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Abstract

Training diffusion models for audiovisual sequences allows for a range of genera-
tion tasks by learning conditional distributions of various input-output combinations
of the two modalities. Nevertheless, this strategy often requires training a separate
model for each task which is expensive. Here, we propose a novel training approach
to effectively learn arbitrary conditional distributions in the audiovisual space. Our
key contribution lies in how we parameterize the diffusion timestep in the forward
diffusion process. Instead of the standard fixed diffusion timestep, we propose
applying variable diffusion timesteps across the temporal dimension and across
modalities of the inputs. This formulation offers flexibility to introduce variable
noise levels for various portions of the input, hence the term mixture of noise levels.
We propose a transformer-based audiovisual latent diffusion model and show that
it can be trained in a task-agnostic fashion using our approach to enable a variety
of audiovisual generation tasks at inference time. Experiments demonstrate the
versatility of our method in tackling cross-modal and multimodal interpolation
tasks in the audiovisual space. Notably, our proposed approach surpasses baselines
in generating temporally and perceptually consistent samples conditioned on the
input. Project page: avdit2024.github.io

1 Introduction

Recent years have witnessed a remarkable surge in the development and exploration of multimodal
diffusion models. Prominent examples include text-to-image (T2I) [37, 41, 54, 39], text-to-video
(T2V) [17, 6, 12]. Despite notable advancements, generating sequences across multiple modalities,
like video and audio, remains challenging and is an open research area.

Introducing a time axis to static data paves the way for diverse multimodal sequential tasks including
cross-modal generation (e.g., audio-to-video), multimodal interpolation, and audiovisual continuation
as shown in Fig 1. Each task can be further divided based on various input-output combinations of
the modalities, leading to a number of conditional distributions. For example, with video data x1:N

0
and audio data y1:N

0 of length N , The complexity of configurations grows with tasks like audiovisual
continuation, ppxpnc`1:Nq
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Figure 1: Our Audiovisual Diffusion Transformer trained with Mixture of Noise Levels tackles
diverse AV generation tasks in a single model; see avdit2024.github.io for video demos.
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Figure 2: Comparing conditional inference for AV-continuation for MM-Diffusion (left) and Ours
(right) on Landscape dataset. Our approach excels at generating temporally consistent sequences.

Ny are input index sets. Training separate models for each variation is expensive and impractical. A
more efficient training approach would be to learn these conditional distributions in a single model
without explicitly enumerating them, i.e., in a task-agnostic manner.

Unconditional diffusion models like MM-Diffusion [40] show potential for learning conditional
distributions implicitly, but rely on inference adjustments [18, 40]. This limits performance, as
seen in MM-Diffusion’s struggle to generate temporally consistent sequences (see Fig. 2). While
UniDiffuser [3] and Versatile Diffusion [51] offer methods for joint and conditional text-image
distributions, effectively capturing temporal dynamics of audio and video remains an open challenge.

Here, we propose a multimodal diffusion framework that empowers a single model to learn diverse
conditional distributions. This paves the way for a versatile framework for multimodal diffusion,
tackling various generation tasks. Our core idea is that, applying variable noise levels across
modalities and time segments 3 enables a single model to learn arbitrary conditional distributions.
This formulation offers flexibility to train diffusion models with a mixture of noise levels i.e., MoNL,
which introduces variable noise levels across various portions of the input. It has a number of
advantages over previous approaches: it requires minimal modifications to the original denoising
objective simplifying implementation, task-agnostic training, and support for conditional inference of
a given task specification without any inference-time modifications.

We apply this approach for audiovisual generation by developing a diffusion transformer, AVDiT. To
address the computational complexity of high-dimensional audio and video signals, we implement
MoNL in the low-dimensional latent space learned by the MAGVIT-v2 [55] for video and the
SoundStream [57] for audio. Importantly, the temporal structure in these latent representations
enables us to apply variable noise levels. We also introduce a transformer-based network for joint
noise prediction. Transformers are a natural choice for our implementation due to their proficiency to
model multimodal data [25, 10] capturing complex temporal and cross-modal relationships.

We assess the capability of MoNL to model various distributions in the audiovisual space by evaluating
cross-modal tasks (audio-to-video and video-to-audio generation), and conditioning on small portions
(audiovisual continuation and interpolation tasks). For these tasks, we show that the AVDiT trained

3We use the term, “time-segment” to reference a single unit in time dimension of the inputs (e.g., frame in a video) during forward
diffusion. Whereas, “timestep” or “diffusion timestep” refers to a single step in the process of adding noise during forward diffusion process.
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with MoNL outperforms conventional methods including unconditional and conditional generation
models, demonstrating the versatility of our task-agnostic framework as shown in Fig. 1. Notably,
qualitative and quantitative evaluations highlight the ability of our framework to generate temporally
consistent sequences, as illustrated in Fig. 2.

2 Background

Diffusion Models for Multivariate series data: Consider an example of a video diffusion model
where the input is a sequence of image frames. In general, this task is modeling multivariate series
data (i.e., image representations) of d-dimensions with N elements (no. of image frames), henceforth
referred to as time-segments. Thus, the multivariate series data, x0 “ x1:N

0 P RNˆd „ qpx0q

can be represented as a sequence of time-segments, where xn0 P Rd is the n-th time-segment and
d-dimensional representation.

During the forward process of diffusion models [44, 16], the original data x0 is corrupted by gradually
injecting noise in a sequence of T timesteps. The noisy data xt at time t can be written as xt “
x1:N
t “

?
αtx0`

?
1´ αtεx. Here, εx “ ε1:Nx „ N p0, Iq is Gaussian noise injected to the sequence

and βt is the noise schedule, αt “ 1´ βt controls the noise level at each step with αt “
śt
i“1 αi.

Each noisy time-segment can be represented as xnt “
?
αtx

n
0 `

?
1´ αtε

n
x . During the reverse

process, the data is sampled through a chain of reversing the transition kernel qpxt´1|xtq that is
estimated by pθpxt´1|xtq “ N pxt´1|µpxt, tq, σ

2
t Iq, where µpxt, tq “

?
αtpxt´

1´αt?
1´αt

εθpxt, tqq.
The training objective is to learn a residual denoiser εθ at each step as:

min
θ

Et,x0,εx}εθpxt, tq ´ εx}
2
2, (1)

where t „ Upt1, 2, . . . , T uq is the diffusion timestep.

Multimodal Diffusion Models: Unconditional joint generation (generating all modalities simulta-
neously) and conditional generation (generating one modality conditioned on the rest) are commonly
used for multimodal diffusion. Typically, separate models are trained for each task as described
below:

Diffusion models for joint generation. For simplicity, let us assume two modalities x0, y0. The
objective in joint generation is to model the joint data distribution, denoted as qpx0,y0q. To learn
this, a joint noise prediction network, denoted as εθ is defined by rewriting Eq. 1 as follows:

min
θ

Et,x0,y0,εx,εy}εθpxt,yt, tq ´ rεx, εys}
2
2, (2)

where px0,y0q is a random data point, r, s denotes concatenation, εx, εy „ N p0, Iq, and t „
Upt1, 2, . . . , T uq. Diffusion models trained with this objective can perform conditional sampling
qpx0|y0q using inference-time tricks [18, 40].

Conditional training of diffusion models. To learn conditional distributions, expressed as qpx0|y0q,
a noise prediction network εθ conditioned on y0 is adopted from Eq. 2:

min
θ

Et,x0,y0,εx}εθpxt,y0, tq ´ εx}
2
2. (3)

Separate conditional models need to be trained for every pair of modalities and input configurations.

3 Mixture of Noise Levels (MoNL)

We introduce a novel framework for learning a wide range of conditional distributions within
multimodal data by using a mixture of noise levels. The key idea is to formulate the timestep t (Eq. 1)
that determines a noise level in the forward diffusion as a vector. Then, we present representative
strategies for variable noise levels. We then show how conditional inference can be performed without
additional training. Finally, assembling all these components, we present our versatile audiovisual
diffusion transformer (AVDiT).

3.1 Variable Noise Levels across Modality and Time

Formally, let M represent the number of modalities with sequence representations (latent spaces
or raw data). Without loss of generality, assume the representations in each modality have N time-
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Figure 4: Illustration of the conditional inference in our framework for (a) cross-modal generation
and (b) multimodal interpolation.

segments4. Let us further assume they have the same embedding dimension d (which in practice
can be achieved by projecting the noisy input from each modality to the desired dimension). The
entire sequence can then be simplified as z0 P RMˆNˆd “ zp1:M,1:Nq

0 „ qpz0q, where zpm,nq0 P Rd
denotes the n-th time-segment of m-th modality. For reference, Sec. 2 represents two modalities of
multivariate series data, x1:N

0 and y1:N
0 , using this notation as zp1,1:Nq0 and zp2,1:Nq0 , respectively.

We posit that training a single model to support learning arbitrary conditional distributions can be
realized by using variable noise levels for each modality m and time segment n of the input space z0.
We introduce the diffusion timestep vector as t “ tp1:M,1:Nq P RMˆN to match the dimensionality
of the multimodal inputs, where each element tpm,nq P r1, T s determines the timestep, and in turn
the level of noise added to the corresponding element zpm,nq0 of the input z0.

Recall (from Sec. 2) that in a unimodal case, the goal was to learn the transition kernel qpxt´1|xtq
parameterized by pθpxt´1|xtq “ N pxt´1|µpxt, tqq, σ

2
t Iq. Analogously, by introducing a timestep

vector t P RMˆN , our goal is now to learn a general transition matrix between the various modalities
and time-segments in z0 at each step:

pθprz
p1,1q

tp1,1q´1
, . . . , z

pM,Nq

tpM,Nq´1
s|rz

p1,1q

tp1,1q , . . . , z
pM,Nq

tpM,Nq sq (4)

4In practice, this is rarely true; say, video and audio representations, the embedding dimension and temporal compression in the raw data
or latent spaces can be vastly different. However, what we propose here can be generalized by keeping track of the frame-level correspondences
between modalities

4



Raw data space
Video data Audio data

Latent space

Denoising via AVDiT
trained with MoNL 

Diffusion timestep 

[  ]

+ +
[  ]

Embedding layer Embedding layer Embedding layer

AdaLN
Spatiotemporal

positional
encoding

Temporal
positional
encoding

Layer norm

Multi-head attention

MLP

+

+

MLP

Scale, Shift

Scale

Scale, Shift

Scale

Noisy video latent Noisy audio latent

K×

Layer norm

Predicted noise

Layer norm

Denoising via AVDiT
trained with MoNL 

(T-1)×

(a) Latent diffusion with mixture of noise levels (MoNL) and 
audiovisual diffusion transformer (AVDiT)

(b) Audio-video diffusion transformer (AVDiT)

G
en

er
at

io
n

C
on

di
tio

n

C
on

di
tio

n

Clean video 
latent     .

Clean audio
latent     .

Noise Noise

Noise level

MAGViT-v2 Soundstream

Figure 5: Schematic of (a) the proposed approach, and (b) AV-transformer for joint noise prediction.

Then, for diffusion training, we draw a Gaussian noise sequence ε “ εp1:M,1:Nq. Each noise
element εpm,nq is then added to the corresponding element of the original data zpm,nq0 with noise level
determined by tpm,nq as follows:

z
pm,nq

tpm,nq “
a

αtpm,nqz
pm,nq
0 `

a

1´ αtpm,nqεpm,nq (5)

Then, the joint and conditional training objectives in Eqs. 2 and 3 can be generalized with a single
noise prediction objective to learn the joint distribution εθ as follows:

min
θ

Et,z0,ε}εθprz
p1,1q

tp1,1q , . . . , z
pM,Nq

tpM,Nq s, tq ´ ε}
2
2, (6)

where z0 „ qpz0q is the multimodal input and t is the diffusion timestep vector.

3.2 Representative Stratgies for Variable Noise Levels

Using the generalized view of multimodal noise prediction described in Eq. 6, we now examine
various strategies for variable noise levels during the forward diffusion. One can imagine an arbitrarily
large number of timestep candidates in the vector space of t drawn as functions of time-segments of
the multivariate series and modalities. Here, we explore four designs to create a mixture of noise
levels as illustrated in Fig. 3(b). Let us assume we have final diffusion timestep vector for training,
tref P RMˆN where each element tpi,jqref is sampled from Upt1, 2, . . . , T uq,

‚ Vanilla: Same timestep is assigned to all the time-segments and modalities. This is analogous to performing
joint learning as tpm,nq

“ t
p1,1q
ref , and would be the straightforward way to extend the vanilla distillation

approach for the multimodal case.
‚ Per Modality (Pm): Variable timesteps are assigned for each modality, but all time-segments in a given

modality have the same timestep as tpm,nq
“ t

pm,1q
ref . This is expected to promote cross-modal generation

tasks. This is a generalization of the UniDiffuser [3] approach for sequences.
‚ Per Time-segment (Pt): Variable timesteps are assigned as tpm,nq

“ t
p1,nq
ref by keeping track of the

corresponding time-segments across modalities. Intuitively, this should promote better temporal consistency.
‚ Per Time-segment and Per-modality (Ptm): Variable timesteps are assigned for each time-segment

and modality as tpm,nq
“ t

pm,nq
ref . This would promote better temporal correspondence between modalities.

To enable learning a wide range of conditional distributions, we create a training paradigm where
a timestep is uniformly randomly selected from the mixture. Specifically, we refer to this training
paradigm as MoNL. A schematic of the overall training process is depicted in Fig. 3(a), with related
pseudocodes in Algorithms 1 and 2 in the Appendix. Also, theoretical background on MoNL is
detailed in Appendix G.
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3.3 Conditional Inference

Once the general transition kernel pθ is learned in Eq. 4, we investigate the model’s ability to handle
arbitrary conditional distributions. We achieve this by selectively injecting inputs during inference
based on the task specification, i.e., clean (no noise) inputs for conditional portions with tpm,nq “ 0,
and noisy inputs for generating desired portions of the input with the current diffusion step tpm,nq “ t.

Consider the case of cross-modal generation (Fig. 4(a)), to generate a sequence of M ´mc modalities
conditioned on mc P p1,Mq modalities, we set timestep elements of M ´mc modalities as t and
those of mc conditioning modalities as 0, which achieves:

pθ
`

z
pmc`1:M,1:Nq
t´1 |z

pmc`1:M,1:Nq
t , z

p1:mc,1:Nq
0

˘

(7)

Similarly, for multimodal interpolation (Fig. 4(b)), to generate N ´ nc time-segments of
all modalities jointly, conditioned on nc P p1, Nq time-segments, we set the timestep for
the N ´ nc time-segments as t, and for the conditioning nc time-segments as 0, which
achieves pθpz

p1:M,nc`1:Nq
t´1 |z

p1:M,nc`1:Nq
t , z

p1:M,1:ncq
0 q. Unconditional joint generation is also possi-

ble by setting each timestep as the same t, to estimate the transition kernel, pθpz
p1:M,1:Nq
t´1 |z

p1:M,1:Nq
t q.

Intuitively, our mixture of noise levels is analogous to self-supervised learning which bypasses the
need for predefined tasks during training but enables a deeper understanding of multimodal temporal
relationships. See also Sec. E for the discussion on classifier-free guidance in the Appendix.

4 Audiovisual Latent Diffusion Transformer (AVDiT)

Our model consists of two key components: (1) latent space representations from audio and video
autoencoders, and (2) an Audiovisual diffusion transformer (AVDiT) for joint noise prediction.

Latent Space Representations: For a video of 1 ` Lv frames, represented as v P

Rp1`LvqˆHˆWˆC , we use MAGVIT-v2 [55], a causal autoencoder to achieve efficient spatial
and temporal compression. MAGVIT-v2 results in a low-dimensional representation, x0 P

Rp1`lvqˆhˆwˆdv , by a compression factor of rs “ H
h “ W

w in space and rtv “
Lv
lv

in time.
Crucially, the use of causal 3D convolutions ensures that the embedding for a given frame is solely
influenced by preceding frames, preventing flickering artifacts common in frame-level autoencoders.

For audio with La frames, a P RLa , we use SoundStream [57], a state-of-the-art neural audio
autoencoder. We use the latents y0 P Rlaˆda prior to quantization as audio latents, a compression
rate of rta “

La
la

in time. The time-segments in our formulation refer to the 1` lv and la temporal
dimensions in the video and audio latent spaces respectively.

Audiovisual Transformer for Joint Noise Prediction: Transformers [48] are a natural fit for
multimodal generation as they can: (1) efficiently integrate multiple modalities and their interac-
tions [58, 10], (2) capture intricate spatiotemporal dependencies [8, 5], and (3) have shown impressive
video generation capabilities [12, 25]. Inspired by these benefits, we introduce AVDiT, a noise
prediction network for latent diffusion as described in Fig. 5. AVDiT utilizes the timestep embedding
similar to the condition signal used in W.A.L.T [12]. The Transformer first processes the timestep
embeddings and positional encodings to create an embedding of the timestep vector. This embedding
serves as a conditioning signal and is utilized to dynamically calculate the scaling and shifting param-
eters for AdaLN during the Transformer Layer Normalization step. This enables the normalization
to incorporate the conditioning information of variable noise levels. We first consider the la and
1` lv time-dimensions for audio and video embeddings respectively. When applying MoNL, we can
easily keep track of the corresponding time segments among the la and 1` lv dimensions, given the
temporal compression factors in each modality. The noisy latents are then linearly projected matching
the final dimension d by adding appropriate spatiotemporal positional embeddings for video and
temporal positional embeddings for audio, resulting in d dimensional embeddings for each modality
which are then concatenated.
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Figure 6: Full length examples of our AVDiT trained with MoNL on the Monologue dataset. Samples
were generated from unseen conditions at 8fps at 128ˆ128 and are shown at the same rate.
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Figure 7: Unlike MM-Diffusion (left) where clothes and appearance is altered in the continuation
(red arrow), our AVDiT with MoNL (right) maintains subject consistency in the AIST++ dataset.

5 Related Work

Video diffusion models. Diffusion models have revolutionized image [45, 35, 16, 39] and video
generation with pixel-space [18, 17, 43] and latent-space [14, 56, 6, 9, 12] approaches. Recently,
W.A.L.T [12] pushed the boundaries using transformer-based latent diffusion with joint image-video
training. Tackling diverse audio-video generation tasks remains largely unexplored. With an AVDiT
trained with MoNL, our unified approach empowers a single model to handle a range of tasks.
Audio generative models. Audio generation soared with WaveNet [36]’s autoregressive approach.
Adversarial audio generation [27, 42, 26] emerged. Combining this with differentiable quantiza-
tion [38, 47, 1] led to end-to-end neural codecs for efficient audio compression [21, 57]. Recently,
diffusion models joined the fray, some using continuous latent spaces [29, 19, 11], others exploring
discrete space [52]. Our AVDiT uses continuous embeddings from SoundStream for audio latents.
Multimodal generative modeling. While multimodal diffusion models [37, 41, 54, 39, 17, 23] have
achieved impressive results, the field has primarily focused on the visual domain and audiovisual
generation remains less explored. Existing approaches for audio-to-video [53, 53, 30] and video-to-
audio [20, 33] generation typically learn task-specific conditional models, limiting their flexibility.
To address this, recent works [40, 50] propose more versatile audiovisual models. However, they
did not examine multimodal interpolation tasks, which we explore in this work. Tasks such as
AV-continuation are critical to understand a model’s capability to generate a temporally consistent
multimodal sequence retaining the object consistency from the condition input.

6 Experiments

6.1 Datasets

Monologues dataset consists of 19.1 million videos for training and 25K videos for evaluation,
each with a single person talking. The videos are center-cropped to a 256 ˆ 256 resolution. This
dataset includes a range of person appearances along with rich verbal and non-verbal communication
cues. This dataset is ideally situated to assess concepts such as audiovisual gestural synchrony and
multimodal expressions which are key components of human communication and interactions.
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Table 1: Comparison of AVDiT trained with mixture of noise levels (MoNL) on the Monologues dataset for
unconditional joint generation (Joint), cross-modal (A2V, V2A) and multimodal interpolation (AV-inpaint,
AV-continue) tasks. FAD “ 2.7 and FVD “ 3.3 for groundtruth autoencoder reconstructions of the inputs.
Fréchet metrics estimated with N=25k.

Setting / Task Joint A2V V2A AV-inpaint AV-continue Average
FAD Ó FVD Ó FVD Ó FAD Ó FAD Ó FVD Ó FAD Ó FVD Ó FAD Ó FVD Ó

Conditional (task-specific) 7.1 63.6 49.4 11.5 5.3 15.9 7.4 12.1 7.8 35.3
Per modality 7.0 84.4 34.1 4.7 6.2 213.6 4.5 92.1 5.6 106.1

Vanilla 7.1 63.6 53.3 8.1 8.1 226.8 6.1 140.8 7.4 121.1
MoNL (Ours) 6.4 77.6 40.2 5.3 4.6 11.8 3.1 8.8 4.9 34.6

Ablations
Per time-segment 6.6 96.3 124.5 12.1 5.1 28.2 5.0 72.3 7.2 80.3

Per time-segment Per modality 7.0 84.5 52.5 5.9 5.4 22.9 4.8 61.2 5.7 55.3
Pt/Pm/Ptm 9.0 90.1 43.1 5.1 5.2 13.4 4.1 16.9 5.9 40.9

Table 2: Quantitative comparison between our AVDiT with MoNL
and MM-Diffusion (MMD).

AIST++ Landscape

Task Method FAD Ó FVD Ó KVD Ó FAD Ó FVD Ó KVD Ó AV align Ò

Reconstruction 0.90 11.72 0.96 0.76 16.41 -0.25 0.60

A2V MMD - 184.45 33.91 - 238.33 15.14 0.54
Ours - 38.04 5.27 - 86.79 4.30 0.57

V2A MMD 13.30 - - 13.60 - - 0.50
Ours 1.11 - - 0.78 - - 0.51

Table 3: User study of comparison
between our model and MM-Diffusion
(MMD) on the AIST++ dataset.

Preference of ours over MMD

AV align AV quality Person
consistency

AV-continue 0.69 0.71 0.93
A2V 0.77 0.61 0.75
V2A 0.61 0.49 0.60

Joint 0.74 0.72 0.81

AIST++ is a subset of AIST [46] and contains 1,020 street dance videos (5.2 hours). The videos
were segmented into in 8,233 samples for train and 110 for test at 10fps following Ruan et al. [40].
Landscape contains natural scenes from 928 [28] videos which were segemented into 5,400 samples
for train and 600 samples for test at 10fps. We conduct most of the experiments on the Monologues
due to its size and diversity. We use AIST++ and Landscape for comparison with MM-Diffusion.

6.2 Evaluation Settings

Tasks. We study three sets of tasks: (1) Joint audio-video (AV) generation (Joint): (2) Cross-modal
generation: Audio-to-video (A2V) and Video-to-audio (V2A), and (3) AV interpolation generative
tasks: AV-inpaint where a 1.5s clip is interpolated given one video frame, and 0.125s audio at the
beginning and four video frames and 0.5s audio at the end, and AV-continue to fill out 1.5 seconds
of AV given the first 5 video frames and corresponding 0.625s of audio.
Baselines. On the Monologues dataset, we compare the performance of AVDiT trained with MoNL
versus three baselines: Vanilla (Eq. 2), Conditional models separately trained for each task, and
the per modality model (Sec 3.2) which may be considered as a generalization of the UniDiffuser
approach for sequences. We enabled the Vanilla model to generate cross-modal and multimodal
interpolation outputs by using the replacement method [18, 40]. We also benchmark MoNL AVDiT
against UNet-based MM-Diffusion (MMD) [40], the sole published work with a released model
that tackles both audio and video generation within a single model. While a direct comparison
between U-Nets and our transformer architecture is inherently challenging due to their distinct design
principles, we show that MoNL AVDiT surpasses this strong U-Net baseline, demonstrating the
effectiveness of the transformer architecture in this domain. We restrict our quantitative evaluation
to A2V and V2A tasks because MMD fails to generate temporally consistent sequences in case of
continuation tasks (see Figs. 2 and 7 for example).
Quantitative evaluation. We use Fréchet video distance (FVD) as our video evaluation metric
following Yu et al. [55]. Similarly, we use Fréchet audio distance (FAD) as the audio evaluation
metric following Ruan et al. [40]. Because we use latent space representations for the video and
audio, we also report the FVD and FAD scores between reconstructed signal and the original signal as
“ground-truth” scores as the performance upper bound. While we preferred user studies for assessing
audio-video alignment as existing metrics miss subtle synchrony like dance moves matching music
beats or gestures aligning with speech patterns, we computed AV-align score [33], limiting them to
the open-domain Landscape dataset for the comparison with MMD.
User studies. We conducted user studies to evaluate the quality of generated content. We adopt the
two axes of measurement introduced by Ruan et al. [40] namely audio/video quality and audio-video
alignment, and introduce a third one, “subject consistency” to assess whether the person in the
generated content is plausibly consistent with the input. For stimuli, we used a total of 360 generated
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samples (not cherry picked) balanced across A2V, V2A, AV-continue and AV-inpaint tasks and for
AVDiT trained with three approaches: MoNL, Vanilla and Per modality on Monologues dataset. The
tasks were assessed on a 5-point Likert scale. We also compared rater preference for MoNL AVDiT
vs. MMD with 30 videos and 5 raters per video. Raters were presented with generations from the
two methods randomized as two options, A/B and were asked to pick one option for each of the three
dimensions instead of using a 5-point scale. See more details on implementation and experimental
setup in Secs. B and C in the Appendix.

6.3 Results

Qualitative results. As displayed in Figs. 1 and 6, Our AVDiT model trained with MoNL achieves
impressive performance on various tasks within a single framework, including audio-to-video, video-
to-audio, joint generation, multimodal continuation and interpolation with flexible input settings,
generating temporally consistent videos. Notably, ours preserves clothing and appearance attributes
during continuation tasks, unlike MMD which can alter these (see Figs. 2 and 7). More qualitative
results and comparisons are available in Figs. 13, 14 and 15, and at avdit2024.github.io.

Quantitative results. As shown in Table 1, on average across all tasks, AVDiT trained with MoNL
outperforms all baselines, demonstrating its versatility to learn diverse conditional distributions in a
task-agnostic manner. MoNL excelled at generating samples that are temporally and perceptually
consistent with the conditioning input, in the case of AV-inpaint and AV-continue tasks, where
other baselines generally failed. Per-modality approach surpassed MoNL for A2V and V2A tasks
consistent with the findings in Bao et al. [3] likely because conditional distributions in these cases
only need to capture cross-modal associations and not necessarily the underlying temporal dynamics.
Unsurprisingly, the vanilla diffusion model trained for joint generation exhibited superior performance
in this specific scenario but served as a lower-bound of performance for all other tasks. Finally, MoNL
performed better than (if not on-par with) task-specific models for all conditional tasks.

As evident from Table 2, MoNL outperformed MMD in terms of the FAD and FVD metrics across
all tasks on the AIST++ and Landscape datasets, as estimated using the code provided by Ruan
et al. [40]. The significantly better audio generation in our model, likely due to the combination of
MoNL and our choice of the SoundStream audio autoencoder, is also reflected in the ground-truth
FAD scores for audio reconstruction. In case of video reconstruction quality, (ground-truth FVD)
on AIST++, our choice of autoencoder was inferior to MMD, possibly due to the small dataset size.
Qualitatively, we observed that the MAGVIT-v2 reconstructions eliminated flickering across frames
but the reconstruction of small face regions in AIST++ dance videos was blurry. These findings
should be interpreted cautiously due to several factors: the limited size of the AIST++ and Landscape
training splits, our use of a transformer backbone versus MMD’s coupled U-Nets, and our use of
pretrained autoencoders for latent space representations. On the Landscape dataset, AV-align results
demonstrate that our model achieves better alignment compared to MMD, which aligns with the
findings from the user study below.

Person consistencyAV alignmentAV quality

* * **

Ra
tin

g 
(1:

 p
oo

r –
 5

: g
oo

d)

Vanilla Per-modality (UniDiffuser) MoNL (Ours)

Figure 8: Comparative analysis across AVDiT
models from the user study on AV quality,
AV alignment and person consistency. The *
indicates statistically significant pairwise dif-
ference at p ă 0.01 after multiple correction.

User studies. A comparison of the distribution of Lik-
ert scores across all tasks for the three approaches we
compared is shown in Fig. 8. Pairwise Mann-Whitney
U tests were conducted with Bonferroni correction
for multiple comparisons to assess statistical differ-
ence. Across all axes, raters preferred samples gener-
ated from MoNL over that of Vanilla or Per-modality
(Pm) approaches. Examining task-specific trends (see
Fig. 12 in the Appendix), for the cross-modal tasks,
Pm was rated significantly higher than Vanilla, and
there was no significant difference between MoNL
and Pm (except for the V2A task on AV alignment).
For multimodal interpolation tasks, MoNL was rated
significantly higher than Pm. In line with quantitative
results, these results suggest that MoNL excelled at
generating samples, that are perceptually and temporally consistent with the input conditioning.

As indicated in Table 3, our MoNL AVDiT outperformed MMD in user studies, especially in
consistency where ours showed improved consistency along factors such as person’s appearance
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or the attire. MMD was preferred slightly more in V2A tasks, possibly because the Soundstream
audtoencoder we used for audio was not optimized for music generation like in MMD.

Ablations. Recall that MoNL training randomly selects one of the four timestep designs described in
Sec. 3.2. We compare MoNL with Per time-segment Pt, and Per time-segment and Per modality Ptm
and Pt/Pm/Ptm that excludes vanilla from the timestep mixture, approaches separately as shown
in Table 1. Overall, Ptm noise excelled at inpainting and continuation tasks though it was not on
par with per-modality approach for cross-modal tasks. In general, Pt does not perform well by
itself. In our experiments, we also observed that the combination of Pm, Pt, Ptm and Pt/Pm/Ptm
was sufficient for comparable performance on most tasks except for unconditional joint generation.
Adding the Vanilla approach to the mixture of timesteps improved performance for unconditional
joint generation while not substantially compromising the performance on other tasks.

7 Conclusion

We propose a unified approach for multimodal diffusion using a mixture of noise levels (MoNL) for
generating and manipulating sequences across modalities and time. This empowers a single model
to handle diverse tasks like audio-video continuation, interpolation, and cross-modal generation.
We show that an audiovisual latent diffusion transformer (AVDiT) trained with MoNL achieves
state-of-the-art performance in audiovisual-sequence generation, providing new opportunities for
expressive and controllable multimedia content creation.

See Sec. A in the Appendix for discussions on limitations and considerations.
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Appendix

A Limitations, Impact and Considerations

Our proposed approach, combining mixture of noise levels (MoNL) with the generative capabilities
of the Audiovisual diffusion transformer (AVDiT), has certain limitations. As shown with demo
videos on avdit2024.github.io, while our models effectively capture subject consistency and intricate
nonverbal behaviors such as gestural synchrony with vocal tone, significant improvements are
necessary to enhance visual and speech quality. Future research will concentrate on super-resolution
systems to address visual quality, while text conditioning could potentially further optimize speech
quality.

A key focus in this work was to demonstrate the versatility and use of MoNL across various tasks
using a simple mixing scheme by randomly choosing between different timestep candidates as
representative schemes for applying variable noise levels. This simplicity showcases its broad
applicability. We acknowledge that fine-grained controlling by weighted mixing of the different
schemes could be explored for specific goals or tasks in future work. In fact, one can imagine an
arbitrarily large number of timestep candidates in the vector space of the inputs. We specifically chose
a simple mixture scheme to demonstrate its versatility as a proof of concept, rather than optimize for
any single task.

Although the method presented in this work is for general multimodal applications, our experi-
ments included human-centric generation tasks. This enabled us to explore unique challenges of
that problem setting. For example, consider the case of perceptual expectations for audiovisual
alignment/coherence, where misaligned audio and visual cues can drastically alter perception of
speech [34, 24]. Generation of photo-realistic persons, speech, and joint generation of both can
perpetuate stereotypes. We recognize the ethical concerns and underscore that our goal here is to
explore how understanding aspects such as nonverbal behavior in multimodal communications using
generative models can open up new avenues in research.

Specifically, the A2V and V2A tasks in human-centric context, which involve extrapolating visual
appearance from speech and vice versa, have the potential to perpetuate stereotypes. The generated
samples are derived from the model’s understanding of cross-modal associations in the training
dataset, which can be vastly different from human perception. One possible mitigation is to ensure
that the model can generate diverse outputs for a given input. Diffusion models can achieve this
by utilizing different noises at inference time, given a sufficiently large and diverse training dataset.
A recent study showed that Diffusion models demonstrate better sample diversity in generations
compared to GANs [4], however, addressing potential issues around mode collapse in the generative
models, especially with multimodal data is an open research problem.

Our work also introduced “consistency" to qualitatively assess whether the generation remains
congruent with the input conditioning. In continuation and interpolation tasks, the disparity between
what the model generates and human perception can be generally minimal, as the conditioning
provides a perceptual template for the subject’s potential appearance or voice. In contrast, A2V and
V2A tasks warrant an in-depth analysis of this disparity. As our immediate goal was to assess the
capability of our proposed approach (and baselines) to generate samples from various conditional
distributions, we focused on a broad definition for measuring consistency in user studies. Our future
work will focus on extending the consistency measure for a granular understanding of these biases
by (1) comparing cross-modal associations in the training data to that of the generated samples,
and (2) disaggregate model and human evaluations in cross-modal generation tasks by identifying
specific dimensions of human appearance attributes like perceived gender expression or human
communication aspects such as voice and gestural synchrony using diverse rater pools.

B Implementation Details

Autoencoders and AVDiT. Given the domain specific nature of the datasets. we trained dataset-
specific MAGVIT-v2 autoencoders following Yu et al. [55]. For the Monologues dataset, we
downsampled the data to 8fps and 128ˆ 128 resolution for video and 16kHz for audio and randomly
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sampled a contiguous clip of 2.125 second (17 frames) to match the input requirements of MAGVIT-
v2. This resulted in a dataset of about 11.8K hours for training. The spatial and temporal video
compression ratios were set to rs “ 8 and rtv “ 4, whereas the temporal audio compression ratio
was rta “ 320. The embedding dimension of the video and audio latent spaces are dv “ 8 and
da “ 1024 respectively, with the target embedding dimension after linear projection, d “ 1024. All
latents were zero-mean and unit-variance normalized with empirical mean and variance estimates
on a small subset. AVDiT has 24 transformer layers with 16 heads with MSA with a total of 420M
parameters.
Diffusion training and inference. During training, we use a linear noise variance schedule and
a diffusion step T “ 1000, and a self-conditioning rate of 0.9 following Gupta et al. [12]. At the
inference time, we use 250 DDIM steps. All models were trained for about 400K steps with a batch
size of 256. We used the AdamW optimizer [31] with a learning rate of 5e-4, 5K warm-up steps,
cosine learning rate scheduler and EMA consistent with the denoising transformer setting in Gupta
et al. [12].
Compute resources. Each experiment listed in Table 1 was conducted using 256 v5e TPU chips
(with 16ˆ16 topology) for training (on average, the models were trained for around 350K steps
with a batch size of 256 for around five days); inference was conducted using 16 v5e TPU chips
with a topology of 4ˆ4. See https://cloud.google.com/tpu/docs/v5e for more details. Benchmarking
experiments to compare with MM-Diffusion on the AIST++ and Landscape datasets were conducted
using two A100 GPUs for conditional inference and estimating FAD/FVD metrics.

C Experimental Details

C.1 Evaluation metrics

Since our primary use case is speech generation with the Monologues dataset, we use VGGish
embeddings as feature for FAD estimation [22] for the results reported in Table 1. For AV interpolation
generative tasks (AV-continue and AV-inpaint), we carefully excluded the conditioning AV frames
while estimating Fréchet metrics.

C.2 Comparison with MM-Diffusion

In order to conduct a fair comparsion to the results reported in MM-Diffusion publication [40], we use
the data preprocessing and evaluation code provided at github.com/researchmm/MM-Diffusion for
FVD, FAD and KVD metrics. Note that the FAD computation here does not use VGGish embeddings.
Instead, it uses AudioCLIP [13] which was trained for general sound classification tasks and not
suitable for speech generation tasks as in the Monologues dataset reported in Table 1.

For the FAD, FVD and KVD results reported in Table 2, we match training conditions for the input
image resolution and video FPS with Ruan et al. [40], i.e., 64ˆ 64 resolution images at 10fps. We
match the duration of audio-video from both models to 2 seconds. For visualization purpose in Fig. 2,
we also train our models with 256ˆ 256 resolution to match the super-resolution output resolution
used by MM-Diffusion.

Ruan et al. [40] introduce a method for implementing zero-shot transfer of A2V and V2A tasks,
inspired by the reconstruction-guided sampling proposed by Ho et al. [18]. For instance, in V2A
tasks, the generated noisy audio ãt is computed at each step as follows:

at, vt “ θavpat`1, v̂t`1q, (8)

ãt “ at ´ λ
?
1´ αt∇at ||vt ´ v̂t||

,
2 (9)

where at`1, v̂t`1 are a N -length sequence of generated noisy audio and conditioned noisy video
at t` 1, θav is a parameterized denoising step, and λ is a gradient weight. Similarly, the zero-shot
transfer of AV-continuation task using the reconstruction-guided sampling [18] can be described by
the following equations:
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Figure 9: Example stimuli shown to the raters for the user study. We conducted user studies for four
tasks, A2V, V2A, audiovisual continuation and multimodal interpolation tasks. One track each for
the audio and video modality below the stimulus video were shown to effectively convey the portions
that were generated (in green) and condition input (gray).

Table 4: Rater instructions for audio/video quality metric.
Score Audio / Video quality

1 Pure noise, completely UNRECOGNIZABLE CONTENT
2 The generated content has natural structure in SOME places, but not most
3 The generated content has natural structure in MOST places
4 The generated content is NATURAL, BUT can be recognized as GENERATED content
5 The generated content is so NATURAL that it is indistinguishable from the REAL-WORLD

Table 5: Rater instructions for audio-video alignment metric.
Score Audio-video alignment

1 The audio-video are total noise and are completely IRRELEVANT
2 The generated content has CORRELATION between audio and video in SOME segments, but not most
3 The generated content has CORRELATION between audio and video in MOST segments

4 The generated content has NATURAL CORRELATION between the audio and video,
BUT can be recognized as GENERATED content

5 The generated content has CORRELATION between the audio and video indistinguishable from the REAL-WORLD

Table 6: Rater instructions for subject consistency.
Score Subject consistency

1 The person generated is INCONSISTENT with the input
2 The person generated is CONSISTENT with content in SOME SEGMENTS
3 The person generated is CONSISTENT with the generated content in MOST SEGMENTS
4 The person generated is NATURALISTIC, but can be recognized as GENERATED content
5 The person generated is INDISTINGUISHABLE from the REAL-WORLD

where nc is the number of conditioned time-segments. We closely follows their V2A codebase to
faithfully execute the continuation task. We adopt λ “ 0.02 to prevent numerical instability, as the
results tend to diverge for λ ą 0.02.

C.3 Qualitative Evaluation

Examples of the video stimulus template shown to the raters is presented in Fig. 9. The rater
instructions provided for each axis of quality, alignment and consistency are shown in Tables 4, 5
and 6 respectively.
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Algorithm 1 Sampling of a diffusion timestep vector
1: function GETTIMESTEPVEC(type)
2: if type ““ MoNL then
3: type „ UptVanilla, Pt, Pm, Ptmu
4: tref P RMˆN

„ Upt1, 2, . . . , T uq
5: t “ 0 P RMˆN

6: for m “ 1, . . . ,M do
7: for n “ 1, . . . , N do
8: if type ““ Vanilla then
9: tpm,nq

“ t
p1,1q
ref

10: else if type ““ Pt then
11: tpm,nq

“ t
p1,nq
ref

12: else if type ““ Pm then
13: tpm,nq

“ t
pm,1q
ref

14: else if type ““ Ptm then
15: tpm,nq

“ t
pm,nq
ref

16: end for
17: end for
18: return t
19: end function

Algorithm 2 Training with MoNL
input qpz0q, εθ , type (timestep sample type)

1: repeat
2: z0 „ qpz0q
3: ε „ N p0, Iq
4: t “ GETTIMESTEPVECptypeq
5: for m “ 1, . . . ,M do
6: for n “ 1, . . . , N do
7: z

pm,nq

tpm,nq “
a

αtpm,nqz
pm,nq
0 `

a

1´ αtpm,nqεpm,nq

8: end for
9: end for

10: Take gradient step on
11: ∇θ}εθprzp1,1qtp1,1q , . . . , z

pM,Nq

tpM,Nq s, tq ´ ε}
2
2

12: until converged

Algorithm 3 Joint generation of z0
1: ẑT P RMˆNˆd „ N p0, Iq
2: for τ “ T, . . . , 1 do
3: ε P RMˆNˆd „ N p0, Iq if τ ą 1, else ε “ 0
4: t P RMˆN “ τI

5: ẑτ´1 “
1?
ατ

´

ẑτ ´
βτ?
1´αt

εθpẑτ , tq
¯

` στε

6: end for
7: return ẑ0

Algorithm 4 Cross-modal generation of ẑ0 P RpM´mcqˆNˆd conditioned on
z0 P RmcˆNˆd

1: ẑT P RpM´mcqˆNˆd „ N p0, Iq
2: t P RMˆN “ 0
3: for τ “ T, . . . , 1 do
4: ε P RpM´mcqˆNˆd „ N p0, Iq if τ ą 1, else ε “ 0
5: tpmc`1:M,1:Nq “ τI
6: ε̂ “ ε

pmc`1:M,Nq
θ prz0, ẑτ s, tq

7: ẑτ´1 “
1?
ατ
pẑτ ´

βτ?
1´ατ

ε̂q ` στε

8: end for
9: return ẑ0
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D Algorithms

The core algorithms for implementing mixture of noise levels (MoNL) are presented in three parts:
sampling of diffusion timestep vector (Algorithm 1), training process (Algorithm 2), and joint/cross-
modal generation at inference time (Algorithms 3 and 4). The sampling algorithms are flexible,
using DDPM [16] as an example, and can be replaced with other efficient learning-free samplers like
DDIM [45] or Analytic-DPM [2]. Notably, conditional generation across time-segments is simply a
change of axis in Algorithm 4.

E Gratis Classifier-Free Guidance

Classifier-free guidance (CFG) [15], a technique designed to enhance the quality of samples pro-
duced by conditional diffusion models using a linear combination of the conditional and unconditional
outputs as follows:

ε̂θpxt,y0, tq “ p1` sqεθpxt,y0, tq ´ sεθpxt, tq (13)

“ p1` sqεcond
θ ´ sεuncond

θ (14)

where s is a guidance scale and the conditional and unconditional outputs are denoted by εcond
θ and

εuncond
θ respectively. Typically, a null token ∅, is used to allow the conditional model to generate

unconditional outputs by setting y0 “ ∅.

Gratis CFG. CFG (Eq. 13) is supported in our framework at inference without any additional training
similar to UniDiffuser [3]. Instead of using a null token for generating unconditional outputs (εuncond

θ
in Eq. 13), Gaussian noise is injected to the conditional portions input per task specification, and
setting tpm,nq “ T . Conditional outputs εcond

θ are obtained as illustrated in Fig. 4. Our vector
formulation of the timestep allows us to apply varying levels of noise to different parts of the input.
This opens up a number of possibilities for constructing various CFG forms by emphasizing different
time segments or modalities, depending on the task at hand.

MoNL supports classifier-free guidance (CFG) without requiring additional design. Unlike the
original CFG (see Eq. 13), it does not need a null token either, hence gratis or free. This is achieved
by injecting Gaussian noise to the conditional portions of the multimodal space and setting tpm,nq “ T
for the output as illustrated in Fig. 10 for the case of cross-modal generation of audio-in, video-out.
To illustrate mCFG, consider the conditional output of the network in the cross-modal task (see Eq. 7),
denote term used in the gradient step as Zp1:M,1:Nq

t “ rz
p1,1q

tp1,1q , . . . , z
pM,Nq

tpM,Nq s and conditional portions

as εcond
θ “ εθpZ

p1:M,1:Nq
t , tq where

Z
p1:mc,1:Nq
t “ z

p1:mc,1:Nq
0 , Z

pmc`1:M,1:Nq
t “ z

pmc`1:M,1:Nq
t

tp1:mc,1:Nq “ 0, tpmc`1:M,1:Nq
“ t.

Then, the output for the cross-modal generation task is:

εuncond
θ “ εθpZ

p1:M,1:Nq
t , tq. (15)

where

Z
p1:mc,1:Nq
t “ z

p1:mc,1:Nq
0 , Z

pmc`1:M,1:Nq
t “ z

pmc`1:M,1:Nq
T

tp1:mc,1:Nq “ 0, tpmc`1:M,1:Nq
“ T.

where hT „ N p0, Iq. Then, mCFG operates by blending the conditional εcond
θ and unconditional

portions εuncond
θ per task specification as follows:

ε̂θ “ p1` sqε
cond
θ ´ sεuncond

θ . (16)

where s is a guidance scale.

ε̂
p1:M,nc`1:Nq
θ “ p1` sqε

cond,p1:M,nc`1:Nq
θ ´ sε

uncond,p1:M,nc`1:Nq
θ (17)

By formulating the timestep as a vector, we can apply varying levels of noise to different input
components. This unlocks diverse possibilities for crafting varied CFG structures. Each structure
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Figure 10: Application of CFG for free in our MoNL approach for cross-modal generation tasks.
Whereas a null token is used in traditional CFG for unconditional output, formulating diffusion
timestep as a vector enables this by setting the input condition per task-specification to pure noise.

Figure 11: Application of CFG for free in our MoNL approach for multimodal interpolation tasks.
Because our vector formulation of the timestep enables applying variable noise levels to different
portions of the input one can construct a different CFG with “mix-and-match” of modalities and time-
segments for creating unconditional outputs. Here, we show an example for multimodal interpolation
task for (a) conditional output with two variations: (b) unconditional output with respect to input
condition per task specification, (c) partial conditional output, but unconditional output with respect
to modalities.

can amplify specific time segments or modalities based on the task demands, as demonstrated in
Fig. 10 for cross-modal tasks and Fig. 11 for the case of multimodal interpolation generation driven
by temporal conditioning.

F Discussion

Limited conditioning information: In Table 7, we compares the results of AV continuation de-
pending on the input information: AV-continue-2s) to fill out 2 seconds of AV given the first
video frame and corresponding 0.125s of audio AV-continue-1.5s) to fill out 1.5 seconds of AV
given the first 5 video frames and corresponding 0.625s of audio. The model performed better when
given more context (5 video frames and corresponding audio) compared to less context (1 frame and
corresponding audio), even though task-specific training can be an upper bound for performance.
This suggests that limited conditioning information can lead to issues like unnatural motion and
inconsistencies, and including more context improves the model’s performance.
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Table 7: Comparison of AVDiT trained with mixture of noise levels (MoNL) on the Monologues dataset for
AV-continue-2s) to fill out 2 seconds of AV given the first video frame and corresponding 0.125s of audio
AV-continue-1.5s) to fill out 1.5 seconds of AV given the first 5 video frames and corresponding 0.625s of
audio. FAD “ 2.7 and FVD “ 3.3 for ground truth autoencoder reconstructions of the inputs. Fréchet metrics
estimated with N=25k.

Setting/Task AV-continue-2s AV-continue-1.5s

FADÓ FVDÓ FADÓ FVDÓ

Conditional (task-specific) 8.2 117.3 7.4 12.1
Per modality 5.8 120.5 4.5 92.1

Vanilla 7.5 142.6 6.1 140.8
MoNL (Ours) 3.6 12.9 3.1 8.8

Per time-segment 6.7 102.5 5 72.3
Per time-segment Per modality 5.8 82.8 4.8 61.2

Pt/Pm/Ptm 4.1 20.2 4.1 16.9
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Figure 12: Comparative analysis across AVDiT models from the user study along axes of AV
quality, AV alignment and person consistency for two cross-modal generation tasks (A2V and V2A),
and multimodal interpolation tasks (AV-continue and AV-inpaint). The * indicates statistically
significant pairwise difference at p ă 0.01 after multiple comparison correction. Across the board,
MoNL (Ours) was rated significantly better or on par across all tasks, except for AV-alignment for
V2A task (comparison shown in red). For A2V task, there was no significant difference between the
models compared for the measure of AV quality. For multimodal interpolation tasks (bottom row),
Our approach far surpasses other models for quality, alignment and consistency underscoring the
ability of our approach to generate temporally consistent samples that are perceptually congruent
with the input condition.

Condition Generated output

Condition Generated output
AV continuation for 2 seconds
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Figure 13: Full length examples of AV continuation for 2s from AVDiT trained with MoNL. Samples
were generated at 8 fps at 128ˆ 128 resolution and are shown at the same rate.
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Figure 14: Full length examples of generations from AVDiT trained with mixture of noise levels (MoNL) on
the AIST++ dataset. Generated at 8fps with 128ˆ128 image resolution.
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Figure 15: Full length examples of generations from AVDiT trained with mixture of noise levels (MoNL) on
the Landscape dataset. Generated at 8fps with 256ˆ256 image resolution.
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G Theoretical Background on Mixture of Noise Levels

G.1 Theoretical Background on Multimodal Learning

In "A Theory of Multimodal Learning" [32], multimodal learning is shown to offer a superior
generalization bound compared to unimodal learning, with an improvement factor of Op

?
nq, where

n denotes the sample size. This benefit relies on connection and heterogeneity between modalities:

Connection. The bound depends on learned connections between (X ) and (Y).

Heterogeneity. Describes how modalities X and Y , diverge and complement.

If connection and heterogeneity are missing, ill-conditioned scenarios can arise. For instance, if
x “ y, perfect connection suggests no need for learning about Y . On the other hand, if x is random
noise, there is heterogeneity but no meaningful connection between X and Y , making non-trivial
learning on X alone impractical.

The theory also highlights that and effective connections between modalities via generative models
can enhance multimodal learning. This forms the basis for our Mixture of Noise Levels (MoNL)
approach, which is particularly suited for multimodal learning with audio and video data.

G.2 Advantages of Mixture of Noise Level Training

Our MoNL training method offers significant benefits for multimodal learning, especially with audio
and video data:

Heterogeneity and connection. Audio and video are naturally heterogeneous. For example, a
video of a person speaking includes audio of spoken words and video of lip movements and facial
expressions. MoNL uses variable noise levels to enhance learning by capturing the generic transition
matrix across the temporal axis.

pθprz
p1,1q

tp1,1q´1
, . . . , z

pM,Nq

tpM,Nq´1
s | rz

p1,1q

tp1,1q , . . . , z
pM,Nq

tpM,Nqsq (Eq. 4)

Enhanced connectivity. MoNL improves connectivity between audio and video modalities. Our
experiments show that MoNL often surpasses task-specific learning approaches by fostering better
connections between modalities, adapting its focus more effectively.

G.3 Enhanced Connectivity - Comparison with Existing Methods

MoNL vs. Joint learning in MMD [40]. Unlike joint learning methods that focus on the joint
distribution pθpzt´1 | ztq, MoNL trains across multiple conditioning, enabling better connections by
varying its focus. This is evidenced by MoNL outperforming the Vanilla (see Table 1) and MMD
models (see Tables 2 and 3).

MoNL vs. Per-modality training. MoNL goes beyond per-modality training in UniDif-
fuser [3], which uses variable noise between modalities i.e., learning pθprz

p1q

tp1q´1
, . . . , z

pMq

tpMq´1
s |

rz
p1q

tp1q , . . . , z
pMq

tpMqsq. MoNL introduces variable noise across different time segments, learning connec-
tions across temporal dynamics as well. This advantage is demonstrated in Table 1.

MoNL vs. Masked training [49]. Diffusion models often obscure high-frequency details with low
noise and low-frequency structures with high noise [7]. MoNL employs variable noise levels to
explore diverse frequency components, enhancing the model’s ability to correlate high and low-
frequency elements. This is in contrast to masked self-supervised learning, which limits frequency-
specific connections by masking entire elements.

In summary, the effectiveness of MoNL for multimodal diffusion models, particularly with audio and
video data, stems from its strategic use of connection and heterogeneity. By applying variable noise
levels, MoNL enhances connectivity between modalities and better adapts to diverse temporal and
frequency components, leading to superior performance compared to existing multimodal learning
methods.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The two main claims of the paper, i.e., task-agnostic training to support a range
of audiovisual generation tasks at inference time, and the ability of our model to generate
temporally consistent generations have been empirically validated through quantitative and
user studies, along with demo videos on the project page.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have added a detailed discussion of limitations, potential future work and
considerations with respect to human-centered generation experiments and evaluations in
the Appendix.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: [NA]
Guidelines:
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: There are two main components of reproducibility here: (1) Model architecture
is described in detail and the pseudocode for the proposed algorithm has been provided.
(2) Evaluation: The Fréchet metrics are implemented using publicly available code, and
the design of the user interface for we used as stimulus for rater studies are shared in the
Appendix along with the rubric of the measurements used by the raters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
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Justification: The datasets we have used to benchmark with baselines are already publicly
available. The Monologues dataset on which we conduct our core experiments is not publicly
available.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: A summary is provided in the main text of the paper, and the implementation
details are provided in the Appendix.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For qualitative studies, where we examined rater labels of quality or pref-
erences, we describe the statistical test along with the p-value at which the statistical
significance is estimated after multiple-comparison correction is also reported.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The implementation details including compute resources are described in the
Appendix.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully considered some of the potential societal impacts of this
work and potential harms, and discussed possible mitigations in the section "Limitations,
Impact and Considerations" in the Appendix.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed broader impact of the paper in the section "Limitations,
Impact and Considerations" in the Appendix.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Potential harms and possible mitigations are discussed in the Appendix. The
video demos shared for demonstrating non-verbal audiovisual behaviors are from a consented
individual.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators of the benchmarking datasets and the code we’ve used in this
paper have been approproately cited along with the github URLs where the code was
provided by the original authors.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Pseudocode relevant to reproducing the implementation of the proposed
algorithm is available in the appendix. Demo videos showing recognizable persons are from
a consented individual from whom written consent was obtained.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

28

paperswithcode.com/datasets


• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Detailed instructions along with the user interface ahown to the raters and the
rubric used for rating tasks are provided in the Appendix.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29


	Introduction
	Background
	Mixture of Noise Levels (MoNL)
	Variable Noise Levels across Modality and Time
	Representative Stratgies for Variable Noise Levels
	Conditional Inference

	Audiovisual Latent Diffusion Transformer (AVDiT)
	Related Work
	Experiments
	Datasets
	Evaluation Settings
	Results

	Conclusion
	Limitations, Impact and Considerations
	Implementation Details
	Experimental Details
	Evaluation metrics
	Comparison with MM-Diffusion
	Qualitative Evaluation

	Algorithms
	Gratis Classifier-Free Guidance
	Discussion
	Theoretical Background on Mixture of Noise Levels
	Theoretical Background on Multimodal Learning
	Advantages of Mixture of Noise Level Training
	Enhanced Connectivity - Comparison with Existing Methods


