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ABSTRACT

We study the label shift problem between the source and target domains in gen-
eral domain adaptation (DA) settings. We consider transformations transporting
the target to source domains, which enable us to align the source and target ex-
amples. Through those transformations, we define the label shift between two
domains via optimal transport and develop theory to investigate the properties of
DA under various DA settings (e.g., closed-set, partial-set, open-set, and universal
settings). Inspired from the developed theory, we propose Label and Data Shift
Reduction via Optimal Transport (LDROT) which can mitigate the data and label
shifts simultaneously. Finally, we conduct comprehensive experiments to verify
our theoretical findings and compare LDROT with state-of-the-art baselines.

1 INTRODUCTION

The remarkable success of deep learning can be largely attributed to computational power advance-
ment and large-scale annotated datasets. However, in many real-world applications such as medicine
and autonomous driving, labeling a sufficient amount of high-quality data to train accurate deep
models is often prohibitively labor-expensive, error-prone, and time-consuming. Domain adaptation
(DA) or transfer learning has emerged as a vital solution for this issue by transferring knowledge
from a label-rich domain (a.k.a. source domain) to a label-scarce domain (a.k.a. target domain).
Along with practical DA methods (Ganin & Lempitsky, 2015} Tzeng et al.,|2015; |Long et al., 2015;
Shu et al.l 2018; [French et al.l 2018) which have achieved impressive performance on real-world
datasets, the theoretical results (Mansour et al.| [2009; Ben-David et al.| 2010; Redko et al., 2017}
Zhang et al.,|2019aj |Cortes et al.,|2019) are abundant to provide rigorous and insightful understand-
ing of various aspects of transfer learning.

For domain adaptation, the source domain consists of the data distribution P5 with the density pS,
and the unknown ground-truth labeling function f¥ assigning label y to source data x, whilst these
are PT, pT, and f T for the target domain, respectively. Moreover, while the data shift can be char-
acterized as a divergence between PS and PT (Mansour et al | [2009; Ben-David et al., 2010; Redko
et al., 2017; Zhang et al. 2019a; |Cortes et al., |2019)), the label shift in these works is commonly
characterized as Epr [|f° (x) — f7 (x)[] or Eps [[f* (x) — f7 (x)|] in which the binary classification
with deterministic labeling functions f5(-), f7 (-) € {0,1} was examined. Additionally, although
this label shift term has occurred in the theoretical analysis of Mansour et al.| (2009); Ben-David
et al.| (2010); Redko et al.|(2017); Zhang et al.| (2019a); |Cortes et al.| (2019), it is restricted in con-
sidering the shift between f° (x) and f! (x) at the same data x, which ignores the data shift between
PS and P”. This limitation is illustrated in Figure (1| In particular, for a white/square point x drawn
from the target domain as in Epr H F5(x) = fT (x) |, the source labeling function f3 cannot give

reasonable prediction probabilities for x, hence leading to inaccurate ] 5() =T (x) ]

Label shift has also been examined in an anti-causal setting (Lipton et al.,|2018}; |Garg et al., 2020a)),
wherein an intervention on p(y) induces the shift, but the process generating x given y is fixed, i.e.,
pS(x|y) = pT (x|y). Although this setting is useful in some specific scenarios (e.g., a diagnostic
problem in which diseases cause symptoms), it is not sufficiently powerful to cope with a general
DA setting. Particularly, in an anti-causal setting, the source and target data distributions (i.e., p° (x)
and p” (x)) are just simply two different mixtures of the class conditional distributions p® (x | y) =
pT (x]y), hence sharing the same support set. This is certainly far from a general DA setting in



Under review as a conference paper at ICLR 2022

which both data shift: pS(x) # p (x) with arbitrarily separated support sets and non-covariate
shift: p* (v | x) # p” (y | x) appear.

Contribution. In this paper, we study the label shift for a general domain adaptation setting in
which we have both data shift: pS(x) # p’ (x) with arbitrarily separated support sets and non-
covariate shift: p3(y|x) # p’ (y|x). More specifically, our developed label shift is applicable
to a general DA setting with a data shift between two domains and two totally different labeling
functions (i.e., we cannot use f5 to predict accurately target examples and vice versa). To define
the label shift between two given domains, we utilize transformation L to transport the target to the
source data distributions (i.e., L#PT = PS). This transformation allows us to align the data of two
domains. Subsequently, the label shift between two domains is defined as the infimum of the label
shift induced by such a transformation with respect to all feasible transformations. This viewpoint
of label shift has a connection to optimal transport (Santambrogio, 2015} |Villani, |2008; Peyré &
Cuturi, 2019), which enables us to develop theory to quantify the label shift for various DA settings,
e.g., anti-causal, closed-set, partial-set, open-set, and universal settings. Overall, our contributions
can be summarized as follows:

1. We characterize the label shift for a general DA setting via optimal transport. From that, we
develop a theory to estimate the label shift for various DA settings and study the trade-off of learning
domain-invariant representations and WS label shift.

2. Inspired from the theoretical development, we propose Label and Data Shift Reductions via
Optimal Transport (LDROT) which aims to mitigate both data and label shifts. We conduct com-
prehensive experiments to verify our theoretical findings and compare the proposed LDROT with
the baselines to demonstrate the favorable performance of our method.

Related works. Several attempts have been proposed to characterize the gap between general losses
of source and target domains in DA, notably (Mansour et al.,|2009; [Ben-David et al., 2010; [Redko
et al., [2017; Zhang et al 2019a; |Cortes et al., [2019). Ben-David & Urner| (2014; 2012); [Zhang
et al.| (2019a) study the impossibility theorems for DA, attempting to characterize the conditions
under which it is nearly impossible to perform transferability between domains. PAC-Bayesian
view on DA using weighted majority vote learning has been rigorously studied in |Germain et al.
(2013 2016). Meanwhile, [Zhao et al.| (2019); Johansson et al.| (2019) interestingly indicate the
insufficiency of learning domain-invariant representation for successful adaptation. Specifically,
Zhao et al.| (2019) points out the degradation in target predictive performance if forcing domain
invariant representations to be learned while two marginal label distributions of the source and target
domains are overly divergent. [Johansson et al.|(2019) analyzes the information loss of non-invertible
transformations and proposes a generalization upper bound that directly takes it into account. |Le
et al.| (2021) employed a transformation to align two domains and developed theories based on this
assumption. Moreover, label shift has been examined for the anti-causal setting Lipton et al.|(2018));
Garg et al.|(2020a)), which seems not sufficiently realistic for a general DA setting. Optimal transport
theory has been theoretically leveraged with domain adaptation (Courty et al., [2017). We compare
our proposed LDROT to DeepJDOT (Damodaran et al.| |2018)) (a deep DA approach based on the
theory of (Courty et al., 2017)), and other OT-based DDA approaches, including SWD (Lee et al.,
2019), DASPOT (Xie et al., 2019), ETD (Li et al,, [2020), RWOT (Xu et al., |2020). Finally, in
(Tachet des Combes et al.| [2020) , a generator g is said to produce generalized label shift (GLS)
representations if it transports source class conditional distributions to corresponding target ones.
Further theories were developed to indicate that GLR representations are satisfied if we enforce
clustering structure assumption assisting us in training a perfect classifier. Evidently, our work
which focuses on how to quantify the label shift between two different domains taking into account
the inherent data shift via optimal transport theory is totally different form that work in terms of
motivation and developed theory.

2 LABEL SHIFT WITH WASSERSTEIN DISTANCE

2.1 PRELIMINARIES

Notation. For a positive integer n and a real number p € [1,00), [n] indicates the set {1,2,...,n}
while ||x||, denotes the /,-norm of a vector x € R". Let %5 and T be the label sets of the source
and target domains that have M5 := |#5| and M := |#7| elements, respectively. Meanwhile,
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W =HSUXT stands for the label set of both domains which has the cardinality of M := |#/|.
Subsequently, we denote %, @AS , and Z, as the simplices corresponding to 2/,%5, and #T re-

spectively. Finally, let £5(-) € 4 and f7 (-) € %, be the labeling functions of the source and target
domains, respectively, by filling zeros for the missing labels.

We now examine a general supervised learning setting. Consider a hypothesis 4 (-) € #x in a hy-
pothesis class .# and a labeling function f(-) € # where #p :={n € RM : ||z||, = land 7 > 0}.
Let dy be a metric over %, we further define a general loss of the hypothesis & with respect to the
labeling function f and the data distribution P as: . (h, f,P) := [dy (h(x), f (x))dP (x).

Next, we consider a domain adaptation setting in which we have source space .25 endowed with a
distribution PS and the density function pS (x), and a target space 27 endowed with a distribution
PT and the density function p’ (x). We examine various DA settings based on the labels of source
and target domains including (1) closed-set DA: %S = %T | (2) open-set DA: %5 C % T, (3) partial-
set DA: %7 C %5, and (4) universal DA: %S C % T and T C %S,
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Figure 1: An illustration of our label shift definition. We employ a transformation L : L#PT = PS
to align two domains. The white/square points L (xT) on the source domain correspond to the

white/square points x” on the target domain. We measure dy (dy (f7 (x"), 5 (L(x")))) and define

the label shift w.r.t. L as LS (S,T;L) := Epr [dy (f7 (x),f5 (L (x")))]. Finally, we take infimum
over all valid L to define the label shift between two domains.

2.2 BACKGROUND ON LABEL SHIFT

Together with data shift, the study of label shift is important for a general DA problem. However,
due to the occurrence of data shift, it is challenging to formulate label shift in a general DA setting.
Recent works (Lipton et al., 2018}, |Garg et al., [2020a) have studied label shift for the anti-causal
setting in which an intervention on p(y) induces the shift, but the process generating x given y is
fixed, i.e., p°(x|y) = p’ (x|y). In spite of being useful in some specific cases, the anti-causal
setting is restricted and cannot represent data shift broadly because the source data distribution
p3 (x) and the target data distribution p” (x) are simply just two different mixtures of identical class
conditional distributions. Furthermore, the label shift framework from these works is non-trivial to
generalize to all settings of DA.

In this paper, we address the issues of the previous works by defining a novel label shift framework
via Wasserstein (WS) distance for a general DA setting that takes into account the data shift between
two domains. We then develop a theory for our proposed label shift based on useful properties of
WS distance, such as its horizontal view, numeric stability, and continuity (Arjovsky et al., 2017).
We refer readers to Santambrogio| (2015); |Villani| (2008); [Peyré & Cuturi| (2019) for a comprehen-
sive knowledge body of optimal transport theory and WS distance, and Appendix [A] for necessary
backgrounds of WS for this work.

2.3 LABEL SHIFT VIA WASSERSTEIN DISTANCE

To facilitate our ensuing discussion, we assume that the source (S) and target (T) distributions P and
PT are atomless distributions on Polish spaces. Therefore, there exists a transformation L : 2 LN
275 such that L#PT = PS (Villani, |2008). Given that mapping L, a data example x” ~ P with the
ground-truth prediction probability f7 (x”) corresponds to another data example x° = L (x”) ~ PS
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with the ground-truth prediction probability f* (x%). Hence, it induces a label mismatch loss

dy (1 (1) () =y (FF () f* (L (),

where dy is a given metric over #,. Based on that concept, the label shift between the source and
target domains induced by the transformation L can be defined as

LS(S,T;L) :=Epr [dy (f7 (x"),f* (L(x")))]. (1)
By finding the optimal mapping L, the label shift between two domains is defined as follows.

Definition 1. Let dy be a metric over the simplex %,. The label shift between the source and the
target domains is defined as the infimum of the label shift induced by all valid transformations L:

LS(S.7):= inf IS(STiL)= inf [Epr {dy ( I (ﬂ) ¥ (L (ﬂ)))] , )

We give an illustration for Definition [T|in Figure[I] The label shift in Eq. (2)) suggests finding the
optimal transformation L* to optimally align the source and target domains with a minimal label
mismatch.

Properties of label shift via Wasserstein distance: To show the connection between the afore-
mentioned label shift and optimal transport, we introduce two ways of calculating the label shift via
Wasserstein distance.

Proposition 2. (i) Denote by ]P’;S the joint distribution of (x, & (x)), where x ~ PS, and IP’;T the
Jjoint distribution of (x,fT (x)), where x ~PT. Then, we have: LS(S,T) = ¥y, IP’;S,IP’;T> .

(it) Let Pys and P ;1 be the push-forward measures of PS5 and PT via f5 and fT respectively, i.e.,
Prs = FS#PS and P = fTHPT. Then, we have: LS(S,T) = #a, (IP’fs,]P’fr) .

The results of Proposition [2]indicate that we can compute the label shift via the Wasserstein distance
on the simplex. For example, when dy (y,)") = |ly —'||5, the label shift can be computed via the

familiar ), distance between P s and P 7, i.e., LS(S,T) = #}) (Pys,Pr). Note that # (]P’;.S,]P’;T>

with d = Adx + dy was studied in|Courty et al.[(2017) for proposing a DA method that can mitigate
both label and data shifts. However, the concept label shift was not characterized and defined explic-
itly in that work. Moreover, our motivation and theory development in this work are different and
independent from (Courty et al., 2017). To give a better understanding of our label shift definition,
we now present some bounds for it in general and specific cases.

Proposition 3. Denote by py = (py (y))’y"’: , and pl = (p} (y))y: | the marginal distributions of the

source and target domain labels, i.e., py(y) = [4s p>(x,y)dx and pT(y) = [,r pT (x,y)dx. For
dy(y,Y') = ly—Y||5 when p > 1, the following holds:

(i) & (hT’fT’]P’T) <LS(S,T)+%¥ (thfS’I[DS) + Wy, (PiS7P£r) + const where the constant can be

viewed as a reconstruction term: supy x.;upr_ps gups_pr Bpr [dy (f7 (K (L(x))), " (x))];

(ii) LS(S,T) > ||py — py

p.
p
(iii) In the setting that PS and P are mixtures of well-separated Gaussian distributions, i.e., p*(x) =
; 1/2 1/2 .
é‘,’ilp“(y)%(x\u)‘?,zg) with ||y — u}‘?,”z > D x max{HE;’H,,,/, 7||Zg,||,,,/7 Wae {S,T},y#Y, in
which || - ||op denotes the operator norm and D is sufficiently large, we have

M

where €(D) is a small constant depending on D, py., p}, (5 Zr)yzl,

35 Sy and it goes to 0 as D — oo.

A few comments on Proposition [3] are in order. The inequality in (i) bounds the target loss by the
source loss and the label shift. Though this inequality has the same form as those in (Mansour et al.,
2009; Ben-David et al.,[2010; [Redko et al., | 2017; Zhang et al.,[2019a; Cortes et al.,[2019), the label
shift in our inequality is more reasonably expressed. The inequality in (ii) reads that the marginal
label shift || py — p¥||5 is a lower bound of our label shift. Therefore, the label shift induced by the
best transformation L* can not be less than this quantity. A direct consequence is that LS(S,7) =0
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implies p5(y) = p” (y), for all y € [M] (no label shift). Finally, the inequality in (iii) shows that
when the classes are well-separated, the label shift will almost achieve the lower bound in the first
inequality, which implies its tightness. The key step in the proof is proving that IP’fs and Pyr will
be concentrated around the vertices and it is also provable for sub-Gaussian distributions with some
extra work. The bound gives a simple way to estimate the label shift in this scenario: instead of
measuring the Wasserstein distance # (P fs,PfT) on the simplex %, we only need to measure the

Wasserstein distance between the vertices equipped with the masses pls/ and pl. The first experiment
in Sectiond.1] also supports this finding.

Our label shift formulation can also serve as a tool to elaborate other aspects of DA, as we will see
below.

Minimizing data shift while ignoring label shift can hurt the prediction on test set: Consider
two classifiers on the source and target domains 45 = hogS and h! = hog! where g°: 25 — %,
gl T — % are the source and target feature extractors, and h : 2° — % with h € 5. We define
a new metric dz with respect to the family .77 as follows:

dz (z21,22) = sup dy (h(z1),h(z2)),
heA

where z; and z; lie on the latent space 2. The necessary (also sufficient) condition under which dz
is a proper metric on the latent space (see the proof in Appendix [B)) is realistic and not hard to be
satisfied (e.g., the family # contains any bijection). We now can define a Wasserstein distance W,
that will be used in the development of Theorem 4]

Theorem 4. With regard to the latent space %, we can upper-bound the label shift as
LS(S,T) <2 (15,5, P%) +.2 (h", fTP") + #4, (g°#P° g #PT).

Theorem W4 indicates a trade-off of learning domain-invariant representation by forcing g5#PS =
g"#PT (e.g., min #y, (¢5#PS, g"#PT)). It is evident that if the label shift between domains is sig-
nificant, because . (hS, fS ,IP’S) can be trained to be sufficiently small, learning domain-invariant
representation by minimizing %, (¢5#P%, g"#P") leads to a hurt in the performance of the target
classifier AT on the target domain. Similar theoretical result was discovered in|{Zhao et al.|(2019) for
the binary classification (see Theorem 4.9 in that paper). However, our theory is developed based on
our label shift formulation in a more general multi-class classification setting and uses WS distance
rather than Jensen-Shannon (JS) distance (Endres & Schindelin, [2006) as in|Zhao et al.| (2019)) for
which the advantages of WS distance over JS distance have been thoughtfully discussed in|Arjovsky
et al.[|(2017).

Label shift under different settings of DA: An advantage of our method is that it can measure the
label shift under various DA settings (i.e., open-set, partial-set, and universal DA). Doing this task
is not straight-forward using other label shift methods. For example, if there is a label that appears
in a domain but not in the other, it is not meaningful to measure the ratio between the marginal
distribution of this label as in|Garg et al.[(2020Db)).

In what follows, we elaborate our label shift in those settings. Particularly, we provide some lower
bounds for it, implying that the label shift is higher if there is label mismatch between two domains.
Recall that when the source and target domains do not have the same number of labels, we can
extend f5 and f7 to be functions taking values on %, by filling O for the missing labels. For the
sake of presenting the results, let %N %7 = {1,...,C} be the common labels of two domains, Qg
the marginal of Pz, and Q7 the marginal of Py, on the first (C — 1) dimensions. Qg\ 7 denotes the
marginal of Pz, in the space of variables having labels %5\ %7 and Qr\s denotes the marginal of
Py, in the space of variables having labels %5 \ %7.

Theorem 5. Assume that dy(y,y') = ||y —y'||5. Then, the following holds:
i) For the partial-set setting (i.e., %7 C %), we obtain
LS(S,T) = WJ(Qs,Qr) +Ex-gy, [IXI15] )

ii) For the open-set setting (i.e., 7S C #T), we obtain
LS(S,T) 2 WP (Qs,Qr) +Exgyyg [IXI15] 5)
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iii) For the universal setting (i.e., %7 C %S and %5 C #T), we have
LS(S,T) > Wy (Qs,Qr) +Exgyy, [IX15] +Eragy, [I712] ©)

Theorem [5] reveals that the label shifts for the partial-set, open-set, or universal DA settings are
higher than the vanilla closed-set setting due to the missing and unmatching labels of two domains
(see Section[4.T)). Our theory also implicitly indicates that by setting appropriate weights for source
and target examples (i.e., low weights for the examples with missing and unmatching labels), we can
deduct label shift by reducing the second term of lower-bounds in Egs. @), (), and (@) to mitigate
the negative transfer (Cao et al.l [2019). We leave this interesting investigation to our future work.
Moreover, further analysis can be found in Appendix[C]

3 LABEL AND DATA SHIFT REDUCTIONS VIA OPTIMAL TRANSPORT

Inspired by the developed theory in Section [2.3] in this section we propose a novel DA approach,
named Label and Data Shift Reductions via Optimal Transport (LDROT), that aims to reduce both
data and label shifts simultaneously.

3.1 OBIECTIVE FUNCTION OF LDROT

We consider the source classifier #5 = /% o g and the target classifier /7 = h” o g. The pathway of
our method consists of three losses, which are as follows:

(i) Standard loss £5: We train the source classifier 25 on the labeled source data by minimizing the
loss 5 =% (hs,fs,]P’S);

(ii) Shifting loss #*"/': Furthermore, to mitigate both label and data shifts, we propose to further

regularize the loss .5 by i/t .=y, (P‘ZS,IP’}{T), where the ground metric d is defined as

$(E ) = o (5 ), () i (15 (59) A (), o
where 25 = (x5,15 (x%)) with x¥ ~ P and 2 = (x”,n" (x")) with x ~ P7;

(iii) Clustering loss " Finally, to boost the generalization ability of 7, we enforce the clustering

assumption (Chapelle & Zien, 2005) to enable 1’ giving the same prediction for source and target
examples on the same cluster. To employ the clustering assumption (Shu et al.,[2018)), we use Virtual
Adversarial Training (VAT) (Miyato et al., 2019) in conjunction with minimizing the entropy of

prediction (Grandvalet & Bengio, 2004): .1 := £ 1 £V with

2 = Epr [H (" (g(0))]. 2 = Eqspssoser [max vep, P (A ()47 (8(x)))]

where Dy, represents a Kullback-Leibler divergence, 6 is a very small positive number, By (x) :=
{& ||x¥' —x||, < 8}, and H specifies the entropy.

Combining the above losses, we arrive at the following objective function of LDROT.

inf {gS + aczpshift _,'_ﬁgclus}, (8)
g.hS hT

where &, 8 > 0. In addition, we use the target classifier 4’ to predict target examples.

Remark on the shifting term: We now explain why including the shifting term % (Pis,ﬂ”}{,)
supports to reduce label and data shifts. First, we have the following inequality whose proof can be

found in Appendix[C}

Wa (HPS g#PT) = Wy, (PS5, Phr) < #q (Pis,P7) ©)

since dx < d. Therefore, by including the shifting term % (]P’iS,IP’;T), we aim to reduce

Wa, (g#]P’S, g#IF’T) , which is useful for reducing the data shift on the latent space.
Second, we find that %7, (]P’is,]P’ZT) <, (]P’iS,IP}{T) since dy < d. The inequality (i) in Proposi-

tion [3| suggests that reducing the label shift %, (Pis,]P’ZT) helps to reduces the loss on the target

6
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WS Rt

domain, therefore increasing the quality of our DA method. Finally, by including % (IP’S P )

we aim to simultaneously reduce both terms %, (IP’fls,]P’gT) and #y, (P}st’ ]P)leT) , which is equal to

Wy, (g#PS,g#PT). That step helps reduce the data shift between g#PSand g#P”, while forcing h”

to mimic /5 for predicting well on the target domain via reducing the label shift Way (Pis , P}{T) .

3.2 TRAINING PROCEDURE OF LDROT

We now discuss a few important aspects of the training procedure of LDROT.

Similarity-aware version of the ground metric d: The weight A in the ground metric d in Eq. (7)
represents the matching extent of g (x”) and g (x). Ideally, we would like to replace this fixed
constant A by varied weights w (x%,x”) in such a way that w (x%,x") is high if x” and x* share the
same label and low otherwise. However, it is not possible because the label of xT is unknown. As an
alternative, it appears that if we can have a good way to estimate the pairwise similarity s (xS ,xT) of
xI and x5, s (x%,x7) seems to be high if x” and x* share the same label and low if otherwise. Based
on this observation, we instead propose using a similarity-aware version of metric d as follows:

A7) = w7 )dy (5 (F) 5 () o (1 (5) 7 (7))
where the weight w (xS ,xT) is estimated based on s (xs ,xT).

Entropic regularized version of shifting term: Since computing directly the shifting term

W, (IP’S P’

s hT) is expensive, we use the entropic regularized version of % (]P’S P7 ) instead, which

S = T
we denote 7/ (Pﬁs , ]P’}{T) where € is a positive regularized term (Detailed definition and discussion
of the entropic regularized Wasserstein metric is in Appendix A). The dual-form (Genevay et al,,
2016) of that entropic regularized term with respect to the ground metric d admits the following

form: < )
1N e M 1N (e(e())—d(a.5
S e LR ) R
where ¢ is a neural net named the Kantorovich potential network, { (x{,}) }f]jland {xlr}fv:l are

source and target data, 70 = (x7,h5(x?)), Z]T~ =

(xJT,hT(xJT)), and w;j =w (xf,xf-).
Evaluating the weights w;;: The weights w;; are evaluated based on the similarity scores s;; :=

s (xis,ij-). Basically, we train from scratch or fine-tune a pre-trained deep net (e.g., ResNet (He

et al.,|2016)) using source dataset with labels and compute cosine similarity of latent representations

rJT. and rf oijr and xls ass;j=s (xf,x/T.) = cosine-sim <r‘lg,ro) .

To ease the computation, we estimate the weights w;; according to source and target batches. Specif-
ically, we consider a balanced source batch of Mb source examples (i.e., M is the number of classes
and b is source batch size for each class). For a target example x]T in the target batch, we sort the sim-

ilarity array [s; j]?ib1 in an ascending order. Ideally, we expect that the similarity scores of the target
example x]T and the source examples xf with the same class as x]T- (i.e., totally we have b of theirs)

are higher than other similarity scores in the current source batch. Therefore, we find ; as the MT’l—

percentile of the ascending similarity array [s; ]]f‘i bl and compute the weights as w;; = exp {S”—;“’}

with a temperature variable 7. It is worth noting that this weight evaluation strategy assists us in
sharpening and contrasting the weights for the pairs in the similar and different classes. More
specifically, for the pairs in the same classes, s;; tend to be bigger than (;, whilst for the pairs in
different classes, s;; tend to be smaller than y;. Hence, with the support of exponential form and
temperature variable T, w;; for the pairs in the same classes tend to be higher than those for the pairs
in different classes.

Comparing to DeepJDOT (Damodaran et al., 2018): The # (PiS’PZT) with d = Ady +dy

was investigated in DeepJDOT (Damodaran et al., 2018). However, ours is different from that work
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Table 1: Classification accuracy (%) on Office-31 dataset for unsupervised DA (ResNet-50).

Method A—W A—=D D—=W W=D D—A W—A Avg

ResNet-50 (He et al.[2016) 700 655 96.1 993 628 60.5 757
DeepCORAL (Sun & Saenko][2016) 83.0 71.5 979 98.0 63.7 645 79.8
DANN (Ganin et al.[2016) 81.5 743 97.1 99.6 655 632 802
ADDA (Izeng et al.|{[2017) 86.2 788 96.8 99.1 695 685 832
CDAN (Long et al.[[2018) 94.1 929 98.6 100.0 71.0 693 87.7
TPN (Pan et al.[[2019) 91.2 899 97.7 995 705 735 87.1
SAFN (Xu et al.[2019) 90.1 90.7 98.6 998 73.0 70.2 &7.1

rRevGrad+CAT (Deng et al.[|2019) 944 90.8 98.0 100.0 722 702 87.6
Deep]DOT (Damodaran et al.;/[2018) 88.9 882 985 99.6 72.1 70.1 86.2

ETD (Li et al.|[2020) 92.1 83.0 100.0 100.0 71.0 67.8 86.2
RWOT (Xu et al.[[2020) 95.1 945 995 100.0 77.5 779 90.8
LDROT 95.6 98.0 98.1 100.0 85.6 849 93.7
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(a) Closed-set setting with (b) Open-set setting with  (c) Partial-set setting with  (d) Universal setting with
yS=aT =9]. wS=[6], %7 =19]. WS =9, %7 = 6. S =[3]U{4,5,6},

T =[3]u{7,8,9}.
Figure 2: Label shift estimation for various settings of DA when the source data set SVHN and the
target data set is MNIST. Here, we denote [C] := {0, 1,...,C} for a positive integer number C.

in some aspects: (i) similarity based dynamic weighting, (i) clustering loss for enforcing clustering
assumption for target classifier, and (iii) entropic dual form for training rather than Sinkhorn as in
Damodaran et al.|(2018)). More analysis of LDROT can be found in Section @

4 EXPERIMENTS

4.1 EXPERIMENTS OF THEORETICAL PART

Label shift estimation: In this experiment, we show how to evaluate the label shift if we know
the labeling mechanisms of the source and target domains. We consider SVHN as the source do-
main and MNIST as the target domain. These two datasets have ten categorical labels which stand
for the digits in % = {0, 1,...,9}. Additionally, for each source or target example x, the ground-
truth label of x is a categorical label in # = {0,1,...,9}. Since these labels have good separa-
tion, from part (iii) of Proposition [3| we can choose f° (x) and f7 (x) as one-hot vectors on the
simplex %j. Therefore, P s and P ;7 are two discrete distributions over one-hot vectors represent-

ing the categorical labels, wherein each categorical label y € {0, ...,9} corresponds to the one-hot
vector 1,11 =[0,..,0,1,44,0,...,0]. The label shift between SVHN and MNIST is estimated by

either %Y <IP’?S,IP’;T) or %y (IP’ fs,IP’fr>, where dy is chosen as L! distance. More specifically,
Way (IP’ 5, P fr> is evaluated accurately via linear programmin while estimating %/, (]P)?S,]P’%)

using the entropic regularized dual form V/d‘; (IP’JSCS , }P’;T) with € = 0.1 (Genevay et al.,[2016). More-

over, to visualize the precision when using a probabilistic labeling mechanism to estimate the label
shift, we train two probabilistic labeling functions /% and A7 by minimizing the cross-entropy loss
with respect to f5 and f7 respectively and subsequently estimate W, (Pys,Pyr) using the entropic

regularized dual form %fy (]P’is, IP’;{T) with € = 0.1. Note that the prediction probabilities of #° and

hT are now the points on the simplex %.

We compute the label shift for four DA settings including the closed-set, partial-set, open-set,
and universal settings. As shown in Figure 2] for all DA settings, the blue lines estimating

Wy (IP’;S(S, ]P’;T> and the green lines estimating #, (P,s,P;r) along with batches tend to approach

the red lines evaluating %, (]P’fs, P fr> accurately, which illustrates the result of part (iii) in Propo-

Ihttps://pythonot.github.io/all.html
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Table 2: Classification accuracy (%) on Office-Home dataset for unsupervised DA (ResNet-50).

Method Ar—Cl Ar—Pr Ar—»Rw Cl—Ar Cl—-Pr CI-Rw Pr—Ar Pr—Cl Pr—-Rw Rw—Ar Rw—Cl Rw—Pr Avg

ResNet-50 (He et al.|[2016] 349 500 580 374 419 462 385 312 604 539 41.2 59.9 46.1
DANN (Ganin et al.|[2016}) 436 570 679 458 565 604 440 436 677 63.1 51.5 743 563
CDAN (Long et al.|[2018}) 50.7  70.6 76.0 576 700 700 574 509 773 70.9 56.7 81.6 6538
TPN (Pan et al.|[2019) 512 712 76.0 651 729 728 554 489 765 70.9 53.4 80.4 662
SAFN[Xu et al.|(2019} 520 717 76.3 642 699 719 637 514 771 70.9 57.1 815 673
Deep]DOT (Damodaran et al.|{2018) 48.2  69.2 74.5 585  69.1 71.1 563 46.0 76.5 68.0 52.7 809 643
ETD (L1 et al.|[2020) 513 719 85.7 576 692 737 578 512 793 70.2 57.5 82.1 673
RWOT (Xu et al.[|2020) 552 725 78.0 635 725 751 602 485 789 69.8 54.8 825 67.6
LDROT 574 79.6 82.5 67.2 798 80.7 665 533 825 70.9 574 84.8 719

sition 3] We also observe that the label shifts of partial-set, open-set, and universal settings are
higher than the closed-set setting as discussed in Theorem 5]

Implication on target performance: In this experiment, we demonstrate that the theoretical find-
ing of Theorem 4| indicating that forcing learning domain-invariant representations hurts the target
performance. We train a classifier 757 = g o h, where g is a feature extractor and % is a classi-
fier on top of latent representations by solving ming ;{2 (h57, f5,P5) +0.1 x #,5 (g#P®, g#P") }
where L£1 (g#IP’S, g#]P’T) is used to estimate %/ (g#IP’S, g#IP’T) for learning domain-invariant repre-
sentations on the latent space. We conduct the experiments on the pairs A—W (Office-31) and P—1
(ImageCLEF-DA) in which we measure the WS data shift on the latent space #/5 (g#P5, g#P” ), and
the source and target accuracies. As shown in Figure [3 along with the training process, while the
WS data shift on the latent space consistently decreases (i.e., the latent representations become more
domain-invariant), the source accuracies get saturated, but the target accuracies get hurt gradually.

—— WS data shift —— WS data shift

—— source domain
— target domain

—— source domain
— target domain

Wasserstein distance
Accuracy (%)
Accuracy (%)

) 3 S o
B o @ ¢ @ ¢ o

Iteration

g S
I N

Iteration
Figure 3: Illustration on target performance to show that forcing learning domain-invariant repre-
sentations can hurt the target performance. Left: A—W (Office-31). Right: P—I (ImageCLEF-DA).

4.2 EXPERIMENTS OF LDROT ON REAL-WORLD DATASETS

We conduct the experiments on the real-world datasets: Digits, Office-31, Office-Home, and
ImageCLEF-DA to compare our LDROT to the state-of-the-art baselines, especially OT-based ones
DeepJDOT (Damodaran et al., [2018]), SWD (Lee et al., 2019), DASPOT (Xie et al.,[2019), ETD |Li
et al.| (2020), and RWOT (Xu et al.,2020). Due to the space limit, we show the results for Office-31
and Office-Home in Tables E] and E], while other results, parameter settings, and network archi-
tectures can be found in Appendix [D| The experimental results indicate that our proposed method
outperforms the baselines.

4.3  ABLATION STUDY FOR LDROT

We conduct comprehensive ablation studies to investigate the behavior of our LDROT. Due to the
space limit, we leave to the ablation and analytic studies to Appendix

5 CONCLUSION

In this paper, we study label shift between the source and target domains in a general DA setting.
Our main workaround is to consider valid transformations transporting the target to source domains
allowing us to align the source and target examples and rigorously define the label shift between
two domains. We then connect the proposed label shift to optimal transport theory and develop
further theory to inspect the properties of DA under various DA settings (e.g., closed-set, partial-
set, open-set, or universal setting). Furthermore inspired from theory development, we propose
Label and Data Shift Reduction via Optimal Transport (LDROT) which can mitigate data and label
shifts simultaneously. We conduct comprehensive experiments to verify our theoretical findings and
compare LDROT against state-of-the-art baselines to demonstrate its merits.
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Supplement to '"'On Label Shift in Domain Adaptation
via Wasserstein Distance"

In this appendix, we collect several proofs and remaining materials that are deferred from the main
paper.

In Appendix |A] we present notations and definitions that are deferred from the main text
including optimal transport and entropic regularized Wasserstein distance.

* In Appendix [B] we present proofs of all the key results.

* In Appendix [C} we present proofs of the remaining results, including the derivation of the
dual form of entropic regularized optimal transport.

* In Appendix D] we provide training specification and additional experimental results.

A NOTATIONS AND DEFINITIONS
In this appendix, we provide notations, notions, and definitions that are used in the main text.

A.1 OPTIMAL TRANSPORT

Given two probability measures (2",IP) and (#/,Q) and a cost function or ground metric d (x,y),
under the conditions stated in the below theorem (cf. Theorems 1.32 and 1.33 (Santambrogio}
2015)), the primal form of Wasserstein (WS) distance (Santambrogio, [2015) is defined as:

7q(P,Q)=_ infiQ]Epr [d(x, T (x))], (1)
Wd (]P)7Q) 7611?f )E(xy)wy[ ( 7y)]7 (12)

where I'(P,Q) specifies the set of joint distributions over 2~ x % which admits P and Q as
marginals. The first definition is known as Monge problem (MP), while the second one is known as
Kantorovich problem (KP). We now restate the sufficient conditions for which (MP) and (KP) are
equivalent (cf. Theorems 1.32 and 1.33 (Santambrogiol, 2015))).

Theorem. If 2" and & are compact, Polish metric spaces, P and Q are atomless, and d is a lower
semi-continuous function, then (KP) is equivalent to (MP) in the sense that two infima are equal.

In addition, under some mild conditions as stated in Theorem 5.10 in|Villani| (2008)), we can replace
the primal form by its corresponding dual form

Yi(.Q) = max (Eq[o ()] +Ee[9 (]}, (13)

where 2 (Q,P) :={y: [o|w(y)|dP(y) < e} and ¢ is the c-transform of function ¢ defined as
¢¢ (x) := miny {d (x,y) = ¢ (¥)} -

A.2 ENTROPIC REGULARIZED DUALITY

To enable the application of optimal transport in machine learning and deep learning, Genevay et al.
developed an entropic regularized dual form in|Genevay et al.|(2016)). First, they proposed to add an
entropic regularization term to the primal form in (12)

Vi ®Q) = min {By)nyld(xy)] + D (YIPOQ)], (14)

where € is the regularization rate, Dk, (+||-) is the Kullback-Leibler (KL) divergence, and P® Q
represents the specific coupling in which Q and P are 1ndependent Note that when € — 0, #f (P,Q)
approaches %, (P, Q) and the optimal transport plan y; of (14)) also weakly converges to the optimal
transport plan y* of (12] . In practice, we set € to be a small positive number, hence 7} is very close
to 7*. Second, using the Fenchel-Rockafellar theorem, they obtained the following dual form w.r.t.
the potential ¢

14
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75 2.0 =max{ [ 059000+ [ 0 0)aP ()| = max (o of (] +ELo 0]} 19
where ¢f (x) := —¢elog (E[p {exp {M H )

A.3 PRELIMINARIES

Notions. For a positive integer n and a real number p € [1,0), [n] indicates the set {1,2,...,n}
while ||x||, denotes the /,-norm of a vector x € R". Let %5 and T be the label sets of the source
and target domains that have M5 := |@ $ | and M7 := ‘@ T| elements, respectively. Meanwhile,
% =#SUXT stands for the label set of both domains which has the cardinality of M := |#/|.
Subsequently, we denote %, %, and %! as the simplices corresponding to %, %5, and %7 re-

spectively. Finally, let £5(-) € #4 and f7 (-) € %, be the labeling functions of the source and target
domains, respectively, by filling zeros for the missing labels.

We first examine a general supervised learning setting. Consider a hypothesis 4 in a hy-
pothesis class 7 and a labeling function f (ie., f(-) € #x and h(-) € ¥ where Zp =

{m eRM:||z||, = land w > 0} with the number of classes M). Let dy be a metric over #,. We
further define the general loss of the hypothesis & w.r.t. the data distribution P> and the labeling
function f as: .Z (h, f,P) := [da (h(x),f(x))dP(x).

Next we consider a domain adaptation setting in which we have a source space .25 endowed with
a distribution PS and the density function p® (x) and a target space 2" endowed with a distribution
P”and the density function p' (x). Let f5(-) € %, and f7 (-) € %, be the labeling functions of the
source and target domains respectively. It appears that p5 (x,y) = p% (x) f5 (x,y) and pT (x,y) =
pT (x) T (x,y) are the source and target joint distributions of pairs (x,y) respectively. Note that for
a categorical label y € {1,...,M}, £ (x,y) and f7 (x,y) represent the y—th element of the prediction
probabilities £ (x) and f7 (x).

B PROOFS OF ALL THE KEY RESULTS
In this appendix, we provide useful lemmas and proofs for main results in the paper.

B.1 USEFUL LEMMAS

Lemma 6. IfycT (Pfs,]P’fr>, there exists Y € T (PS,PT) such that (f5,f7),y =7.

Proof. Let denote y° as the joint distribution of the samples (x*, f* (x%)) where x5 ~ P* and y” as
the joint distribution of the samples (x”, 7 (x”)) where x” ~ P”. It is obvious that ¥ is a joint
distribution of PS and P/* and 97 is a joint distribution of P” and P/ . According to the gluing
lemma (see Lemma 5.5 in|Santambrogio| (2015)), there exists a joint distribution u such that for any
draw (x5, 75,77 xT) ~ p then (x%,7%) ~ ¥, (7%, 77) ~ v, and (x7,77) ~ .

Let ¥ be the distribution of samples (xs ,xT) (i.e., the projection of u onto the first and fourth
dimensions). This follows that ¥ is a joint distribution of PS and P (i.e., ¥ € I'(P5,P")). In
addition, since (x%,7%) ~ 5, o5 = 5 (&), since (x7,77) ~¥7, 77 = fT (x), and (75,77) ~ 7.
Therefore, we reach (f5, f7) V=7

We note that in the above proof, we employ a general form of the gluing lemma for 4 distributions

and spaces. The proof is mainly based on the gluing lemma for 3 distributions and spaces and
trivial. O

Lemma 7. Let dz be defined with respect to the family € as follows:
dz(z1,22) = sup dy(h(z1),h(z2)),
hest
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where z1 and z3 lie on the latent space Z. For any 7 and 23, if h(z1) = h(z2),Vh € S€ leads to
Z1 = 22, then dz is a proper metric.

Proof. First,dz(z1,22) > 0and dz (z1,22) =0means i (z1) = h(z2),Vh € , which leads to z; = 25.

Second, it is obvious that dz (z1,22) = dz (z2,21) ,Vz1,22-

Given any z1,22,23, we have

dz(z1,23) = sup dy (7(z1),h(z3)) < sup (dy (h(z1),h(z2)) +dy (h(22),1(23)))

he
< sup dy (h(z1),h(z2)) + sup dy (h(z2),h(z3))
heA heA

=dz(z21,22) +dz(22,23).

Therefore, dz is a proper metric. O

B.2 PROOF AND COROLLARY OF PROPOSITION 2

Proof. (i) First, we will prove that %, (P;S,PJT(O > #S(S,T). Let H : supp (IP’;T) — supp (Pf,s>

be such that H#]P’}Tﬂ = ]P’;S where supp indicates the support of a distribution. We can express H as

H (x, 7 () = (H (x, /" (0) . H (x.f7 (x))),
with H (x, 7 (x)) € 275 and H, (x, f7 (x)) € Z4. Define K (x) := H; (x, fT (x)). We claim that
KyPT = PS. Observe first that for any Us C 2™5 x %, we have IE”?S (Us) = P5 (Vs) where Vg :=

{xe 25| (x,f5(x)) € Us}. Next, let Vs C 25 be any measurable set and denote Us := Vs X Z.

Then by using the observation above and the fact H#IP’J{T = IP’;S, we obtain

P* (Vs) =Ps (Us) =Ppr (H™' (Us)) =Pfr (K~ (Vs) x %) =PT (K™ (Vs)),

or equivalently, KzP” = IPS. It follows from the fact H#]P’;T = IP’?S that H (x, /T (x)) = f5 (K (x)),
which gives '

Wdy (PiSaP;T> = H;H#[Pii‘l,rfzpisE(X"fr(x))NP;T [dY (fT (X) )HZ (X, fT (x)))]

I S
= K:K;]}IT}Tf:PS Eypr [dy (fT (x),f° (K (x)))]
— ZS(S.T).

In order to prove the reverse inequality, let us consider any maps K satisfying KyP! =
PS. Define a map H : supp (]P’;T> — supp (]P’?.S) as H(x,fT (x)) = (K(x),f5(K(x))), we
will show that H#]P’% = IP’}S,S. Indeed, let Us C 25 x %, be any measurable sets and
take Vs == {xe 25| (x,f5(x)) €Us}. Then, as H ' (Us) = {(x,f5(x)) | K(x) € Vs} =
{(x,f5(x)) |x€ K" (Vs)}, we have

Pir (H™! (Us)) =P" (K~ (Vs)) =P (Vs) = PJs (Us),

which means H#}P’;T = IP’?.S. As a result,

Way (Pis,P;T) S et Bty [dy (f (%), /° (K (x)))] = ZS(S,T).

By combining the above two inequalities, we obtain the desired equality
W, (]P’;S, PJZT> = ZS(S.T).

16



Under review as a conference paper at ICLR 2022

(i) First, let 7y € F(PfS,]Pfr>. According to Lemma El, there exists ¢y €
I (P5,PT) such that (fS,fT)#j/ = 7. Then,
By 1)y [ 0% 97Y] =B )y [ (75 (%) 7 (67))
> il By [dy (F ()T (7))

yer(pS,pT)
— W, (}P’fs, ) LS(S.T).
Therefore, we arrive at

Wig (PP ) = inf B oy [dy (F07)] = £5(5.7).
yEF(IF’fS,IP’fT) ’

Second, lety € T’ (]P’S,IF’T), we denote Y = (fS,fT)#)/. We then have
E(xs,xT)Nj/ [dy (fS (xg) ’fT (xT))] = E(ys,y7)~y [dY (yS’yT)}

> inf o By [dr (F507)] = 74 (PvaPfT>~

ver (Ps.Pyr
This follows that
_ . S .S\ T (.T
ZS(S.T) = Way (P55, P ) = et By [ (72607 ()]
> Way (Pys. Py ).
Hence, the proof is completely done. [

Corollary 8. The following inequality holds #y, ( ) <% (hs 7S, ]P’S)

hSa

Proof. According to Proposition 1, we have:

Wy, (]I”hSJP’ 5) = B [dy (h® (x), 5 (L(x)))] .

Then by choosing L as the identity map (i.e., L(x) = x for all x), we obtain:

W, (]P’hS,IF’fS) <E, ps [dy (5 (x), fS (L(x))] = 2 (i, 75, P%).

B.3 PROOF OF THEOREM 4

First, we will show that
LSS, T) <L (05,5, P5) +.2 (W', fT . P) + Wiy (B, Byr) -

By using the triangle inequality for the Wasserstein distance with respect to the metric dy, we have
LS(S,T) = Way (Pys,Byr )

()
S Wdy (PJ‘S ]PhS) +Wdy Phs PhT)+%Y (PhT ]PfT)
_%y (]P)fs, )+%Y Phs ]Phr)—i_%y (]P)hT,]P) )
2

< L (WS, 5, P5) + 2 (W', T, PT) + Hay (Pys, Byr) .

1) ()
Here we note that for <, we use the triangle inequality and for <, we invoke Corollary

17
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It is sufficient to prove that
Wdy (PhSaPhT) < Wdz (gS#]P)SagT#PT) :
Indeed, let y € I" (g5#PS, g" #P”) and denote ¥’ = h#y. Then, we have ¥ € I' (P,s,IP,7), and

By yp)~ry [dy (y1,32)] = B, ,z2)~Y[dY (h(z1),h(z2))] < E(y )~y [dz (21,22)].-

Therefore, we obtain

Wy (Prs.Por)=  inf By ooy ldy (0,
dy (Pps, Pyr) WL (vy.0)~7 [y (91,32)]

<E(y, y)~y [y 0192 SE () )y ldz (z1,22)] -

Finally, we reach

< . _ SupS TupT)
Way (Bys,Ppr) < yel_(gsgﬂl,};ﬂ#w)]E(ZI,Z2)~Y[dZ (z1,22)] =4, (g #P”, g #P )

Hence, we have proved our claim.

C PROOF OF THE REMAINING RESULTS

C.1 PROOF OF PROPOSITION 3

Denote by py = (py (y))?”: , and pl = (pl (y))y: , the marginal distributions of the source and target

domain labels, i.e., py(y) = [4sp3(x,y)dx and p}(y) = [,+ p” (x,y)dx. Let P¢ be the discrete
measure on the vertices of A¥ ! putting mass Py (y) on the one-hot representation of y, Vy € [M],a €
{S,T}. Fordy(y,y') = |ly— ||, when p > 1, the following holds:

(i) Z (h7, fT,PT) < ZS(S,T)+ 2 (K5, f5,P5) + #, (PZS7P£T) + const, where the constant can
be viewed as a reconstruction term: sup; x.; upr_ps gups—pr Epr [dy (f7 (K (L(x))), T (x))];
(i) Z.7(S.T) = ||py — py l17:

(iii) In the setting that PS and PT are mixtures of well-separated Gaussian distributions, i.e.,

Ms

pi(x) =), p A (xluy,X5), Vae{S,T}

1

y
with [|¢ — 8|2 > D x max{|[£¢]s)”, [Z4]l65°} Ya € {S.T},y # ¥/, in which || - ||, denotes the
operator norm and D is sufficiently large, we have

0<|2.7(S,T)—#}(By,Py)| < &(D), (16)

M

where £(D) is a small constant depending on D, py, py, (£5,Z))}L,,

35 Ly and it goes to 0 as D — oo,

(iv) In the anti-causal setting, where pS(x|y) = pT (x|y) for all x,y,

LS(8,T) < M| py — py |l +min{Eps||f* — £1(17. Epr || f° — 1117} (17
Proof. (i) Let L and K be two arbitrary maps such that L#PT = PS and K#P5 = PT. We have the
following triangle inequality:

dy (h" (x), f" (x)) <dy (" (x),h° (L(x)) +dy (h° (L(x)), f° (L(x)))
+dy (2 (L(x)), fT(K(L()))) +dy (fT (K (L(x), /T (x).

18
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Therefore, we obtain
Epr [dy (/’ZT (x) ,fT (x))] < Epr [dy ( , hS > (L(x) ))
(

+Epr [dy (f° ((x)) fT(K
Q)

+Epr [dy (¥ (L(x)),f° (L()))]
()))] +Epr [dy (fT (K (L(x))).f" ()]
Epr [dy (h" (x),h° (L(x)))] +Eps [dy (h° (x), £° (x))]

+Eps [dy (f° (x), fT (K (x)))] +Epr [dy (fT( (L)), f" ()]

=Epr [dy (1" (x),h L(x) )] +2 (h5, 5, %)

+Eps [dy (f° (). f" (K (x)))] +Epr [dy (fT (K (L)), fT (x))]-
Note that, the derivation in = is due to L#PT — PS, hence gaining

Epr [dy (h° (L(x)),/° (L(x)))] = Eps [dy (h° (x), f* (x))]
B [dy (5 (L(9) 7 (K (L(3)))] = Eps [dy (5 (). 7 (K ().

As a consequence, we find that

WfW>Mm¢%Wwawwﬁmwhfmﬂm

]
L

+Eps [dy (f°(x), fT (K (x)))] +Epr [dv (7 (K(L(x))), " (x))}}
< inf  Epr[dy (W7 (x),h5(L(x)))]+ inf  Eps[dy (f5 (x),fT (K (x)))]

L:L#PT =PS K:K#PS=PT

+.2 (W5, 5 P5) + sup Epr [dy (f7 (K(L(x))), /" (x))]
L.K:L#PT =PS K#PS=PT

=Way (Bs,Pir) + L. (S, T)+ 2 (h°, f5,P°)
+ sup Egr [dy (f7 (K(L(x))),f" ()]

LK:L#PT =PS K#PS=PT

(ii) We will show that for all transformation L satisfying L#PT = P5,
P p
Epr [|£7 (1) 5L = [|p§ — P}

and then take the infimum of the LHS, which directly leads to the conclusion. Indeed, by applying
Jensen inequality, we find that

(18)

M
Epr || (x) = f(L))[[; = Z Epr |p" (ylx) = p* (yIL(x))?

= 1

> Z |Epr (p" (v1x) = P GIL()) |

y=1

=Z\Ew () = Eps p* (y1)|”
=

S

=

= ; lpF ) =y )|

[}

= llp = prl;
We have thus proved our claim.

(iii) Consider y’s as one-hot vectors, i.e., vertices of the simplex. By the fact that Wasserstein
distances on simplex are no greater than M, we have

(W (B Pyr) = H) By PY)| = | Y #y By Ppr) W) (B PY) | [#p (Pys, By ) — #, (B, Y )|
i=0

< pMP Wy (P s, Byr) — #(BY, PY ).
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Besides, by triangle inequalities,

W5 Byr) — Wy(BS B )| < #y (B ys, BS) + 5 (Byr ). (19)
Thus, we only need to prove the claimed bounds for Wp(IP’fsJP’,S/) and W, (P fr,]P’g). Because the
proofs are similar for the source and target, in the followings, we drop the superscript S, 7T for the

ease of notations. We first show that the mass of [Py concentrates near the vertices, i.e., there exists
(0, &)ye|p) being small numbers depends on D such that, for Z ~ f(X),

0<pr(y) —Pr(llZ—yl; <ay) <& Vye[M] (20

Indeed, for all y, let B, = {x: Iz - )| < v/D}. Denote the dimension of X to be d and x3
the Chi-square distribution with d degree of freedom. We have the following tail bound:

P(X € Byly) = P(x3 < D) >1—¢ (P720/%,

Hence, we obtain that

P(X € By|y)pr(y) > P(x7 < D)py(y) = pr (y) — &,

Mx<

P(X € By) =
1

5
where €, = e~ (P=2d)/4  Besides, if x € B, then for any y’ # y, by triangle inequalities and the
definition of the operator norm,

—-1/2 1/2
”Zyl / (x_'uy/)HZ > ||Z) ||op/ ||()C—‘uy/)||2
1/2
> 120y >0ty = )l = 1= 1) )

-1/2
> (12 [lop 2 (1(ky = 1) 12 = | (1 — 1) |12/ VD)
>D-D,
where the above inequalites are due to our assumption and the fact that
1/2)9—1/2 1/2
o= tyll2 < I llop 15 20— )iz < 1y llop VD < [ty = by 2/ VD
Hence, for all x € By and y' #y, we have

p((xly’)) _ Ey'll// 22e(Hz;”%x—uy)H%—Hz;l“(x—uy/m%)/z < P 0-VD.
p(x]y W

Combining the above inequality with Bayes’ rule leads to

pOl) = 1

) \’)
T+ Yy p)) (i\;) vy P px|y)

where ¥, < ¢~P(D=2VD) " This means the difference between labeling function at x € By and y is
bounded as follows

1£(x)=lIh = (1=pGlx)" + Y, p(/ )P <2(1 = p(ylx))” <29
V#y

Choosing o, = 29/, by the fact that x € By implies || f(x) — y||; < o, we have
Pr([1Z = yllp < o) > P(X € By) > pyr(y) — &
Putting the above results together, we find that
pr(y) —Pr(IZ=yllp < o) < &

Due to the continuity of P, we can also shrink ¢, such that the inequality still holds and the left-
hand side is positive and we get our claim (20).

Now let Ey = {z: ||z—yl|; < o} and Dy be a set containing Ey for all y € [M] satisfying P¢(Dy) =
py(y) and {Dy}’y‘,"':1 is a partition of AM~!. Let p be the density of Ps. It can be seen that

m(z,y) = pr(2)1[z € Dy]
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is the density function of a coupling between [P and Py. Hence, we have the following inequalities:

M
P _ S|P
1< X [, bl
SZ/ Iy —zllp w(z,y)dz
(/ y—elpaeo)+ [ Iv=elpate) )de

( o, 7(z,y dz+/ (ZJ)dz) dz
€Ey €Dy \E,

oy + MPg, < e PPO-2VD) | o~ (D-2d)/4

IN

IA
HM§ iMs ||ME \

)

which goes to 0 exponentlally fast when D grows to infinity. Plugging the above inequality into
equation (19)), we obtain the conclusion of part (iii) of the proposition.

(iv) Let m, = P(-|y) be conditional measure of X given Y =y. By using the law of total probability,

we have
S d s T d T
P =Y py)m, P' =Y pr(y)m,. 1)
y=1 y=1

Given the above equations, some simple algebraic transformations would lead to

Prs = f5#PS = Z py(y) fS#m,. (22)

Now let gy, = min{p} (), py (y)} and choose (gyy)y..y such that (gyy),_ 137 v_137 is a valid cou-
pling of pls, and pl. By the convexity of Wasserstein distance, we have

WP(Ps,Pyr) <Y gy WE(fS#m,, fT#my). (23)
»y
As the distance between two arbitrary points on the simplex AM~! is not greater than M, neither is

the Wasserstein distance between any two measures on A¥~!. Therefore,

Y ay Wy (£, f1#m) <MY gy <MP|py = py 1. (24)
&Y Ay
Besides,
o s T o s s T p
WP (f#m,, ' #m,) < inf / x)— LD dm(x,x
};cm P (fHmy, f )),ygpy(y L - |2 (x) = f1 ()] dmle )

IN
Mk
‘<U1

ST dmy (x)

<
Il
—_

I
M=
S
<~
=

—
%,

(x) =T )|} p(xly)dx

y=1 Fa
= [ 15 @ =" Wl p
=Eps || /5= /7|7,

Similarly, since gy, < p (y) for all y € [M], we could also obtain

M
Y. anWE (£, £ 1) < Eor |5 7.

y=1
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Consequently,
M
Y W (75 #my, (T #my) < min{Bps || 15— 7|7 Bpr || 15— 7|17} (25)
y=1

Combining equations (24)) and (23)), we have the conclusion of part (iv). O

C.2 PROOF OF THEOREM 5

Before providing the proof of Theorem 5, we first introduce a lemma which facilitates our later
arguments.

Lemma 9. Let p and v be two probability measures on RY. Denote by uy (vy) and Uy (v,) the
marginal distributions of W (V) on the first k dimensions and the last d — k dimensions, respectively,
where 0 < k <d. We have

W) > WP () + 7 (12, v2) (26)

Proof. Let & be the optimal coupling of y and v, and (Xi,...,Xy,Y1,...,Yy) is a random vector
having law 7z, we have (Xi,...,X;) ~ U, (Y1,...,Y;) ~ v. Denote by m; and 7, the marginal distri-
bution of (Xi,..., X, Y1,..., %) and (Xpy1,-- -, X4, Yer1, . .., Yy), respectively. It can be seen that 7
is a coupling of u; and v; while 7, is a coupling of u, and v,. Hence,

vpw) = [ lelpdn(y)
R4 x

= [ menlgames)+ [, e slidn ()
> Wp”(ﬂhvl)Jr%p(Hz,Vz),

where x; € R is a vector including the first k coordinates of x, whereas x, € R4=* contains the last
d — k elements of x, and similar definitions apply for y; and y,. O

Now, we come back to the proof of Theorem 2.
Proof of Theorem 5:

(i) We consider two random vectors (Xi,...,Xpy) ~ Ps and (Y1,..,Yy) ~ Pr. Recall that Qg
and Qr are the marginal distributions of P s and sz on their first C — 1 dimensions, respectively,

while Qg7 denotes the marginal of Pz, on the space of variables having labels in the set %5\ Z7.
Since % C %5, we have

1. (Xh...,XC,])NQS, (Y],...7YC71)NQT;

2. (Xc1s---Xm) ~ Qavrs (Yer1,---,Ym) ~ G0y
where 0,, denotes the zero vector in R™ for m € N. Let u be the distribution of
(X1,...,Xc_1,Xci1,- .., Xur), v the distribution of (Y7,...,Ye_1,Ycy1,...,Ya). As the simplex AM~!

is an M — 1 dimensional manifold in RM, the Wasserstein distance between P /5 and P 7 can be writ-
ten as )

M
WP (Pys,Per)= inf xi —yilPdy(xz,v7),
y By Fyr) Yer(lvh\/).RC—lxRC—]i:lel vil'dyaeve)
where x5 = (xl,...,XC,],)CCJF[,...,XM),yé = (yl,...,yC,],yCJr[,...,yM) and Xc =

1 =Y scxyc = 1= Ypre Yk As |xc —yc|P > 0, it can be deduced that
pr(PfstfT) > pr(uav)'
Besides, according to Lemma[9] we get
WP v) = H (@5, Qr) +# Qsyr. S, ) = #(Qs, Q1) +Exy, [IX115]

Putting the above two inequalities together, we obtain the conclusion that

WY (Bps,Ppr) > WFP(Q&QT)JF]EXNQS\T [||X||§] . 27
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(ii) Part (ii) is done similarly to part (i). Therefore, it is omitted.

(iii) Let (Xi,...,Xm) ~Pys and (V1,...,Yy) ~ Pyr. Assume that % = {1,...,C,C+1,...,D}
and %y ={1,...,C,D+1,...,M}. It follows from the definitions of QS,QT7QS\T and Qy\g that
1. (le"'axcfl) NQS’ (Ylv"wYCfl) NQT;
2. (Xc+15---,XD) ~ Qs\7> Yer1,--, YD) ~ 805
3. (XD+|7...,XM) ~ 60M7D’ (YD+|,...,YM) ~ QT\S'

Let u be the distrlbutlon of (Xl, . Xc-1,Xc+1,---,Xy), and v be the distribution of
(Y1,...,Yc—1,Ycq1,...,Yy). By using the same arguments as in part (i), we get #;/ (Pps,Pyr) >

#,7 (1, V). Next, applymg Lemma@twwe we obtain
pr(:ua V) > %’%QS, QT) =+ pr(QS\Ta 50ch) =+ pr(éoM,DaQT\S)

= #7(Qs,Qr) +Er~ay, | IVI15] +Ex~or [IX12] -

As a consequence, we have proved our claim in part (iii).

C.3 PROOFS OF CLAIMS IN PARAGRAPH "REMARK ON SHIFTING TERM"

Lemma 10. The followings are true:
(l) de (g#Psag#]P)T) de( hS? hT)

(ii) Way (Plr BT, ) < L. (S.T) + 2 (5, 15,5) + Hay (PS5, P ).

Proof. (i) Applying the same arguments as in Proposition 1, we have

Wiy Py, Pyr) = inf  Epr [dx[g(x), g(F1(x)]] = inf Epr [dx(g(x),g(L(x)))], (28)
H:HHPL =PSc L:L#PT =PS

where H((x,hT (x))) = (Hy((x,h” (x))), Ha((x,hT (x)))) such that H; ((x,A” (x))) € 2. So now we
only need to prove that

Wy (gHP°, ghPT) = L it Epr [dx(3(),8(L(x)))]- (29)

Due to the equivalence of Monge and Kantorovich problem, we can write the RHS as

inf  Epr [dx(g(x),g(L(x)))] = _inf B ,ryy [dx(g(x),g(x"))]. (30)
L:L#PT =PS yer(PS PT)

To prove Eq. (]E? we will show that RHS is not less than LHS and inversely. Indeed, for any
coupling y € T'(P>,PT), we have ¥ = (g, g)#y as a coupling of (g#P5, g#PT), therefore

T\ _ S T - S T
E(s xT)oy [dx (3(x*),g(x"))] = Eys y7yoy [dx(y>,y")] > VEF(gL%g.g#PT)E( Tyny [dx(y°,y")].

Taking the infimum with respect to v,

it By (%) 96)) = Wiy (4P, P (31)

Conversely, thanks to Lemma@, for each coupling ¥ of (g#PS, g#PS), there exists a coupling y of
(IPS,P5) such that ¥ = (g, g)#y, which deduces that

S T _ S T . T
Eys yryy [dx(¥°,¥)] = E(s oy [dx (8(x),8(x7))] > it By [dx (8(x*),g(x"))] -

Taking the infimum with respect to Y/,
S anT - s T
Hac(HBS.HT) 2 ind | By [ (6(6%)667))] (32)
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Inequalities (31) and (32) together imply equation (29) and finish proof of part (i).

(ii) Using triangle inequality, we have

Vi, (PhT, ) Way By Py ) < Wy (Byr Prs) + Wy (]P’hs Pfs) Ay, (Pfs JPfT)
_Wdy (]PhTa S)+$(hsvfsvps)+$y(S7T)

As a consequence, we obtain the conclusion of part (ii). O

D ADDITIONAL EXPERIMENT RESULTS

D.1 MORE ANALYSIS ABOUT RATIONALE OF THE TERMS USED IN THE OBJECTIVE
FUNCTION OF LDROT

This objective function consists of three losses: (i) standard loss .#5, (ii) shifting loss ./, and
(iii) clustering loss .2, The standard loss .#S is trained on the labeled source domain. The shift-
ing loss aims to reduce both data and label shift simultaneously on the latent space by minimizing

Wd( hs? hT
tance on the label simplex. Based on the theory developed, we demonstrate that minimizing this

term helps to reduce both data shift (i.e., %, (g#IP’S ,g#]P’T) and label shift (i.e., #4, (Phs,IP’hT))

Finally, the .¥ ”“f“ assists us in enforcing the clustering assumption to boost the generalization of the
target classifier 7. By enforcing the clustering assumption, classifiers are encouraged to preserve
the cluster structure and give the same predictions for data representations in the same cluster. It ap-

) where d = Adx + dy for which dx is data distance on the latent space and dy is dis-

pears that when pushing target latent toward source representations via minimizing # (IP s ]P’h )

source and target representations tend to group in clusters, hence we can strengthen and boost gen-
eralization of target classifier A7 by enforcing it to preserve the predictions in the same clusters.

In addition, we propose a dynamic weighting for A using similarities of pairs between source and
target examples. For our similarity-based weighting distance, we base on pre-trained similarities
to decide if we push more or fewer pairs of source and target latent representations together to
reduce data and label shifts more efficiently. Definitely, if we can push groups of source and target
representations with the same labels together more efficiently, we can certainly reduce both data and
label shifts simultaneously.

D.2 DATA PREPARATION AND PRE-PROCESSING

Digits. We resize the resolution of each sample in the dataset to 32 x 32, and normalize the value of
each pixel to the range of [—1,1].

Office-31, Office-Home, and ImageCLEF-DA. We use 2048-dimensional features extracted from
ResNet-50 (He et al.l 2016)) pretrained on ImageNet.

D.3 ALGORITHM OF LDROT

We present peusocode of LDROT in Algorithm [I]

D.4 NETWORK ARCHITECTURE

There are 2 types of the architecture described in Table 3] which are small (S) and large (L) net-
works. We use L network for Digits and S network for the other datasets. Additionally, excluding
dense layers in the ¢ network, we add the batch normalization layers on top of convolutional and
dense layers to reduce the overfitting problem. Finally, we implement our LDROT in Python us-
ing TensorFlow (version 1.9.0) (Abadi et al.l 2016)), an open-source software library for Machine
Intelligence developed by the Google Brain Team. All experiments are run on a computer with an
NVIDIA Tesla V100 SXM?2 with 16 GB memory.
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Algorithm 1 Pseudocode for training our LDROT.

Mb
i=1’

b
Input: A source batch 25 = {(x5,){)} ", a target batch 27 = { (x]T-, y]T) } ~, bis the batch size.

j=1
Qutput: Classifier h_*Sh_*T, generator g*.
b
Evaluate {r‘lg }?ibl and {ro} . based on %5 and A7 respectively.
j=
b
Compute the weights w;; ibased on {r} }?ibl and {rJT} .
j=
for number of training iterations do
for k steps do
Update ¢ according to Eq. (13).
end for
Update /5, AT and g according to Eq. (10).
end for

Table 3: Small and large networks for LDROT. The Leaky ReLU (IReLU) parameter a is set to 0.1.

Architecture S L
Input size 2048 32 x32%3
Generator g instance normalization
256 dense, ReLU 3 x 3 conv. 64 IReLU
dropout, p =0.5 3 x 3 conv. 64 IReLU
Gaussian noise, o = 1 3 x 3 conv. 64 IReLU

2 x 2 max-pool, stride 2
dropout, p =0.5
Gaussian noise, o = 1
3 x 3 conv. 64 IReLU
3 x 3 conv. 64 IReLU
3 x 3 conv. 64 IReLU
2 x 2 max-pool, stride 2
dropout, p =0.5
Gaussian noise, o = 1
3 x 3 conv. 8 IReLU
2 x 2 max-pool, stride 2

BCSIa;lsTlﬁer #classes dense, softmax 3 x 3 conv. 8 IReLU
3 x 3 conv. 8 IReLU
3 x 3 conv. 8 IReLU
global average pool
#classes dense, softmax
] 1 dense, linear 100 dense, ReLU

1 dense, linear

D.5 IMPLEMENTATION DETAILS

We first present our procedure to compute the weights w;;, which derives from the feature extraction
process. For Digits, we design a network to train from scratch on labeled source examples. Then
source and target features are extracted via this pretrained model. For the other datasets, we use
extracted ResNet-50 features (He et al., |2016) and design a small network to train LDROT. During
training, the features are used for first computing pairwise similarity scores and the weights w;; after
that.

For LDROT, we find that some hyper-parameters contributes substantially to the model performance,
namely 7 and €. The temperature parameter 7, which contributes to sharpening and contrasting the
weights w;;, is fixed to 0.5. Tweaking the regularization rate € is vital for scaling ¢¢ (x) and we
select € = 0.1. For trade-off parameters «, 3, we choose o = 0.1 and 8 = 0.5 for all settings. We
apply Adam optimizer Kingma & Ba| (2014) (8; = 0.5, 3, = 0.999) with Polyak averaging. The
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Table 4: Classification accuracy (%) on Digits dataset for unsupervised domain adaptation.

Method S—-M M-=U U—=M Avg

DANN (Ganin & Lempitsky}[2015)) 85.5 84.9 86.3 85.6
ADDA (Tzeng et al., 2017) 89.2 85.4 96.5 90.4
DeepCORAL (Sun & Saenko), 2016)) 88.3 84.1 93.6 88.7
CDAN (Long et al., 2018) 89.2 95.6 98.0 943
TPN (Pan et al.,|2019) 93.0 92.1 94.1 93.1
rRevGrad+CAT (Deng et al.,2019) 98.8 94.0 96.0 96.3
SWD (Lee et al.[ [ 2019) 98.9 98.1 97.1 98.0
Deep)JDOT (Damodaran et al., 2018) 96.7 95.7 96.4 96.3
DASPOT (Xie et al.,|2019) 96.2 97.5 96.5 96.7
ETD (L1 et al.,[2020) 97.9 96.4 96.3 96.9
RWOT (Xu et al.,[2020) 98.8 98.5 97.5 98.3
LDROT 99.0 98.2 99.1 98.8

Table 5: Classification accuracy (%) on ImageCLEF-DA dataset for unsupervised domain adaptation
(ResNet-50).

Method I-P P—I I-C C—=I C—P P—=C Avg

ResNet-50 (He et al.,[2016) 748 839 915 78.0 655 912 80.7
DeepCORAL (Sun & Saenko,[2016) 75.1 855 920 855 69.0 91.7 83.1
DANN (Ganin et al.,[2016) 750 86.0 962 870 743 915 850
ADDA (Tzeng et al., 2017) 755 882 965 89.1 751 920 86.0
CDAN (Long et al.,|2018) 777 90.7 977 913 742 943 877
TPN (Pan et al.,[2019) 782 921 96.1 908 762 951 88.1
SymNets (Zhang et al., [2019b) 802 936 970 934 787 964 899
SAFN (Xu et al.[[2019) 793 933 963 91.7 776 953 889

rRevGrad+CAT (Deng et al.,[2019) 77.2 91.0 955 913 753 93.6 87.3
DeepJDOT (Damodaran et al.,2018) 77.5 90.5 950 88.3 749 942 86.7

ETD (L1 et al.,[2020) 81.0 917 979 933 795 950 897
RWOT (Xu et al., 2020) 81.3 929 979 927 79.1 965 900
LDROT 81.7 96.7 975 942 804 96.7 91.2

learning rate is set to 0.001 and 0.0001 for Digits and the other datasets respectively. Additionally,
in nature, our model solves the minimax optimization problem (see Eq. (13) in the main paper) in
which ¢ and 45, 1T g are updated sequentially in each iteration with five times for ¢ and one time
for 15, hT ,g. Finally, we use the cosine distance for dy and Kullback-Leibler (KL) divergence for
dy.

D.6 ADDITIONAL RESULTS FOR DIGITS AND IMAGECLEF-DA

We additionally present the experimental results for Digits and ImageCLEF-DA datasets in Tables
M and[5] It can be observed that LDROT also outperforms the baselines on these datasets.

D.7 ABLATION STUDIES

Effects of the label shift term dy and the weights w;;: To answer the question of how will the
model performance be affected when the weights w;; or dy in Eq. is removed?, we evaluate our
model on four different settings: LDROT without both the weights w;; and the label shift dy(-,-)
(LDROT—wd), without the weights w;; (LDROT—w), without minimizing the label shift dy(-,-)
(LDROT—d) and a complete model (LDROT+wd). The results on Office-Home in Table [6]dedicate
the significance of w;; and dy (-,-), where these components remarkably contribute to reducing the
data and label shifts with 4.1% improvements on average.

Rationale of weigh strategy. In Figure[d] we visualize the similarity scores of a randomly selected
target example ij- in a batch w.r.t. source examples xf using the source and target domains Amazon
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Table 6: Accuracy (%) of ablation study on Office-Home.

Method Ar—Cl Cl—Ar Cl—-Rw Pr—Ar Rw—Ar Avg
LDROT—wd 51.7 62.6 78.5 63.3 66.1 64.4
LDROT—w 56.7 62.3 79.3 64.0 66.8 65.8
LDROT—-d 554 65.5 80.1 65.0 68.4 66.9
LDROT+wd 57.4 67.2 80.7 66.5 70.9 68.5

and Dslr of Office-31 dataset, respectively. The orange points represent the similarity scores for the
same class, while the blue points represent those for different classes. It is evident that the orange
values tend to bigger than the blue ones except in some outlier cases, hence if we choose ; as
indicated, we can separate well the orange and blue values.
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Figure 4: (a) 1D visualization of finding an appropriate ;. It is able to split same-label pairs
(orange points) and different-label pairs (blue points) if y; is set to Mjgl -percentile of this array. (b)
To observe the weight values w;; of those pairs, we randomly picked a target example to compute
similarity scores with 20 representative source points in a batch, and then sort them in ascending
order. After computing the weights, the figures for the same-label pairs tend to be much higher
than that for different-label pairs. A heat-map color is used to represent the weights magnitude (the

brighter means higher value).
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Figure 5: The t-SNE visualization of A—D (Figure a, b) tasks with label and domain information.
Each color denotes a class while the circle and cross markers represent the source and target data
respectively.

Feature visualization. We visualize the features of ResNet-50 and our methods on A—D (Office-
31) and P—C (ImageCLEF-DA) tasks by t-SNE [van der Maaten & Hinton| (2008) in Figure@ The
visualizations in Figure 52 and [6a] show that ResNet-50 classifies quite well on source domains (A
and P) but poorly on target domains (D and C). While the representation in Figure [5b] and [6b] is
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generated by our method with better alignment. LDROT achieves exactly 31 and 12 clusters cor-
responding to 31 and 12 classes of Office-31 and ImageCLEF-DA, which represents generalization
ability of our model in which the classifier generalizes well not only on the source domain but also
on the target domain.

(a) (b)
ResNet. LDROT.

Figure 6: The t-SNE visualization of and P—C (Figure a, b) tasks with label and domain informa-
tion. Each color denotes a class while the circle and cross markers represent the source and target
data respectively.

— SwWD
—— LDROT
Source

Test error

1“@ o ,0()@ %g@ \@@

Iteration
Figure 7: Comparision of convergence performance between LDROT and other approaches on the
transfer task A—D.

Convergence. We testify the convergence of our LDROT with the test errors on A—D task, as
shown in Figure [7]] We conduct experiments on three methods including Source (test error is
achieved with classifier trained on source data without adaptation), SWD |Lee et al.| (2019), and
our LDROT. For fair comparison, the methods are applied the same optimizer (Adam with learning
rate of 0.0001) and batch size. The results show that the error of LDROT on the target domain is
remarkably lower, which illustrates better generalization capability of the source classifier. During
training, our method encourages a target sample to actively moving to a suitable group or cluster of
source examples in a similarity-aware manner. This phenomenon implies that LDROT enjoys faster
and stable convergence than the other settings.
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