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ABSTRACT

The demand for memory to store model-related statistics (“model memory”) is a
major bottleneck for training large neural networks. A promising solution is low-
precision optimizers, which reduce the numerical precision of the model memory.
However, existing work only compresses the momentum, resulting in suboptimal
memory efficiency. This paper proposes Low-Precision Model Memory (LPMM),
an optimization framework with the entire model memory kept in low precision.
LPMM compresses not only the momentum but also model parameters and gradi-
ent accumulators. We identify arithmetic underflow as the main problem in build-
ing low-precision optimizers and propose a stochastic quantization method and a
microbatching technique to overcome this problem. We analyze the convergence
behavior of LPMM and theoretically show how the proposed techniques could
affect underflowing, which in turn affects the convergence. We apply LPMM to
the SGD optimizer with momentum (SGDM). On several realistic benchmarks,
LPMM-SGDM can train neural networks with negligible loss of accuracy while
reducing over 70% of the model memory compared to the full-precision SGDM.

1 INTRODUCTION

Many huge models (Kenton & Toutanova, 2019; Radford et al., 2019; Dosovitskiy et al., 2021;
Brown et al., 2020; Fedus et al., 2022) emerge in the recent several years. Despite being powerful,
training these models is challenging. Memory is the main bottleneck in developing large models, as
the training memory footprint is typically proportional to the number of model parameters.

During training, the device memory is consumed by three types of objects:

1. data-related objects (“data memory”), including data and each layer’s activation. Their size is
proportional to the data size, i.e., mini-batch size and image resolution / sequence length.

2. model-related objects (“model memory”), including model parameters, momentum, and gradi-
ent accumulators. Their size is proportional to the amount of model parameters.

3. temporary objects (“workspace memory”), such as scratch memory used by computing kernels
and memory fragments.

Among the three types, model memory is the main bottleneck in scaling up machine learning mod-
els (Rajbhandari et al., 2020).

Quantization is a promising way of reducing the model memory. Specifically, low-precision optimiz-
ers (Ramesh et al., 2021; Dettmers et al., 2021) represent their states with low-precision numerical
formats, such as 8-bit integers, which consume less memory. Particularly, Dettmers et al. (2021)
propose an 8-bit optimizer, which quantizes the momentum to a block-wise 8-bit format. However,
existing works have two limitations. First, the convergence behavior of low-precision optimizers is
theoretically not well understood. Second, they only quantize the momentum, while model parame-
ters and gradients are left in full precision. Therefore, the overall memory saving is unsatisfactory.

In this work, we propose LPMM, a novel framework for optimizing with low-precision model mem-
ory. Unlike previous works, LPMM consider all model-related objects, including model parameters,
momentum, and gradients, in low precision. We identify arithmetic underflow as the major bottle-
neck of building low-precision optimizers. Theoretically, we analyze the convergence behavior of
low-precision optimizers. Our analysis reveals how the design of the optimizer could impact the
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degree of underflowing, which we link to the convergence behavior. Algorithmically, we propose
stochastic quantization and gradient accumulation methods to reduce underflowing. These tech-
niques are backed with our theoretical findings. We further discuss the quantizer design and system
implementation for LPMM.

We evaluate LPMM on the standard image classification benchmark. LPMM can quantize gradients
and the momentum to 8 bit, and model parameters to 12 bit, with neglible loss of accuracy. In total,
LPMM only requires 28 bits of model memory per parameter, compared to 72 bits by Dettmers et al.
(2021) or 96 bits of the full-precision algorithm.

2 RELATED WORK

Training Methods With Compressed Model Memory Several works train neural networks with
quantized parameters, momentum, or gradients. QSGD (Alistarh et al., 2017) quantizes the gradient
into lower bits for efficient communication. Low-Precision SGD Li et al. (2017); Li & De Sa (2019);
De Sa et al. (2018); Yang et al. (2019) uses low-precision parameters for training weight-quantized
neural networks. The 8-bit Optimizer (Dettmers et al., 2021) quantizes the momentum for SGDM
and Adam. Many of these works are not designed for saving the memory. Moreover, they only
consider different parts of the model memory, without unified framework and analysis.

Other Methods to Reduce the Model Memory Sharding (Rajbhandari et al., 2020) splits model
parameters across multiple nodes, which is only applicable to distributed settings. Offloading (Ren
et al., 2021; Rajbhandari et al., 2021) stores model-related statistics in CPU memory. These methods
have heavy communication overhead, which can be reduced by our method.

Other Memory Efficient Training Methods Gradient checkpointing (Chen et al., 2016) reduces
the storage overhead of activations by recomputation. Activation Compressed Training (Chen et al.,
2021; Liu et al., 2022) keeps low-precision activations in memory. These method reduces the data
memory rather than the model memory, and are orthogonal to our approach.

Quantized Training There is a series of work focusing on the acceleration of neural network
training with low-precision computations (Wang et al., 2018b; Micikevicius et al., 2017; Zhu et al.,
2020; Sun et al., 2020). However, they still store the model-related objects in full-precision or 16-bit.

3 TRAINING WITH LOW-PRECISION MODEL MEMORY

In this section, we formulate the problem of training neural networks with low precision memory.
We show that arithmetic underflow is the major bottleneck for reducing the numerical precision. To
solve this problem, we propose stochastic quantization and micro-batching techniques. Here, we
mainly consider stochastic gradient descent with momentum (SGDM) (Qian, 1999; Sutskever et al.,
2013) as a motivating example, but the proposed techniques also apply to other optimizers, such as
stochastic gradient descent (Bottou, 2010) and Adam (Kingma & Ba, 2015).

3.1 BASIC OPTIMIZATION FRAMEWORK

Consider the empirical risk minimization problem

min
θ

f(θ) =
1

n

n∑
i=1

fi(θ), (1)

where θ is the model parameter. Since the dataset size n is large, stochastic optimizers are adopted
for solving the problem. SGDM is one of the most widely used optimizers. Starting with an initial
model θ0 and momentum m0 = 0, SGDM performs the following updates:

mt ← βmt−1 +∇f̃(θt−1), θt ← θt−1 − αmt,

where∇f̃(θt−1) is an unbiased estimator of the gradient. We define∇f̃(θt−1) := ∇f(θt−1, ζ
t) :=

1
|ζt|

∑
i∈ζt ∇fi(θt−1), where ζt is a minibatch sampled uniformly from the dataset {1, 2, . . . , n}.

2



Under review as a conference paper at ICLR 2023

𝜁𝑡

𝜃𝑡−1𝜃𝑡−1

Network

𝐿

∇
Gradient

Accumulation

𝑔𝑡,𝑁

𝑔𝑡,𝑁

𝑚𝑡−1 𝑚𝑡−1
Momentum

Update
𝑚𝑡 𝑚𝑡

Parameter

Update
𝜃𝑡 𝜃𝑡

𝑔𝑡,𝑖−1𝑔𝑡,𝑖−1

∇i

+ 𝑔𝑡,𝑖 𝑔𝑡,𝑖

𝑄−1

𝑄−1

𝑄−1

𝑄−1 𝑄

𝑄

𝑄

Figure 1: Dataflow of the LPMM algorithm. Square nodes are in low-precision and kept persistent
in memory. Circular nodes are temporary full-precision data, which only consume a small constant-
size (dimension-free) buffer.

When training large neural networks, the dimensionality of θ is huge. Storing the model-related
statistics, including the model θ, the momentum m, and the gradient ∇f̃(θ) can be a major mem-
ory overhead. We call these statistics collectively as the model memory. For example, the GPT-
2 (Radford et al., 2019) model has 1.5 billion parameters. During training, each parameter requires
32(model)+32(grad.)+32(momentum) bits or 12 bytes of model memory. Therefore, the model
memory alone takes about 1.5× 109× 12bytes = 17.6GB of GPU memory, which already exceeds
the capacity of many mainstream GPUs.

To reduce training memory footprint, we can store the model-related statistics in low numerical
precision. This involves a quantizer Q(·), which encodes full-precision (32-bit) values to lower-
precision ones, such as 8-bit integers. The training procedure can be summarized as:

gt ← Q
(
∇f̃(θt−1)

)
, mt ← Q

(
βmt−1 +∇f̃(θt−1)

)
, θt ← Q (θt−1 − αmt) . (2)

Here, gt is a gradient accumulator, which stores the temporary gradients during back-propagation.
When the parameters and momentum are updated, they are first decoded to full-precision, computed
in full-precision, and then encoded and stored in low-precision, as illustrated in Fig. 1. We defer
further implementation details to Sec. 5.3.

3.2 THE UNDERFLOW PROBLEM

Quantization is lossy, which can only represent values up to a numerical precision. Consider the
following symmetric linear quantizer Q = Qδ,B : R→ R as an example:

Qδ,B(x) = δ · Round (clip (x/δ,−B,B)) , (3)

where Round(·) is a rounding function and clip(·,−B,B) clamps the input into the range [−B,B].
The quantizer Qδ,B(x) converts x to quantities within the range [−δB, δB], up to the numerical
precision δ. The quantized value can be stored as a log2(2B)-bit integer. The quantizer can be
generalized to vector inputs and outputs by applying element-wise to each entry.

Arithmetic underflow occurs when we try to sum up two quantities of different orders of magnitude.
Consider the summation

θt = Qδ,B (θt−1 + vt) , (4)

where θt is the parameter at the t-th iteration, and vt = −αmt is the update vector. Since θt−1

itself is already in low-precision, we have Qδ,B(θt−1) = θt−1. Now, if the update is smaller than
parameters’ numerical precision, i.e. |vt,d| < δ/2 for some dimension d, the small update will be
“eaten” by the large parameter, treated effectively as zero:

θt,d = Qδ,B (θt−1,d + vt,d) = θt−1,d. (5)
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Figure 2: The magnitude of parameter update for a convolution layer in ResNet-18. We vary the
parameter precision from 12-bit to 8-bit. Gradients and momentum are always in 8-bit. The “bin
change ratio” is defined as ṽt/δ averaged over all dimensions. Larger is better.

The update is likely to be small, particularly at the late stage of training where the gradient (and
momentum) is close to zero, and the learning rate is also decreased around zero. If underflowing
occurs, the actual update direction ṽt := θt − θt−1 is far from the expected. the Extremely, there
could be ṽt = 0, where the optimization completely stalls.

As shown in Fig. 2, when the underflow problem is serious (fewer bits), the deterministic quantizer
has the smallest actual update ṽt/δ. Actually, the deterministic quantizer hardly updates the param-
eters. As shown in Fig. 3a, about 60% entries in the update vector is less than δ/2. These entries are
ignored by the deterministic quantizer.

3.3 SOLUTIONS TO THE UNDERFLOW PROBLEM

We propose two methods for solving the underflow problem: unbiased stochastic quantization and
gradient accumulation.

Unbiased Stochastic Quantization Stochastic quantization adopts an stochastic quantizer Q(·),
satisfying E [Q(x)] = x. A simplest stochastic quantizer is the following:

Qδ,B(x) = δ · SR (clip (x/δ,−B,B)) , (6)

where SR(·) is the stochastic rounding (Gupta et al., 2015; Courbariaux et al., 2015) operation:

SR(x) = ⌈x⌉ with probability x− ⌊x⌋ otherwise ⌊x⌋ .

The quantizer is unbiased as long as δB ≥ |x|. Stochastic quantization mitigates underflow by
accumulating small updates in a probabilistic manner. When the update is small in magnitude, each
dimension only has a small probability to be updated. Yet after a large number of updates, the
final parameters still have the same expectation with the full-precision ones. Besides this informal
argument, unbiased stochastic quantization is also the key to establish the convergence theory, as we
shall see soon in Sec. 4.2.

Microbatching Underflowing arises from the difference in magnitude of the parameter and the
update. Therefore, it can be mitigated by enlarging the update. Microbatching (Huang et al., 2019)
works by summing up the gradient of multiple batches before applying the update to the momentum
and parameters. More concretely, we can accumulate the gradient of N mini-batches as

gt,0 ← 0, gt,i ← Q(gt,i−1 +∇f(θt−1, ζ
t,i)),

and use gt,N in place of gt for updating the momentum in Eq. (2). Now, the accumulated gradient
gt,N is N times larger than the original gt. Subsequently, the update−αmt becomes N times larger,
yet the magnitude of the parameter θt is unchanged, so underflowing is significantly alleviated.

As shown in Fig. 3(a), about 20% entries of update vector vt are even smaller than δ/8. In this case,
vanilla stochastic quantizer can still suffer from high variance due to the repeated small updates.
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Figure 3: The distribution of update vector magnitude across dimensions. The result is counted at
the epoch 10 for a single layer in ResNet-18. The blue bar (left Y-axis) represents the density and
the red line (right Y-axis) indicates the cumulative distribution.

Microbatching significantly enlarge the size the update, and reduce the number of small updates
(which underflow), as shown in Fig. 3(b).

Micro-batching can be viewed equivalently as large-minibatch SGD (Goyal et al., 2017), which
simply multiply the batch size and the learning rate by N . Large-minibatch SGD is known to
converge similarly to the original, small-minibatch SGD. However, enlarging the batch size is not
memory efficient since the data memory will increase.

Putting it all together, we propose LPMM-SGDM, an optimizer with low-precision gradient accu-
mulators, momentum, and parameters. The entire training procedure is given by Algorithm 1. Fig. 2
and 3 show that our algorithm effectively mitigate underflow with significantly larger updates.

Algorithm 1 LPMM-SGDM

Require: initial parameter θ0 ∈ Rp, learning rate α, initial momentum m0 = 0 ∈ Rp, quantization
function Q, total number of iterations T , momentum factor β, gradient accumulation steps N

1: for t = 1, 2, . . . , T do
2: gt,0 ← 0
3: for i = 1, 2, . . . , N do
4: Sample a minibatch ζt,i uniformly from the training data;
5: gt,i ← Q(gt,i−1 +∇f(θt−1, ζ

t,i))
6: end for
7: mt ← Q(βmt−1 + gt,N ))
8: θt ← Q(θt−1 − αmt)
9: end for

10: return θT

4 CONVERGENCE THEORY

In this section, we analyze the convergence of the proposed LPMM-SGDM algorithm and discuss
the impact of the proposed techniques.

4.1 ASSUMPTIONS

First, we make some assumptions. The first three are rather standard in stochastic optimization
literature, while last two depict properties of stochastic quantizers.

1. (Convexity) The objective function is convex and has an unique global minimum f(θ∗).
2. (Smoothness) The objective f(θ) is continuous differentiable and L-smooth;
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3. (Bounded variance) E
[∥∥∥∇f̃(θ)−∇f(θ)∥∥∥2] < σ2, ∀θ ∈ Rd.

4. (Unbiased quantizer) ∀x ∈ Rd, E [Qp(x)] = E [Qg(x)] = E [Qm(x)] = x.

5. (Bounded quantization variance) ∀x ∈ Rd, E
[
∥Qp(x)− x∥2

]
≤ σ2

p, E
[
∥Qg(x)− x∥2

]
≤ σ2

g ,

E
[
∥Qm(x)− x∥2

]
≤ σ2

m.

Here, Assumption 3 depicts the variance of sampling mini-batches, and Assumption 5 bounds quan-
tization error of model-related statistics through the variance. Assumptions 4-5 can be realized by
the linear quantizer in Eq. (6), where we have E

[
∥Qδ,B(x)− x∥2

]
≤ δ2d

4 ,∀x ∈ Rd.Yet, our anal-
ysis is applicable to other non-linear quantizers such as those discussed in Sec. 5.1. We assume that
the objective function is convex, which is somewhat restrictive. However, this simple convex case
is sufficient to reflect the underflowing challenge of training with low-precision model memory, and
we leave the non-convex case as a future study.

4.2 CONVERGENCE OF LPMM-SGDM

We first analyze the bias and variance of the quantized gradient accumulator.
Lemma 1. In Algorithm 1, with Assumptions 3-5, the first and second momentum of gt,i satisfy

E[gt,i|θt−1] = i∇f(θt−1) (7)

E[∥gt,i∥2 |θt−1] ≤ iσ2
g + i(i+ 2) ∥∇f(θt−1)∥2 + iσ2. (8)

Next, we construct an auxiliary sequence {zt}, following previous analysis of heavy ball meth-
ods (Ghadimi et al., 2015) and SGDM (Liu et al., 2020):

zt = θ0,when t = 0, otherwise
1

1− β
θt −

β

1− β
θt−1. (9)

The sequence enjoys the following nice properties:
Lemma 2. If Assumptions 3-5 hold, then sequence {zt} satisfies

zt+1 − zt =
1

1− β
(θt+1 − θt)−

β

1− β
(θt − θt−1) (10)

E[zt+1 − zt] =
−αN
1− β

∇f(θt) (11)

E[∥zt+1 − zt∥2] ≤
(

α

1− β

)2 (
2E[∥gt+1,N∥2] + σ2

m

)
+

1 + 2β2

(1− β)2
σ2
p. (12)

The quantity E[∥zt+1 − zt∥2] is composed of four parts: the batch gradient norm, the variance of
stochastic gradient, momentum quantization and parameter quantization error. The latter three noise
terms sum up independently. Our analysis applies to cases when only some of the model-related
statistics are quantized by setting corresponding noise terms to zero. With this lemma, we derive the
following theorem characterizing the convergence of LPMM-SGDM.

Theorem 1. Consider the Algorithm 1 with Assumptions 1-5. Let α ∈ (0, 1−β
(N+2)L ], then for all

T > 0 we have

E[f(θ̄T )− f∗] ≤
1

2T

(
Lβ

1− β
+

1− β

αN

)
∥θ0 − θ∗∥2 (13)

+
ασ2

(1− β)
+

ασ2
g

(1− β)
+

ασ2
m

2N(1− β)
+

(1 + 2β2)σ2
p

2αN(1− β)
. (14)

where θ̄T = 1
T

∑T−1
i=0 θi.

Theorem 1 reveals the effectiveness of the proposed techniques in Sec. 3.3. First, LPMM can con-
verge to the global optimum when T →∞, α→ 0, and αN →∞ for any quantizer with non-zero
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σp, σg , and σm. That is, the ultimate convergence is guaranteed regardless of the numerical preci-
sion. In contrast, optimizers with deterministic quantizers could stall at some intermediate state, as
discussed in Sec. 3.3. Therefore, stochastic quantization is essential for the convergence guarantee.

Second, we can study the impact of gradient accumulation. With sufficiently large T , the first term
in Eq. (14) vanishes, and we therefore only consider the noise terms. We compare a plain algorithm
(N = 1) and a version with gradient accumulation (N > 1), with equal learning rate. Gradient
accumulation reduces the parameter quantization error (the σp term) by N times. Meanwhile, the
gradient accumulator stores the gradient sum over N mini-batches, so σg becomes larger. Therefore,
gradient accumulation trades gradient quantization error for parameter quantization error. The error
bound is tighter with a large N when parameter quantization error is more significant, which holds
true according to our empirical observations in Fig. 2 and 3.

5 IMPLEMENTATION DETAILS

In this section, we discuss our quantizer design and the implementation of the whole training frame-
work.

5.1 GROUP AND NONLINEAR QUANTIZATION

For the quantizer, we use the nonlinear quantization on momentum and linear quantization on pa-
rameters and gradients. All quantizers use the standard absmax symmetric quantization. The linear
quantization is defined as Eq. 6. The nonlinear quantization method (Dettmers, 2015) proposes a
novel floating-point format in which the bitwidth for the exponent is dynamic. Furthermore, given a
tensor to be quantized, we first use the absmax to normalize the tensor into [−1, 1]. Then, the quan-
tizer finds the bucket for each element with a binary search on a precomputed quantization map.
Finally, the quantizer projects the value to one of the adjacent quantization points by stochastic
rounding. Since stochastic rounding is unbiased, this nonlinear quantization method is also unbi-
ased, which indicates that all the analysis above holds except the quantization variance is intrinsically
different.

Group quantization is also adopted to avoid the negative impact of outliers. We chunk every tensor
into groups of size 2048, and every group has its own quantization precision δ. However, group
quantization introduces more data to be stored and as group size decreases, the quantization is more
accurate while the extra data cost will be higher. We choose the group size of 2048 to balance the
numerical precision and storage cost.

5.2 DYNAMIC QUANTIZATION

We experimentally observed that the magnitude of parameters shows a trend of first increasing and
then decreasing. If a smaller quantization granularity δ is adopted, then the overflow problems
occur. Especially at the initial stage of optimization, the quantizer rudely truncated the parameters
to be increased due to limited range, which leads to a biased quantizer and makes the solution
suboptimal. However, if we quantize with an overly large δ, it results in poor numerical precision,
and the underflow problem worsens. Therefore, we take a dynamic quantization policy to balance the
overflow and underflow. Specifically, it calculates the quantization precision δ with the quantizers’
inputs at every iteration, which gives a minimal lossless δ.

5.3 SYSTEM IMPLEMENTATION

Here we discuss how our algorithm is implemented. As illustrated in Fig. 1, the forward, backward,
and optimizer steps are all depicted straightforwardly. Before an iteration begins, we store all model
memory in low precision. When the new input comes, the parameters needed for forward computa-
tion are dequantized into a temporary full-precision “copy”. Note that the parameters for each layer
are not required simutaenously, so we only dequantize parameters right before its usage. As long as
the computation related to the full-precision “copy” has finished, we delete these tensors. Therefore,
the overhead of the temporary full-precision parameter is no larger than the largest single parameter
tensor. In the backpropagation and optimizer step, a similar computation pattern happens. Note that
the memory of gradient accumulators cannot be saved by not storing the gradient accumulator even
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Table 1: Performance of ResNet-18 and ResNet50 on ImageNet.

Model Method Bits (param./grad./moment.) Accuracy(%)

ResNet-18 Full-Precsion 32/32/32 71.1
ResNet-18 LPMM 12/8/8 71.0
ResNet-50 Full-Precsion 32/32/32 77.2
ResNet-50 LPMM 12/8/8 77.3

if we do not apply microbatching (i.e. N = 1). On the one hand, the gradient may not be calcu-
lated in one operation (or one layer). On the other hand, gradient computation can be composed of
multiple accumulations, such as in a convolution layer.

Since the computation in neural network training is always layerwise, then at most, only the full-
precision parameters, gradients, and momentum associated with one single layer are kept in memory
at the same time, while other model memory is inactive and in low-precision.

Based on this philosophy, we implemented a training algorithm on PyTorch. We quantize the full-
precision to low-precision representation by manually compressing them into a byte stream using
the CUDA kernel. Our system includes a lot of operators and layers to perform desired forward
and backward calculations. Given a defined model, we quantize the parameter tensor individually,
replace the original full-precision parameter and then move to GPU. Then it can convert the layers
of the model automatically by our customized layer. Besides, to get the gradient and perform com-
putation more conveniently, we manually design a gradient accumulator instead of using the original
“grad” attribute.

6 EXPERIMENTS

Experimental Setup We compare the performance of LPMM to the full-precision counterparts on
the image classification task. The full-precision baseline uses the standard SGDM optimizer (Qian,
1999; Sutskever et al., 2013), and we use our proposed LPMM-SGDM algorithm. We experiment
with ResNet-18 and ResNet-50 (He et al., 2016) on ImageNet (Deng et al., 2009). We do not change
any existing hyperparameters or precision of input and activations for each experimental run. The
only change is to replace full-precision parameters, gradients, and momentum with the low-precision
ones. We conduct ResNet-18 experiments on RTX 3090Ti and ResNet-50 experiments on A100
GPUs.

The accuracy result is shown in Tab. 1. LPMM-SGDM can quantize gradients and the momentum to
8-bit and model parameters to 12-bit, with no accuracy loss compared with the full precision SGDM.

Ablation Study To study the effectiveness of our proposed techniques, we conduct an ablation
analysis on ResNet-18 on LPMM under 12-bit, 10-bit, and 8-bit parameter quantization. We consis-
tently use 8-bit gradients and 8-bit momentum. The result is shown in Tab. 2. The baseline uses a
deterministic dynamic quantizer (rounding to the nearest), and no microbatching is applied. We then
apply stochastic quantization and microbatching sequentially. The performance with microbatching
is the optimal result across different micro-batch size, which is N = 8 for 12-bit and N = 16 for
10-bit and 8-bit. The results show that stochastic rounding and microbatching are critical for the
performance of LPMM. The 8-bit runs collapsed without the unbiasedness guarantee. While as the
bit goes up, the reduced quantization error compensates for this bias. Microbatching is helpful at all
quantization level and make the 12-bit parameter LPMM match with full-precision.

Role of Stochastic Quantization We compare the effect of stochastic rounding on LPMM-SGDM
across 12-bit, 10-bit, and 8-bit parameter quantization. In these experiments, “deterministic” means
all quantization operations use the “rounding to the nearest” quantizer, while “stochastic” means
all quantization operations are stochastic and no microbatching is applied. The result is shown in
Fig. 4. For the 12-bit setting, we can see that the training trajectories overlap in the early stage of
optimization since the update is large enough compared to the numerical precision δ, and underflow-
ing is not significant. Nevertheless, the deterministic method degrades from the middle stage due
to the smaller update vector, which leads to underflowing. The degradation occurs earlier for 10-bit
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Table 2: Ablation study of LPMM-SGDM on ResNet-18 on ImageNet.

Method Bits (param./grad./moment.) Baseline +Stochastic +Microbatching

Full-Precision 32/32/32 71.1 - -
LPMM 12/8/8 66.0 70.7 71.0
LPMM 10/8/8 53.4 69.7 70.6
LPMM 8/8/8 15.8 65.6 69.2
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Figure 4: Convergence curves of compared algorithms.

and 8-bit settings since the quantization precision δ is larger, and underflow can happen more easily.
This indicates that unbiased stochastic quantization is the crucial factor in the underflow problem.

Role of Micro-batching Here, we study the impact of the micro-batch size N . In these experi-
ments, we use a micro-batch size of 256 and an initial learning rate 0.256. Other hyperparameters
such as warmup and weight decay are set according to the actual batch size (i.e., 256N ). The result
is shown in Tab. 3. When the parameter quantization error is large, particularly in 8-bit setting,
microbatching mitigates the parameter quantization error effectively while the increased gradient
error is still tolerable. We can see that microbatching exactly plays a role on reducing parameter
quantization error since the improvement on 8-bit setting is largest. The improvement on 12-bit is
marginal since the parameter quantization error is already small.

Table 3: Effect of the micro-batch size.

Micro-Batch Size(N ) 1 2 4 8 16

Full-Precision 71.1 - - - -
LPMM (12-b param. / 8-b grad. / 8-b moment.) 70.7 70.0 70.5 71.0 70.9
LPMM (10-b param. / 8-b grad. / 8-b moment.) 69.7 69.0 70.1 70.3 70.6
LPMM (8-b param. / 8-b grad. / 8-b moment.) 65.6 65.9 68.1 68.8 69.4

7 CONCLUSIONS

We present LPMM, an optimization framework for training neural networks with the entire model
memory kept in low-precision. We apply LPMM to the SGDM optimizer and give convergence guar-
antees. We discover the critical underflow problem in low-precision training and propose two meth-
ods: unbiased stochastic quantization and microbatching, as the solution for this problem. Moreover,
we conduct a comprehensive study on the effect of stochastic and microbatching theoretically and
empirically. On the image classification task, LPMM achieves an accuracy with negligible loss us-
ing 12-bit parameters, 8-bit gradients, and 8-bit momentum, which reduce over 70% model memory
compared with the full-precision training.
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A PROOF OF LEMMA AND THEOREM

A.1 PROOF OF LEMMA 1

Proof. When i = 1, by Assumption 4 and the due to∇f̃(θ) is unbiased, we can get

E [gt,1|θt−1] = E
[
Q(∇f̃(θt−1))

]
= E

[
∇f̃(θt−1)

]
= ∇f(θt−1)

And when i > 1 we have

E [gt,i|θt−1] = E
[
Q(gt,i−1 +∇f̃(θt−1))|θt−1

]
= E

[
(gt,i−1 +∇f̃(θt−1))|θt−1

]
= E [gt,i−1|θt−1] + E

[
∇f̃(θt−1)

]
= E [gt,i−1|θt−1] +∇f(θt−1)

By reduction it gives the first part of Lemma 1

E [gt,i|θt−1] = i∇f(θt−1)

With Assumption 3, it holds true that

E
[∥∥∥∇f̃(θ)∥∥∥2] = E

[∥∥∥(∇f̃(θ)−∇f(θ)) +∇f(θ)∥∥∥2]
= E

[∥∥∥∇f̃(θ)−∇f(θ)∥∥∥2]+ E
[
∥∇f(θ)∥2

]
− 2E

[
< ∇f̃(θ)−∇f(θ),∇f(θ) >

]
= E

[∥∥∥∇f̃(θ)−∇f(θ)∥∥∥2]+ E
[
∥∇f(θ)∥2

]
< σ2 + ∥∇f(θ)∥2

For the second part of Lemma 1, when i = 1,

E
[
∥gt,1∥2 |θt−1

]
= E

[∥∥∥gt,1 −∇f̃(θt−1) +∇f̃(θt−1)
∥∥∥2 |θt−1

]
= E

[∥∥∥gt,1 −∇f̃(θt−1)
∥∥∥2]+ E

[∥∥∥∇f̃(θt−1)
∥∥∥2]− 2E

[
< gt,1 −∇f̃(θt−1),∇f̃(θt−1) >

]
= E

[∥∥∥gt,1 −∇f̃(θt−1)
∥∥∥2]+ E

[∥∥∥∇f̃(θt−1)
∥∥∥2]

≤ σ2
g + ∥∇f(θt−1)∥2 + σ2
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And when i > 1, if this equation holds true for 1 to i− 1, then for i we have

E
[
∥gt,i∥2 |θt−1

]
= E

[∥∥∥gt,i − gt,i−1 −∇f̃(θt−1)
∥∥∥2]+ E

[∥∥∥gt,i−1 +∇f̃(θt−1)
∥∥∥2]

− 2E
[
< gt,i − gt,i−1 −∇f̃(θt−1), gt,i−1 +∇f̃(θt−1) >

]
= E

[∥∥∥gt,i − gt,i−1 −∇f̃(θt−1)
∥∥∥2]+ E

[∥∥∥gt,i−1 +∇f̃(θt−1)
∥∥∥2]

≤ σ2
g + E

[
∥gt,i−1∥2

]
+ E

[∥∥∥∇f̃(θt−1)
∥∥∥2]+ 2E

[
< gt,i−1,∇f̃(θt−1)

]
= σ2

g + E
[
∥gt,i−1∥2

]
+ E

[∥∥∥∇f̃(θt−1)
∥∥∥2]+ 2(i− 1) ∥∇f(θt−1)∥2

≤ σ2
g + (i− 1)σ2

g + (i− 1)(i+ 1) ∥∇f(θt−1)∥2 + (i− 1)σ2 + ∥∇f(θt−1)∥2 + σ2

= iσ2
g + (i2 + 2i− 2) ∥∇f(θt−1)∥2 + iσ2

≤ iσ2
g + i(i+ 2) ∥∇f(θt−1)∥2 + iσ2

So by reduction we complete the second part.

A.2 PROOF OF LEMMA 2

Proof. By definition of zt, we have the first equation immediately. With it we get

E [zt+1 − zt] =
1

1− β
E [θt+1 − θt]−

β

1− β
E [θt − θt−1]

By Algorithm 1 we have

E [θt+1 − θt] = E [θt+1 − (θt− αmt+1)]− E [αmt+1]

= −αE [mt+1]

= −αE [βmt − gt+1,N ]

= −αβE [mt]− αN∇f(θt)

and

E [θt − θt−1] = E [θt − (θt−1 − αmt)]− E [αmt]

= −αE [mt]

Substitute them we derive the second equation

E [zt+1 − zt] = −
αβ

1− β
E [mt]−

αN

1− β
∇f(θt) +

αβ

1− β
E [mt]

=
−αN
1− β

∇f(θt)

As for the last part, since

zt+1 − zt =
1

1− β
(θt+1 − θt)−

β

1− β
(θt − θt−1)

=
1

1− β
(θt+1 − (θt − αmt+1))−

β

1− β
(θt − (θt−1 − αmt))−

α

1− β
(mt+1 − βmt)
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Take expectation and we have

E
[
∥zt+1 − zt∥2

]
= E

[∥∥∥∥ 1

1− β
(θt+1 − (θt − αmt+1))−

β

1− β
(θt − (θt−1 − αmt))−

α

1− β
(mt+1 − βmt)

∥∥∥∥2
]

=
1

(1− β)2
E
[
∥θt+1 − (θt − αmt+1)∥2

]
+

β2

(1− β)2
E
[
∥θt − (θt−1 − αmt)∥2

]
+

(
α

1− β

)2

E
[
∥mt+1 − βmt∥2

]
− 2β

(1− β)2
E [< θt+1 − (θt − αmt+1), θt − (θt−1 − αmt) >]

− 2α

(1− β)2
E [< θt+1 − (θt − αmt+1),mt+1 − βmt >]

+
2αβ

(1− β)2
E [< θt − (θt−1 − αmt),mt+1 − βmt >]

≤ 1 + β2

(1− β)2
σ2
p +

(
α

1− β

)2

(E
[
∥mt+1 − (βmt + gt+1,N )∥2

]
+ E

[
∥gt+1,N∥2

]
− 2E [< mt+1 − (βmt + gt+1,N ), gt+1,N >])

≤
(

α

1− β

)2 (
E
[
∥gt+1,N∥2

]
+ σ2

m

)
+

1 + β2

(1− β)2
σ2
p

which is the last part of Lemma 2.

A.3 PROOF OF THEOREM 1

Proof. From Lemma 2, we have

E
[
∥zt+1 − zt∥2

]
≤

(
α

1− β

)2 (
2E

[
∥gt+1,N∥2

]
+ σ2

m

)
+

1 + 2β2

(1− β)2
σ2
p

And by Lemma 1, we know

E
[
∥gt+1,N∥2

]
≤ Nσ2

g +N(N + 2) ∥∇f(θt)∥2 +Nσ2

Substituting it gives

E
[
∥zt+1 − zt∥2

]
≤

(
α

1− β

)2 (
2N(N + 2) ∥∇f(θt)∥2 + 2Nσ2 + 2Nσ2

g + σ2
m

)
+

1 + 2β2

(1− β)2
σ2
p

(15)
Suppose θ∗ is the optimal parameter and f∗ = f(θ∗) is the minimal objective value. First, we have

∥zt+1 − θ∗∥2 = ∥zt − θ∗∥2 + 2 ⟨zt − θ∗, zt+1 − zt⟩+ ∥zt+1 − zt∥2

Take expectation over the randomness in the (t+1)-th step, we have

E[∥zt+1 − θ∗∥2] = ∥zt − θ∗∥2 −
2αN

1− β
⟨zt − θ∗,∇f(θt)⟩+ E[∥zt+1 − zt∥2]

= ∥zt − θ∗∥2 −
2αN

1− β
⟨θt − θ∗,∇f(θt)⟩

− 2αβN

(1− β)2
⟨θt − θt−1,∇f(θt)⟩+ E[∥zt+1 − zt∥2]

Since f is continuously differentiable and L-smooth, we have the following inequalities. (Nesterov,
2013)

⟨θt − θ∗,∇f(θt)⟩ ≥
1

L
∥∇f(θt)∥2 (16)

⟨θt − θ∗,∇f(θt)⟩ ≥ f(θt)− f∗ +
1

2L
∥∇f(θt)∥2 (17)

⟨θt − θt−1,∇f(θt)⟩ ≥ f(θt)− f(θt−1) (18)
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Substitute them and get

E[∥zt+1 − θ∗∥2] ≤ ∥zt − θ∗∥2 −
2αN(1− ρ)

L(1− β)
∥∇f(θt)∥2 −

2αNρ

1− β
(f(θt)− f∗)

αNρ

L(1− β)
∥∇f(θt)∥2 −

2αNβ

(1− β)2
(f(θt)− f(θt−1)) + E[∥zt+1 − zt∥2]

where ρ ∈ (0, 1] is a parameter we use to balance the first two inequalities. For the last term, denote

M =
(

α
1−β

)2 (
2Nσ2 + 2Nσ2

g +Nσ2
m

)
+ 1+2β2

(1−β)2σ
2
p. Substitute 15 into the last inequality and

collect the terms, we get(
2αNρ

1− β
+

2αNβ

(1− β)2

)
(f(θt)− f∗) + E[∥zt+1 − θ∗∥2]

≤ 2αNβ

(1− β)2
(f(θt−1)− f∗) + ∥zt − θ∗∥2 +

(
2α2N(N + 2)

(1− β)2
− αN(2− ρ)

L(1− β)

)
∥∇f(θt)∥2 +M

When α satisfies the condition 2α2N(N+2)
(1−β)2 − αN(2−ρ)

L(1−β) ≤ 0, i.e. 0 ≤ α ≤ (1−β)(2−ρ)
2(N+2)L , the term about

∥∇f(θt)∥2 is non-positive, thus we have(
2αNρ

1− β
+

2αNβ

(1− β)2

)
(f(θt)− f∗) + E[∥zt+1 − θ∗∥2]

≤ 2αNβ

(1− β)2
(f(θt−1)− f∗) + ∥zt − θ∗∥2 +M

Summing this inequality from 0 to T − 1 and taking full expectation gives

2αNρ

1− β

T−1∑
i=0

E[f(θi)− f∗] +

T−1∑
i=0

(
2αNβ

(1− β)2
E[f(θi)− f∗] + E[∥zi+1 − θ∗∥2]

)

≤
T−1∑
i=0

(
2αNβ

(1− β)2
E[f(θi−1)− f∗] + E[∥zi − θ∗∥2]

)
+ T ·M

which implies that

2αNρ

1− β

T−1∑
i=0

E[f(θi)− f∗] ≤
2αNβ

(1− β)2
(f(θ0)− f∗) + ∥θ0 − θ∗∥2 + T ·M

Since f is convex, we have Tf(θ̄T ) ≤ 1
T

∑T−1
i=0 f(θi)). Subsequently we have

E[f(θ̄T )− f∗] ≤
1

T

(
β

ρ(1− β)
(f(θ0)− f∗) +

1− β

2αNρ
∥θ0 − θ∗∥2

)
+

1− β

2αNρ
M

Finally, when α ∈ (0, 1−β
(N+2)L ], we can take ρ = 1, use L-smooth condition again and substitute M ,

which gives

E[f(θ̄T )− f∗] ≤
1

2T

(
Lβ

1− β
+

1− β

αN

)
∥θ0 − θ∗∥2

+
ασ2

(1− β)
+

ασ2
g

(1− β)
+

ασ2
m

2N(1− β)
+

(1 + 2β2)σ2
p

2αN(1− β)

It’s noted that when N = 1, we get the basic quantized SGDM without gradient accumulation,
whose convex convergence result is

E[f(θ̄T )− f∗] ≤
1

2T

(
Lβ

1− β
+

1− β

α

)
∥θ0 − θ∗∥2

+
ασ2

(1− β)
+

ασ2
g

(1− β)
+

ασ2
m

2(1− β)
+

(1 + 2β2)σ2
p

2α(1− β)
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B EXPERIMENTS ON TRANSFORMERS

Tab. 4 contains the accuracy of RoBERTa-Large(Liu et al., 2019) under LPMM framework on
GLUE(Wang et al., 2018a) dataset. Each column is the median performance metrics (accuracy, F1,
etc.) across 5 random seeds. Similar to LPMM-SGDM, the LPMM-Adam adopt linear quantization
on parameters and gradients, nonlinear quantization on momentum and square momentum. The
results show that consistent 8-bit LPMM-Adam could achieve (nearly) lossless accuracy compared
with full-precision reference.

Table 4: Performance of RoBERTa-Large on GLUE Tasks. LPMM(12/8/8/8) means that 12-bit
parameter, 8-bit gradient, 8-bit momentum, 8-bit square momentum are used.

Model MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B Avg.

Full-precision 90.2 94.7 92.2 86.6 96.4 90.9 68.0 92.4 88.9
LPMM(12/8/8/8) 90.5 94.6 91.9 84.8 96.4 90.7 67.1 92.3 88.5
LPMM(8/8/8/8) 90.4 94.6 91.9 85.6 96.4 90.0 64.6 92.1 88.2

C MEMORY SAVING AND COMPUTATIONAL OVERHEAD

In this section, we investigate memory saving and the overhead of LPMM. Tab. 5 shows the memory
saving and throughput on several benchmarks. The model memory here is the peak memory, where
all parameters, gradients and optimizer states stay in memory. All measurements are performed
under standard benchmarks, i.e. ImageNet classification for ResNet-50 and GLUE for RoBERTa-
Large, and standard training configurations for all benchmarks. Our LPMM-Adam saves up to
3.8 GB of GPU memory (about 72%) for RoBERTa-Large and saves 62% for ResNet-50, which
make the training(or finetuning) of large models more accessible. Besides, LPMM would lead
to a compuation overhead especially when the model is large, and the 8-bit Optimizer(Dettmers
et al., 2021) has higher throughput than the baseline. This is due to Dettmers et al. (2021) use
operator fusion techniques to integrate the optimizer update, quantization into one single operator as
a CUDA kernel, while LPMM use CUDA only for quantization and PyTorch for other operations.
This problem could be mitigated if the LPMM framwork is completely implemented in CUDA.

In Tab. 6, we investigate the largest trainable model in a single GPU with same memory under
LPMM. We use a batch size of one and vary the depth and width respectively to explore the limit size.
The GPU memory is consistently 11 GB for this comparison. Tab. 5 and 6 both show LPMM could
attain a higher reduction rate for language tasks than vision tasks. This is because activation accounts
more memory in vision tasks.

Table 5: Saved Memory and Throughput on Various Tasks.

Method Model Model Mem Saved Mem Throughput(IPS)

32-bit Momentum ResNet-50 299.1 MB 0.0 MB(0%) 347.86
8-bit (Dettmers et al., 2021) ResNet-50 224.4 MB 74.7 MB(25%) 348.71
LPMM-Momentum(12/8/8) ResNet-50 112.6 MB 186.5 MB(62%) 347.71
32-bit Adam RoBERTa-Large 5.3 GB 0.0 GB(0%) 186.2
8-bit (Dettmers et al., 2021) RoBERTa-Large 3.3 GB 2.0 GB(38%) 244.1
LPMM-Adam(12/8/8/8) RoBERTa-Large 1.5 GB 3.8 GB(72%) 61.5

D COMPARISON OF LPMM WITH QUANTIZED TRAINING TECHNIQUES

To clarify the difference in contributions and techniques between LPMM and other work, including
quantized training, communication efficient training, memory efficient training, etc., we summarize
the computation bits and storage bits of existing works. First, we would like to point out that there
are two types of numerical precision in a low-precision training system:
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Table 6: Largest trainable(or finetunable) Model with same GPU memory.

Dim Maximum Value
FP (Dettmers et al., 2021) LPMM

ResNet-152 D 712 804 1016
W 296 340 472

RoBERTa-Large D 40 72 148
W 1312 2048 3232

• Storage bitwidth characterizes the numerical precision of parameters, gradients, and mo-
mentums stored in the memory, where we use

– parameter storage bitwidth (PSB) to refer the bitwidth of the stored parameters (a.k.a.,
primal/master parameters or latent weights);

– gradient storage bitwidth (GSB) to refer the bitwidth of stored (parameter) gradients,
which are fed into the optimizer;

– momentum storage bit (MSB) to refer the bitwidth of stored momentums.
• Computation bitwidth characterizes the numerical precision of the computing kernels

(GEMM, conv, etc.), where we use
– parameter computation bitwidth (PCB) to refer the bitwidth of parameter inputs to

forward operators;
– gradient computation bitwidth (GCB) to refer the bitwidth of (activation) gradient

inputs to backward operators;
– momentum computation bitwidth (MCB) to refer the bitwidth of momentum in opti-

mizer operators.

We list the computation and storage bits of existing works Tab. 7. Existing low-precision train-
ing methods (DoReFa, WAGE, FP8, INT8, GradScale) mainly consider reducing the computa-
tion bitwidth. The parameters are stored in high-precision (16 or 32) and then converted to low-
precision (4 or 8) for computing forward and backward propagation. Among these methods, LPMM
can achieve lowest storage bits. Meanwhile, those memory efficient quantized training methods
(WAGEUBN, FXPNet) suffer from major accuracy loss, as shown in Tab. 8.

Table 7: Difference between LPMM and other low-precision training works. p=parameter,
g=gradient, m=momentum. “-” stands for not considered or mentioned.

Computation Bits Storage Bits
Type Method p. g. m. p. g. m.

DoReFa-Net(Zhou et al., 2016) 1 6 - 32 32 -
WAGEUBN(Yang et al., 2020) 8 8/16 13 24 8 15

Quantized FP8 training(Wang et al., 2018b) 8 8 16 16 16 16
Training INT8(Zhu et al., 2020) 8 8 - 32 32 -

FXPNet(Chen et al., 2017) 1 12 32 12 12 12
GradScale(Sun et al., 2020) 4 4 - 16/32 16 -

Communication QSGD(Alistarh et al., 2017) 32 32 - 32 4/8 -
Efficient signSGD(Bernstein et al., 2018) 32 32 - 32 1 -
Training

LP-SGD(Li et al., 2017) 32 32 - 1 32 -
Memory HALP(De Sa et al., 2018) 32 32 - 32 32 -
Efficient SWALP(Yang et al., 2019) 32 32 32 9/32 8 8
Training 8-bit Optim.(Dettmers et al., 2021) 32 32 32 32 32 8

LPMM(ours) 32 32 32 12 8 8

Next, we compare LPMM with existing methods in more detail at the aspects of contributions,
experiments and how stochastic rounding is used.
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Difference on Contributions First, we talk about the quantized training. DoReFa-Net, INT8 and
GradScale mainly focus on the acceleration of the training process. While they also can reduce
the training memory footprint via low-bit kernel, the reduction is nearly independent to the model
size. On the other hand, FP8 training, WAGEUBN and FXPNet focus on both training acceleration
and memory footprint reduction (of the model storage). For communication efficient training, they
quantize the gradient into lower bits for more efficient communication in distributed scenario. While
the goals are different, both communication efficient training and LPMM use a lower GSB, which
is necessary and beneficial to persistent storage of gradients.

For memory efficient training, we mainly refer to the work focusing on the quantization on post-
update parameters and other values. LP-SGD only stays in theoretical analysis. HALP quantized
the post-update parameters though, they store the main parameters in full-precision and in fact are
intended to use low-precision computations. SWALP extended the HALP but in fact stored high-
precision parameters as well. Unlike others, 8-bit Optimizer focused on reducing the storage of
optimizer states instead of primal parameters, in fact the two are proportional (even equal). Actually,
WAGEUBN, FXPNet and SWALP did not report the memory saving which probably indicates they
only conducted simulation experiments, and to our best knowlegde, we are the first to store low-bit
parameters with <16-bit in realistic scenarios.

Difference on Experimental Results Here we mainly talk about the experiments related to low-
precision model memory. As shown in Tab. 8, the performance of WAGEUBN and SWALP are
lossy compared with full-precision baseline on ImageNet dataset, while FP8 training and GradScale
are nearly lossless on both CIFAR and ImageNet under their mainly claimed setting. The FXPNet
has lossless accuracy on CIFAR but no experiments on ImageNet. Actually, there is an intrinsic
complexity gap between the two datasets. From our observation, 8-bit primal parameters are enough
for CIFAR10 to attain lossless accuracy, but 12-bit parameters are needed for ImageNet.

In other words, to our best knowledge, there are no comparable performance with full-precision
baseline under the primal parameters less than 16-bit in previous work. However, LPMM attain
lossless accuracy using 12-bit parameter. For other values, QSGD and 8-bit Optimizer can achieve
lossless performance compared with full-precision using 4/8-bit gradient and 8-bit optimizer states,
respectively.

Table 8: Comparison of experiments between LPMM and comparable previous work for ResNet on
ImageNet

Storage Bits
Method Model p. g. m. Acc. FP Baseline

WAGEUBN(Yang et al., 2020) ResNet-18 24 8 15 67.40 68.70
FP8 training(Wang et al., 2018b) ResNet-18 16 16 16 66.95 67.43
FXPNet(Chen et al., 2017) - 12 12 12 - -
GradScale(Sun et al., 2020) ResNet-18 16/32 16 - 68.27 69.40
SWALP(Yang et al., 2019) ResNet-18 9/32 32 32 65.11 69.51
LPMM(ours) ResNet-18 12 8 8 71.0 71.1
LPMM(ours) ResNet-18 8 8 8 69.2 71.1

QSGD(Alistarh et al., 2017) ResNet-50 32 4/8 8 74.76 74.68
8-bit Optim.(Dettmers et al., 2021) ResNet-50 32 32 8 77.2 77.1
LPMM(ours) ResNet-50 12 8 8 77.3 77.2

How SR is used Then, we discuss about how stochastic rounding (Gupta et al., 2015) is used in
various work. Firstly, FXPNet and GradScale did not use stochastic rounding technique in their
main contribution. DoReFa-Net, WAGEUBN, INT8 only use stochastic rounding in the quantizer
before forward and backward operations to generate a low-bit input to the low-bit kernel, which is
completely different from our setting. The FP8 training, HALP, SWALP uses stochastic rounding in
parameter update, same as LPMM. However, we dive deeply into why stochastic rounding is nec-
essary from network training dynamics and parameter distribution, while they either give accuracy
gap with or without stochastic rounding, or not concern about the SR technique itself. Lastly, 8-bit
Optimizer and signSGD did not use stochastic rounding, and QSGD used stochastic rounding on
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gradients, which we think possibly make a different roles from that on parameters since the differ-
ence on distributions. Again, QSGD also did not concern about the why SR is necessary. In short,
we empirically analyze that why the unbiasedness of SR is necessary from the training dynamics
and parameter distribution, which is not given in previous work.

20


	Introduction
	Related Work
	Training with Low-Precision Model Memory
	Basic Optimization Framework
	The Underflow Problem
	Solutions to the Underflow Problem

	Convergence Theory
	Assumptions
	Convergence of LPMM-SGDM

	Implementation Details
	Group and Nonlinear Quantization
	Dynamic Quantization
	System Implementation

	Experiments
	Conclusions
	Proof of Lemma and Theorem
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1

	Experiments on Transformers
	Memory Saving and Computational Overhead
	Comparison of LPMM with Quantized Training Techniques

