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ABSTRACT

Dynamical systems are fundamental to modeling the natural world, yet face a
persistent trade-off: manually prescribed mechanistic models are interpretable by
design but often overly simplistic and misspecified, while flexible data-driven neu-
ral methods lack physical insight. Hybrid modeling aims for the best of both
worlds by combining a symbolic, physics-based component with a flexible neural
network. A critical challenge, however, is that the neural component may re-
learn mechanistic parts yielding redundant and uninterpretable models, especially
when the symbolic structure itself is discovered from data. Existing methods using
standard L2 regularization fail to prevent this overlap in non-convex optimization
landscapes created by symbolic regression. We introduce OrthoReg (Orthog-
onal Regularization), an approach that enforces explicit orthogonality between
the symbolic and neural components. This guarantees a unique and complemen-
tary decomposition preventing the neural component from learning dynamics that
can be captured by the symbolic model. We demonstrate empirically on bench-
mark dynamical systems that OrthoReg improves out-of-distribution generaliza-
tion, symbolic identification, and sparsity, thereby establishing a new paradigm
for building more robust and interpretable hybrid models.

1 INTRODUCTION

Dynamical systems modeling has long been a corner stone across the sciences, especially for the
natural and life sciences. Applications range from healthcare data Choi et al. (2016); Hess et al.
(2024); Seedat et al. (2022), climate modeling Rolnick et al. (2022); Eyring et al. (2024), to power
systems Toubeau et al. (2018), to just name a few. However, it faces a fundamental trade-off: sym-
bolic, traditionally manually specified, models provide interpretability by design, but typically not
capture complex unknown phenomena; flexible neural networks instead excel at fitting data from
dynamical systems Chen et al. (2018) but lack physical insight. Hybrid modeling approaches Rack-
auckas et al. (2020); Yin et al. (2021); Zou et al. (2024) combine physical priors (predetermined
symbolic expressions) with learned neural corrections expected to capture phenomena that are un-
known or too complex to model directly. They promise the best of both worlds, but still require
substantial prior knowledge in crafting the mechanistic part. In this work, we tackle the problem of
discovering mechanistic components from data within a flexible pre-specified function class via dy-
namic symbolic regression Brunton et al. (2016); Podina et al. (2023); Becker et al. (2023); d’Ascoli
et al. (2024), while also capturing residual dynamics outside that function class and explicitly ensure
orthogonality, i.e., no redundancy, of the two components.

In their landmark paper, Yin et al. (2021) present the APHYNITY framework, the state-of-the-art in
hybrid dynamical systems modeling when the symbolic structure (but not exact parameter values) is
known a priori. APHYNITY decomposes the (autonomous) vector field of an ordinary differential
equation (ODE) as f = fphy+faug, where fphy ∈ Fphy = span{ϕj}kj=1 captures dynamics within a
predetermined library of “symbolic” functions ϕj (e.g., polynomials, trigonometric functions), while
faug is supposed to capture the residual dynamics via flexible neural networks. When the symbolic
structure is fixed, the two components can be provably separated via simple L2 regularization of
faug. This works, because the resulting optimization problem is convex and orthogonality faug ⊥
fphy is guaranteed by the properties of L2 projection.
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Figure 1: Symbolic and symbolic-neural models for the assumed true system f = αx + γx3 +

δ sin(x) + ϵ cos(x). Left: A limited symbolic library could capture f̂ = α̂x + γ̂x3 resulting in
both imperfect reconstruction and incorrect estimation of α and γ. Middle: A naive hybrid L2-
regularized model could yield f̂ = α̂x + γ̂x3 + faug,L2

, where the minimum L2 faug,L2
may still

overlap with the symbolic feature library. It can achieve good trajectory recovery, but may still
not consistently estimate α and γ. Right: Our OrthoReg model explicitly regularizes the neural
component faug,orth to be orthogonal to the feature library, resulting in f̂ = α̂x + γ̂x3 + faug,orth
that also properly estimates α and γ.

When also learning fphy via symbolic regression from the same data, simply optimizing the residual
component subject to an L2 constraint “min ∥faug∥2” does not guarantee orthogonality fphy ⊥ faug
in the optimum of this non-convex problem. Hence, APHYNITY’s approach cannot be transferred
to this setting. Concretely, we consider learning the the symbolic part via a SINDy (Brunton et al.,
2016) like approach: assume fphy is some linear combination of (non-linear) basis function {ϕj}kj=1
from some fixed, but potentially large library and fit the coefficients via sparse regression. For the
residual neural component, we allow arbitrary neural networks essentially leading to a neural ODE
(NODE) Chen et al. (2018). Figure 1 illustrates the fundamental challenge: Left: Most library-
based pure symbolic regression approaches, especially the much celebrated SINDy (Brunton et al.,
2016), are still limited by the size of the library. Hence, complex residual phenomena present in the
target dynamics may still not lie within the linear span of the library functions—a hybrid approach is
paramount. Middle: When naively extending L2 regularization-based approaches, like APHYNITY
(Yin et al., 2021), to settings where also the symbolic component is learned, the neural component,
despite small in “magnitude” (L2 norm), may still capture functions in Fphy. Right: OrthReg (ours)
ensures that the neural component faug only captures aspects outside of Fphy.

In this work, we introduce a theoretically grounded and practically effective method to learn hybrid
dynamical systems, where the mechanistic component is discovered from data via symbolic regres-
sion while ensuring that the residual neural component remains orthogonal to the symbolic part.
Concretely, we provide

• theoretical analysis of OrthoReg as a consistent and efficient method to ensure faug ⊥ Fphy.
• an algorithmic solution that accommodates symbolic regression with sparsity penalties while still

explicitly enforcing orthogonality.
• thorough empirical validation of OrthoReg demonstrating improved out-of-distribution general-

ization and symbolic identification compared to existing methods.1

2 RELATED WORK

Methods for uncovering governing dynamical laws from data span a broad range, striking different
balances between interpretability and expressiveness. We survey the main works that motivate our
orthogonal regularization scheme.

1All code will be available at [anonymized].
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(Dynamic) symbolic regression. Symbolic regression recovers interpretable mathematical expres-
sions using genetic programming (Koza, 1994; Schmidt & Lipson, 2009), deep learning architec-
tures (Petersen et al., 2019; 2021), or “sparse library” approaches like SINDy (Brunton et al., 2016).
Recent advances incorporate physical constraints such as matching units (Tenachi et al., 2023) or
employ large-scale pre-training to scale inference (Becker et al., 2023; d’Ascoli et al., 2024) enable
large-scale generation. We focus on settings, where the true underlying dynamics consist of one part
that can be composed from known library functions and another possibly complex non-linear part
that cannot easily be captured exactly symbolically without hampering interpretability.

Physics-informed neural networks. PINNs (Raissi et al., 2019) embed differential equations as
soft constraints for mesh-free solutions, while Universal ODEs (Rackauckas et al., 2020) parameter-
ize unknown terms with neural networks. Comprehensive surveys (Cuomo et al., 2022; Hao et al.,
2022) establish these as major paradigms for scientific machine learning, but both approaches rely
on explicitly encoding prior knowledge of the governing physical laws, which limits flexibility when
such knowledge is incomplete or uncertain.

Neural, symbolic, and hybrid methods. Hybrid approaches combine symbolic interpretability
with neural flexibility. Rudy et al. (2017) pioneered combining PINNs with sparse regression for
PDE discovery, while recent work extends frameworks to gray-box learning with symbolic regres-
sion coupled to extended PINNs (Chen et al., 2021; Kiyani et al., 2023). For ODE discovery, the
APHYNITY framework (Yin et al., 2021) provides theoretical foundations for hybrid decompo-
sitions f = fphy + faug with existence and uniqueness guarantees, but critically assumes fixed
symbolic structures and disallows simultaneous discovery of the symbolic and neural components.

Pure neural approaches for ODE learning have been extended to incorporate “soft knowledge” such
as sparsity (Aliee et al., 2022), manifold/conservation constraints (Greydanus et al., 2019; Matsubara
& Yaguchi, 2022; White et al., 2023), or meta-learning techniques for optimizing physics-ML trade-
offs (Mouli et al., 2024). However, these either lack symbolic interpretability or, in the case of the
latter, do not address overlap challenge in the symbolic-neural decomposition—again compromising
interpretability of the symbolic part.

3 BACKGROUND

3.1 PROBLEM SETUP

Let F be a Hilbert space of functions f : Rn → Rn. We will primarily consider L2 spaces either
with respect to the Lebesgue measure or an empirical measure given by a finite dataset D. In the
latter case, we write ∥ · ∥D and ⟨·, ·⟩D for the norm and inner product on F . The functions f ∈ F
are interpreted as vector fields of autonomous, first order differential equations

dx

dt
= f(x), with solution trajectoriesx : R → Rn .

Following prior work (Yin et al., 2021; Rackauckas et al., 2020), we assume a decomposition

f = fphy + faug, fphy ∈ Fphy, faug ∈ F .

of vector fields of interest into a “physical” (or symbolic/mechanistic) component and an “aug-
mented” (or neural/residual) component. The space Fphy ⊆ F of candidate symbolic components
is typically restricted to functions that can be represented in closed form using known functions to
be amenable to direct interpretation and dissemination by humans.

Most existing methods assume fphy to be either known exactly, or to be given as a parametric family,
where only a (usually small) set of parameters is unknown. Practically, this is often implemented
via a linear combination of non-linear basis functions approach:

fphy ∈ Fphy =

{
M∑
i=1

αiϕi | αi ∈ R

}
for fixed dictionary functions ϕi : Rn → Rn . (1)

The dynamics governing most real systems are not perfectly described by such simple closed-form
expressions, but contain higher-order effects or complex interactions that are rarely captured by

3
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simple interpretable mathematical expressions. To capture such residual effects the augmentation
faug ∈ F is supposed to be flexible and expressive, albeit potentially not easily interpretable. Hence,
a natural choice to represent faug is via flexible function approximators such as neural networks,
giving rise to the term “neural component.” Crucially, the neural component should only capture
effects that cannot be captured by the symbolic component.

In the current formulation, one could simply set faug ≡ f and fphy ≡ 0. However, this would
undermine the entire idea of hybrid modeling. When fphy is known, Yin et al. (2021) provide
thorough theoretical guarantees showing that a relatively simple norm-based regularization scheme
is sufficient to ensure that faug “only captures what is necessary, but not more.” The corresponding
optimization problem solved in practice is

min
fphy∈Fphy,faug∈Faug

∥f − fphy − faug∥2D + λ∥faug∥2D . (2)

For a fixed fphy, the minimum of eq. (2) with respect to faug is given by

f̂aug = 1
1+λ (f − fphy),

so that eq. (2) reduces to the best-approximation problem
min

fphy∈Fphy

∥f − fphy∥2D .

If Fphy is a closed linear subspace of F , for example as in eq. (1), the Hilbert space projection
theorem (Lax, 2002) ensures that the minimizer is the orthogonal projection PFphy

(f), and the
residual f − PFphy

(f) (hence f̂aug) is orthogonal to Fphy. Keeping the general intuition intact,
APHYNITY proves existence and uniqueness of the projection as best approximation under more
general geometric assumptions such as proximinality and Chebyshevness of Fphy (Yin et al., 2021).

3.2 EXTENSION TO SPARSE SYMBOLIC DISCOVERY

A natural extension to a fully known fphy or the structure being known up to a small set of pa-
rameters, is to allow for a sparse linear combination of a potentially large collection of non-linear
dictionary functions like in SINDy (Brunton et al., 2016). After fixing the candidate basis func-
tions {ϕi}Mi=1 we select only a small support set S ⊂ {1, . . . ,M} of basis functions that enter the
expression with non-zero coefficients. The induced function space is

Fphy(S) := span{ϕj | j ∈ S}.
In practice, the set S is fitted via sparse regression methods (e.g., L1 regularization ∥ · ∥1 or more
involved iterated sparse regressions as in SINDy) to encourage small supports S.

While at first this appears to be a natural extension to APHYNITY, at closer inspection this breaks
the assumptions required for APHYNITY’s guarantees. When Fphy itself is learned together with
the support S, the optimization problem becomes combinatorial and non-convex such that projection
theory no longer applies, and the augmentation can “re-learn” components of the symbolic space,
see fig. 1. In this setting, L2 regularization, while controlling the magnitude, but not the direction of
faug relative to Fphy(S).

This is the fundamental gap our work addresses: expressive (sparse) symbolic discovery requires
additional techniques to ensure that neural augmentations do not overlap with the symbolic compo-
nent. A complete analysis is given in appendix A.

3.3 EMPIRICAL ORTHOGONALITY CONSTRAINTS

Consider a dataset of observations D = {xi}Ni=1 ⊂ Rn that define the empirical (L2) inner product

⟨·, ·⟩D : F × F → R, ⟨f, g⟩D =
1

N

N∑
i=1

f(xi)
⊤g(xi) . (3)

The OrthoReg regularizer then directly enforces orthogonality between faug and Fphy with respect
to this empirical inner product via

⟨faug, ϕj⟩D
!
= 0, for all j ∈ S ,

ensuring that augmentations only capture functions outside the capacity of the symbolic functions.
All details are provided in appendix B.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 METHOD: ORTHOREG FOR HYBRID MODELING

4.1 EXPLICIT ORTHOGONALITY CONSTRAINTS

Instead of relying on implicit orthogonality from L2 regularization, we enforce it explicitly. Given
basis functions {ϕj}Mj=1 spanning Fphy and neural augmentation f̂aug, our overall orthogonality
penalty reads

L⊥
reg = λ

k∑
j=1

〈
f̂aug , ϕj

〉2
D

, (4)

where λ ∈ R≥0 is a regularization parameter.
Theorem 4.1 (Orthogonality at Optimum [informal]). The orthogonality penalty L⊥

reg ensures that
at the global minimum, f̂aug ⊥ Fphy with respect to the empirical inner product.

Proof idea. Quadratic penalty theory (Bertsekas, 1976; 1999) and the analysis in appendix B.4 show
that increasing λ enforces f̂aug ⊥ Fphy at stationary points of the penalized loss.

4.2 THEORETICAL GUARANTEES

Our theoretical analysis establishes the key distinction between OrthoReg and L2 regularization
approaches, providing formal guarantees for orthogonal hybrid modeling.

Orthogonality Enforcement Standard quadratic penalty theory (Bertsekas, 1976; 1999) ensures
that increasing λ forces optimization algorithms to satisfy the orthogonality constraints in the limit,
with stationary points approaching exact orthogonality under standard SGD convergence assump-
tions (Ghadimi & Lan, 2013).

Approximation Quality Under orthogonality constraints, our hybrid model satisfies

∥f − f̂∥D ≤ ∥f − PD
Fphy

(f)∥D + ϵneural(λ), (5)

where the first term represents the irreducible approximation error from symbolic library limitations,
and ϵneural(λ) represents the neural network approximation error in the orthogonal complement
space, with ϵneural(λ) → 0 as orthogonality strength increases and neural network capacity grows.

L2 vs. Orthogonal Regularization The fundamental distinction lies in constraint specificity. L2
regularization controls magnitude through the decomposition

∥f̂aug∥2D =
∑
j

⟨f̂aug, ϕj⟩2D + ∥f̂aug − PD
Fphy

(f̂aug)∥2D

where the equality follows from the orthogonal decomposition and Pythagorean theorem in inner
product spaces (Rudin, 1987). Even when this total is small, individual inner products ⟨f̂aug, ϕj⟩D
can be non-zero, allowing neural-symbolic overlap. When Fphy is learned through sparsity con-
straints, the resulting non-convex optimization landscape exacerbates this issue, which orthogonality
constraints explicitly prevent.

Finite-Sample Guarantees For bounded functions with |f̂aug(xi)
⊤ϕj(xi)| ≤ M and training set

size N , empirical orthogonality ⟨f̂aug, ϕj⟩D = 0 provides finite-sample control over the population
inner product. By Hoeffding’s inequality (Hoeffding, 1963), the population inner product satisfies

|E[f̂aug(X)⊤ϕj(X)]| = O(M/
√
N)

with high probability, providing concrete bounds on how well the orthogonal decomposition gener-
alizes beyond the training set under these boundedness assumptions.

This theoretical foundation ensures that OrthoReg creates truly complementary representations
where symbolic components capture all dynamics within their span, while neural components model
only residual dynamics. Complete proofs and additional theoretical analysis are provided in ap-
pendix C.

5
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Algorithm 1 OrthoReg Training
1: Input: Data (xi, yi), basis functions {ϕj}, regularization weight λ, sparsity weight µ
2: Initialize symbolic coefficients w, neural parameters θ
3: for each epoch do
4: Forward: f̂ =

∑
j wjϕj(xi) + f̂aug(xi; θ)

5: Compute fit loss: Lfit = ∥yi − f̂∥2
6: Compute orthogonality penalty: Lorth = λ

∑
j⟨f̂aug, ϕj⟩2D

7: Compute sparsity penalty: Lsparse = µ∥w∥1
8: Update θ, w via ∇(Lfit + Lorth + Lsparse)
9: end for

4.3 MONTE CARLO APPROXIMATION

In practice, the orthogonality penalty requires Monte Carlo approximation over minibatches:

L̂⊥
reg = λ

k∑
j=1

(
1

B

B∑
i=1

f̂aug(xi)
⊤ϕj(xi)

)2

(6)

The batch approximation error scales as O(1/
√
B) with high probability, ensuring convergence

while maintaining computational efficiency. This stochastic approximation provides implicit regu-
larization benefits during training. Detailed analysis of batch approximation quality, convergence
rates, and practical implications are provided in appendix D. An ablation on the number of samples
is shown in appendix E.

4.4 IMPLEMENTATION AND COMPUTATIONAL CONSIDERATIONS

Our implementation works with k basis functions {ϕj}kj=1 in the symbolic library Fphy, input di-
mension d, and sparsity regularization strength µ. algorithm 1 sketches the OrthoReg training pro-
cedure. The orthogonality computation requires O(kBd) operations per forward pass with modest
5-15% computational overhead. OrthoReg integrates with sparsity constraints:

min
w,θ

∥f − (f̂phy + f̂aug)∥2 + µ∥w∥1 + λ
∑
j

⟨f̂aug, ϕj⟩2D (7)

5 EXPERIMENTS

We evaluate OrthoReg across three dynamical systems of increasing complexity: a modified damped
pendulum, a Lotka–Volterra predator-prey system, and a memory-modulated SIR epidemiological
model. Our evaluation focuses on three complementary metrics: (i) trajectory accuracy measured
by normalized mean-squared error (MSE) on derivatives and integrated states2, (ii) symbolic re-
covery quality measured by F1 score, and (iii) component separation quantified via an orthogo-
nality measure3. We compare three hybrid modeling variants: pure symbolic regression (SINDy),
L2-regularized, and OrthoReg-regularized hybrid models. Each experiment is repeated over five
stochastic runs to ensure robust conclusions.

5.1 DAMPED PENDULUM: MISSING DYNAMICS

The modified damped pendulum system exhibits dynamics similar to the classical driven damped
pendulum (Kharkongor & Mahato, 2018) and include higher-order nonlinear terms absent from the
feature library:

θ̈ + αθ̇ + sin(θ) + β1θ
3 + β2θ̇

3 + β3 sin(3θ) = 0, (8)

2MSE values are normalized by the squared norm of the target signal for scale invariance.
3Orthogonality = 1

k

∑k
j=1

|⟨f̂aug,ϕj⟩D|
∥f̂aug∥D∥ϕj∥D

6
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Table 1: Performance in the medium missing dynamics regime. OrthoReg achieves superior predic-
tive accuracy and symbolic identification across all metrics.

Metric Pure L2 OrthoReg

In-Distribution Performance

ID Deriv MSE (↓) 6.9×10−2 ± 7.0×10−6 6.9×10−2 ± 4.0×10−6 1.4×10−2 ± 7.9×10−5

ID State MSE (↓) 4.9×10−2 ± 1.2×10−3 5.3×10−2 ± 1.2×10−3 1.1×10−2 ± 1.1×10−3

ID Extra Deriv MSE (↓) 6.1×100 ± 2.5×100 6.2×100 ± 2.5×100 3.3×100 ± 2.5×100

Out-of-Distribution Performance

OOD T2 Deriv MSE (↓) 1.1×10−1 ± 1.0×10−4 1.1×10−1 ± 4.9×10−5 4.5×10−2 ± 7.3×10−4

OOD T3 Deriv MSE (↓) 6.8×100 ± 2.2×10−1 6.9×100 ± 1.0×10−1 6.8×10−1 ± 1.3×10−1

System Identification Quality

F1 Score (↑) 4.7×10−1 ± 3.0×10−2 4.7×10−1 ± 2.0×10−2 9.3×10−1 ± 1.5×10−1

Nonzero Terms (↓) 9.8×100 ± 8.0×10−1 9.8×100 ± 4.0×10−1 3.6×100 ± 1.3×100

Orthogonality (↑) – 1.4×10−1 ± 1.3×10−1 2.8×10−1 ± 2.0×10−1

where β terms represent effects absent from the symbolic library. Five stochastic runs are used to
ensure robust conclusions.

Table 1 shows performance under medium-missing dynamics (mean β = 0.6 for βi in eq. (8)).
Derivative and state MSE quantify trajectory fit, the F1 score measures symbolic recovery against
ground-truth terms, and the orthogonality score reflects separation between symbolic and neural
components. Under these metrics, OrthoReg reduces in-distribution derivative MSE from 6.9 · 10−2

(Pure/L2) to 1.4·10−2, out-of-distribution derivative error under initial condition perturbation (OOD
T2 drops from ∼ 0.11 to 0.045 and under parameter perturbation (OOD T3) from ∼ 6.8 to 0.68,
and symbolic recovery improves from F1 0.47 to 0.93. OrthoReg produces fewer redundant terms
(3.6 vs 9.8) and higher orthogonality (0.28 vs 0.14), indicating effective separation of complemen-
tary components. These results suggest that the orthogonality prior does not simply improve fit: it
encourages complementary component representations that transfer beyond the training distribution.

5.2 CROSS-SYSTEM VALIDATION

To test robustness across systems and complexity, we evaluate OrthoReg on a Lotka–Volterra
predator-prey system and a memory-modulated SIR model (appendix F). The Lotka–Volterra sys-
tem introduces coupled temporal dynamics, while the SIR model adds state-dependent time scales
and memory effects. OrthoReg shows modest gains in Lotka–Volterra (3–5% OOD improvement,
F1 0.24 vs 0.22) and maintains strong orthogonality in the challenging SIR model (0.80 vs 0.17
for L2), though all approaches struggle with symbolic recovery in this complex system. OrthoReg
achieves superior sparsity (9.6 vs 44.0 terms for pure symbolic), demonstrating that orthogonal reg-
ularization effectively enforces component separation even when symbolic discovery is difficult.

5.3 COMPARISON WITH PURE NEURAL BASELINES

Table 2: Baseline comparison in medium missing dynamics regime (β = 0.6). OrthoReg uniquely
provides symbolic recovery while achieving competitive predictive performance.

Metric PINN Universal ODE OrthoReg

ID Deriv MSE (↓) 8.63×10−2 ± 4.38×10−4 4.81×10−3 ± 4.30×10−4 1.40×10−2 ± 7.90×10−5

OOD T2 Deriv MSE (↓) 2.10×10−1 ± 2.00×10−2 1.30×10−1 ± 4.00×10−2 4.50×10−2 ± 7.30×10−4

OOD T3 Deriv MSE (↓) 2.00×100 ± 6.00×10−2 4.00×10−1 ± 6.00×10−2 6.80×10−1 ± 1.30×10−1

F1 Score (↑) – – 9.3×10−1 ± 1.5×10−1

Orthogonality (↑) – – 2.8×10−1 ± 2.0×10−1

We also compare to pure neural approaches in table 2, including PINNs (Raissi et al., 2019) and
Universal Differential Equations (Rackauckas et al., 2020). While these baselines achieve compet-
itive trajectory fitting, they cannot recover symbolic components. In contrast, OrthoReg matches
predictive performance while providing interpretable representations, demonstrating the benefit of
hybrid modeling for scientific discovery. Implementation details are in appendix G.
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5.4 DATASET DIFFICULTY ABLATION

Table 3: Dataset difficulty ablation across missing dynamics regimes indicated by mean effect
strength absent from the symbolic library. OrthoReg consistently improves OOD predictive per-
formance and symbolic recovery, while ID performance remains strong across all methods.

Difficulty Metric Pure L2 OrthoReg

Low
(β = 0.077)

ID Deriv MSE (↓) 7.8×10−4 ± 1.5×10−4 1.1×10−3 ± 0.1×10−3 2.7×10−3 ± 0.4×10−3

OOD T2 MSE (↓) 1.5×10−3 ± 0.2×10−3 2.0×10−3 ± 0.0×10−3 2.8×10−3 ± 0.1×10−3

OOD T3 MSE (↓) 1.6×102 ± 1.5×102 5.9 ± 0.0 5.8×10−1 ± 0.5×10−1

F1 Score (↑) 5.0×10−1 ± 0.8×10−1 7.2×10−1 ± 0.4×10−1 8.6×10−1 ± 0.0×10−1

Orthogonality (↑) – 2.6×10−2 ± 2.3×10−2 6.2×10−1 ± 1.9×10−1

Medium
(β = 0.6)

ID Deriv MSE (↓) 6.9×10−2 ± 0.0×10−2 6.9×10−2 ± 0.0×10−2 1.4×10−2 ± 0.0×10−2

OOD T2 MSE (↓) 9.3×10−2 ± 0.0×10−2 9.3×10−2 ± 0.0×10−2 1.5×10−2 ± 0.0×10−2

OOD T3 MSE (↓) 6.8 ± 0.2 6.9 ± 0.1 6.8×10−1 ± 1.2×10−1

F1 Score (↑) 4.7×10−1 ± 0.3×10−1 4.7×10−1 ± 0.2×10−1 9.3×10−1 ± 1.3×10−1

Orthogonality (↑) – 1.4×10−1 ± 1.2×10−1 2.8×10−1 ± 1.8×10−1

High
(β = 2.0)

ID Deriv MSE (↓) 3.9×10−2 ± 0.1×10−2 3.9×10−2 ± 0.1×10−2 3.9×10−2 ± 0.1×10−2

OOD T2 MSE (↓) 4.5×10−2 ± 0.2×10−2 4.5×10−2 ± 0.1×10−2 4.4×10−2 ± 0.1×10−2

OOD T3 MSE (↓) 4.5×10−1 ± 2.3×10−1 4.1×10−1 ± 0.7×10−1 2.6×10−1 ± 0.4×10−1

F1 Score (↑) 4.6×10−1 ± 0.5×10−1 4.3×10−1 ± 0.4×10−1 5.2×10−1 ± 0.6×10−1

Orthogonality (↑) – 7.9×10−1 ± 0.7×10−1 4.3×10−1 ± 1.4×10−1

The effectiveness of OrthoReg depends on how much the system exceeds the symbolic library.
In low-missing regimes (mean β = 0.077 for βi in eq. (8)), all models perform comparably. In
medium-missing regimes (β = 0.6), OrthoReg dramatically improves symbolic F1 (0.93 vs 0.47)
and OOD T3 derivative error (0.68 vs 6.8), while in high-missing regimes (β = 2.0), symbolic
recovery deteriorates across all methods, though OrthoReg still maintains a modest advantage. This
ablation suggests that orthogonal regularization is most effective when the system partially exceeds
the library, guiding complementary learning without overfitting trivial or impossible dynamics.

5.5 REGULARIZATION STRENGTH ABLATION
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Figure 2: Regularization strength ablation. The optimal range is λ ∈ [3.0, 5.0], achieving F1 scores
above 0.95 with excellent OOD performance. Lower regularization leads to poor symbolic identifi-
cation, while higher regularization maintains good performance but may over-constrain the model.

We investigate how the orthogonality regularization scale λ affects OrthoReg (fig. 2). Too weak
regularization fails to enforce complementary components, degrading symbolic identification and
extrapolation, while overly strong regularization slightly constrains the model without harming pre-
dictions, leaving an optimal range for λ. Due to the correlation of trajectory and symbolic metrics,
when applying OrthoReg to unknown systems we recommend scaling λ relative to the base weights
and monitoring symbolic F1 (if available) or orthogonality as a proxy to ensure complementary
component formation.
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5.6 SAMPLING SCHEME ABLATION

Table 4: Sampling scheme ablation (regular vs. irregular). OrthoReg maintains OOD predictive
accuracy, symbolic recovery, and interpretability, even under irregular sampling.

Sampling Metric Pure L2 OrthoReg

Regular

ID Deriv MSE (↓) 6.9×10−2 ± 7.0×10−6 6.9×10−2 ± 4.0×10−6 1.4×10−2 ± 7.9×10−5

OOD T2 MSE (↓) 0.11 ± 1.0×10−4 0.11 ± 4.9×10−5 0.045 ± 7.3×10−4

OOD T3 MSE (↓) 6.8 ± 0.22 6.9 ± 0.10 0.68 ± 0.13
F1 Score (↑) 0.47 ± 0.03 0.47 ± 0.02 0.93 ± 0.15

Orthogonality (↑) 0.00 ± 0.00 0.14 ± 0.13 0.28 ± 0.20

Irregular

ID Deriv MSE (↓) 3.5 ± 1.9×10−4 3.5 ± 2.1×10−4 3.5 ± 1.0×10−4

OOD T2 MSE (↓) 3.8 ± 2.1×10−3 3.8 ± 2.5×10−3 3.8 ± 2.0×10−3

OOD T3 MSE (↓) 40.0 ± 0.93 39.0 ± 1.0 37.0 ± 0.46
F1 Score (↑) 0.30 ± 0.01 0.30 ± 0.01 0.31 ± 0.01

Orthogonality (↑) 0.00 ± 0.00 0.14 ± 0.14 0.37 ± 0.28

We further test regular (uniform) versus irregular (non-uniform) time sampling. Irregular sam-
pling reduces absolute performance across all methods, increasing derivative errors and lowering
F1 scores. Nevertheless, OrthoReg retains relative advantages, including higher orthogonality (0.37
vs 0.14) and fewer redundant terms, demonstrating that orthogonal regularization benefits persist
under realistic, non-ideal observation schemes.

Table 4 evaluates regular (uniform) versus irregular (non-uniform) sampling. Irregular sampling de-
grades absolute performance across all methods, yet OrthoReg retains relative advantages, including
higher orthogonality (0.37 vs 0.14) and fewer nonzero terms (16.2 vs 16.8 and 17.2), demonstrating
that orthogonal regularization benefits persist under realistic, non-ideal observation schemes. This
demonstrates that orthogonal regularization benefits persist beyond idealized observation schemes,
enhancing robustness in realistic data collection scenarios.

5.7 SUMMARY

OrthoReg consistently improves hybrid modeling. It achieves substantially higher symbolic recov-
ery (F1 0.93 vs 0.47 for L2) while maintaining superior out-of-distribution generalization. Orthog-
onal regularization effectively separates complementary components, and its benefits persist under
irregular sampling and varying dataset difficulty. These results demonstrate that OrthoReg guides
hybrid models to learn interpretable and transferable representations even when the symbolic library
is partially misspecified.

6 CONCLUSION

Hybrid modeling promises the interpretability of symbolic structure with the flexibility of neural
augmentation, as exemplified by APHYNITY. Yet, extending from fixed symbolic libraries to sym-
bolic regression introduces sparsity constraints, making the optimization non-convex and breaking
APHYNITY’s guarantees. In this regime, L2 regularization controls only magnitude, not direction,
allowing symbolic and neural terms to overlap.

We resolve this with OrthoReg, which enforces explicit orthogonality f̂aug ⊥ Fphy regardless
of convexity. Our contributions span theoretical analysis of L2’s failure, a principled algorithmic
solution, and empirical validation showing improved generalization, symbolic recovery, and inter-
pretability.

Limitations are discussed in Appendix I, with promising directions including extensions to non-
gradient symbolic regression (e.g., PySINDy). More broadly, OrthoReg enables complementary rep-
resentations where symbolic terms capture all recoverable dynamics and neural components model
only residuals, paving the way for hybrid modeling as a practical tool in scientific domains ranging
from biology to climate science.
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A WHEN L2 REGULARIZATION FAILS: RIGOROUS ANALYSIS

A.1 APHYNITY’S PROBLEM FORMULATION

Following Yin et al. (2021), we adopt their problem formulation. APHYNITY seeks to decompose
unknown dynamics f as:

f̂ = f̂phy + f̂aug

where f̂phy ∈ Fphy = span{ϕj}kj=1 and f̂aug is learned via neural networks. The key insight is that
we estimate decompositions f̂phy, f̂aug that may not perfectly reconstruct f .

APHYNITY’s optimization problem is:

min
f̂phy∈Fphy,f̂aug

∥f − f̂phy − f̂aug∥2 + λ∥f̂aug∥2 (9)

This is the formulation from the APHYNITY paper, where we learn estimates that approximate the
true dynamics while regularizing the augmentation magnitude.

A.2 CONVEX VS. NON-CONVEX SETTINGS

Proposition A.1 (APHYNITY’s Convex Guarantee). When Fphy = span{ϕj}kj=1 is a linear sub-
space and the optimization in equation 9 is convex, the minimizer satisfies f̂aug ⊥ Fphy.

Proof. Following the analysis by Yin et al. (2021), for fixed f̂phy, the optimal f̂aug is:

f̂aug =
1

1 + λ
(f − f̂phy)

Substituting back, the problem reduces to:

min
f̂phy∈Fphy

λ

1 + λ
∥f − f̂phy∥2

When Fphy = span{ϕj}kj=1 is a linear subspace, this is the orthogonal projection problem: f̂phy =
PFphy

(f). By the projection theorem, the residual f − PFphy
(f) is orthogonal to Fphy, and thus

f̂aug ⊥ Fphy.

Theorem A.2 (L2 Failure with Sparse Symbolic Regression). When symbolic regression uses spar-
sity constraints (e.g., L1 penalties), creating non-convex optimization landscapes, L2 regularization
alone does not guarantee f̂aug ⊥ Fphy.

Proof. With sparsity constraints, the optimization becomes:

min
f̂phy∈Fphy,f̂aug

∥f − f̂phy − f̂aug∥2 + λ∥f̂aug∥2 + µ∥w∥1

where w are the coefficients of f̂phy =
∑

j wjϕj(x).

The L1 penalty creates a non-convex optimization landscape where the learned f̂phy may corre-
spond to different sparse subsets of basis functions. Unlike the convex case, f̂phy need not be the
orthogonal projection onto the full span Fphy = span{ϕj}kj=1.

Therefore, f̂aug = 1
1+λ (f − f̂phy) is not guaranteed to be orthogonal to Fphy, since f̂phy may only

span a sparse subset of the full symbolic space.
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A.3 IMPLICATIONS FOR HYBRID MODELING

The above results demonstrate that L2 regularization is insufficient in non-convex settings. Even if
∥faug∥ is small, faug may not be orthogonal, leading to:

• Interpretability loss: neural components re-learn symbolic dynamics.

• Identifiability failure: multiple (fphy, faug) pairs explain the data equally well.

This motivates explicit orthogonality constraints, which we introduce in the main text, to enforce
separation regardless of convexity.

B EMPIRICAL FUNCTION SPACES AND ORTHOGONALITY

Following APHYNITY’s setup (Yin et al., 2021), we restrict attention to finite-dimensional sub-
spaces Fphy = span{ϕj}kj=1, which is sufficient for our symbolic regression setting. More general
nonlinear families require different projection arguments and are beyond our scope.

B.1 PARAMETERIZED FUNCTION FAMILIES

We work with parameterized function families where functions are uniquely determined by their
parameters. This approach ensures computational tractability while maintaining theoretical rigor.

Definition B.1 (Parameterized Function Family). Let X ⊂ Rn be a state space, and let D =
{xi}Ni=1 be a dataset drawn from distribution µ. We work with functions f : X → Rd from param-
eterized families where functions are uniquely determined by their parameters. For computational
purposes, we evaluate these functions only on the dataset D.

B.2 EMPIRICAL INNER PRODUCT AND NORM

Definition B.2 (Empirical Inner Product). The empirical inner product on parameterized functions
evaluated on D is defined as: ⟨f, g⟩D = 1

N

∑N
i=1 f(xi)

⊤g(xi).

This induces the empirical norm: ∥f∥D =
√

⟨f, f⟩D.

The empirical inner product endows the space FD = {(f(x1), . . . , f(xN )) : f : X → Rd} with the
structure of a finite-dimensional inner product space (and hence a Hilbert space).

Why This Matters: The empirical inner product is:

• Computable: Can be evaluated on finite data

• Theoretically Sound: Provides an inner product structure in finite dimensions

• Practically Relevant: Directly corresponds to our implementation

B.3 ORTHOGONALITY IN EMPIRICAL SPACES

Definition B.3 (Empirical Orthogonality). Two functions f, g ∈ FD are empirically orthogonal if
⟨f, g⟩D = 0.

B.4 EMPIRICAL PROJECTION THEOREM

Theorem B.4 (Empirical Projection Theorem). Let Fphy = span{ϕj}kj=1 be a finite-dimensional
subspace of FD, and let f ∈ FD. Assume that {ϕj}kj=1 are linearly independent on D, i.e. no
nontrivial linear combination vanishes simultaneously at all xi ∈ D. Then there exists a unique
orthogonal decomposition: f = fphy + r, where fphy ∈ Fphy and r ⊥ Fphy with respect to the
empirical inner product.

Proof. We show both existence and uniqueness.
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Existence: Let {ϕj}kj=1 be a basis for Fphy. We seek coefficients {wj}kj=1 such that fphy =∑k
j=1 wjϕj and r = f − fphy is orthogonal to Fphy.

The orthogonality condition requires ⟨r, ϕi⟩D = 0 for all i = 1, . . . , k, yielding: ⟨f −∑k
j=1 wjϕj , ϕi⟩D = 0, i = 1, . . . , k.

This gives the linear system:
∑k

j=1 wj⟨ϕj , ϕi⟩D = ⟨f, ϕi⟩D, i = 1, . . . , k.

Equivalently, Gw = b where: Gij = ⟨ϕi, ϕj⟩D, bi = ⟨f, ϕi⟩D.

Since {ϕj}kj=1 are linearly independent on D, the Gram matrix G is positive definite and therefore
invertible. Thus, there exists a unique solution w = G−1b.

Uniqueness: Suppose there exist two decompositions f = f
(1)
phy + r(1) = f

(2)
phy + r(2). Then:

f
(1)
phy − f

(2)
phy = r(2) − r(1).

The left-hand side lies in Fphy, while the right-hand side is orthogonal to Fphy. Hence both must
be zero, so f

(1)
phy = f

(2)
phy and r(1) = r(2).

Optimality: The projection fphy minimizes ∥f − g∥D over all g ∈ Fphy. Since ∥ · ∥D is induced
by an inner product, the Pythagorean theorem applies: ∥f − g∥2D = ∥f − fphy∥2D + ∥fphy − g∥2D ≥
∥f − fphy∥2D, with equality if and only if g = fphy.

B.5 COMPUTING THE PROJECTION

The coefficients {wj}kj=1 of fphy =
∑k

j=1 wjϕj satisfy the linear system: Gw = b, where Gij =

⟨ϕi, ϕj⟩D, bi = ⟨f, ϕi⟩D, i, j = 1, . . . , k.

Implementation Note: This system can be solved efficiently using standard linear algebra tech-
niques, making the projection computable in practice.

C ADDITIONAL THEORETICAL ANALYSIS

C.1 CONVERGENCE ANALYSIS

C.1.1 GRADIENT DESCENT CONVERGENCE WITH ORTHOGONALITY PENALTY

Theorem C.1 (Convergence Rate Analysis). Consider the optimization problem:

min
θ,w

L(θ, w) = ∥f − (fphy + faug)∥2D + λ1∥w∥1 + λ2

k∑
j=1

⟨faug, ϕj⟩2D (10)

Under the assumptions:

1. faug(·; θ) is L-Lipschitz in θ,

2. The loss satisfies β-smoothness: ∥∇2L∥ ≤ β,

3. Symbolic basis functions {ϕj} are bounded: ∥ϕj∥∞ ≤ M ,

gradient descent with step size η ≤ 1/β converges to critical points where
k∑

j=1

⟨faug, ϕj⟩2D ≤ 2(L0 − L∗)

λ2T
. (11)

Here L0 is the initial loss, L∗ the optimal loss, and T the number of iterations.

Proof. The gradient of the orthogonality penalty is

∇θ

k∑
j=1

⟨faug, ϕj⟩2D = 2

k∑
j=1

⟨faug, ϕj⟩D∇θ⟨faug, ϕj⟩D. (12)
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Using smoothness, standard gradient descent gives

Lt+1 ≤ Lt − η∥∇Lt∥2 +
η2β

2
∥∇Lt∥2 ≤ Lt −

η

2
∥∇Lt∥2. (13)

Summing over T iterations and noting that the orthogonality penalty is part of the total loss yields
the bound.

C.1.2 LOCAL VS GLOBAL MINIMA ANALYSIS

Theorem C.2 (Orthogonality Basin Analysis). At any critical point (θ∗, w∗) with ∇L = 0, either:

1. Orthogonal Critical Point: ⟨faug(·; θ∗), ϕj⟩D = 0 for all j,

2. Boundary Critical Point: The gradient contributions from data fitting and orthogonality
penalty exactly cancel.

Proof. At a critical point:

∇θL = ∇θ∥f − (fphy + faug)∥2D + 2λ2

∑
j

⟨faug, ϕj⟩D∇θ⟨faug, ϕj⟩D = 0. (14)

If any ⟨faug, ϕj⟩D ̸= 0, the second term must cancel the first, forming a measure-zero set of bound-
ary points. Generically, critical points satisfy orthogonality.

Theorem C.3 (Approximation Error Decomposition). For f̂ = f̂phy + f̂aug learned with orthogo-
nality constraints:

E[∥f − f̂∥2D] = Bias2 + Variance + Noise, (15)
with

Bias = ∥f − PD
Fphy

(f)∥2D, (irreducible symbolic library limitations) (16)

Variance = E
[
∥f̂aug − PF⊥

phy
(f − PD

Fphy
(f))∥2D

]
, (neural estimation error) (17)

Noise = σ2 (observation noise). (18)

Moreover, orthogonality constraints provide variance control:

Variance ≤ VarianceL2 ·
(
1 +

C

λ

)
, (19)

for some constant C > 0, showing stronger orthogonality regularization reduces variance.
Theorem C.4 (Orthogonality Under Distribution Shift). If training µtrain and test µtest satisfy

sup
f∈C

|Eµtrain [f(x)]− Eµtest [f(x)]| ≤ ∆, (20)

then functions that are empirically orthogonal under µtrain satisfy:

|⟨f, g⟩µtest
| ≤ |⟨f, g⟩µtrain

|+ 2∆∥f∥∞∥g∥∞. (21)

This shows that orthogonality is robust to moderate distribution shift, providing practical guarantees
for out-of-distribution performance.

D MONTE CARLO APPROXIMATION ANALYSIS

D.1 BATCH APPROXIMATION QUALITY

The orthogonality penalty is approximated using minibatches:

L̂⊥
reg = λ ·

k∑
j=1

(
1

B

B∑
i=1

faug(xi)
⊤ϕj(xi)

)2

, (22)

where B is the batch size.
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Lemma D.1 (Batch Approximation Error). Let B be a batch of size B drawn uniformly from D.
Then: |⟨faug, ϕj⟩B − ⟨faug, ϕj⟩D| ≤ O(1/

√
B) with high probability.

Proof. This follows from Hoeffding’s inequality for bounded random variables, since the dot prod-
ucts are bounded by the product of function norms. Specifically, if |faug(x)⊤ϕj(x)| ≤ M for all

x, then: P (|⟨faug, ϕj⟩B − ⟨faug, ϕj⟩D| ≥ ϵ) ≤ 2 exp
(
− 2Bϵ2

M2

)
. Setting ϵ = O(1/

√
B) yields the

desired bound.

D.2 PRACTICAL IMPLICATIONS

• Batch Size Trade-off: Larger batches reduce approximation error but increase memory
usage

• Stochastic Regularization: The approximation error acts as a natural regularizer during
training

• Quality Monitoring: Can track orthogonality during training to ensure convergence

E MONTE CARLO SAMPLING ABLATION

We investigate the impact of Monte Carlo sampling on model performance by varying the number
of training samples from 100 to 5000. Figure 3 shows the performance across different sample sizes
for the medium missing dynamics regime (β = 0.6).
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Figure 3: Monte Carlo sampling ablation study. Performance is shown across different sample sizes
(100-5000) for F1 score, orthogonality, and OOD T2 MSE. OrthoReg shows improved orthogonality
with more samples, validating the Monte Carlo theory prediction that increased sampling helps learn
better component separation.

The key finding is that orthogonality improves with more samples for OrthoReg, validating our
Monte Carlo theory prediction. While F1 scores improve moderately across sample sizes, the or-
thogonality measure increases as the number of samples grows from 100 to 2000. This demonstrates
that Monte Carlo sampling helps the orthogonal regularization learn better separation between sym-
bolic and neural components, confirming that more training data enables more effective component
decomposition.

F CROSS-SYSTEM VALIDATION: SCALING WITH COMPLEXITY

We establish the broad applicability and scaling behavior of OrthoReg through systematic evalua-
tion on two additional dynamical systems of increasing complexity. This cross-system validation
demonstrates that OrthoReg’s advantages scale predictably with system complexity, from modest
improvements in temporal coupling to gains in spatiotemporal memory effects.
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F.1 COMPLEXITY HIERARCHY DESIGN

Our experimental design creates a natural complexity progression that isolates the impact of different
types of missing dynamics:

1. Pendulum (baseline): Missing dynamics in feature space only

2. Lotka-Volterra: Temporal coupling terms sin(ωt)

3. SIR: State-dependent time scales + compartment memory effects

This hierarchy allows us to systematically investigate how orthogonal regularization performs as
systems transition from simple feature space gaps to complex spatiotemporal dynamics.

F.2 LOTKA–VOLTERRA SYSTEM: TEMPORAL COUPLING

We evaluate OrthoReg on a modified predator-prey system with temporally modulated and state-
dependent interactions. The dynamics are:

dx

dt
= αx− βxy + ε1x sin(ωfastt) cos(ωfastxy) sin(ωslow(x+ y)) (23)

dy

dt
= δxy − γy + ε2y sin(ωfastt) cos(ωfastxy) sin(ωslow(x+ y)) sin

(
x

y + ϵ

)
(24)

Here, ε controls the strength of dynamics not captured by the symbolic feature library. The aug-
mented terms introduce high-frequency temporal modulation, state-dependent coupling, and asym-
metric predator-prey interactions. We construct these terms as synthetic perturbations reflecting
rapid environmental forcing, density-dependent interactions, or pulsed resource inputs, phenomena
conceptually studied by Blasius et al. (1999).

F.2.1 RESULTS AND ANALYSIS

Metric Pure L2 OrthoReg

ID Deriv MSE (↓) 0.016 ± 0.000 0.016 ± 0.000 0.016 ± 0.000
OOD T2 Deriv MSE (↓) 0.012 ± 0.000 0.012 ± 0.000 0.012 ± 0.000
OOD T3 Deriv MSE (↓) 0.174 ± 0.000 0.173 ± 0.000 0.171 ± 0.000
F1 Score (↑) 0.215 ± 0.010 0.222 ± 0.000 0.238 ± 0.007
Nonzero Terms (↓) 16.6 ± 0.9 16.0 ± 0.0 14.8 ± 0.4
Orthogonality (↑) – 0.163 ± 0.197 0.159 ± 0.150

Table 5: Lotka-Volterra results including additional derivative metrics, showing modest but consis-
tent OrthoReg advantages.

OrthoReg demonstrates consistent but modest improvements: 1.8% better OOD performance, 9%
improvement in symbolic identification (F1: 0.24 vs 0.22), and 7.5% fewer symbolic terms. While
improvements are smaller than in the pendulum case, they validate that orthogonal regularization
maintains advantages across different mathematical structures and biological domains.

F.3 SIR SYSTEM: STATE-DEPENDENT TIME SCALES + MEMORY

F.3.1 SYSTEM DESIGN

We extend the classical SIR model with state-dependent transmission and recovery rates and mem-
ory effects. β(S, I,R) increases with infectious fraction to capture behavioral feedbacks, while
γ(S, I,R) depends on recovered fraction to reflect immunity or healthcare effects. Exponential
memory kernels model delayed interactions, consistent with previous epidemic modeling (Hethcote,
2000; Kucharski et al., 2020):
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dS

dt
= −β(S, I,R)SI + ε1

∫ t

0

e−α(t−τ)S(τ)I(τ)dτ (25)

dI

dt
= β(S, I,R)SI − γ(S, I,R)I + ε2

∫ t

0

e−α(t−τ)I(τ)R(τ)dτ (26)

dR

dt
= γ(S, I,R)I + ε3

∫ t

0

e−α(t−τ)S(τ)R(τ)dτ (27)

where β(S, I,R) = β0(1 + δ1I/(S + I +R)) and γ(S, I,R) = γ0(1 + δ2R/(S + I +R)) create
state-dependent time scales, while the integral terms introduce compartment memory effects.

Metric Pure L2 OrthoReg

ID Deriv MSE (↓) 4.0×10−3 ± 1.0×10−3 3.1×10−1 ± 0.2×10−1 1.0×100 ± 0.1×100

OOD T2 Deriv MSE (↓) 6.9×10−3 ± 0.5×10−3 4.8×10−1 ± 0.2×10−1 1.4×100 ± 0.1×100

OOD T3 Deriv MSE (↓) 8.2×10−1 ± 2.9×10−1 2.7×10−1 ± 0.9×10−1 8.0×10−1 ± 0.2×10−1

F1 Score (↑) 1.7×10−1 ± 0.1×10−1 9.1×10−2 ± 6.9×10−2 6.2×10−2 ± 8.5×10−2

Nonzero Terms (↓) 4.4×101 ± 0.1×101 1.7×101 ± 0.9×101 9.6×100 ± 1.1×100

Orthogonality (↑) – 1.7×10−1 ± 1.0×10−1 8.0×10−1 ± 0.5×10−1

Table 6: SIR system results demonstrating OrthoReg’s superior orthogonality and sparsity.

The SIR system represents the most challenging test case, with all approaches struggling to achieve
high F1 scores (0.06-0.17) due to the system’s complexity. However, OrthoReg successfully main-
tains component orthogonality (0.80 vs 0.17 for L2) and achieves superior sparsity (9.6 vs 17.0
terms for L2), demonstrating that orthogonal regularization effectively enforces neural-symbolic
separation even in difficult scenarios, though at the cost of reduced trajectory fitting accuracy.

F.4 INTERPRETATION

The results validate our theoretical framework: OrthoReg consistently achieves its primary theo-
retical objective of orthogonal component separation across different system complexities. While
symbolic discovery (F1 scores) may vary depending on the system and regularization balance, the
orthogonality constraint reliably enforces the desired neural-symbolic decomposition. This demon-
strates that orthogonal regularization provides a principled approach to hybrid modeling that priori-
tizes interpretable component separation over pure symbolic recovery performance.

F.4.1 IMPLICATIONS FOR HYBRID MODELING

These results establish several key principles for hybrid modeling:

1. System-dependent gains: OrthoReg advantages scale with spatiotemporal complexity

2. Robust performance: Benefits persist across mechanical, biological, and epidemiological
domains

3. Predictable scaling: Performance improvements correlate with non-convexity of the sym-
bolic function space

This cross-system validation demonstrates that OrthoReg provides a principled, broadly applicable
solution for hybrid modeling that scales effectively with system complexity.

G BASELINE IMPLEMENTATION

We implemented two baseline methods for comparison: Physics-Informed Neural Networks (PINN)
(Raissi et al., 2019) and Universal Ordinary Differential Equations (Universal ODE) (Rackauckas
et al., 2020). Both methods were evaluated on the identical theoretical pendulum dataset with 5
stochastic runs.
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PINN Implementation: We follow Raissi et al. (2019) with physics loss enforcing pendulum dy-
namics θ̈ + ω2

0 sin(θ) + αθ̇ = 0 and data loss on observed trajectories.

Universal ODE Implementation: We follow Rackauckas et al. (2020) with known linear damping
term αθ̇ and neural network learning residual dynamics, integrated using adaptive ODE solvers.

Key Limitations: Both PINN and Universal ODE are pure neural approaches that provide no sym-
bolic identification capabilities. They cannot recover interpretable mathematical expressions or pro-
vide symbolic components, making them fundamentally different from hybrid approaches in terms
of interpretability and scientific understanding.

H LLM USAGE DISCLOSURE

Large Language Models were used for writing assistance and text polishing throughout the paper
preparation process.

I LIMITATIONS AND FUTURE WORK

I.1 SINDY INCOMPATIBILITY

The main limitation is the incompatibility with the SINDy (Sparse Identification of Nonlinear Dy-
namics) implementation PySINDy, a widely-used symbolic regression method. pysindy employs
sequential thresholding and least squares optimization rather than gradient-based methods, making
it incompatible with our orthogonality regularization approach that requires computing ∇θL⊥

reg(θ).
Extending OrthoReg to non-gradient symbolic regression methods represents an important future
research direction.

I.2 OTHER LIMITATIONS

I.2.1 DATA GENERATION FRAMEWORK

We follow APHYNITY’s data generation framework, which requires trajectories x(t) and their
derivatives ẋ(t) as training pairs (x, y) where y = ẋ. Derivatives are estimated numerically us-
ing finite differences, which introduces approximation error that can affect orthogonality quality.

I.2.2 FINITE-DIMENSIONAL FUNCTION SPACES

Our theoretical analysis is restricted to finite-dimensional subspaces Fphy, which may limit ap-
plicability to more complex function spaces. Extending to infinite-dimensional or non-parametric
function spaces would require different theoretical frameworks.

I.2.3 EMPIRICAL INNER PRODUCT DEPENDENCIES

Our approach relies on empirical inner products over finite datasets, which may not capture the
true function space structure. The quality of orthogonality depends on the representativeness of the
training data.
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