Context-Aware Query Rewriting for Improving Users’ Search Experience
on E-commerce Websites

Anonymous ACL submission

Abstract

E-commerce queries are often short and am-
biguous. E-commerce query understanding of-
ten uses query rewriting to disambiguate user-
input queries. While using e-commerce search
tools, users tend to enter multiple searches,
which we call context, before purchasing.
These history searches contain contextual in-
sights about users’ true shopping intents. There-
fore, modeling such contextual information is
critical to a better query rewriting model. How-
ever, existing query rewriting models ignore
users’ history behaviors and consider only the
instant search query, which is often a short
string offering limited information about the
true shopping intent.

We propose an end-to-end context-aware query
rewriting model to bridge this gap, which takes
the search context into account. Specifically,
our model builds a session graph using the his-
tory search queries, their contained words, and
auxiliary category information. We then em-
ploy a weighted graph attention mechanism
that models cross-query relations and computes
contextual information of the session. The
model subsequently calculates session repre-
sentations by combining the contextual infor-
mation with the instant search query using an
aggregation network. The session representa-
tions are then decoded to generate rewritten
queries. Empirically, we demonstrate the su-
periority of our method to state-of-the-art ap-
proaches under various evaluation metrics. Our
code and data will be publicly available.

1 Introduction

Query rewriting is a task where a user inputs a
potentially problematic query (e.g., typos or insuf-
ficient information), and we rewrite it to a new one
that better matches the user’s real shopping intent.
This task plays an important role in e-commerce
query understanding, where without proper rewrit-
ing, search engines often return undesired items,
rendering the search experience unsatisfactory.

One major issue that impedes query rewriting is
the ambiguity of queries. For example, Figure 1
(left) demonstrates searching for “bumblebee cos-
tumes” without considering search context. From
the query alone, it is implausible to tell if the user’s
intent is for costumes of actual bumblebee, i.e.,
the animal, or the character from the movie fran-
chise. This type of ambiguity is common in e-
commerce search, where queries are usually short
(only 2-3 terms) and insufficiently informative (He
et al., 2016b). Therefore, it is not possible to dis-
ambiguate queries using only the instant search.
A common solution is to use statistical rules to
differentiate the possible choices. Specifically, in
our example, suppose a total of 100 users entered
the “bumblebee costumes” query, and 70 of them
eventually purchased the movie character costume.
When a new user searches for the same query, the
recommended products will consist of 70% movie
character costumes and 30% animal costumes. This
procedure is problematic because each user has a
specific intent, i.e., either the movie character cos-
tume or the animal costume, but rarely both, which
the aforementioned method fails to address.

We propose to explore contextual information
from users’ history searches to resolve the query
ambiguity issue. Taking the “bumblebee costumes”
example again, in Figure 1 (right), suppose a rewrit-
ing model recognizes that the user searched for
“Transformers movie” earlier, then it could infer
that the user’s purchase intent is the movie char-
acter costume, and hence can remove the input
ambiguity. There have been existing works that
utilize search logs for query rewriting. For ex-
ample, Wang and Zhai (2007, 2008) use tradi-
tional TF-IDF-based similarity metrics to capture
relational information among the user’s history
searches. These approaches are too restrictive to
handle the increasingly complex corpus nowadays.
As such, the rewritten queries significantly differ
from the original one in intent. More recently, neu-

Instant Search+History

Instant Search
Transformers
movie

1
1
1
1
1
1
bumblebee !
costumes I
1
1 /‘»‘
. = X 0
AR X
he gl @ 1
Q © 1 bumblebee
‘m. 1 costumes
1
1
1
1
1
1
1

A

O ©
X,

W

Figure 1: Searching for “bumblebee costumes” with
(right) and without (left) history searches.

ral network-based query rewriting algorithms (He
et al., 2016b; Xiao et al., 2019; Yang et al., 2019)
are proposed. Most of such approaches employ a
multi-stage training approach. Consequently, they
involve complicated hand-crafted features or re-
quire excessive human annotations for the interme-
diate features (sometimes both).

To overcome the drawbacks of existing meth-
ods, we propose an end-to-end context-aware query
rewriting algorithm. Our model’s backbone is
the Transformer (Vaswani et al., 2017). It is a
sequence-to-sequence encoder-decoder model that
exploits recent advances of the self-attention mech-
anism (Bahdanau et al., 2015). In our context-
aware model, the Transformer encoder learns rep-
resentations for individual history queries. The
representations are further transformed to carry
cross-query relational information using a weighted
graph attention mechanism (WGAT (Velickovic
et al., 2018)). Such a mechanism computes con-
textual information of a session based on a session
graph, where its nodes contain the history queries,
the tokens contained in the history queries, and
the history queries’ category information (see Sec-
tion 3). After obtaining the contextual information
from the wGAT, it is aggregated with the instant
search using an aggregation network. The aug-
mented information is subsequently fed into the
Transformer decoder to generate rewritten queries.
Previous works (Tu et al., 2019; Wang et al., 2020)
that share the same spirit have shown to be effective
in various natural language processing tasks.

We highlight that our proposed session graph for-
mulation and the wGAT mechanism explicitly mod-
els cross-query relations, which is different from ex-
isting works. Previous approaches (e.g., (Dehghani
et al., 2017)) capture such relations recursively,
which is sub-optimal because such a structure suf-

fers from the “forgetting” issue (Hochreiter and
Schmidhuber, 1997), i.e., relation between queries
far away will be lost. In contrast, wGAT associates
any two queries by their contained words, enabling
relation-modeling regardless of distance. More-
over, the proposed wGAT method takes category
information into account, a component missing in
prior works.

Our proposed method improves upon existing
works from three aspects. First, our model does
not involve recursion, unlike conventional recurrent
neural network-based approaches (He et al., 2016b;
Yang et al., 2019; Xiao et al., 2019). Our proposed
attention-based method can be trained in full par-
allel and avoids gradient explosion and gradient
vanishing problems (Pascanu et al., 2013), from
which existing models suffer. These advantages
facilitate training deep models containing dozens
of layers capable of capturing high-order informa-
tion. Second, our end-to-end sequence-to-sequence
learning formulation eliminates the necessity of ex-
cessive labeled data. Previous approaches (Yang
et al., 2019; Xiao et al., 2019) require the judg-
ment of “semantic similarity”, and thus crave for
human annotations, which are expensive to obtain.
In contrast, our method uses search logs as super-
vision, which does not involve human effort, and
are cheap to acquire. Third, our method can lever-
age powerful pre-trained language models, such as
BART (Lewis et al., 2020). Such models contain
rich semantic information and are successful in nu-
merous natural language processing tasks (Devlin
etal., 2019; Liu et al., 2019; Radford et al., 2019).

We demonstrate the efficacy of our method on in-
house data from an online shopping platform. Our
context-aware query rewriting model outperforms
various baselines by large margins. Notably, com-
paring with the best baseline method (Transformer-
based model), our model achieves 22.5% relative
improvement under the MRR (Mean Reciprocal
Rank) metric and 11.7% relative improvement un-
der the HIT @16 metric (a hit rate metric).

2 Related Works

¢ Context-based query rewriting One line of
work uses statistical methods. For example, Cui
et al. (2002, 2003) extract probabilistic correla-
tions between the search queries and the product
descriptions. Other works extract features that
are related to the user’s current search (Huang
et al.,, 2003; Huang and Efthimiadis, 2009), or

from relational information among the user’s his-
tory searches (Billerbeck et al., 2003; Baeza- Yates
and Tiberi, 2007; Wang and Zhai, 2007; Cao et al.,
2008; Wang and Zhai, 2008). There are also sta-
tistical machine translation-based models (Riezler
et al., 2007; Riezler and Liu, 2010) that employ
sequence-to-sequence approaches. The aforemen-
tioned statistical methods suffer from unreliable
extracted features, such that the rewritten queries
differ from the original one in intent.

Another line of work focuses on neural query
rewriting models (He et al., 2016b; Xiao et al.,
2019; Yang et al., 2019). These models adopt re-
current neural networks (RNNs, Hochreiter and
Schmidhuber 1997; Sutskever et al. 2014) to learn
a vectorized representation for the user’s search
query, after which KNN-based methods are used
to find queries that yield similar representations.
One major limitation is that the rewritten queries
are limited to the previously presented ones. Also,
these methods often involve complicated and un-
grounded feature function designs, e.g., He et al.
(2016b) and Xiao et al. (2019) hand-crafted 18
feature functions, or require excessive labeled
data (Yang et al., 2019). There are other works (Sor-
doni et al., 2015; Dehghani et al., 2017; Jiang
and Wang, 2018) that use RNNs for generative
query suggestion, but they inherit the weaknesses
of RNNs and yield unsatisfactory performance in
practice.

Note that Grbovic et al. (2015) construct context-
aware query embeddings using word2vec (Mikolov
et al., 2013). In their approach, an embedding is
learned for each distinct query in the dataset. As
such, the quality of the learned embeddings rely
heavily on the number of occurrences of each query.
This method is not applicable to our case because
in our dataset, almost all the queries are distinct.

3 Problem Setup

o Category information of queries Each search
query results in multiple recommended products,
and each of these products belongs to multiple cat-
egories, e.g., the movie character costume in Fig-
ure 1 belongs to both the “entertainment” category
and the “fashion” category. For each search query,
the user may react to multiple returned products,
e.g., click, add to cart, and purchase. If a user re-
acts to a specific product, we say the user takes
an action on each category corresponding to that
product, e.g., if a user clicks on the movie charac-

ter costume, we say the user takes one action on
category “entertainment” and one action on cate-
gory “fashion”. For a specific query, we collect
user actions on all the recommended products, and
we obtain

{Category, : # actionsy, - - },

where Categories 1 — N are pre-specified. Then
the category information of the query is defined as

actions;
{]P’[Cl]: & ' ’...}’
> iy # actions;

where C; stands for “Category;”.

© Session data The session data are collected from
search logs. First, we collect all the searches from
a specific user within a time window, and we call
the searches a “session”. After the user purchases
a product, the session ends, i.e., we do not consider
subsequent queries and behaviors after a purchase
happens. This is because, after a purchase, the
user’s intent often change. Note that different ses-
sions may be collected from different users.

Each session contains multiple searches, where
each consists of a search query and its category
information. We call the last query in the session
the “target” query, the second to the last query the
“source” query, and the others the “history” queries.
The intuition behind this is that because sessions
always end with a purchase, the last search (i.e.,
the target) reflects the user’s real intent. When the
user enters the second to the last search (i.e., the
source), if we can rewrite it to the target query, the
user’s intent will be fulfilled.

We collect about 3 million (M) sessions, where
each session consists of at least 3 history queries,
a source query (i.e., the one we need to rewrite),
and a target query (i.e., the ground-truth query that
is associated with the purchase). We have roughly
18.7M queries, and on average, each session con-
tains 4 history queries. Query rewriting is con-
sequently formulated as a sequence-to-sequence
learning problem. We highlight that per our formu-
lation, we do not need human annotations, unlike
existing approaches. To open new research oppor-
tunities, our data is currently undergoing internal
procedures for release.

4 Method

Figure 2 illustrates our context-aware query rewrit-
ing model. The model contains four parts: a

Session
Repre.

History
Repre.

Graph
Attention

[Output J

A

Softmax
Aggregation *
Network

Linear

History Source T
Repre. Repre.

Feed-Forward

Feed-Forward “— Encoder-Decoder Attention
N A A
Self-Attention Nx Self-Attention

) 1

Embedding Embedding

;| ﬁ

History 1 Source Target

Figure 2: Overview of model.

conventional Transformer (Vaswani et al., 2017)
encoder, a weighted graph attention mecha-
nism (Velickovic et al., 2018) that captures the
user’s purchase intent, an aggregation network that
encodes the history searches, and a conventional
Transformer decoder that generates the rewritten
query candidates.

4.1 Transformer Encoder

For a given source query, we first pad it with a
(boq) (begin-of-query) token. Then, we pass the
padded query through a token embedding layer
and a position embedding layer, and we obtain
Y, € REs*4 Here Ly is the length of the padded
source query, and d is the embedding dimension.
We then pass Y, through N layers of encoder
blocks, where each of these blocks contains a
self-attention mechanism and a position-wise feed-
forward neural network, and then we obtain an
encoded representation H, € RELsxd,

For the history queries in this session, we also
pad them with (boq) tokens. Suppose that we have
Nj, padded history queries (recall a session con-
tains multiple history queries), and their respective
length is denoted by L}, ---, L"". We pad the
history queries to the same length, and we obtain
the history query matrix X;, € R *Ln where
L, = max{L}l, e ,LhNh}. Then, following the
same procedures as encoding the source query, we
pass X, through the embedding layers and the en-
coder blocks, after which we obtain the history
query representations Uj, € RVw>xLnxd,

4.2 Contextual Information from Session
Graphs

After we obtain the history query representations
U, the next step is to refine them. Such refinement
is necessary because the encoder considers the his-
tory queries separately, such that their interactions
are not taken into account. However, since each
search depends on its previous searches in the same
session, modeling cross-query relations are impera-
tive for determining the user’s purchase intent. To
this end, we use a weighted graph attention mecha-
nism (Velickovic et al., 2018; Wang et al., 2020) to
capture contextual information from Uy,.

4.2.1 Session Graph Construction

First we specify how to build a graph for each ses-
sion, which we call the session graph. Suppose we
have a session that contains three history queries:

Q1 : {Search query : T}, T5; (1)
Category : P[Cy] = 1.0},

Q2 : {Search query : Ty, T, T5;
Category : P[C}] = 0.6,P[Cy] = 0.4},

Qs : {Search query : Ty, T, T3, Ty, Ts;
Category : P[C5] = 0.7,P[C3] = 0.3},

where 01,)2, Q3 are the three queries, 11, - - - , T5
are the five tokens that appear in the three queries,
and C1, Cy, C5 are the three categories to which
the queries belong. Recall Section 3 for the prob-
lem setup and the definition of category informa-
tion. Figure 3 illustrates the session graph. In this
3-partite graph, the blue circles are token nodes
(11, - -+ ,T5); the green rectangles are query nodes
(Q1,Q2,Q3); and the red diamonds are category
nodes (C1,C5, C3). In our example, the history
query representations have size U, € R3*6%9_ that
is, we have 3 queries, and the maximum query
lengths is 6 (recall we prepend a (boq) token to
each query).

4.2.2 Node Representations

The next step is to refine the node representations.
Each of the nodes in the session graph has its own
representation.

e The token representations are simply the corre-
sponding representations of the tokens, extracted
from the token embedding matrix.

e The query representations are the representations
of the (boq) token in each padded history query, i.e.,
the representation of the ()1 query node in Figure 3
is found by U}, [0, 0, :] € RY. Note that this is akin

n QO oA o
e O @87

() C >0

T4 O [:] 0.7
s O 0.3 O C3

Figure 3: Session graph. Here “7” stands for tokens,
“Q” stands for queries, and “C” stands for categories.

to BERT, where a <cls> token is inserted and its
representation is used for classification tasks.
e The category representations are extracted from
a category embedding matrix Ec € R4*I€l, where
|C| is the number of categories. Then the represen-
tation for category k is the k-th column of F¢.
Denote G, = {qi}f\fl, G = {t;}Yt,and G, =
{ci}ﬁicl the sets of representations for the query,
token, and category nodes, respectively. Here IV,
is the number of query nodes, V; is the number
of token nodes, and NV, is the number of category
nodes. Note that all the node representations have
the same size, i.e., q;, t;,¢; € R4,

4.2.3 Update Node Representations

We use a weighted multi-head graph attention
mechanism to update the node representations. For
simplicity, denote Ny = N, + Ny + N, the num-
ber of distinct nodes in the session graph, and
g =G6G,UG UG = {gi}ﬁ\i’l the set of all the
node representations. We define e;; as the edge
weight between g; and g, and it equals to the prob-
ability term in the category information (see (1)).
We set e;; = 1if such weights are not defined, e.g.,
when updating the query representations G, using
the token representations G.

With the above notations, a weighted single-head
graph attention mechanism is defined as

zij = LeakyReLU (W, [Wygs; Wig;]) - €4,

_ exp(zij;)
Zee N exp(zie)’)

h; = gi + ELU (EjeNi aiijgj> .

Here ELU(z) = = - 1{z > 0} + (exp(x) — 1) -
1{x < 0} is the exponential linear unit, \/; denotes
the neighbor of the i-th node, and W,, W,, Wy,
W, are trainable weights.

The edge weight e;; essentially controls the “im-
portance” of the category information to the query

Oéij

nodes. That is, if e;; is small, i.e., it is unlikely,
although not impossible, that a query belongs to a
certain category, then our model will pay less at-
tention to the corresponding category information.
The session graph only induces attention between
nodes that are connected. Note that a residual con-
nection (He et al., 2016a) is added to the last equa-
tion in Eq. 2. This has proven to be an effective
technique to prevent gradient vanishing, and hence,
to stabilize training.

A weighted multi-head graph attention mech-
anism is then defined as the concatenation of
[}, h2,--- hK], where K is the number of heads,
and each of the h; is calculated via Eq. 2.

The token node representations, the category
node representations, and the query node repre-
sentations are updated iteratively. Specifically, we
adopt the following update procedure:

2 1
Token ? Query ? Category.

In more details,

e Step 1 updates the query representations (G,)
using the categories (G.), such that G, is aware of
the category knowledge.

e Steps 2 and 3 model cross-query relations. First,
we update the token representations (G;) using G,
in order that the tokens acknowledge to which
queries they belong. Then, G, is re-computed using
the updated version of G;, which essentially evalu-
ates cross-query relations, using the token nodes as
intermediaries.

e Finally, step 4 updates G using G,. This step
enriches each category node’s representation by
incorporating information of all the queries that
belong to this category.

The weighted graph attention mechanism
(WwGAT) used in each of the four steps are dis-
tinct, i.e., there are four different sets of weights
(W, Wy, Wi, W,]. We highlight that the weighted
graph attention enables modeling of cross-query
relations, which is implausible for conventional
attention methods.

Eventually, we obtain the updated vectorized rep-
resentations {hl}fvz"l for all the nodes. We collect
{h;} fV:hert , the updated representations that corre-
spond to the query nodes and the token nodes, and
we treat them as the contextual information of the
session. Note that here, we exclude the category
node representations. This is because such repre-
sentations contribute to all the sessions, and do not
constitute session-specific knowledge.

We remark that the wGAT mechanism explicitly
models cross-query relations by associating query
representations with word representations. This
is fundamentally different from existing methods,
where the relations are captured via recursion.

4.3 Session Representation from Aggregation
Network

Recall that we pass the source query through an en-
coder and obtain H, € R%*? which contains rep-
resentations for all the tokens in the source query.
We use that of the prepended (boq) token as the rep-
resentation of the source query, which is denoted
hs € R, We adopt an aggregation network to ex-
tract useful information with respect to h from the
contextual information {h;} ™. The network
employs an attention mechanism that determines to
what extent each vector h; contributes to the source
query hg. Concretely,

0 — exp(z;) ’

N,
>oi2iexp(zj) (3)
v= Zivzgl a;Wyhi, Hsess = H; +w,

zi = (Wihi) " hs,

where Wy, and W, are trainable weights. The last
equation in Eq. 3 is summed row-wise, wherein
Hy, Hs € REsX4 and v € R

The matrix H, serves as the representation
of the session. Intuitively, by incorporating the
aggregation network, we can filter out redundant
information from the session history and only keep
the ones pertinent to the source query.

After the Transformer encoder, the weighted
graph attention mechanism, and the aggregation
network, we obtain H ., the session representa-
tion that contains information on both the source
query and its history searches. Subsequently, H .
is fed into the Transformer decoder to generate
rewritten query candidates.

The algorithm is detailed in Algorithm 1 in Ap-
pendix D.

5 Experiments

We conduct experiments on in-house data from an
online shopping platform'. Notice that we focus
on session-based query reformulation, a scenario
that is rare in existing datasets (see Section 3 for
details). We implement two methods with differ-
ent backbone: Transformer+Aggregation+Graph
and BART+Aggregation+Graph. The first one is

IThe dataset is undergoing internal processes for release.

constructed in the previous section, and the sec-
ond one employs a fine-tuning approach instead of
training-from-scratch. Training details are deferred
to Appendix C.

5.1 Baselines

For baselines with pre-training, we use Mesh-
BART (Chen and Lee, 2020). For baselines
without pre-training, we use MeshTransformer
(Chen and Lee, 2020) (a variant of MeshBART
where we train the model from scratch), LQRW
(He et al., 2016b) and HRED (Sordoni et al.,
2015). We also compare our algorithm with two
model variants: Transformer+Aggregation and
BART+Aggregation, where we use the aggrega-
tion network but not the wGAT mechanism. Please
refer to Appendix B for details.

5.2 Evaluation Metrics

We use both offline metrics, e.g., BLEU, and on-
line metrics, e.g., MRR (Mean Reciprocal Rank),
HIT@1, and HIT@16, to evaluate the query rewrit-
ing models. For online metrics, we report the gains
over the the results calculated by using only source
queries. We remark that the online metrics (i.e.,
MRR, HIT@1, and HIT@16) are more important
than the offline metric (i.e., BLUE), because MRR
and HIT are directly linked to user experience.

We use the BLEU score (Post, 2018) as an offline
evaluation metric. This metric is constantly used
to evaluate the quality of translation. We adopt
it here because similar to machine translation, we
formulate query rewriting as a seq2seq learning
task. The correlation between the rewritten query
and the target query reflects the model’s ability to
capture the user’s purchase intent.

The online MRR metric describes the accuracy
of the rewritten queries. As an online test, for each
source query in the test set, we generate 10 candi-
date queries 71, - - - ,7r10. Then we search each of
these candidates using our production search en-
gine, and we obtain the returned products, of which
we only keep the top 32. Recap that we know the
actual product that the customer purchased. The
next step is to calculate the reciprocal of the actual
product’s rank for each of 1, - - - , r19. For exam-
ple, suppose for r1, the actual purchased product
is the second within the 32 returned products, then
the score for r; is score; = 1/2 = 0.5. The score
of the rewritten queries r1, - - - , 719 is then defined
as max{score; }21. Finally, the score for the query

Number of candidates \

#Candidates=5

#Candidates=10

Metric | MRR HIT@l HIT@l6 | MRR HITel HiTels | SLEU
Target Query | +0.161 +0.106 +0.290 | +0.161 +0.106 +0290 | —
Baseline methods

LQRW +0.035 +0.025 +0.064 +0.068 +0.049 +0.126 29.38
HRED +0.047 +0.032 +0.084 +0.081 +0.057 +0.142 25.67
MeshBART +0.046 +0.031 +0.082 +0.082 +0.055 +0.148 30.87
MeshTransformer +0.043 +0.026 +0.092 +0.085 +0.056 +0.159 25.33
Our methods

BART+Aggregation +0.063 +0.039 +0.109 +0.097 +0.064 +0.171 31.89
Transformer+Aggregation +0.052 +0.029 +0.108 +0.102 +0.070 +0.173 27.22
BART+Aggregation+Graph +0.069 +0.046 +0.118 +0.105 +0.075 +0.176 32.85
Transformer+Aggregation+Graph | +0.066 +0.046 +0.120 +0.116 +0.083 +0.201 28.15

Table 1: Experimental results. The results of MRR, HIT@1, and HIT@ 16 are shown as gain over the source query.
The best result(s) under the MRR, HIT@1, and HIT @ 16 metrics are shown in bold.

rewriting model is the average over all the source
query scores.

We also use HIT@1 and HIT@16 as evaluation
metrics. HIT@16 is the percentage that the actual
product is ranked within the first 16 products (the
first page) when we search the rewritten query. And
HIT@1 is similarly defined.

5.3 Experimental Results

Table 1 summarizes experimental results. The
power of of our proposed query rewriting approach
is well-demonstrated from the results. Recall that
in our formulation, we rewrite a source query to a
target query. The “target query” entry in Table 1
is the performance gain of the ground truth target
query, i.e., this entry signifies upper bounds of per-
formance gain that any model can achieve.

We can see that the attention-based models (i.e.,
MeshBART and MeshTransformer) outperforms
the recurrent neural network-based approach (i.e.,
LQRW and HRED). This is because RNNs suf-
fer from both the forgetting and the training is-
sues. In contrast, Transformer-based models use
the attention mechanism instead of recursion to
capture dependencies, which has proven to be
more effective. Moreover, by aggregating his-
tory searches into the models, BART+Aggregation
and Transformer+Aggregation consistently outper-
form their vanilla alternatives. Essentially per-
formance of these two methods indicate that in-
tegrating history queries into training is critical.
The performance is further enhanced by incor-
porating the session graphs. Specifically, Trans-
former+Aggregation+Graph achieves the best per-
formance under almost all the metrics. Notice that
the HIT@16 metric gain improves from +0.159
to +0.201 when employing both the aggregation
network and the session graph formulation for the

Transformer-based models. We highlight that the
weighted graph attention mechanism can directly
captures cross-query relations, which is implausi-
ble for all the baselines. We can see that this prop-
erty indeed contributes to model performance, i.e.,
HIT@16 increases from +0.173 to +0.201 when
further equip Transformer+Aggregation with the
wGAT mechanism.

Notice that BLEU is not a definitive metric. For
example, the online metrics of HRED are consis-
tently higher than those of LQRW, even though the
BLEU score of the former is significantly lower
than the latter. Also, compared with Transformer-
based models, the BLEU score is consistently
higher when using the BART model as the back-
bone. This is because a pre-trained language model
contains more semantic information. However,
the online metrics of the BART-based models are
worse than those of the Transformer-based models.

However, the BLEU score is comparable for
models with the same backbone. For exam-
ple, for Transformer+Aggregation vs. Trans-
former+Aggregation+Graph, the BLEU scores are
27.22 vs. 28.15. Such a tendency coincides with
the online metrics. We observe the same results
from BART-based models.

5.4 Analysis

© BART vs. Transformer Even though BART con-
tains twice the number of parameters than Trans-
former (140M vs. 70M), models fine-tuned on
BART yield lower MRR and HIT metrics (with 10
generated candidate queries). One reason is that
publicly available models are pre-trained on natu-
ral language corpus, but queries are usually short
and have distinct structures. This raises doubts
on whether current pre-trained models are suitable
for the query domain. Indeed, the rich semantic

——= Trans. == Trans.

""" Trans.+Aggre. 30 kY ----- Trans.+Aggre.

Trans.+Aggre.+Graph 25 \ Trans.+Aggre.+Graph

i ——- BART 11{ i ——~ BART
""" BART+Aggre. 10 ----- BART+Aggre.
—— BART+Aggre.+Graph 9 —— BART+Aggre.+Graph

P A

10 6 : y 6
Ik 4k 7k 10k 13k 16k 1k 4k 7k 10k 13k 16k 2k Sk 8k 11k 14k 17k 20k 2k Sk 8k 11k 14k 17k 20k
number of updates number of updates number of updates number of updates
(a) Transformer (train). (b) Transformer (valid). (c) BART (train). (d) BART (valid).

Figure 4: Training and validation perplexity using Transformer and BART as backbone.

28.5 28.5 54
84.9M 84.9M
28.0 52.1M 28.0 5
25
2 2 2
275 275 -
— —
A 28 B 55.6M 629M 2
250
27.0{ 10.2M 27.0 5
2657008 256 3s4 512 T R S B3 4 s >6

embedding dimension

Figure 5: Model performance (in BLEU scores) vs. model size. The
model size (in millions of parameters) are shown above the bars.

information enables a much better BLEU score
(32.85 vs. 28.15), but the online tests suggest the
fine-tuned models’ inferior performance.

¢ Training from scratch vs. fine-tuning Fig-
ure 4 plots the training and validation perplexity
(ppD of the training-from-scratch approach and
the fine-tuning approach. From Figure 4a and
Figure 4b, we can see that by employing the ag-
gregation network, Transformer+Aggregation fits
the data better and exhibits enhanced generaliza-
tion. The training and validation ppls are fur-
ther significantly improved by incorporating the
weighted graph attention mechanism, i.e., Trans-
former+Aggregation+Graph.

Notice that in Figure 4c, BART+Aggregation
outperforms BART+Aggregation+Graph in terms
of training ppl, which is different from the training-
from-scratch approach. As indicated by Figure 4d,
BART+Aggregation shows clear sign of over-
fitting. This is because even though pre-trained
language models contain rich semantic informa-
tion, much of it is considered “noisy” for query
rewriting. Thus feature enhancement initiated by
the weighted graph attention mechanism is needed.

© Model size vs. performance Figure 5 illus-
trates the relation between model size and perfor-
mance, where we decrease the embedding dimen-
sion (correspondingly hidden dimensions of the
feed-forward neural network) and the number of
layers. We can see that even with 1/8 of the pa-
rameters, model performance does not decrease
much. Moreover, our model is more than 20%

number of layers

) length of query

Figure 6: Query length vs. rewrit-
ing quality.

smaller than a BERT-base model (85M vs. 110M),
rendering online deployment more than possible.

© Query length vs. performance Figure 6 demon-
strates model performance with respect to length of
the instant query. We can see that the BLEU score
gradually decreases when the length increases.
This is because long queries are often very specific
(e.g., down to specific models or makes), making
the rewriting task harder.

o Case study We examine advantages of lever-
aging history information and diversity of query
generation. Results are deferred to Appendix A.

6 Conclusion and Discussion

We propose an end-to-end context-aware query
rewriting model that can efficiently leverage user’s
history behavior. Our model infers a user’s pur-
chase intent by modeling her history searches as a
graph, on which a weighted graph attention mecha-
nism is applied to generate informative session rep-
resentations. The representations are subsequently
decoded into rewritten queries. We conduct experi-
ments using in-house data from an online shopping
platform, where our model achieves 11.7% and
22.5% relative improvement under the online MRR
and HIT @16 metrics, respectively.

Our proposed session graph is flexible, and can
be extended to incorporate more information. In
this paper, we present a 3-partite graph, which con-
tains words, queries, and categories. Additional
components can be added as extra layers to the
session graph.

References

Ricardo Baeza-Yates and Alessandro Tiberi. 2007. Ex-
tracting semantic relations from query logs. In Pro-
ceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining,

pages 76-85.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Bodo Billerbeck, Falk Scholer, Hugh E Williams, and
Justin Zobel. 2003. Query expansion using asso-
ciated queries. In Proceedings of the twelfth inter-
national conference on Information and knowledge
management, pages 2-9.

Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao,
Enhong Chen, and Hang Li. 2008. Context-aware
query suggestion by mining click-through and ses-
sion data. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery
and data mining, pages 875-883.

Ruey-Cheng Chen and Chia-Jung Lee. 2020. Incorpo-
rating behavioral hypotheses for query generation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3105-3110, Online. Association for Computa-
tional Linguistics.

Hang Cui, Ji-Rong Wen, Jian-Yun Nie, and Wei-Ying
Ma. 2002. Probabilistic query expansion using query
logs. In Proceedings of the Eleventh International
World Wide Web Conference, WWW 2002, May 7-
11, 2002, Honolulu, Hawaii, USA, pages 325-332.
ACM.

Hang Cui, Ji-Rong Wen, Jian-Yun Nie, and Wei-Ying
Ma. 2003. Query expansion by mining user logs.
IEEE Transactions on knowledge and data engineer-
ing, 15(4):829-839.

Mostafa Dehghani, Sascha Rothe, Enrique Alfonseca,
and Pascal Fleury. 2017. Learning to attend, copy,
and generate for session-based query suggestion. In
Proceedings of the 2017 ACM on Conference on In-
formation and Knowledge Management, CIKM 2017,
Singapore, November 06 - 10, 2017, pages 1747—
1756. ACM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Mihajlo Grbovic, Nemanja Djuric, Vladan Radosavl-
jevic, Fabrizio Silvestri, and Narayan Bhamidipati.
2015. Context- and content-aware embeddings for
query rewriting in sponsored search. In Proceedings
of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
Santiago, Chile, August 9-13, 2015, pages 383-392.
ACM.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016a. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016, pages 770-778. IEEE Com-
puter Society.

Yunlong He, Jiliang Tang, Hua Ouyang, Changsung
Kang, Dawei Yin, and Yi Chang. 2016b. Learning
to rewrite queries. In Proceedings of the 25th ACM
International Conference on Information and Knowl-
edge Management, CIKM 2016, Indianapolis, IN,
USA, October 24-28, 2016, pages 1443-1452. ACM.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735-
1780.

Chien-Kang Huang, Lee-Feng Chien, and Yen-Jen
Oyang. 2003. Relevant term suggestion in interactive
web search based on contextual information in query
session logs. Journal of the American Society for
Information Science and Technology, 54(7):638-649.

Jeff Huang and Efthimis N Efthimiadis. 2009. Analyz-
ing and evaluating query reformulation strategies in
web search logs. In Proceedings of the 18th ACM
conference on Information and knowledge manage-
ment, pages 77-86.

Jyun-Yu Jiang and Wei Wang. 2018. RIN: reformula-
tion inference network for context-aware query sug-
gestion. In Proceedings of the 27th ACM Interna-
tional Conference on Information and Knowledge
Management, CIKM 2018, Torino, Italy, October 22-
26, 2018, pages 197-206. ACM.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/2020.emnlp-main.251
https://doi.org/10.18653/v1/2020.emnlp-main.251
https://doi.org/10.18653/v1/2020.emnlp-main.251
https://doi.org/10.1145/511446.511489
https://doi.org/10.1145/511446.511489
https://doi.org/10.1145/511446.511489
https://doi.org/10.1145/3132847.3133010
https://doi.org/10.1145/3132847.3133010
https://doi.org/10.1145/3132847.3133010
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/2766462.2767709
https://doi.org/10.1145/2766462.2767709
https://doi.org/10.1145/2766462.2767709
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/2983323.2983835
https://doi.org/10.1145/2983323.2983835
https://doi.org/10.1145/2983323.2983835
https://doi.org/10.1145/3269206.3271808
https://doi.org/10.1145/3269206.3271808
https://doi.org/10.1145/3269206.3271808
https://doi.org/10.1145/3269206.3271808
https://doi.org/10.1145/3269206.3271808
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703

Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv preprint, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. ArXiv preprint, abs/1301.3781.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48-53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In Proceedings of the 30th International
Conference on Machine Learning, ICML 2013, At-
lanta, GA, USA, 16-21 June 2013, volume 28 of
JMLR Workshop and Conference Proceedings, pages
1310-1318. JIMLR.org.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurlPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
8024-8035.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Stefan Riezler and Yi Liu. 2010. Query rewriting using
monolingual statistical machine translation. Compu-
tational Linguistics, 36(3):569-582.

Stefan Riezler, Alexander Vasserman, Ioannis Tsochan-
taridis, Vibhu Mittal, and Yi Liu. 2007. Statistical
machine translation for query expansion in answer re-
trieval. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, pages
464-471, Prague, Czech Republic. Association for
Computational Linguistics.

10

Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi,
Christina Lioma, Jakob Grue Simonsen, and Jian-Yun
Nie. 2015. A hierarchical recurrent encoder-decoder
for generative context-aware query suggestion. In
Proceedings of the 24th ACM International Confer-
ence on Information and Knowledge Management,
CIKM 2015, Melbourne, VIC, Australia, October 19
- 23, 2015, pages 553-562. ACM.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Mon-
treal, Quebec, Canada, pages 3104-3112.

Ming Tu, Guangtao Wang, Jing Huang, Yun Tang, Xi-
aodong He, and Bowen Zhou. 2019. Multi-hop read-
ing comprehension across multiple documents by rea-
soning over heterogeneous graphs. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2704-2713, Florence,
Italy. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998—-6008.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2018. Graph attention networks. In 6th International
Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

Danging Wang, Pengfei Liu, Yining Zheng, Xipeng Qiu,
and Xuanjing Huang. 2020. Heterogeneous graph
neural networks for extractive document summariza-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6209-6219, Online. Association for Computational
Linguistics.

Xuanhui Wang and ChengXiang Zhai. 2007. Learn
from web search logs to organize search results. In
Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 87-94.

Xuanhui Wang and ChengXiang Zhai. 2008. Mining
term association patterns from search logs for effec-
tive query reformulation. In Proceedings of the 17th
ACM conference on Information and knowledge man-
agement, pages 479-488.

Rong Xiao, Jianhui Ji, Baoliang Cui, Haihong Tang,
Wenwu Ou, Yanghua Xiao, Jiwei Tan, and Xuan
Ju. 2019. Weakly supervised co-training of query
rewriting andsemantic matching for e-commerce. In
Proceedings of the Twelfth ACM International Con-
ference on Web Search and Data Mining, WSDM

https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
http://proceedings.mlr.press/v28/pascanu13.html
http://proceedings.mlr.press/v28/pascanu13.html
http://proceedings.mlr.press/v28/pascanu13.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.1162/coli_a_00010
https://doi.org/10.1162/coli_a_00010
https://doi.org/10.1162/coli_a_00010
https://aclanthology.org/P07-1059
https://aclanthology.org/P07-1059
https://aclanthology.org/P07-1059
https://aclanthology.org/P07-1059
https://aclanthology.org/P07-1059
https://doi.org/10.1145/2806416.2806493
https://doi.org/10.1145/2806416.2806493
https://doi.org/10.1145/2806416.2806493
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.18653/v1/P19-1260
https://doi.org/10.18653/v1/P19-1260
https://doi.org/10.18653/v1/P19-1260
https://doi.org/10.18653/v1/P19-1260
https://doi.org/10.18653/v1/P19-1260
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.18653/v1/2020.acl-main.553
https://doi.org/10.18653/v1/2020.acl-main.553
https://doi.org/10.18653/v1/2020.acl-main.553
https://doi.org/10.18653/v1/2020.acl-main.553
https://doi.org/10.18653/v1/2020.acl-main.553
https://doi.org/10.1145/3289600.3291039
https://doi.org/10.1145/3289600.3291039
https://doi.org/10.1145/3289600.3291039

2019, Melbourne, VIC, Australia, February 11-15,
2019, pages 402-410. ACM.

Yatao Yang, Jun Tan, Hongbo Deng, Zibin Zheng, Yu-
tong Lu, and Xiangke Liao. 2019. An active and
deep semantic matching framework for query rewrite
in e-commercial search engine. In Proceedings of the
28th ACM International Conference on Information
and Knowledge Management, CIKM 2019, Beijing,
China, November 3-7, 2019, pages 309-318. ACM.

11

https://doi.org/10.1145/3357384.3358012
https://doi.org/10.1145/3357384.3358012
https://doi.org/10.1145/3357384.3358012
https://doi.org/10.1145/3357384.3358012
https://doi.org/10.1145/3357384.3358012

A Case Study

<o Advantages of leveraging history information
Two examples are shown in Table 3. The first exam-
ple is error correction. In the example, the customer
wishes to purchase dodge (a car brand) posters,
but she mistakenly searches for dodger (a baseball
team) posters. Without history information, it is
impossible to determine the customer’s true intent.
However, by looking at session histories, we find
that all the previous searches are related to auto-
mobiles (e.g., dodge and mopar), and therefore the
query should be rewritten to “dodge posters”. Our
model successfully captures this pattern. Notice
that the rewritten query without leveraging context
does not match the user’s intent.

The second example is keyword refinement. In
the example, by looking at the history searches, it
is obvious that the customer wishes to find phone
cases, instead of phones. However, this intent is im-
possible to capture by using only the source query.
Our model automatically adds the keyword “case”
to the source query and matches the target query.
On the other hand, without the context information,
the rewritten result is not satisfactory.

¢ Diversity of query generation Table 2 demon-
strates two examples. In the first example (the left
three columns), notice that our model can grep in-
formation from history queries, e.g., “iphone 11
case sailor moon”, and can delete keywords that
are deemed insignificant or too restrictive, e.g.,
“iphone 11 case leopard” instead of “snow leop-
ard”. Also, our model can effectively capture do-
main information. For example, some of the history
query keywords (e.g., pokemon, eevee) are often
described as “cute”, and our model recommends
this keyword. All the history keywords are from
Japanese anime series, therefore our model sug-
gests another popular character, “totoro”. Addition-
ally, the “disney” and “disney princess” keywords
are generated based on the interest to virtual char-
acters. Finally, notice that the likelihood of all
the suggested queries is similar, which means our
model cannot single out a significantly better query
than the others. Therefore our model generated a
diverse group of queries.

In the second example (the right two columns),
the generated query successfully matches the target
query. Note that the top two generated queries have
high likelihood, and the likelihood decreases dras-
tically as the suggested queries become more and

12

more implausible. In this example, the first query
is 172% more likely than the tenth query, whereas
this number is only 41% in the previous example.
This suggests that our model can differentiate be-
tween good quality suggestions and poor quality
alternatives.

B Baselines

The baselines are split into two groups: without
pre-training and with pre-training. For the w/o
pre-training group, we build the following models:

© Learning to Rewrite Queries (LORW) (He et al.,
2016b) is one of the first methods that applies deep
learning techniques to query rewriting. Specif-
ically, the LQRW model combines a sequence-
to-sequence LSTM (Hochreiter and Schmidhuber,
1997; Sutskever et al., 2014) model with statisti-
cal machine translation (Riezler and Liu, 2010)
techniques to generate queries. The candidates
are subsequently ranked using hand-crafted feature
functions.

¢ Hierarchical Recurrent Encoder-Decoder
(HRED) (Sordoni et al., 2015) employs a hierarchi-
cal recurrent neural network for generative query
suggestion. The model is a step forward from its
predecessors in that it is sensitive to the order of
queries and it is able to suggest rare and long-tail
queries.

o Transformer+Aggregation is the model where
we use the aggregation network to encode history
search queries, i.e., without the weighted graph at-
tention mechanism. Specifically, we first obtain
the representations of the source query and the his-
tory queries from the Transformer encoder. Then,
we extract information related to the source query
from the history representations using an aggre-
gation network. Such information is added to the
source representation, and we follow a standard
decoding procedure using these two factors. See
Section 4.3 for details.

The second group of methods adopt pre-
trained language models for query rewriting.
BART (Lewis et al., 2020) is a pre-trained seq2seq
model. We adopt this particular model instead of,
for example, BERT (Devlin et al., 2019) or GPT-
2 (Radford et al., 2019), because we treat query
rewriting as a seq2seq task. And the aforemen-
tioned architectures have either the Transformer
encoder (e.g., BERT) or the Transformer decoder
(e.g., GPT-2), but not both. In our experiments,

Type | Query | Likelihood || Query | Likelihood
P ih(ilr;eni 11 Ifrorgaszsgc:;i?gn; colorado 2005 tail lights;
History P p e — colorado 2005 door —
iphone 11 pro case hetalia; .
. . colorado 2005 accessories
iphone 11 pro case sailor moon
Source | iphone 11 pro case snow leopard | — I colorado headlights | —
Target | iphone 11 pro case tiger | — || colorado 2005 headlights | —
iphone 11 pro case disney 0.497 2005 colorado headlights 0.566
iphone 11 pro case sailor moon 0.492 colorado headlights 2005 0.458
iphone 11 pro case harry potter 0.445 colorado headlights led 0.357
iphone 11 pro case 0.440 colorado headlights assembly 0.301
Rewritten iphone 11 pro case cute 0.419 colorado tail lights 0.289
iphone 11 pro case leopard 0.391 colorado headlights housing 0.237
iphone 11 pro case clear 0.379 colorado led headlights 0.234
iphone 11 pro case disney princess 0.372 2004 colorado headlights 0.230
iphone 11 pro case pink 0.364 colorado 2004 headlights 0.214
iphone 11 pro case totoro 0.353 colorado headlights 2004 0.208
Table 2: Two examples of generated queries and their associated likelihood.
Example 1 dodge led sign; former backbone with the pre-trained seq2seq
dodge banners; BART model.
History mopar banner;
mopar poster
Source ‘ dodger posters C Tralmng details
Target | dodge posters . .

' We use the Fairseq (Ott et al., 2019) code-base with
Rewritten w/o context | dodger flag PyTorch (Paszke et al., 2019) as the back-end to
Rewritten w/ context | dodge poster implement all the methods. All the experiments are
Example 2 samsung galaxy case; conducted using 8 NVIDIA V100 (32GB) GPUs.
History samsung galaxy all case; For training a Transformer model from scratch,

samsung all case)
S | 1 . we adopt the Transformer-base (Vaswani et al.,
ource samsung galaxy a . .
g gaaxy 2017) architecture. We use Adam (Kingma and
Target \ samsung galaxy a7 case

Rewritten w/o context ‘ samsung galaxy a7 charger

Rewritten w/ context \ samsung galaxy a7 case

Table 3: Two examples of context-aware query rewriting
with and without context.

BART is fine-tuned in a setting similar to training
the Transformer model. We adopt the BART-base
architecture in all the experiments, which contains
about 140M parameters.

o MeshBART (Chen and Lee, 2020) is a BART-
based model that first concatenates the history
query, and then feeds it to a pre-trained BART
model for query generation. Note that the original
method requires click information. We remove this
component as the proposed method do not need
such data.

o BART+Aggregation is similar to Trans-
former+Aggregation, except we replace the Trans-

13

Ba, 2015) as the optimizer, and the learning rate
is chosen from {3 x 10745 x 107%,1 x 1073}
We use 4 heads for the weighted multi-head graph
attention mechanism, where the head dimension
is set to be 128 (note that the Transformer-base
architecture has embedding dimension 512).

For fine-tuning a BART model, we adopt the
BART-base (Lewis et al., 2020) architecture. We
use AdamW (Loshchilov and Hutter, 2019) as the
optimizer, and the learning rate is chosen from
{3 x 107°,5 x 107°,1 x 10~*}. Similar to the
training from scratch scheme, we adopt 4 heads,
each with dimension 192, for the weighted graph
attention mechanism.

For both training-from-scratch and fine-tuning,
please refer to Ott et al. (2019) for more de-
tails such as pre-processing steps and other hyper-
parameters.

https://github.com/pytorch/fairseq/
blob/master/examples/translation/README.
md

https://github.com/pytorch/fairseq/blob/master/examples/translation/README.md
https://github.com/pytorch/fairseq/blob/master/examples/translation/README.md
https://github.com/pytorch/fairseq/blob/master/examples/translation/README.md

D Detailed Algorithm

Algorithm 1: Context-aware query rewrit-
ing.

Input: D: dataset containing sessions;
Initial parameters for the
Transformer encoder and the
Transformer decoder; Initial
parameters for four weighted graph
attention mechanism (Eq. 2):
WGAT ., WGAT e, WGAT g,
wGAT_¢; Initial parameters for
the aggregation network (Eq. 3); K:
the number of updates on the session
graph; N: the number of rewritten
queries for each session.

Output: A list that contains N generated
queries for each session in the
dataset.

Set result list: rewritten = [J;

for each session in D do

/+ Encode input data. «/

Compute source representation Hg and
history representation Uj, using the
Transformer encoder;

/+ Apply weighted graph

attention. «/

Obtain initial representations Q,?, Ggo,
G

fork=1---K do

Gy V% = GAT g (GF 1G5,

GF = GAT (g7 %, GF7):

g = GAT q(9F, 05 1%);

GE = GATqoe(Gy %, GE70);
end

Set history representation
{h} 2 =Gl UG

/+ Apply aggregation

network. x/

Compute session representation Hgegs
from H, and {hi}i:terh using Eq. 3;

/+ Generate rewritten

queries. x/

Generate N rewritten queries {¢; }
using the Transformer decoder and a
beam search procedure;

rewritten = rewritten + {¢;}

N
i=1

N .
=1

end
Output: Rewritten queries rewritten.

