conflicts of interest and sponsorship,
discrimination/bias/fairness concerns, privacy and security issues, legal compliance, and
research integrity issues.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special considera-

tion due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We believe that this work is expected to have a positive impact in the field
of health care and medicine, and by predicting drug-drug interactions, the method has a
positive effect in reducing experimental costs and assisting in the prediction of drug-drug
interactions.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original paper that produced the code package or dataset.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The assets we submitted have detailed documentation.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.
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• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribution

of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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