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Abstract

Artificial intelligence (Al) systems are revolutionizing fields
such as medicine, drug discovery, and materials science;
however, many technologists and policymakers are also con-
cerned about the technology’s risks. To date, most concrete
policies around Al governance have focused on managing Al
risk by considering the amount of compute required to oper-
ate or build a given Al system. However, low-compute Al sys-
tems are becoming increasingly more performant - and more
dangerous. Driven by agentic workflows, parameter quanti-
zation, and other model compression techniques, capabilities
once only achievable on frontier-level systems have diffused
into low-resource models deployable on consumer devices.
In this report, we profile this trend by downloading historical
benchmark performance data for over 5,000 large language
models (LLMs) hosted on HuggingFace, noting the model
size needed to achieve competitive LLM benchmarks has de-
creased by more than 10X over the past year. We then simu-
late the computational resources needed for an actor to launch
a series of digital societal harm campaigns - such as disin-
formation botnets, sexual extortion schemes, voice-cloning
fraud, and others - using low-compute open-source models
and find nearly all studied campaigns can easily be executed
on consumer-grade hardware. This paper argues that protec-
tion measures for high-compute models leave serious security
holes for their low-compute counterparts, meaning it is urgent
both policymakers and technologists make greater efforts to
understand and address this emerging class of threats.

Introduction

Artificial intelligence (AI) technologies are enabling the
widespread automation of information processing and rea-
soning tasks. Many anticipate these technologies will herald
an era of unprecedented human productivity and economic
output, while others are concerned they may be weaponized
to cause large-scale societal harm. For example, researchers
have investigated the extent to which advanced models,
specifically large language models (LLMs), may facilitate
synthetic biology attacks, compromise cybersecurity sys-
tems, and amplify the effects of disinformation campaigns
(Helmus 2022; Hendrycks, Mazeika, and Woodside 2023).
Numerous policy frameworks have been proposed to miti-
gate Al risks, many of which focus on monitoring or regulat-
ing access to compute (Sastry et al. 2024). For example, cur-
rent US semiconductor export controls are designed, at least

partially, to prevent the misuse of advanced models requiring
high performance graphics processing units (GPUs), with
US officials citing threats from “’both Al training and infer-
ence at scale” (BIS 2024). Similarly, The European Union
(EU) AI Act designates 10%° training floating point opera-
tions (FLOPs) as a threshold for systemic risk categorization
and regulation (European Parliament 2023).

However, training or deploying large models is not the
only pathway to dangerous capabilities. Advancements in
test-time compute, parameter quantization, agentic work-
flows, LLM tooling, and other techniques are rapidly diffus-
ing capabilities from large Al systems into compact mod-
els that are easily deployable on consumer devices (Subra-
manian, Elango, and Gungor 2025; Lang, Guo, and Huang
2024; Li 2024; Shen et al. 2024).

The swift compression of advanced Al capabilities into
smaller, accessible, and easily deployable models poses sig-
nificant security risks that current governance frameworks
are not fully equipped to handle. We urgently encourage
more researchers and policymakers to focus on developing
innovative governance strategies specifically tailored to low-
compute Al threats, as these threats are becoming increas-
ingly severe, frequent, and difficult to detect.

In this report, we quantitatively profile the rate at which
open-source LLMs have become both more performant and
more compute-efficient over time. Secondly, we outline how
this shift has impacted the amount of compute resources
needed for a single actor to execute a variety of societal harm
campaigns. Next we profile the computational workloads of
several academic and commercial Al use cases, demonstrat-
ing a high degree of overlap between the compute required
by both. We discuss how this overlap, combined with the
relatively modest amount of compute required to launch the
studied societal harm campaigns, complicates existing Al
risk mitigation frameworks centered around high-compute
models. Lastly, we briefly highlight the promises and short-
comings of a set of proposed strategies for mitigating low-
compute Al risks.

As a clarification on terminology, we will refer to low-
compute Al models in this report as those with <30B pa-
rameters, as these systems are increasingly deployable on
low-cost hardware through parameter quantization and other
inference optimization techniques. We will also use the term
model compression to succinctly refer to the diffusion of



Al capabilities into low-compute systems, although we ac-
knowledge this phrase may have different meanings else-
where in the literature.

Models are becoming more advanced at
smaller sizes

Market pressures are guiding models to become both more
capable and more lightweight over time, while hardware
improvements are reducing barriers to model deployment.
We discuss both trends below while observing that if these
trends continue to evolve, bad-faith and good-faith actors
alike will be able to deploy increasingly sophisticated mod-
els with commonly accessible levels of compute.

Model miniaturization

We download performance data from over 5,000 open-
source LLMs hosted on the HuggingFace LLM leader-
board. Each model on the leaderboard has been evaluated
against the Eleuther Al Language Model Evaluation Har-
ness (Eleuther Al 2024), a suite of benchmark tests designed
to probe language model abilities on diverse tasks such as
common sense reasoning, mathematical abilities, and oth-
ers. In this report, we define a LLM’s aggregate model per-
formance, o, as the mean score on the IFEval, BBH, MATH,
GPQA, MUSR, and MMLU-PRO benchmark tests included
within the Harness.'

For each graded model on the leaderboard, we extract the
model size (FP16 precision), model performance (), and
the date on which the model was created. In Figure 1A, we
plot the model size needed to obtain a given « over time.
Each scatter point represents the 25" percentile model size
value within the subset of models that surpass a given « at a
given date. We present five different curves corresponding to
« values of 30%, 35%, 40%, 45%, and 50%. For reference,
the highest o value listed on the HuggingFace leaderboard
as of the writing of this report is 52%.

We also fit a simple exponential decay curve to each set
of data, which we present in the figure along with fit uncer-
tainty bands for visual reference. As can be seen in Figure
1A, across all performance levels, the model size needed to
obtain a given benchmark score has dropped significantly
over time, with the model size needed to obtain o« = 0.35
falling by ~10X over the past year.?

Similarly, Figure 1B displays how the o of a model of
a fixed size has increased over time. Here, we filter our
LLM leaderboard dataset to focus on Meta’s Llama family
of models, given their active use within the developer com-
munity. As can be seen in the plot, Llama models of all size
ranges > have steadily increased in performance over time
and have even somewhat converged to a common « value
of ~45%. Similar to Figure 1A, for visual reference, we fit

'« is bounded between [0%,100%], with 100% denoting a per-
fect score

2For robustness, we also recalculated these compression curves
using each individual metric instead of the aggregate o value and
observed similar compression trends over time.

3We cluster models into size ranges to account for the differing
model sizes across the Llama 2, 3.1, 3.2, and 3.3 releases.
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Figure 1: (a) Model size needed to obtain a given LLM
benchmark score over time. Exponential curves are fit to the
raw data and displayed along with the fit uncertainty bands.
(b) Benchmark performance () over time for three classes
of Llama family models.

linear models to the raw data and present them along with
confidence intervals for each set of data.
Put together, these plots suggest the following two trends:

* The number of parameters needed to achieve a certain
level of benchmark performance has decreased over time

* The benchmark performance of a model of a given size
has increased over time.

While these statements are hardly surprising, they have
strong implications for both public safety and Al gover-
nance, which we will discuss further below.

As a caveat, high performance on an LLM benchmark
does not necessarily imply usefulness. In fact, many suspect
that models have been engineered, or ‘overfit’, to provide de-
ceptively high performance on such benchmarks while not
providing high degrees of capability (Zhou et al. 2023). We
fully acknowledge the limitations of benchmark data, and
later in this report, we will reference more in depth evalu-
ations of the capabilities of low-compute models that have
been conducted by other research groups.

Similarly, while the above analysis focuses on open-
source models, similar trends hold for closed-source mod-
els as well. For example, GPT-4 was offered at a price of
$120/million completion tokens (Wayback Machine 2024)
in early 2023. However, GPT-4.1 — a model that performs
comparably on many performance benchmarks while offer-
ing both longer context windows and multimodal abilities
— now executes completions at roughly a 15X cheaper rate.
Consequently, cost and resource barriers to deploying ad-
vanced Al capabilities are rapidly diminishing for malicious
actors, regardless of whether they utilize open or closed-
source models.

Advances in hardware

While high-performing models are becoming smaller, the
processing power of accelerator chips is becoming larger,
both across consumer and data center devices. In Figure 2
we display the evolution of processing power (expressed
in single-precision [FP32] FLOPS) and memory bandwidth
(expressed in GB/s of memory transfer) over time for two
sets of devices: NVIDIA data-center GPUs and consumer
MacBooks GPUs.*

“We extracted performance metrics on both set of devices from
official Apple and NVIDIA product pages.



(FP 32 GFLOPS)]

sing power
Log [Memory bandwidt

Log [Proces

Figure 2: (a) Evolution of processing power in NVIDIA and
MacBook chips over time (b) Evolution of memory band-
width across both sets of chips over time. Linear fits are pre-
sented alongside both curves, for visual reference.

While many of the higher-performance data-center chips
are currently restricted via US export controls, all MacBook
chips explored in the chart are unrestricted and widely avail-
able for global use. These devices are sufficient to run infer-
ence on many advanced - and potentially dangerous - mod-
els, especially given the rapid pace of miniaturization in Fig-
ure la.

The threats posed by low-compute Al systems

Building on the results of the previous section, we assess the
risks of low-compute Al systems from three separate van-
tage points:

* Examining the rise in reported public Al security inci-
dents

» Highlighting studies evaluating the capabilities of low-
compute Al systems

» Simulating the compute required to launch Al-powered
social harm campaigns

While each vantage point alone provides only a partial
view of low-compute Al risk, together they collectively paint
a more complete picture of the public security threats posed
by these systems.

The rapid rise of Al security incidents

The FBI stated $2.9B was lost through business-email-
compromise scams in 2023 alone (IC3 2024b,a), citing
GenAl as a key driver. Additionally, SlashNext reported a
$1,265% increase in phishing incidents between Oct. 2022
and Sept. 2023 — a time period marked by the proliferation
of generative Al technologies (SlashNext 2023). Similarly,
the FBI declared a “global sextortion crisis” fueled by gen-
erative models (Federal Bureau of Investigation 2023), while
McAfee reported that 25% of surveyed U.S. adults have ei-
ther experienced or known someone who has experienced an
Al voice scam (McA 2023).

Identification of dangerous capabilities within
low-compute Al systems

Researchers have tested the believability of audio, video,
and text-based output from compressed models (<30B pa-
rameters) on human participants. For example, Hackenburg
et al. (2025) demonstrated that open-source LLMs as small
as 7B parameters were more politically persuasive than a

human control group and equally persuasive to many larger
LLMs. In Bray et al. (2023), human participants were only
able to identify deepfakes generated by a StyleGAN2 model
(<1B-parameters) at a rate of ~60%, a value marginally
above random chance. Similarly, in Warren et al. (2024), in
only ~60% of instances were human subjects able to detect
synthetically generated audio samples within the WaveFake
dataset (Frank and Schonherr 2021), a dataset consisting of
audio samples generated via lightweight open-source mod-
els such as MelGAN ( <10M parameters). Lastly, Heiding
et al. (2024) and Schoenegger et al. (2025) demonstrated
that Claude-3.5 — which has been surpassed on the Chat-
bot Arena by multiple open-source LLMs <30B parameters
in size - can produce spear-phishing emails that are as per-
suasive as those designed by human experts and is more ef-
fective at attitude, belief, and behavior shaping than a set of
incentivized humans, respectively.

Simulating compute budgets of social harm
campaigns

In this section we focus on a relevant set of disinformation,
cybersecurity, voice cloning, and deepfakes threats. We first
performed a literature review to identify emblematic histor-
ical case studies of these types of attacks. Guided by the
details of each case study, we decomposed each campaign
into a set of constituent tasks executed over an associated
timescale, and we subsequently estimated the amount of
compute required for an Al model to replicate them. For ex-
ample, a disinformation campaign can be decomposed into
a sequence of generated social media posts, and a spear-
phishing campaign may be broken down into a sequence of
generated images and email chains.

Anchoring our analysis to historical case studies sets re-
alistic scales for our simulated campaigns. For example, we
could profile the compute load of a disinformation campaign
consisting of 1,000 Tweets or 1,000,000 Tweets. These cam-
paigns require vastly different compute requirements, and
a-priori it’s difficult to assess the societal harms posed by
each. However, grounding our analysis in a historical disin-
formation case study helps both set the scale of a campaign
and connect that scale to an event with understood social
impact. For reference, we profile events like the Brexit dis-
information campaign - an automated misinformation cam-
paign thought to have influenced the outcome of a major
geopolitical event (Bruno, Lambiotte, and Saracco 2022) -
and a business compromise scam that generated millions of
dollars in company losses.

The periodic table of synthetic media attacks To esti-
mate the compute required for each audio, text, and image
generation task, we simulate each on a NVIDIA V100 GPU
equipped with the nvprof GPU profiler’ Using this ‘periodic
table’ of synthetic media generations, we build an aggregate

SWe profiled each generative model in half precision (FP16)
format. Further, we validated our profiler by comparing the mea-
sured compute profiles of an LLM token generation task and ma-
trix multiplication task to well-established theoretical estimates,
observing largely consistent values between the two.



Spearphishing Voice cloning
(102 - 10° total TFLOPS)

Botnet
Deep-nude (10%- 108 total TFLOPs)
(10*- 10° total TFLOPs)

Memory Bandwidth [GB/s]

enin ek
OCLA BIPIAN

0.01 1 100

Compute Speed [TFLOPs (FP 16)]

Figure 3: The simulated compute profiles required to execute
a set of disinformation, spearphishing, voice-cloning, and
deepfake attacks with low-compute Al models. We break
each attack into image, text, and audio generation steps and
measure the memory speed and processing power an at-
tacker would need to execute the attack using a single chip.
The bounding boxes display the 5% and 95% for each GPU
performance metric across our simulations. The dashed lines
denote the performance metrics for NVIDIA V100 and Ap-
ple M2 Ultra chips, two currently non-export-controlled de-
vices.

compute profile of each campaign by considering the com-
pute requirements of each constituent step.

Of course, rather than measuring the compute profile for
each task, one could also theoretically derive this profile.
For example, both the memory and FLOP requirements
of LLM token generation have well known analytic forms
(Hoffmann et al. 2022). Similar analytic equations could, in
theory, be extracted for image and audio models; however,
the complexities of considering different batch sizes, image
dimensions, etc. make measurement via the profiler more
straightforward than theoretical derivation. Further, in later
sections of this report, we profile the workloads of an en-
tirely different set of non-nefarious Al workloads such as
deep learning recommendation engine training where theo-
retical derivation is even less straightforward.

Estimating uncertainties Several variables impact the
amount of compute needed within each campaign, such as
the size of model required, the image resolution needed with
a deepfake campaign, the number of seconds within a voice-
clone scam voicemail, and the number of tokens generated
within a botnet social media post. While historical case stud-
ies help constrain these parameters to some extent, they do
not fix them entirely. To this end, we run Monte-Carlo sim-
ulations across these parameter spaces to generate compute
profile uncertainties.

Simulation results In Figure 3, we plot the amount of
memory bandwidth and compute speed required for an ac-
tor to execute each campaign on a single accelerator chip,
and we also provide the total aggregate TFLOP of the sub-

set of campaigns with fixed time-scales. Denoted by dashed
lines, we display the bandwidth and processing power of the
V100 and MacPro M2 Ultra accelerators — both of which are
currently non-export controlled.

A large fraction of the uncertainty boxes for all considered
attacks are contained by the bounding boxes of the V100
and M2 Ultra accelerators, indicating such campaigns could
in theory be executed with non-export-controlled devices.
While certain regions of the uncertainty boxes lie beyond the
performance bounds of a single chip, a majority of the stud-
ied campaigns are straightforward to distribute across mul-
tiple devices, meaning multiple chips could be combined to
provide greater computing power. By our estimates, a com-
puting cluster consisting of just ten V100 chips would offer
enough computational power to surpass the estimated com-
pute upper bounds of all considered threat campaigns - a
system that could be purchased for mere thousands of dol-
lars on eBay as of the writing of this report. Additionally, we
intentionally adopted conservative simulation assumptions;
in practice, attackers might achieve these outcomes with sig-
nificantly fewer resources.

Of course, these results have several limitations. We per-
formed all profiling assuming generative models less than
30B parameters in size. Despite the studies referenced ear-
lier, It is yet not totally proven that Al models of this size
are performant enough to successfully execute the explored
campaigns. However, if such capabilities do not yet exist at
these model sizes, given the findings of Section , they likely
will soon. In general, it seems reasonable to assume the com-
pute profile boxes in Figure 3 will shift down and leftwards
as models continue to become both more performant and
compute efficient, reducing the compute resources needed
to execute Al-powered attacks.

Can’t compute thresholds simply be adjusted
to address threats from low-compute AI?

The previous section demonstrated that current compute me-
tering frameworks still permit access to compute levels suf-
ficient to execute several societal harm campaigns. A natu-
ral follow-up question is: can these frameworks simply be
revised to address this? The answer is complicated by the
competing needs for these measures to both protect against
Al risks while supporting non-nefarious business and aca-
demic development use cases. For example, export controls
that successfully restrict bad actors from executing societal
harm campaigns but also disrupt compute flows within Al-
dependent industries would harm hardware manufacturers,
strain international relationships, and hinder research collab-
orations.

To address this point, similar to Section , we profile the
compute required to execute a set of typical business/aca-
demic Al workloads and compare the results to those in the
previous section.

The selected workloads include the following: object
recognition within autonomous vehicles, protein structure
prediction within biomedical research, audio-to-text tran-
scription within customer call centers, spam detection mod-
eling, and recommendation engine training. We selected this
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Figure 4: The number of synthetic images, llm-generated to-
kens, and words of voice cloned audio an actor could gener-
ate with the compute required by a single typical academic
experiment.

set of workloads based on two criteria. First, we performed
a literature review of most common Al commercial and aca-
demic use cases. Secondly, we filtered the identified set of
workloads to diversify both across model type and appli-
cation sector. For example, we include a recommendation
engine example since - at least as of 2019 - these systems
were estimated to be one of the highest volume workloads
in global data centers (Mudigere et al. 2022). Similarly, we
diversified our workloads to include audio, video, and text
generation models leveraged across both academic and com-
mercial sectors.

Following a procedure similar to that used above, we find
the compute required by each workload exceeds that re-
quired within all profiled societal harm campaigns in Sec-
tion . This suggests that naively adjusting compute meter-
ing thresholds to block attacks from miniaturized Al sys-
tems would significantly disrupt many non-nefarious aca-
demic and business Al use cases. As an illustrative exam-
ple, in Figure 4, we display the number of synthetic images,
LLM tokens, and voiced-cloned words an actor could gen-
erate with the compute required by our biomedical research
example. As can be seen in the plot, an actor could generate
hundreds of millions of pieces of synthetic content with the
compute required by a single academic experiment.

Alternative strategies for addressing
low-compute Al risks

The preceding analysis highlights the need for Al protec-
tion paradigms fundamentally different from existing ap-
proaches. Several governance strategies have been proposed
to address low-compute Al risks, though each faces signif-
icant implementation challenges. Below we present a brief
overview of a subset of such strategies; however, this discus-
sion is by no means exhaustive.

Rather than inferring risk from compute, capability-based
frameworks evaluate systems through demonstrated abil-
ities, using benchmarks to probe for potentially harm-
ful capabilities like persuasiveness, deception, or dual-use
proficiency (Shevlane et al. 2023; Hooker 2024; Tamkin
et al. 2023). However, creating robust evaluations requires
substantial expertise, benchmarks rapidly become outdated
(Amodei, Team et al. 2023), and bad-faith developers may

game regulatory tests while maintaining harmful deploy-
ment capabilities. Similarly, defensive AI approaches -
leveraging Al models to protect against risk from other Al
models - may lead to futures wherer Al agents detect other
voice clone agents, automatically patch software vulnerabil-
ities, and address other threats (Lohn 2025). However, they
may struggle in threat-scenarios with unfavorable offense-
defense balances. For instance, exploiting offensive Al to
deploy bioweapons may be far easier than using defensive
Al to produce and disseminate vaccines (Unver and Arhan
2023; Aspen U.S. Cybersecurity Group 2024).

If widespread model access proves inevitable, protective
measures could be integrated directly into systems through
content filters and digital watermarks (Roman et al. 2024;
Google DeepMind 2023; Kirchenbauer et al. 2023) that help
identify synthetic material. However, seemingly non-toxic
content can still remain dangerous and models can be jail-
broken despite safeguards (Yu, Lin, and Xing 2023). Alter-
natively, a preventative approach to Al security could focus
on strengthening institutions and social groups through en-
hanced media literacy, incident reporting, and Al education
(Bernardi et al. 2024). However, such resiliency efforts re-
quire substantial funding and coordination across disparate
sectors before they can scale effectively.

Conclusion

We explore how capabilities initially only present within
larger-scale LLMs have diffused into low-resource,
lightweight systems deployable on consumer devices. By
analyzing historical performance data from over 5,000
models on HuggingFace, we demonstrate that the size of
model needed to achieve competitive LLM benchmark
scores has decreased by as much as 10X over the past year.
We also simulate the compute needed for a bad-faith actor to
launch a set of social harm campaigns, unveiling that many
such attacks are easily executable on consumer hardware.

While these trends have been noted by other researchers
(Bommasani et al. 2023; Weidinger et al. 2022; Hooker
2024), current Al governance frameworks have not ade-
quately evolved to address the risks posed by increasingly
powerful low-compute models. We present empirical evi-
dence to underscore the urgency of rethinking approaches
that rely primarily on compute thresholds as proxies for risk.
As model miniaturization accelerates, policymakers must
develop more nuanced frameworks that consider capabili-
ties, intent, and potential for harm alongside compute re-
quirements. This will require deeper collaboration between
technical experts, policy makers, and industry to develop
more comprehensiveness protection frameworks that con-
sider a wider class of risks, rather than over-indexing on
high-compute threats. The pace of Al advancement demands
that these conversations move beyond mere discourse into
concrete adaptations that meet today’s rapidly evolving tech-
nological landscape.
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