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Abstract

Recent advances in multimodal vision and lan-001
guage modeling have predominantly focused002
on the English language, mostly due to the003
lack of multilingual multimodal datasets to004
steer modeling efforts. In this work, we ad-005
dress this gap and provide xGQA, a new mul-006
tilingual evaluation benchmark for the visual007
question answering task. We extend the es-008
tablished English GQA dataset (Hudson and009
Manning, 2019) to 7 typologically diverse lan-010
guages, enabling us to detect and explore cru-011
cial challenges in cross-lingual visual ques-012
tion answering. We further propose new013
adapter-based approaches to adapt multimodal014
transformer-based models to become multilin-015
gual, and—vice versa—multilingual models016
to become multimodal. Our proposed meth-017
ods outperform current state-of-the-art multi-018
lingual multimodal models (e.g., M3P) in zero-019
shot cross-lingual settings, but the accuracy020
remains low across the board; a performance021
drop of around 38 accuracy points in target lan-022
guages showcases the difficulty of zero-shot023
cross-lingual transfer for this task. Our results024
suggest that simple cross-lingual transfer of025
multimodal models yields latent multilingual026
multimodal misalignment, calling for more so-027
phisticated methods for vision and multilin-028
gual language modeling. The xGQA dataset029
is available online at: [URL].030

1 Introduction031

Transformer-based architectures (Vaswani et al.,032

2017) have become ubiquitous in NLP (Devlin033

et al., 2019; Liu et al., 2019; Conneau et al., 2020,034

inter alia) and in computer vision (CV) (Carion035

et al., 2020; Dosovitskiy et al., 2021), offering un-036

matched task performance. Having a shared archi-037

tecture for multiple modalities opened up possibil-038

ities for effective fusion of information, yielding039

impressive performance gains across various mul-040

timodal tasks such as image captioning, phrase041

grounding, visual question answering, referring ex-042
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Who is flying through the sky? 
Wer fliegt durch die Luft?
আকােশর মেধধ্যে িদেয় ĺক উড়েছ?
Quem está voando pelo céu?
Кто летает по небу?
谁在天空中飞过？

누가 하늘을 날고 있습니까?
Siapa yang sedang terbang melintasi langit?

Skateboarder

Figure 1: Example taken from the xGQA dataset with
the same question uttered in 8 languages.

pression comprehension and image-text retrieval 043

(Lu et al., 2019; Tan and Bansal, 2019; Li et al., 044

2020b; Zhang et al., 2021; Ni et al., 2021; Ka- 045

math et al., 2021). Yet, progress in this area has 046

been limited mostly to the English language, as the 047

main multimodal datasets consist only of English 048

text. Due to the scarcity of multilingual evaluation 049

benchmarks, there has been limited development 050

of models that tackle this joint problem. 051

Aiming to address this gap, in this paper we pro- 052

pose xGQA, a multilingual evaluation benchmark 053

for the visual question answering task, extending 054

the monolingual English-only GQA dataset (Hud- 055

son and Manning, 2019). For xGQA we manually 056

translate and adapt the balanced GQA test-dev set 057

into 7 new languages from 7 language families, 058

covering 5 distinct scripts; see Figure 1 and Ta- 059

ble 1 later. In addition, we provide new fixed data 060

splits to guide cross-lingual few-shot learning ex- 061

periments, where only a small number of examples 062

in the target language are utilized. 063

As pretraining is (i) notoriously computation- 064

ally expensive for high-resource languages and (ii) 065

only limited amounts of multilingual multimodal 066

resources are available, we also propose compu- 067

tationally efficient adapter-based (Houlsby et al., 068
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2019) approaches as additional baselines for con-069

structing multilingual multimodal models. In a070

nutshell, we extend multimodal models pretrained071

only on English text (Zhang et al., 2021) to be-072

come multilingual and—vice versa—multilingual073

models (Devlin et al., 2019) to become multimodal.074

To this end, we follow the approaches of Artetxe075

et al. (2020) and Pfeiffer et al. (2020b, 2021) and076

extend monolingual and multilingual models to077

new languages and scripts via learning new tok-078

enizers and corresponding word-embedding matri-079

ces, as well as adapters for the target languages.080

To transfer the respective multilingual multimodal081

adapter-based models to the target task, we pro-082

pose a novel modality-specific split architecture,083

which uses modality dependent adapter weights084

(see Figure 2 for an illustration of the architecture).085

Our results clearly indicate that the proposed086

adapter-based architecture outperforms the recent087

state-of-the-art pretrained multilingual multimodal088

M3P model (Ni et al., 2021) in zero-shot cross-089

lingual settings. However, the overall performance090

of zero-shot transfer remains low across the board,091

with an average drop of around 38 accuracy points092

across target languages. Using a small number of093

target language examples in a few-shot setup con-094

siderably improves performance for all approaches,095

but cross-lingual transfer performance still lags096

substantially behind source language performance.097

This demonstrates the inherent difficulty of the task,098

even though the corresponding questions are ar-099

guably simple, containing only 8.5 words on aver-100

age (see Figure 1).101

Contributions. 1) We propose the first evaluation102

benchmark for cross-lingual visual question an-103

swering, covering 7 diverse target languages; 2) we104

propose novel adapter-based approaches for the105

creation of multilingual multimodal models; 3) we106

systematically benchmark state-of-the-art and new107

multilingual multimodal models in zero-shot and108

few-shot learning setups, demonstrating the diffi-109

culty of the proposed task and serving as strong110

reference points for future work; 4) we provide a111

thorough analysis of the different approaches, high-112

lighting the aspects and question types that lead to113

the most common model failures, again motivating114

future work in this domain.115

2 Background and Related Work116

Multilingual Language Models. Pretrained mul-117

tilingual transformer-based LMs such as mBERT118

(Devlin et al., 2019) and XLM-R (Conneau et al., 119

2020) adopt the same pretraining regime as their 120

respective monolingual counterparts: BERT (De- 121

vlin et al., 2019) and RoBERTa (Liu et al., 2019). 122

They are pretrained via self-supervised masked lan- 123

guage modelling objective (MLM) on concatenated 124

text corpora of more than 100 languages, where 125

text is tokenized using WordPiece, SentencePiece 126

or BytePair encodings. These multilingual mod- 127

els have been shown to work surprisingly well for 128

cross-lingual tasks, despite the fact that they do 129

not rely on direct cross-lingual supervision (e.g., 130

parallel data, translation dictionaries; Pires et al., 131

2019a; Wu and Dredze, 2019; Artetxe et al., 2020; 132

Hu et al., 2020; K et al., 2020; Rust et al., 2021). 133

Vision and Language Models. Most transformer- 134

based multimodal models (Lu et al., 2019; Tan and 135

Bansal, 2019; Chen et al., 2020; Li et al., 2020a; 136

Gan et al., 2020; Li et al., 2020b; Bugliarello et al., 137

2020; Ni et al., 2021, inter alia) jointly encode text 138

tokens and image region features by preprocess- 139

ing images using object detection models—such 140

as Faster R-CNN (Ren et al., 2015)—to extract 141

features for regions of interest (RoI) (Anderson 142

et al., 2018). The image region features are passed 143

through an affine layer, which learns to project the 144

region features to the joint embedding space of the 145

multimodal transformer. The bounding box coor- 146

dinates of the RoI act as positional embeddings 147

for the visual features. As such, they undergo an 148

affine transformation to the embedding space and 149

are combined with their respective image region 150

representation. The position-aware image region 151

embeddings get passed into the transformer. The 152

multi-head attention then attends over all text and 153

image inputs at every layer, learning a joint repre- 154

sentation of both modalities. On the other hand, 155

Kamath et al. (2021) avoid using object detectors as 156

a black-box for pre-extracting these region features 157

and instead make it a central part of the multimodal 158

transformer architecture. Training the object de- 159

tector end-to-end with the multimodal transformer 160

adds flexibility and better representation capacity. 161

Similar to MLM, multimodal transformer-based 162

models are trained with self-supervised objectives 163

such as masked feature regression, masked ob- 164

ject detection, masked attribute detection, and con- 165

trastive losses such as cross-modality matching 166

(Tan and Bansal, 2019). Typically, image caption- 167

ing datasets are used for pretraining such as COCO 168

(Lin et al., 2014), Flickr30k (Plummer et al., 2015), 169
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Conceptual Captions (CC) (Sharma et al., 2018),170

and SBU (Ordonez et al., 2011). Similar to uni-171

modal language models, the [CLS] token is used as172

a contextual representation for classification tasks.173

Multilingual multimodal models have also been174

proposed recently: M3P (Ni et al., 2021) is trained175

on the Wikipedias of 50 different languages and the176

English multimodal CC dataset. In order to align177

tokens of languages other than English with im-178

age representations, M3P utilizes a code-switching179

mechanism, where words of the English CC exam-180

ples are randomly replaced with words from corre-181

sponding bilingual dictionaries. In UC2, Zhou et al.182

(2021) augment English multimodal datasets with183

other languages via machine translation and pro-184

pose masked region-to-token modeling and visual185

translation language modeling.1186

Adapters (Rebuffi et al., 2017; Houlsby et al.,187

2019) have been introduced as a more efficient fine-188

tuning strategy for transfer learning in NLP and CV.189

Instead of fine-tuning all the weights of a pretrained190

model on the target task, small feed-forward layers191

are introduced at each layer of the pretrained model.192

During task fine-tuning, only the adapter weights193

are updated, while the pretrained parameters re-194

main fixed/frozen. Adapters have been shown to195

work well for machine translation (Bapna and Firat,196

2019; Philip et al., 2020) and cross-lingual trans-197

fer (Pfeiffer et al., 2020b, 2021; Üstün et al., 2020).198

Datasets. Pretraining and fine-tuning data for199

multilingual multimodal models is typically based200

on (multimodal information from) Wikipedia201

(WikiCaps, WIT, Schamoni et al., 2018; Srini-202

vasan et al., 2021), or on available downstream203

task data. Multi30k (Elliott et al., 2016) is a multi-204

lingual image captioning dataset for retrieval-type205

questions, covering English, German, French, and206

Czech; GEM (Su et al., 2021) covers image and207

video retrieval tasks across 20 and 30 different lan-208

guages, respectively; HowTo100M (Huang et al.,209

2021) is a multilingual and multimodal pretrain-210

ing dataset for image and video retrieval; Multi-211

Subs (Wang et al., 2021) focuses on fill-in-the-212

blank tasks and lexical translation, covering En-213

glish, Spanish, German, Portuguese, and French.214

In contemporary work Liu et al. (2021) propose215

MaRVL, a binary multilingual question answering216

dataset similar to NLVR2 (Suhr et al., 2019), span-217

ning 5 typologically diverse languages (Chinese,218

1The model weights of UC2 were not released by the time
of experimentation.

Tamil, Swahili, Indonesian, and Turkish). 219

Previous datasets predominantly focus on (ar- 220

guably simpler) retrieval-type tasks, only cover a 221

small set of similar languages (e.g., Multi30k, Mul- 222

tiSubs), or only cover binary questions. In contrast, 223

we propose the first multilingual visual question 224

answering dataset, which covers a typologically 225

more diverse set of languages. 226

3 xGQA 227

The original English GQA dataset (Hudson and 228

Manning, 2019) was constructed by leveraging Vi- 229

sual Genome scene graphs (Krishna et al., 2017). 230

An English question engine that utilizes content 231

(i.e. information about objects, attributes, and rela- 232

tions provided) and structure (a linguistic grammar 233

that couples hundreds of structural patterns and 234

detailed lexical semantic resources) was used to 235

generate over 22 million diverse questions, which 236

are visually grounded in the image scene graphs. 237

Each question is associated with additional meta- 238

data such as structural types: (1) verify for yes/no 239

questions (e.g. "Do you see any cats?"), (2) query 240

for all open questions (e.g. "Who is wearing 241

jeans?"), (3) choose for questions that present two 242

alternatives to choose from (e.g. “Is it red or 243

blue?”), (4) logical which involve logical infer- 244

ence (e.g. "Is the field soft and snowy"), and (5) 245

compare for comparison questions between two or 246

more objects (e.g. "Are all the animals zebras?"). 247

For further details regarding the metadata, we refer 248

the reader to Hudson and Manning (2019). 249

Dataset Design. The principal objective when de- 250

vising xGQA was to create a genuinely typologi- 251

cally diverse multimodal and multilingual evalua- 252

tion benchmark for visual question answering. We 253

utilize the balanced2 test-dev set of GQA, which 254

consists of 12,578 questions about 398 images.3 255

Due to the defined structural patterns, the formu- 256

lation of the questions is simple, with an average 257

length of 8.5 words.4 The resulting xGQA dataset 258

2To reduce biases in the conditional answer distribution
Hudson and Manning (2019) utilize the structural metadata to
downsample and create balanced datasets that are more robust
against shortcuts and guesses.

3We chose to translate the test-dev set of GQA, as the
labels for test-std are not released.

4For this reason, we chose to hire university students that
are currently conducting their (Computer Science or Com-
putational Linguistics) studies in English and are all fluent
English speakers to translate the question into their native
language. They were paid above the minimum hourly wage
of the country of their respective university.
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Language iso Family Script Speakers

English en IE:Germanic Latin 400M
German de IE:Germanic Latin 95M
Portuguese pt IE:Romance Latin 250M
Russian ru IE:Slavic Cyrillic 150M
Indonesian id Austronesian Latin 43M
Bengali bn IE:Iranian Bengali 230M
Korean ko Koreanic Korean 77M
Chinese zh Sino-Tibetan Chinese 1.2B

Table 1: Languages covered by xGQA. IE stands for
Indo-European.

Set Test Dev Train

#Img 300 50 1 5 10 20 25 48
#Ques 9666 1422 27 155 317 594 704 1490

Table 2: Few-shot dataset sizes. The GQA test-dev set
is split into new development, test sets, and training
splits of different sizes. We maintain the distribution of
structural types in each split.

covers translations in 7 languages, each represent-259

ing a distinct language family, and contains exam-260

ples written in 5 different scripts (see Table 1).261

Few-Shot Data Splits. In order to conduct cross-262

lingual few-shot learning experiments, we provide263

new data splits of different sizes. We split on im-264

ages and add all questions associated with the im-265

age to the respective set. The development and test266

sets consist of 50 and 300 images, respectively. The267

training splits consist of 1, 5, 10, 20, 25, and 48268

images, see Table 2. We ensure that the distribution269

of structural types within each set is maintained.270

xGQA is the first truly typologically diverse mul-271

tilingual multimodal benchmark, unlocking new ex-272

perimentation and analysis opportunities in cross-273

lingual zero-shot and few-shot scenarios. While274

the questions in xGQA are intuitive and easy for275

humans to solve, we later show that current state-276

of-the-art models still have difficulty with transfer.277

4 Baselines278

To analyze the performance and current gaps on279

xGQA, we first evaluate the recently proposed M3P280

model, which has been pretrained on multilingual281

and multimodal data. However, pretraining is com-282

putationally expensive and only limited amounts283

of multilingual multimodal resources are available.284

Therefore, we further propose new and more ef-285

ficient approaches that (1) extend state-of-the-art286

multilingual language models to the multimodal287

domain and (2) provide multilingual capabilities to288

state-of-the-art multimodal models.289

Unless noted otherwise, we follow the predom-290

inant fine-tuning strategy for GQA; a prediction291
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Figure 2: Architecture of an adapter-based multilingual
multimodal model. Text and image inputs share the
weights of the multi-head attention (MHA) and feed-
forward (FFN) layers, as well as the language and
multimodal align adapters. Each modality is passed
through a modality specific task adapter, the outputs
of which are concatenated.

head is placed on top of the output of a pretrained 292

transformer. All possible 1853 answers of the GQA 293

task are mapped to a class label. The question as- 294

sociated with an image together with the position- 295

aware region features are passed as input to the 296

transformer, supervised using a cross-entropy loss.5 297

4.1 Multimodal→Multilingual 298

OSCAR+Emb. To extend a monolingual trans- 299

former LM to a multilingual domain, Artetxe et al. 300

(2020) fine-tune a new word-embedding layer in 301

the target language. Inspired by this idea, we now 302

describe how we extend the current state-of-the- 303

art monolingual multimodal transformer model 304

OSCAR+ (Zhang et al., 2021) to learn new em- 305

beddings for the target languages. 306

In the language-extension phase, we replace the 307

embedding matrix of OSCAR+ with a randomly 308

initialized embedding matrix.6 The transformer 309

weights are frozen while only the newly introduced 310

embeddings are fine-tuned on unlabeled text data 311

of the target language with the MLM objective. 312

In the target-task phase, the original OSCAR+ 313

model is fine-tuned on the English training data of 314

GQA, where the transformer layers are fine-tuned, 315

but the embedding layer is frozen. During infer- 316

ence, the embedding layer is replaced with the tar- 317

get language’s embedding layer. 318

5For instance, we use this strategy to fine-tune all parame-
ters of M3P on the GQA training data.

6Following Pfeiffer et al. (2021), we copy the embeddings
of lexically overlapping tokens (if such tokens exist) from the
original embedding space to the new embedding space, as it
typically works better than fully random initialization.
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OSCAR+Ada. We extend this by adding adapters.319

In the language-extension phase we follow Pfeif-320

fer et al. (2021) in order to extend the model to321

the target languages. Similar to OSCAR+Emb, we322

train a new embedding layer. We further add lan-323

guage adapters at every transformer layer. Given324

that OSCAR+ is trained on English text, we fol-325

low Pfeiffer et al. (2020b) when training English326

language adapter modules, without replacing the327

embedding matrix. The transformer weights are328

frozen while only the newly introduced embeddings329

and language adapter weights are fine-tuned on un-330

labeled text data of the language.331

For the target-task phase, we propose a novel332

modality-split architecture (see Figure 2) inspired333

by the cross-lingual transfer method of Pfeiffer et al.334

(2020b). At each transformer layer, text and image335

representations are passed through the pretrained336

multi-head attention (MHA) and feed-forward337

(FFN) layers. Both image and text representations338

are also passed through the pre-trained language339

adapters. Each modality is then passed through340

modality-specific text and image task adapters341

and next through a shared multimodal alignment342

adapter.7 We follow Pfeiffer et al. (2020b), freez-343

ing transformer, embedding and language adapter344

weights during training, thus fine-tuning only the345

task and multimodal aligner adapter weights, to-346

gether with the prediction head. At inference time,347

the embedding layer and the language adapters are348

replaced with the target language weights.349

4.2 Multilingual→Multimodal350

mBERTAda. For experiments where we extend351

a multilingual model to become multimodal, we352

utilize mBERT (Devlin et al., 2019).353

Given that mBERT is able to represent many354

different languages, it is not necessary to learn new355

embedding layers for the target languages in the356

language-extension phase. Instead, we utilize the357

mBERT-compatible language adapters available on358

AdapterHub.ml (Pfeiffer et al., 2020a).8359

For the target-task phase, we follow OSCAR+360

for the image representation layer, where image361

7We have compared multiple different architectures as il-
lustrated in Figure 6 in the Appendix, finding this setup to
perform best. We present results of the alternative architec-
tures also in the Appendix.

8While all xGQA languages already have readily available
language adapters on AdapterHub, any hypothetical exten-
sion of experiments to languages without such adapters would
involve training their dedicated language adapters, e.g., fol-
lowing the procedure of Pfeiffer et al. (2020b).

features are combined with their respective posi- 362

tional information and passed through an affine 363

transformation layer. We experiment with the same 364

adapter architecture from Figure 2, as described for 365

OSCAR+Ada. We again freeze transformer, embed- 366

ding and language adapter weights during training. 367

However, in contrast to OSCAR+∗, we randomly 368

initialize and fine-tune the affine image transforma- 369

tion layer. We also fine-tune the task, multimodal 370

aligner adapter weights, and prediction head, all on 371

the GQA task. At inference time, the embedding 372

layer and the language adapters are replaced with 373

the corresponding target language weights. 374

5 Experimental Setup 375

5.1 Language-Extension Phase 376

For OSCAR+Emb and OSCAR+Ada, we follow the 377

general setups proposed by Pfeiffer et al. (2020b, 378

2021). We train a new word-piece tokenizer for 379

each target language with a vocabulary size of 30k. 380

We fine-tune the randomly initialized embedding 381

layer, and (for OSCAR+Ada) adapter layers for 382

100k update steps with a batch size of 64 and a 383

learning rate of 1e−4. For mBERTAda, we utilize 384

the language adapters from AdapterHub.ml. 385

5.2 Fine-tuning on GQA 386

We follow the standard setup proposed by Li et al. 387

(2020b), passing the representation of the [CLS] to- 388

ken through a prediction head. We fine-tune the re- 389

spective models using a cross-entropy loss with la- 390

bels being all possible answers in the GQA dataset. 391

Following prior work (Li et al., 2020b), we use 392

a batch size of 192 and train for 5 epochs on the 393

unbalanced GQA training portion. 394

M3P. We fine-tune all weights of the pretrained 395

model with a learning rate of 3e−5. 396

OSCAR+Emb, OSCAR+Ada, and mBERTAda. 397

We use the pretrained weights and image region 398

features provided by Zhang et al. (2021). However, 399

we do not pass the object attribute labels as inputs 400

to the model. The object attribute labels are in En- 401

glish and utilizing them in cross-lingual scenarios 402

is non-trivial.9 We leave this for future work. 403

For the OSCAR+Emb setting, we fine-tune the 404

transformer weights and the prediction head and 405

freeze the embedding layer, using a learning rate 406

9The replaced tokenizer and embedding representations of
the target language potentially do not adequately represent En-
glish terms, resulting in a misalignment between the question
(in the target language) and the object attributes (in English).
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model en de pt ru id bn ko zh mean

M3P 58.43 ±1.4 23.93 ±3.2 24.37 ±4.0 20.37 ±3.4 22.57 ±6.1 15.83 ±3.6 16.90 ±3.8 18.60 ±1.0 20.37
OSCAR+Emb 62.23 ±0.3 17.35 ±1.0 19.25 ±0.4 10.52 ±4.0 18.26 ±0.4 14.93 ±2.0 17.10 ±1.8 16.41 ±3.2 16.26
OSCAR+Ada 60.30 ±0.4 18.91 ±0.8 27.02 ±2.3 17.50 ±1.2 18.77 ±0.3 15.42 ±2.0 15.28 ±2.7 14.96 ±2.1 18.27
mBERTAda 56.25 ±0.5 29.76 ±2.3 30.37 ±1.8 24.42 ±1.1 19.15 ±2.8 15.12 ±1.9 19.09 ±0.9 24.86 ±1.8 23.25

Table 3: Zero-shot transfer results when transferring from English GQA. Average accuracy and standard deviation
are reported. Best results are highlighted in bold; mean scores are not averaged over the source language (English).

of 3e−5. For the OSCAR+Ada and mBERTAda407

settings, we add adapter layers as described in §4.1408

and illustrated in Figure 2. We freeze all pretrained409

weights–including embeddings, transformer lay-410

ers, and language adapters–and only fine-tune the411

newly introduced adapters and the prediction head.412

For mBERTAda, we also add and train the affine im-413

age transformation layer. We fine-tune the adapter-414

based models with a learning rate of 1e−4.415

5.3 Zero-Shot Cross-Lingual Transfer416

For zero-shot cross-lingual evaluation, we utilize417

the model fine-tuned on the GQA training data and418

evaluate on the multilingual xGQA test data. The419

model checkpoint that performed best on the En-420

glish GQA validation data is selected for transfer.421

M3P. As the model is pre-trained to cover a large422

variety of languages, no additional steps are re-423

quired for cross-lingual transfer.424

OSCAR+Emb. We replace the English embedding425

layer with the target-language embedding layer.426

OSCAR+Ada. We replace the English embedding427

and language adapter layers with the embedding428

and adapters layers of the target language.429

mBERTAda. We replace the language adapter lay-430

ers with the adapters layers of the target language.431

5.4 Few-Shot Cross-Lingual Transfer432

For few-shot cross-lingual scenarios we follow433

Lauscher et al. (2020) and start from the same fine-434

tuned model as for zero-shot transfer (see §5.3).435

We then fine-tune the same parts of the model as436

when training on the English training data as in437

§5.2, but on the small portions of multimodal data438

available in the target language. We train on the439

different data splits, consisting of 1, 5, 10, 15, 20,440

25, and 48 images (see Table 2). We experiment441

with training for a different number of epochs (5,442

10) using different learning rates (1e−5 and 5e−5443

for M3P and OSCAR+Emb, and 5e−5 and 1e−4444

for OSCAR+Ada and mBERTAda). We find that445

training for longer and with a larger learning rate446

performed best for all settings.447

6 Results and Discussion 448

The main results are presented in Table 3 (zero-shot 449

experiments) and in Table 4 (few-shot). 450

6.1 Zero-Shot Cross-Lingual Transfer 451

One of our core findings is that multimodal zero- 452

shot cross-lingual transfer is extremely difficult; we 453

witness an average drop in accuracy of more than 454

38 points on the target languages of the xGQA 455

dataset compared to English GQA scores (e.g., 456

compare the results with M3P). 457

While, as expected, OSCAR+ achieves the best 458

accuracy on the English test set, the massively 459

multilingual models—M3P and mBERT—perform 460

considerably better in cross-lingual transfer.10 This 461

indicates, that joint multilingual pretraining is im- 462

portant and a simple multilingual adapter-based or 463

embedding-based extension of monolingual mod- 464

els achieves inferior cross-lingual performance. 465

While the pretraining method M3P achieves bet- 466

ter accuracy on the English test set, the adapter- 467

based multimodal extension of mBERT outper- 468

forms M3P in cross-lingual transfer. We hypothe- 469

size that, when fine-tuning all transformer weights 470

on monolingual multimodal data, the cross-lingual 471

alignment breaks within M3P. However, this does 472

not happen in adapter-based settings, as the multi- 473

lingual weights are frozen and thus remain intact. 474

Analysis of Structural Question Types. Figure 3 475

depicts our analysis of the structural question types 476

in zero-shot experiments. We observe large drops 477

10The superior accuracy of OSCAR+ on the English test
set is expected as the model was pretrained on large English
multimodal data. We find that fine-tuning all transformer
weights (OSCAR+Emb) achieves slightly better results than
only training adapter weights (OSCAR+Ada). Our slightly
lower scores compared to results by Zhang et al. (2021) can
be explained by us (1) not fine-tuning the embedding layer,
and (2) not utilizing the attribute labels. Further, previous
works that focus only on English add the official validation
set to the training set, use the official test-dev set as their
development set, and report their test scores of the official
GQA test benchmark test-std for which labels are not available.
Our scores follow the training splits, where we use the official
test-dev set as the final test-set we report our results on, as
described in dataset construction.
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Figure 3: Zero-shot accuracy across different lan-
guages and structural question types from xGQA.

in accuracy especially for query and choose type478

questions. Query type questions are free-form and479

thus semantically the most difficult to answer, even480

in the source language (English). This explains481

the overall low accuracy across all approaches in482

zero-shot settings for this question type.483

This is in stark contrast with the choose-type484

questions, which the models perform very well on485

in the source language. However, we report a sub-486

stantial accuracy drop in zero-shot cross-lingual487

transfer. This decrease is most likely due to the488

nature of the question formulation and the mod-489

elling implementation. Choose-type questions are490

formulated such that the answer to the question is491

a word or phrase which appears in the question, i.e.492

"Is it red or blue?". The label classes, and conse-493

quently the prediction head, are constructed as a494

set of all answers appearing in the dataset. This495

means that the model learns a distributed repre-496

sentation of each answer in its final layer. Con-497

sequently, in cross-lingual transfer, the model is498

required to automatically align the question’s op-499

tions "red" or "blue" (translated in their respective500

language), with their English latent representation501

of the model’s prediction head. The very low re-502

sults in this category indicate that this cross-lingual503

word alignment breaks in zero-shot scenarios.504
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Figure 4: Few-shot accuracy (with 48 images, see Ta-
ble 2) across different languages and structural ques-
tion types from xGQA.

Overall, zero-shot transfer with our proposed 505

multimodal adapter-based extension of mBERT 506

(mBERTAda) achieves the best accuracy, with al- 507

most 3 points increase over M3P and almost 5 508

points increase over OSCAR+. However, the over- 509

all accuracy of all approaches remains low in com- 510

parison to the results in English. This indicates 511

that zero-shot multimodal cross-lingual transfer is 512

extremely difficult, most likely due to the misalign- 513

ment issue between visual and cross-lingual inter- 514

nal representations. To investigate this conjecture 515

further, we run similar tests in few-shot setups, 516

which should potentially mitigate the misalignment 517

issue observed in zero-shot setups. 518

6.2 Few-Shot Cross-Lingual Transfer 519

The main results of few-shot experiments are pro- 520

vided in Table 4, while the plot illustrating the im- 521

pact of different amounts of training data is shown 522

in Figure 5. One crucial finding is that as expected, 523

utilizing an increasing amount of data instances in 524

the target language consistently improves accuracy 525

for all methods. This culminates in an improve- 526

ment of up to 20 accuracy points when specializ- 527

ing the model with only 48 images in the target 528

language. This indicates that a small number of 529

target-language examples supports the models in 530

7



Lang Model # Training Images
0 1 5 10 20 25 48

de

M3P 24.78 31.49 39.31 41.05 42.22 42.54 43.16
OSCAR+Emb 17.49 17.84 29.09 34.48 37.35 38.45 41.08
OSCAR+Ada 17.84 21.40 31.26 35.84 37.92 38.46 40.58
mBERTAda 32.41 33.87 37.44 39.15 40.65 41.63 42.71

pt

M3P 26.73 32.98 37.23 39.07 40.92 41.05 43.06
OSCAR+Emb 19.36 22.55 32.42 36.37 39.01 40.15 43.27
OSCAR+Ada 24.58 29.61 34.73 37.46 38.82 39.70 41.75
mBERTAda 31.45 33.27 37.31 38.88 40.51 41.03 42.62

ru

M3P 24.29 32.32 36.71 38.53 39.94 40.13 41.85
OSCAR+Emb 7.98 17.32 23.72 28.21 32.15 32.87 36.84
OSCAR+Ada 16.38 19.74 27.42 30.17 33.22 34.21 37.28
mBERTAda 25.51 26.47 31.69 32.47 34.93 35.53 37.42

id

M3P 18.74 31.37 37.24 38.65 41.07 42.00 43.12
OSCAR+Emb 17.89 21.09 29.76 33.59 36.69 37.31 40.51
OSCAR+Ada 18.52 23.94 31.45 34.60 37.26 37.97 40.60
mBERTAda 19.77 31.99 34.49 36.26 39.15 39.81 40.88

bn

M3P 17.59 17.33 26.94 31.09 34.58 35.27 37.96
OSCAR+Emb 13.35 17.40 21.67 26.61 31.94 32.78 36.97
OSCAR+Ada 13.96 15.60 22.35 27.20 31.25 31.81 35.45
mBERTAda 13.38 11.33 23.10 26.55 31.60 32.26 34.18

ko

M3P 19.70 22.94 32.28 35.50 37.72 37.84 38.61
OSCAR+Emb 15.11 16.43 19.99 24.78 29.48 30.43 35.59
OSCAR+Ada 12.25 15.48 20.73 25.97 31.37 32.20 35.41
mBERTAda 19.92 17.71 27.83 31.27 34.44 35.03 36.51

zh

M3P 19.66 27.76 36.15 38.21 40.48 40.53 42.55
OSCAR+Emb 12.66 14.77 19.17 22.13 27.97 29.08 33.24
OSCAR+Ada 13.20 15.12 19.67 22.74 26.81 28.19 31.69
mBERTAda 26.16 23.47 32.93 35.82 38.22 37.89 39.57

Table 4: Average accuracy of few-shot results, utiliz-
ing different amounts of training data. 0 presents the
best zero-shot results. These models are used as initial-
ization for the subsequent few-shot experiments. Bold
numbers indicate the best scores.

partially repairing its internal cross-lingual multi-531

modal alignment. Interestingly, we find that with532

as little as 5 images, and their corresponding ques-533

tions, M3P begins to outperform mBERTAda—the534

best performing zero-shot model.535

We again analyze the impact of few-shot learn-536

ing on the accuracy across different structural ques-537

tion types, with the results depicted in Figure 4.538

The overall accuracy increases across all types539

compared to zero-shot scenarios (cf., Figure 3).540

However, the most pronounced gains are reported541

for query and chose-type questions, on which the542

model performed the worst in zero-shot setups.543

This implies the improved alignment between la-544

tent multimodal and multilingual representations,545

achieved via fine-tuning the model on a small546

amount of examples in the target language.547

6.3 Language Transfer548

We witness cross-lingual transfer capability pat-549

terns similar to those shown by previous work,550

where our models perform best on typologically551

close languages (Pires et al., 2019b; Lauscher et al.,552

2020). Our models transfer best to German (de)553

and Portuguese (pt), both being part of the Indo-554

European (IE) language family and also sharing555
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Figure 5: Few-shot accuracy with different training
dataset sizes of the different approaches. Scores are
averaged over all languages.

the same script (Latin) with the source language 556

English (en). We see a small drop in accuracy 557

for Russian (ru), Indonesian (id), and Chinese (zh) 558

and a larger drop in accuracy for Bengali (bn) and 559

Korean (ko). All of these languages are typologi- 560

cally different to the source language and in most 561

cases do not share the same script. These differ- 562

ences highlight the importance of language diver- 563

sity in cross-lingual transfer. Our benchmark thus 564

enables experimentation and evaluation of multilin- 565

gual multimodal models on a representative set of 566

truly typologically diverse languages. 567

7 Conclusion 568

We have proposed xGQA, a first cross-lingual eval- 569

uation benchmark for the visual question answering 570

task. xGQA extends the English GQA by 7 typo- 571

logically diverse languages, covering 5 different 572

scripts. As additional baselines, we have further 573

proposed new adapter-based methods to extend 574

unimodal multilingual models to become multi- 575

modal and—vice-versa—monolingual multimodal 576

models to become multilingual. Our results have 577

indicated that 1) efficient adapter-based methods 578

slightly outperform the pretrained multilingual mul- 579

timodal model M3P in zero-shot scenarios, but 2) 580

the overall zero-shot cross-lingual transfer yields 581

harsh accuracy drops compared to the English per- 582

formance for all models in comparison. Further, 583

accuracy can be partially recovered via few-shot 584

learning, where small amounts of training data are 585

available in the target language. However, the large 586

gaps remain, suggesting the inherent complexity 587

of the cross-lingual task despite it being extremely 588

intuitive and easy to solve by (bilingual) humans. 589

We hope that our dataset and error analysis will 590

motivate future work on this task and, more broadly, 591

in the exciting emerging domain of multilingual 592

multimodal representation learning. 593
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Goran Glavaš. 2020. From zero to hero: On the728
limitations of zero-shot language transfer with mul-729
tilingual Transformers. In Proceedings of the 2020730
Conference on Empirical Methods in Natural Lan-731
guage Processing (EMNLP), pages 4483–4499, On-732
line. Association for Computational Linguistics.733

Gen Li, Nan Duan, Yuejian Fang, Ming Gong, and734
Daxin Jiang. 2020a. Unicoder-vl: A universal en-735
coder for vision and language by cross-modal pre-736
training. In The Thirty-Fourth AAAI Conference737
on Artificial Intelligence, AAAI 2020, The Thirty-738
Second Innovative Applications of Artificial Intelli-739
gence Conference, IAAI 2020, The Tenth AAAI Sym-740
posium on Educational Advances in Artificial Intel-741
ligence, EAAI 2020, New York, NY, USA, February742
7-12, 2020, pages 11336–11344. AAAI Press.743

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang,744
Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong745
Hu, Li Dong, Furu Wei, Yejin Choi, and Jianfeng746
Gao. 2020b. Oscar: Object-semantics aligned pre-747
training for vision-language tasks. In Computer748
Vision - ECCV 2020 - 16th European Conference,749
Glasgow, UK, August 23-28, 2020, Proceedings,750
Part XXX, volume 12375 of Lecture Notes in Com-751
puter Science, pages 121–137. Springer.752

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James753
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,754
and C. Lawrence Zitnick. 2014. Microsoft COCO:755
common objects in context. In Computer Vision756
- ECCV 2014 - 13th European Conference, Zurich,757
Switzerland, September 6-12, 2014, Proceedings,758
Part V, volume 8693 of Lecture Notes in Computer759
Science, pages 740–755. Springer.760

Fangyu Liu, Emanuele Bugliarello, Edoardo Maria761
Ponti, Siva Reddy, Nigel Collier, and Desmond El-762
liott. 2021. Visually grounded reasoning across lan-763
guages and cultures. In Proceedings of the 2021764

Conference on Empirical Methods in Natural Lan- 765
guage Processing, EMNLP 2021, Online, November 766
, 2021. 767

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 768
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 769
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 770
Roberta: A robustly optimized BERT pretraining ap- 771
proach. arXiv preprint, abs/1907.11692. 772

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan 773
Lee. 2019. Vilbert: Pretraining task-agnostic visi- 774
olinguistic representations for vision-and-language 775
tasks. In Advances in Neural Information Process- 776
ing Systems 32: Annual Conference on Neural Infor- 777
mation Processing Systems 2019, NeurIPS 2019, De- 778
cember 8-14, 2019, Vancouver, BC, Canada, pages 779
13–23. 780

Minheng Ni, Haoyang Huang, Lin Su, Edward Cui, 781
Taroon Bharti, Lijuan Wang, Dongdong Zhang, and 782
Nan Duan. 2021. M3P: learning universal represen- 783
tations via multitask multilingual multimodal pre- 784
training. In IEEE Conference on Computer Vision 785
and Pattern Recognition, CVPR 2021, virtual, June 786
19-25, 2021, pages 3977–3986. Computer Vision 787
Foundation / IEEE. 788

Vicente Ordonez, Girish Kulkarni, and Tamara L. Berg. 789
2011. Im2text: Describing images using 1 million 790
captioned photographs. In Advances in Neural In- 791
formation Processing Systems 24: 25th Annual Con- 792
ference on Neural Information Processing Systems 793
2011. Proceedings of a meeting held 12-14 Decem- 794
ber 2011, Granada, Spain, pages 1143–1151. 795

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aish- 796
warya Kamath, Ivan Vulić, Sebastian Ruder, 797
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A Appendix950

We experiment with different multimodal adapter951

architectures as illustrated in Figure 6. In initial952

experiments we find that splitting the modalities953

(settings 2-5) outperforms a joint adapter (setting954

1). However, a joint "alignment" architectures955

(settings 4-5) outperform settings where we only956

use modality-specific adapters (settings 2-3). We957

more thoroughly investigate settings 4-5 and re-958

port scores in Table 5. Interestingly we find that959

when only using the language adapter for the tex-960

tual inputs, cross-lingual accuracy drops for both961

OSCAR+ and mBERT; The difference is more pro-962

nounced for OSCAR+. We speculate that this is963

due to a latent misalignment of the representation964

spaces, partly due to the residual connection. Due965

to the better performance of setting 5, we have re-966

ported scores of this architecture in the main paper967

(as illustrated in Figure 2).968
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model Setting en de pt ru id bn ko zh mean

OSCAR+Ada 4 60.21 18.60 25.48 8.22 17.79 10.47 9.97 12.54 14.72
OSCAR+Ada 5 60.30 18.91 27.02 17.50 18.77 15.42 15.28 14.96 18.27
mBERTAda 4 57.83 27.86 28.88 22.87 20.86 14.74 18.30 24.39 22.56
mBERTAda 5 56.25 29.76 30.37 24.42 19.15 15.12 19.09 24.86 23.25

Table 5: Zero-shot transfer results on xGQA for the different adapter architecture settings (as illustrated in Figure 6)
when transferring from English GQA. Average accuracy is reported. Best results for each language and model type
are highlighted in bold; mean scores are not averaged over the source language (English).
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Figure 6: The different multimodal multilingual adapter architectures we experimented with. The best performing
architecture was setting 5, which we present results for in the main paper.
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