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Abstract

E-commerce queries are often short and am-001
biguous. E-commerce query understanding of-002
ten uses query rewriting to disambiguate user-003
input queries. While using e-commerce search004
tools, users tend to enter multiple searches,005
which we call context, before purchasing.006
These history searches contain contextual in-007
sights about users’ true shopping intents. There-008
fore, modeling such contextual information is009
critical to a better query rewriting model. How-010
ever, existing query rewriting models ignore011
users’ history behaviors and consider only the012
instant search query, which is often a short013
string offering limited information about the014
true shopping intent.015

We propose an end-to-end context-aware query016
rewriting model to bridge this gap, which takes017
the search context into account. Specifically,018
our model builds a session graph using the his-019
tory search queries, their contained words, and020
auxiliary category information. We then em-021
ploy a weighted graph attention mechanism022
that models cross-query relations and computes023
contextual information of the session. The024
model subsequently calculates session repre-025
sentations by combining the contextual infor-026
mation with the instant search query using an027
aggregation network. The session representa-028
tions are then decoded to generate rewritten029
queries. Empirically, we demonstrate the su-030
periority of our method to state-of-the-art ap-031
proaches under various evaluation metrics. Our032
code and data will be publicly available.033

1 Introduction034

Query rewriting is a task where a user inputs a035

potentially problematic query (e.g., typos or insuf-036

ficient information), and we rewrite it to a new one037

that better matches the user’s real shopping intent.038

This task plays an important role in e-commerce039

query understanding, where without proper rewrit-040

ing, search engines often return undesired items,041

rendering the search experience unsatisfactory.042

One major issue that impedes query rewriting is 043

the ambiguity of queries. For example, Figure 1 044

(left) demonstrates searching for “bumblebee cos- 045

tumes” without considering search context. From 046

the query alone, it is implausible to tell if the user’s 047

intent is for costumes of actual bumblebee, i.e., 048

the animal, or the character from the movie fran- 049

chise. This type of ambiguity is common in e- 050

commerce search, where queries are usually short 051

(only 2-3 terms) and insufficiently informative (He 052

et al., 2016b). Therefore, it is not possible to dis- 053

ambiguate queries using only the instant search. 054

A common solution is to use statistical rules to 055

differentiate the possible choices. Specifically, in 056

our example, suppose a total of 100 users entered 057

the “bumblebee costumes” query, and 70 of them 058

eventually purchased the movie character costume. 059

When a new user searches for the same query, the 060

recommended products will consist of 70% movie 061

character costumes and 30% animal costumes. This 062

procedure is problematic because each user has a 063

specific intent, i.e., either the movie character cos- 064

tume or the animal costume, but rarely both, which 065

the aforementioned method fails to address. 066

We propose to explore contextual information 067

from users’ history searches to resolve the query 068

ambiguity issue. Taking the “bumblebee costumes” 069

example again, in Figure 1 (right), suppose a rewrit- 070

ing model recognizes that the user searched for 071

“Transformers movie” earlier, then it could infer 072

that the user’s purchase intent is the movie char- 073

acter costume, and hence can remove the input 074

ambiguity. There have been existing works that 075

utilize search logs for query rewriting. For ex- 076

ample, Wang and Zhai (2007, 2008) use tradi- 077

tional TF-IDF-based similarity metrics to capture 078

relational information among the user’s history 079

searches. These approaches are too restrictive to 080

handle the increasingly complex corpus nowadays. 081

As such, the rewritten queries significantly differ 082

from the original one in intent. More recently, neu- 083
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Figure 1: Searching for “bumblebee costumes” with
(right) and without (left) history searches.

ral network-based query rewriting algorithms (He084

et al., 2016b; Xiao et al., 2019; Yang et al., 2019)085

are proposed. Most of such approaches employ a086

multi-stage training approach. Consequently, they087

involve complicated hand-crafted features or re-088

quire excessive human annotations for the interme-089

diate features (sometimes both).090

To overcome the drawbacks of existing meth-091

ods, we propose an end-to-end context-aware query092

rewriting algorithm. Our model’s backbone is093

the Transformer (Vaswani et al., 2017). It is a094

sequence-to-sequence encoder-decoder model that095

exploits recent advances of the self-attention mech-096

anism (Bahdanau et al., 2015). In our context-097

aware model, the Transformer encoder learns rep-098

resentations for individual history queries. The099

representations are further transformed to carry100

cross-query relational information using a weighted101

graph attention mechanism (wGAT (Velickovic102

et al., 2018)). Such a mechanism computes con-103

textual information of a session based on a session104

graph, where its nodes contain the history queries,105

the tokens contained in the history queries, and106

the history queries’ category information (see Sec-107

tion 3). After obtaining the contextual information108

from the wGAT, it is aggregated with the instant109

search using an aggregation network. The aug-110

mented information is subsequently fed into the111

Transformer decoder to generate rewritten queries.112

Previous works (Tu et al., 2019; Wang et al., 2020)113

that share the same spirit have shown to be effective114

in various natural language processing tasks.115

We highlight that our proposed session graph for-116

mulation and the wGAT mechanism explicitly mod-117

els cross-query relations, which is different from ex-118

isting works. Previous approaches (e.g., (Dehghani119

et al., 2017)) capture such relations recursively,120

which is sub-optimal because such a structure suf-121

fers from the “forgetting” issue (Hochreiter and 122

Schmidhuber, 1997), i.e., relation between queries 123

far away will be lost. In contrast, wGAT associates 124

any two queries by their contained words, enabling 125

relation-modeling regardless of distance. More- 126

over, the proposed wGAT method takes category 127

information into account, a component missing in 128

prior works. 129

Our proposed method improves upon existing 130

works from three aspects. First, our model does 131

not involve recursion, unlike conventional recurrent 132

neural network-based approaches (He et al., 2016b; 133

Yang et al., 2019; Xiao et al., 2019). Our proposed 134

attention-based method can be trained in full par- 135

allel and avoids gradient explosion and gradient 136

vanishing problems (Pascanu et al., 2013), from 137

which existing models suffer. These advantages 138

facilitate training deep models containing dozens 139

of layers capable of capturing high-order informa- 140

tion. Second, our end-to-end sequence-to-sequence 141

learning formulation eliminates the necessity of ex- 142

cessive labeled data. Previous approaches (Yang 143

et al., 2019; Xiao et al., 2019) require the judg- 144

ment of “semantic similarity”, and thus crave for 145

human annotations, which are expensive to obtain. 146

In contrast, our method uses search logs as super- 147

vision, which does not involve human effort, and 148

are cheap to acquire. Third, our method can lever- 149

age powerful pre-trained language models, such as 150

BART (Lewis et al., 2020). Such models contain 151

rich semantic information and are successful in nu- 152

merous natural language processing tasks (Devlin 153

et al., 2019; Liu et al., 2019; Radford et al., 2019). 154

We demonstrate the efficacy of our method on in- 155

house data from an online shopping platform. Our 156

context-aware query rewriting model outperforms 157

various baselines by large margins. Notably, com- 158

paring with the best baseline method (Transformer- 159

based model), our model achieves 22.5% relative 160

improvement under the MRR (Mean Reciprocal 161

Rank) metric and 11.7% relative improvement un- 162

der the HIT@16 metric (a hit rate metric). 163

2 Related Works 164

⋄ Context-based query rewriting One line of 165

work uses statistical methods. For example, Cui 166

et al. (2002, 2003) extract probabilistic correla- 167

tions between the search queries and the product 168

descriptions. Other works extract features that 169

are related to the user’s current search (Huang 170

et al., 2003; Huang and Efthimiadis, 2009), or 171

2



from relational information among the user’s his-172

tory searches (Billerbeck et al., 2003; Baeza-Yates173

and Tiberi, 2007; Wang and Zhai, 2007; Cao et al.,174

2008; Wang and Zhai, 2008). There are also sta-175

tistical machine translation-based models (Riezler176

et al., 2007; Riezler and Liu, 2010) that employ177

sequence-to-sequence approaches. The aforemen-178

tioned statistical methods suffer from unreliable179

extracted features, such that the rewritten queries180

differ from the original one in intent.181

Another line of work focuses on neural query182

rewriting models (He et al., 2016b; Xiao et al.,183

2019; Yang et al., 2019). These models adopt re-184

current neural networks (RNNs, Hochreiter and185

Schmidhuber 1997; Sutskever et al. 2014) to learn186

a vectorized representation for the user’s search187

query, after which KNN-based methods are used188

to find queries that yield similar representations.189

One major limitation is that the rewritten queries190

are limited to the previously presented ones. Also,191

these methods often involve complicated and un-192

grounded feature function designs, e.g., He et al.193

(2016b) and Xiao et al. (2019) hand-crafted 18194

feature functions, or require excessive labeled195

data (Yang et al., 2019). There are other works (Sor-196

doni et al., 2015; Dehghani et al., 2017; Jiang197

and Wang, 2018) that use RNNs for generative198

query suggestion, but they inherit the weaknesses199

of RNNs and yield unsatisfactory performance in200

practice.201

Note that Grbovic et al. (2015) construct context-202

aware query embeddings using word2vec (Mikolov203

et al., 2013). In their approach, an embedding is204

learned for each distinct query in the dataset. As205

such, the quality of the learned embeddings rely206

heavily on the number of occurrences of each query.207

This method is not applicable to our case because208

in our dataset, almost all the queries are distinct.209

3 Problem Setup210

⋄ Category information of queries Each search211

query results in multiple recommended products,212

and each of these products belongs to multiple cat-213

egories, e.g., the movie character costume in Fig-214

ure 1 belongs to both the “entertainment” category215

and the “fashion” category. For each search query,216

the user may react to multiple returned products,217

e.g., click, add to cart, and purchase. If a user re-218

acts to a specific product, we say the user takes219

an action on each category corresponding to that220

product, e.g., if a user clicks on the movie charac-221

ter costume, we say the user takes one action on 222

category “entertainment” and one action on cate- 223

gory “fashion”. For a specific query, we collect 224

user actions on all the recommended products, and 225

we obtain 226

{Category1 : # actions1, · · · } , 227

where Categories 1 − N are pre-specified. Then 228

the category information of the query is defined as 229{
P[C1] =

# actions1∑N
i=1# actionsi

, · · ·

}
, 230

where Ci stands for “Categoryi”. 231

⋄ Session data The session data are collected from 232

search logs. First, we collect all the searches from 233

a specific user within a time window, and we call 234

the searches a “session”. After the user purchases 235

a product, the session ends, i.e., we do not consider 236

subsequent queries and behaviors after a purchase 237

happens. This is because, after a purchase, the 238

user’s intent often change. Note that different ses- 239

sions may be collected from different users. 240

Each session contains multiple searches, where 241

each consists of a search query and its category 242

information. We call the last query in the session 243

the “target” query, the second to the last query the 244

“source” query, and the others the “history” queries. 245

The intuition behind this is that because sessions 246

always end with a purchase, the last search (i.e., 247

the target) reflects the user’s real intent. When the 248

user enters the second to the last search (i.e., the 249

source), if we can rewrite it to the target query, the 250

user’s intent will be fulfilled. 251

We collect about 3 million (M) sessions, where 252

each session consists of at least 3 history queries, 253

a source query (i.e., the one we need to rewrite), 254

and a target query (i.e., the ground-truth query that 255

is associated with the purchase). We have roughly 256

18.7M queries, and on average, each session con- 257

tains 4 history queries. Query rewriting is con- 258

sequently formulated as a sequence-to-sequence 259

learning problem. We highlight that per our formu- 260

lation, we do not need human annotations, unlike 261

existing approaches. To open new research oppor- 262

tunities, our data is currently undergoing internal 263

procedures for release. 264

4 Method 265

Figure 2 illustrates our context-aware query rewrit- 266

ing model. The model contains four parts: a 267
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Figure 2: Overview of model.

conventional Transformer (Vaswani et al., 2017)268

encoder, a weighted graph attention mecha-269

nism (Velickovic et al., 2018) that captures the270

user’s purchase intent, an aggregation network that271

encodes the history searches, and a conventional272

Transformer decoder that generates the rewritten273

query candidates.274

4.1 Transformer Encoder275

For a given source query, we first pad it with a276

⟨boq⟩ (begin-of-query) token. Then, we pass the277

padded query through a token embedding layer278

and a position embedding layer, and we obtain279

Ys ∈ RLs×d. Here Ls is the length of the padded280

source query, and d is the embedding dimension.281

We then pass Ys through N layers of encoder282

blocks, where each of these blocks contains a283

self-attention mechanism and a position-wise feed-284

forward neural network, and then we obtain an285

encoded representation Hs ∈ RLs×d.286

For the history queries in this session, we also287

pad them with ⟨boq⟩ tokens. Suppose that we have288

Nh padded history queries (recall a session con-289

tains multiple history queries), and their respective290

length is denoted by L1
h, · · · , L

Nh
h . We pad the291

history queries to the same length, and we obtain292

the history query matrix Xh ∈ RNh×Lh , where293

Lh = max{L1
h, · · · , L

Nh
h }. Then, following the294

same procedures as encoding the source query, we295

pass Xh through the embedding layers and the en-296

coder blocks, after which we obtain the history297

query representations Uh ∈ RNh×Lh×d.298

4.2 Contextual Information from Session 299

Graphs 300

After we obtain the history query representations 301

Uh, the next step is to refine them. Such refinement 302

is necessary because the encoder considers the his- 303

tory queries separately, such that their interactions 304

are not taken into account. However, since each 305

search depends on its previous searches in the same 306

session, modeling cross-query relations are impera- 307

tive for determining the user’s purchase intent. To 308

this end, we use a weighted graph attention mecha- 309

nism (Velickovic et al., 2018; Wang et al., 2020) to 310

capture contextual information from Uh. 311

4.2.1 Session Graph Construction 312

First we specify how to build a graph for each ses- 313

sion, which we call the session graph. Suppose we 314

have a session that contains three history queries: 315

Q1 :
{

Search query : T1, T3; (1) 316

Category : P[C1] = 1.0
}
, 317

Q2 :
{

Search query : T1, T2, T3; 318

Category : P[C1] = 0.6,P[C2] = 0.4
}
, 319

Q3 :
{

Search query : T1, T2, T3, T4, T5; 320

Category : P[C2] = 0.7,P[C3] = 0.3
}
, 321

where Q1, Q2, Q3 are the three queries, T1, · · · , T5 322

are the five tokens that appear in the three queries, 323

and C1, C2, C3 are the three categories to which 324

the queries belong. Recall Section 3 for the prob- 325

lem setup and the definition of category informa- 326

tion. Figure 3 illustrates the session graph. In this 327

3-partite graph, the blue circles are token nodes 328

(T1, · · · , T5); the green rectangles are query nodes 329

(Q1, Q2, Q3); and the red diamonds are category 330

nodes (C1, C2, C3). In our example, the history 331

query representations have size Uh ∈ R3×6×d, that 332

is, we have 3 queries, and the maximum query 333

lengths is 6 (recall we prepend a ⟨boq⟩ token to 334

each query). 335

4.2.2 Node Representations 336

The next step is to refine the node representations. 337

Each of the nodes in the session graph has its own 338

representation. 339

• The token representations are simply the corre- 340

sponding representations of the tokens, extracted 341

from the token embedding matrix. 342

• The query representations are the representations 343

of the ⟨boq⟩ token in each padded history query, i.e., 344

the representation of the Q1 query node in Figure 3 345

is found by Uh[0, 0, :] ∈ Rd. Note that this is akin 346
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Figure 3: Session graph. Here “T” stands for tokens,
“Q” stands for queries, and “C” stands for categories.

to BERT, where a <cls> token is inserted and its347

representation is used for classification tasks.348

• The category representations are extracted from349

a category embedding matrix EC ∈ Rd×|C|, where350

|C| is the number of categories. Then the represen-351

tation for category k is the k-th column of EC .352

Denote Gq = {qi}
Nq

i=1, Gt = {ti}Nt
i=1, and Gc =353

{ci}Nc
i=1 the sets of representations for the query,354

token, and category nodes, respectively. Here Nq355

is the number of query nodes, Nt is the number356

of token nodes, and Nc is the number of category357

nodes. Note that all the node representations have358

the same size, i.e., qi, ti, ci ∈ Rd.359

4.2.3 Update Node Representations360

We use a weighted multi-head graph attention361

mechanism to update the node representations. For362

simplicity, denote Ng = Nq +Nt +Nc the num-363

ber of distinct nodes in the session graph, and364

G = Gq ∪ Gt ∪ Gc = {gi}
Ng

i=1 the set of all the365

node representations. We define eij as the edge366

weight between gi and gj , and it equals to the prob-367

ability term in the category information (see (1)).368

We set eij = 1 if such weights are not defined, e.g.,369

when updating the query representations Gq using370

the token representations Gt.371

With the above notations, a weighted single-head372

graph attention mechanism is defined as373

zij = LeakyReLU (Wa[Wqgi;Wkgj ]) · eij ,

αij =
exp(zij)∑

ℓ∈Ni
exp(ziℓ)

,

hi = gi + ELU
(∑

j∈Ni
αijWvgj

)
.

(2)374

Here ELU(x) = x · 1{x > 0} + (exp(x) − 1) ·375

1{x ≤ 0} is the exponential linear unit, Ni denotes376

the neighbor of the i-th node, and Wa, Wq, Wk,377

Wv are trainable weights.378

The edge weight eij essentially controls the “im-379

portance” of the category information to the query380

nodes. That is, if eij is small, i.e., it is unlikely, 381

although not impossible, that a query belongs to a 382

certain category, then our model will pay less at- 383

tention to the corresponding category information. 384

The session graph only induces attention between 385

nodes that are connected. Note that a residual con- 386

nection (He et al., 2016a) is added to the last equa- 387

tion in Eq. 2. This has proven to be an effective 388

technique to prevent gradient vanishing, and hence, 389

to stabilize training. 390

A weighted multi-head graph attention mech- 391

anism is then defined as the concatenation of 392

[h1i , h
2
i , · · · , hKi ], where K is the number of heads, 393

and each of the hi is calculated via Eq. 2. 394

The token node representations, the category 395

node representations, and the query node repre- 396

sentations are updated iteratively. Specifically, we 397

adopt the following update procedure: 398

Token
2←−−−−→
3

Query
1←−−−−→
4

Category. 399

In more details, 400

• Step 1 updates the query representations (Gq) 401

using the categories (Gc), such that Gq is aware of 402

the category knowledge. 403

• Steps 2 and 3 model cross-query relations. First, 404

we update the token representations (Gt) using Gq, 405

in order that the tokens acknowledge to which 406

queries they belong. Then, Gq is re-computed using 407

the updated version of Gt, which essentially evalu- 408

ates cross-query relations, using the token nodes as 409

intermediaries. 410

• Finally, step 4 updates Gc using Gq. This step 411

enriches each category node’s representation by 412

incorporating information of all the queries that 413

belong to this category. 414

The weighted graph attention mechanism 415

(wGAT) used in each of the four steps are dis- 416

tinct, i.e., there are four different sets of weights 417

[Wa,Wq,Wk,Wv]. We highlight that the weighted 418

graph attention enables modeling of cross-query 419

relations, which is implausible for conventional 420

attention methods. 421

Eventually, we obtain the updated vectorized rep- 422

resentations {hi}
Ng

i=1 for all the nodes. We collect 423

{hi}Nh+Nt
i=1 , the updated representations that corre- 424

spond to the query nodes and the token nodes, and 425

we treat them as the contextual information of the 426

session. Note that here, we exclude the category 427

node representations. This is because such repre- 428

sentations contribute to all the sessions, and do not 429

constitute session-specific knowledge. 430
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We remark that the wGAT mechanism explicitly431

models cross-query relations by associating query432

representations with word representations. This433

is fundamentally different from existing methods,434

where the relations are captured via recursion.435

4.3 Session Representation from Aggregation436

Network437

Recall that we pass the source query through an en-438

coder and obtain Hs ∈ RLs×d, which contains rep-439

resentations for all the tokens in the source query.440

We use that of the prepended ⟨boq⟩ token as the rep-441

resentation of the source query, which is denoted442

hs ∈ Rd. We adopt an aggregation network to ex-443

tract useful information with respect to hs from the444

contextual information {hi}Nh+Nt
i=1 . The network445

employs an attention mechanism that determines to446

what extent each vector hi contributes to the source447

query hs. Concretely,448

zi = (Wkhi)
⊤hs, αi =

exp(zi)∑Ng

j=1 exp(zj)
,

v =
∑Ng

i=1 αiWvhi, Hsess = Hs + v,

(3)449

where Wk and Wv are trainable weights. The last450

equation in Eq. 3 is summed row-wise, wherein451

Hsess , Hs ∈ RLs×d, and v ∈ Rd.452

The matrix Hsess serves as the representation453

of the session. Intuitively, by incorporating the454

aggregation network, we can filter out redundant455

information from the session history and only keep456

the ones pertinent to the source query.457

After the Transformer encoder, the weighted458

graph attention mechanism, and the aggregation459

network, we obtain Hsess , the session representa-460

tion that contains information on both the source461

query and its history searches. Subsequently, Hsess462

is fed into the Transformer decoder to generate463

rewritten query candidates.464

The algorithm is detailed in Algorithm 1 in Ap-465

pendix D.466

5 Experiments467

We conduct experiments on in-house data from an468

online shopping platform1. Notice that we focus469

on session-based query reformulation, a scenario470

that is rare in existing datasets (see Section 3 for471

details). We implement two methods with differ-472

ent backbone: Transformer+Aggregation+Graph473

and BART+Aggregation+Graph. The first one is474

1The dataset is undergoing internal processes for release.

constructed in the previous section, and the sec- 475

ond one employs a fine-tuning approach instead of 476

training-from-scratch. Training details are deferred 477

to Appendix C. 478

5.1 Baselines 479

For baselines with pre-training, we use Mesh- 480

BART (Chen and Lee, 2020). For baselines 481

without pre-training, we use MeshTransformer 482

(Chen and Lee, 2020) (a variant of MeshBART 483

where we train the model from scratch), LQRW 484

(He et al., 2016b) and HRED (Sordoni et al., 485

2015). We also compare our algorithm with two 486

model variants: Transformer+Aggregation and 487

BART+Aggregation, where we use the aggrega- 488

tion network but not the wGAT mechanism. Please 489

refer to Appendix B for details. 490

5.2 Evaluation Metrics 491

We use both offline metrics, e.g., BLEU, and on- 492

line metrics, e.g., MRR (Mean Reciprocal Rank), 493

HIT@1, and HIT@16, to evaluate the query rewrit- 494

ing models. For online metrics, we report the gains 495

over the the results calculated by using only source 496

queries. We remark that the online metrics (i.e., 497

MRR, HIT@1, and HIT@16) are more important 498

than the offline metric (i.e., BLUE), because MRR 499

and HIT are directly linked to user experience. 500

We use the BLEU score (Post, 2018) as an offline 501

evaluation metric. This metric is constantly used 502

to evaluate the quality of translation. We adopt 503

it here because similar to machine translation, we 504

formulate query rewriting as a seq2seq learning 505

task. The correlation between the rewritten query 506

and the target query reflects the model’s ability to 507

capture the user’s purchase intent. 508

The online MRR metric describes the accuracy 509

of the rewritten queries. As an online test, for each 510

source query in the test set, we generate 10 candi- 511

date queries r1, · · · , r10. Then we search each of 512

these candidates using our production search en- 513

gine, and we obtain the returned products, of which 514

we only keep the top 32. Recap that we know the 515

actual product that the customer purchased. The 516

next step is to calculate the reciprocal of the actual 517

product’s rank for each of r1, · · · , r10. For exam- 518

ple, suppose for r1, the actual purchased product 519

is the second within the 32 returned products, then 520

the score for r1 is score1 = 1/2 = 0.5. The score 521

of the rewritten queries r1, · · · , r10 is then defined 522

as max{scorei}10i=1. Finally, the score for the query 523
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Number of candidates #Candidates=5 #Candidates=10 BLEUMetric MRR HIT@1 HIT@16 MRR HIT@1 HIT@16

Target Query +0.161 +0.106 +0.290 +0.161 +0.106 +0.290 —

Baseline methods
LQRW +0.035 +0.025 +0.064 +0.068 +0.049 +0.126 29.38
HRED +0.047 +0.032 +0.084 +0.081 +0.057 +0.142 25.67
MeshBART +0.046 +0.031 +0.082 +0.082 +0.055 +0.148 30.87
MeshTransformer +0.043 +0.026 +0.092 +0.085 +0.056 +0.159 25.33

Our methods
BART+Aggregation +0.063 +0.039 +0.109 +0.097 +0.064 +0.171 31.89
Transformer+Aggregation +0.052 +0.029 +0.108 +0.102 +0.070 +0.173 27.22
BART+Aggregation+Graph +0.069 +0.046 +0.118 +0.105 +0.075 +0.176 32.85
Transformer+Aggregation+Graph +0.066 +0.046 +0.120 +0.116 +0.083 +0.201 28.15

Table 1: Experimental results. The results of MRR, HIT@1, and HIT@16 are shown as gain over the source query.
The best result(s) under the MRR, HIT@1, and HIT@16 metrics are shown in bold.

rewriting model is the average over all the source524

query scores.525

We also use HIT@1 and HIT@16 as evaluation526

metrics. HIT@16 is the percentage that the actual527

product is ranked within the first 16 products (the528

first page) when we search the rewritten query. And529

HIT@1 is similarly defined.530

5.3 Experimental Results531

Table 1 summarizes experimental results. The532

power of of our proposed query rewriting approach533

is well-demonstrated from the results. Recall that534

in our formulation, we rewrite a source query to a535

target query. The “target query” entry in Table 1536

is the performance gain of the ground truth target537

query, i.e., this entry signifies upper bounds of per-538

formance gain that any model can achieve.539

We can see that the attention-based models (i.e.,540

MeshBART and MeshTransformer) outperforms541

the recurrent neural network-based approach (i.e.,542

LQRW and HRED). This is because RNNs suf-543

fer from both the forgetting and the training is-544

sues. In contrast, Transformer-based models use545

the attention mechanism instead of recursion to546

capture dependencies, which has proven to be547

more effective. Moreover, by aggregating his-548

tory searches into the models, BART+Aggregation549

and Transformer+Aggregation consistently outper-550

form their vanilla alternatives. Essentially per-551

formance of these two methods indicate that in-552

tegrating history queries into training is critical.553

The performance is further enhanced by incor-554

porating the session graphs. Specifically, Trans-555

former+Aggregation+Graph achieves the best per-556

formance under almost all the metrics. Notice that557

the HIT@16 metric gain improves from +0.159558

to +0.201 when employing both the aggregation559

network and the session graph formulation for the560

Transformer-based models. We highlight that the 561

weighted graph attention mechanism can directly 562

captures cross-query relations, which is implausi- 563

ble for all the baselines. We can see that this prop- 564

erty indeed contributes to model performance, i.e., 565

HIT@16 increases from +0.173 to +0.201 when 566

further equip Transformer+Aggregation with the 567

wGAT mechanism. 568

Notice that BLEU is not a definitive metric. For 569

example, the online metrics of HRED are consis- 570

tently higher than those of LQRW, even though the 571

BLEU score of the former is significantly lower 572

than the latter. Also, compared with Transformer- 573

based models, the BLEU score is consistently 574

higher when using the BART model as the back- 575

bone. This is because a pre-trained language model 576

contains more semantic information. However, 577

the online metrics of the BART-based models are 578

worse than those of the Transformer-based models. 579

However, the BLEU score is comparable for 580

models with the same backbone. For exam- 581

ple, for Transformer+Aggregation vs. Trans- 582

former+Aggregation+Graph, the BLEU scores are 583

27.22 vs. 28.15. Such a tendency coincides with 584

the online metrics. We observe the same results 585

from BART-based models. 586

5.4 Analysis 587

⋄ BART vs. Transformer Even though BART con- 588

tains twice the number of parameters than Trans- 589

former (140M vs. 70M), models fine-tuned on 590

BART yield lower MRR and HIT metrics (with 10 591

generated candidate queries). One reason is that 592

publicly available models are pre-trained on natu- 593

ral language corpus, but queries are usually short 594

and have distinct structures. This raises doubts 595

on whether current pre-trained models are suitable 596

for the query domain. Indeed, the rich semantic 597

7



(a) Transformer (train). (b) Transformer (valid). (c) BART (train). (d) BART (valid).

Figure 4: Training and validation perplexity using Transformer and BART as backbone.

Figure 5: Model performance (in BLEU scores) vs. model size. The
model size (in millions of parameters) are shown above the bars.

Figure 6: Query length vs. rewrit-
ing quality.

information enables a much better BLEU score598

(32.85 vs. 28.15), but the online tests suggest the599

fine-tuned models’ inferior performance.600

⋄ Training from scratch vs. fine-tuning Fig-601

ure 4 plots the training and validation perplexity602

(ppl) of the training-from-scratch approach and603

the fine-tuning approach. From Figure 4a and604

Figure 4b, we can see that by employing the ag-605

gregation network, Transformer+Aggregation fits606

the data better and exhibits enhanced generaliza-607

tion. The training and validation ppls are fur-608

ther significantly improved by incorporating the609

weighted graph attention mechanism, i.e., Trans-610

former+Aggregation+Graph.611

Notice that in Figure 4c, BART+Aggregation612

outperforms BART+Aggregation+Graph in terms613

of training ppl, which is different from the training-614

from-scratch approach. As indicated by Figure 4d,615

BART+Aggregation shows clear sign of over-616

fitting. This is because even though pre-trained617

language models contain rich semantic informa-618

tion, much of it is considered “noisy” for query619

rewriting. Thus feature enhancement initiated by620

the weighted graph attention mechanism is needed.621

⋄ Model size vs. performance Figure 5 illus-622

trates the relation between model size and perfor-623

mance, where we decrease the embedding dimen-624

sion (correspondingly hidden dimensions of the625

feed-forward neural network) and the number of626

layers. We can see that even with 1/8 of the pa-627

rameters, model performance does not decrease628

much. Moreover, our model is more than 20%629

smaller than a BERT-base model (85M vs. 110M), 630

rendering online deployment more than possible. 631

⋄ Query length vs. performance Figure 6 demon- 632

strates model performance with respect to length of 633

the instant query. We can see that the BLEU score 634

gradually decreases when the length increases. 635

This is because long queries are often very specific 636

(e.g., down to specific models or makes), making 637

the rewriting task harder. 638

⋄ Case study We examine advantages of lever- 639

aging history information and diversity of query 640

generation. Results are deferred to Appendix A. 641

6 Conclusion and Discussion 642

We propose an end-to-end context-aware query 643

rewriting model that can efficiently leverage user’s 644

history behavior. Our model infers a user’s pur- 645

chase intent by modeling her history searches as a 646

graph, on which a weighted graph attention mecha- 647

nism is applied to generate informative session rep- 648

resentations. The representations are subsequently 649

decoded into rewritten queries. We conduct experi- 650

ments using in-house data from an online shopping 651

platform, where our model achieves 11.7% and 652

22.5% relative improvement under the online MRR 653

and HIT@16 metrics, respectively. 654

Our proposed session graph is flexible, and can 655

be extended to incorporate more information. In 656

this paper, we present a 3-partite graph, which con- 657

tains words, queries, and categories. Additional 658

components can be added as extra layers to the 659

session graph. 660
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A Case Study895

⋄ Advantages of leveraging history information896

Two examples are shown in Table 3. The first exam-897

ple is error correction. In the example, the customer898

wishes to purchase dodge (a car brand) posters,899

but she mistakenly searches for dodger (a baseball900

team) posters. Without history information, it is901

impossible to determine the customer’s true intent.902

However, by looking at session histories, we find903

that all the previous searches are related to auto-904

mobiles (e.g., dodge and mopar), and therefore the905

query should be rewritten to “dodge posters”. Our906

model successfully captures this pattern. Notice907

that the rewritten query without leveraging context908

does not match the user’s intent.909

The second example is keyword refinement. In910

the example, by looking at the history searches, it911

is obvious that the customer wishes to find phone912

cases, instead of phones. However, this intent is im-913

possible to capture by using only the source query.914

Our model automatically adds the keyword “case”915

to the source query and matches the target query.916

On the other hand, without the context information,917

the rewritten result is not satisfactory.918

⋄ Diversity of query generation Table 2 demon-919

strates two examples. In the first example (the left920

three columns), notice that our model can grep in-921

formation from history queries, e.g., “iphone 11922

case sailor moon”, and can delete keywords that923

are deemed insignificant or too restrictive, e.g.,924

“iphone 11 case leopard” instead of “snow leop-925

ard”. Also, our model can effectively capture do-926

main information. For example, some of the history927

query keywords (e.g., pokemon, eevee) are often928

described as “cute”, and our model recommends929

this keyword. All the history keywords are from930

Japanese anime series, therefore our model sug-931

gests another popular character, “totoro”. Addition-932

ally, the “disney” and “disney princess” keywords933

are generated based on the interest to virtual char-934

acters. Finally, notice that the likelihood of all935

the suggested queries is similar, which means our936

model cannot single out a significantly better query937

than the others. Therefore our model generated a938

diverse group of queries.939

In the second example (the right two columns),940

the generated query successfully matches the target941

query. Note that the top two generated queries have942

high likelihood, and the likelihood decreases dras-943

tically as the suggested queries become more and944

more implausible. In this example, the first query 945

is 172% more likely than the tenth query, whereas 946

this number is only 41% in the previous example. 947

This suggests that our model can differentiate be- 948

tween good quality suggestions and poor quality 949

alternatives. 950

B Baselines 951

The baselines are split into two groups: without 952

pre-training and with pre-training. For the w/o 953

pre-training group, we build the following models: 954

⋄ Learning to Rewrite Queries (LQRW) (He et al., 955

2016b) is one of the first methods that applies deep 956

learning techniques to query rewriting. Specif- 957

ically, the LQRW model combines a sequence- 958

to-sequence LSTM (Hochreiter and Schmidhuber, 959

1997; Sutskever et al., 2014) model with statisti- 960

cal machine translation (Riezler and Liu, 2010) 961

techniques to generate queries. The candidates 962

are subsequently ranked using hand-crafted feature 963

functions. 964

⋄ Hierarchical Recurrent Encoder-Decoder 965

(HRED) (Sordoni et al., 2015) employs a hierarchi- 966

cal recurrent neural network for generative query 967

suggestion. The model is a step forward from its 968

predecessors in that it is sensitive to the order of 969

queries and it is able to suggest rare and long-tail 970

queries. 971

⋄ Transformer+Aggregation is the model where 972

we use the aggregation network to encode history 973

search queries, i.e., without the weighted graph at- 974

tention mechanism. Specifically, we first obtain 975

the representations of the source query and the his- 976

tory queries from the Transformer encoder. Then, 977

we extract information related to the source query 978

from the history representations using an aggre- 979

gation network. Such information is added to the 980

source representation, and we follow a standard 981

decoding procedure using these two factors. See 982

Section 4.3 for details. 983

The second group of methods adopt pre- 984

trained language models for query rewriting. 985

BART (Lewis et al., 2020) is a pre-trained seq2seq 986

model. We adopt this particular model instead of, 987

for example, BERT (Devlin et al., 2019) or GPT- 988

2 (Radford et al., 2019), because we treat query 989

rewriting as a seq2seq task. And the aforemen- 990

tioned architectures have either the Transformer 991

encoder (e.g., BERT) or the Transformer decoder 992

(e.g., GPT-2), but not both. In our experiments, 993
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Type Query Likelihood Query Likelihood

History

iphone 11 pro case pokemon; colorado 2005 tail lights;iphone 11 pro case eevee; — colorado 2005 door —iphone 11 pro case hetalia; colorado 2005 accessoriesiphone 11 pro case sailor moon

Source iphone 11 pro case snow leopard — colorado headlights —

Target iphone 11 pro case tiger — colorado 2005 headlights —

Rewritten

iphone 11 pro case disney 0.497 2005 colorado headlights 0.566
iphone 11 pro case sailor moon 0.492 colorado headlights 2005 0.458
iphone 11 pro case harry potter 0.445 colorado headlights led 0.357

iphone 11 pro case 0.440 colorado headlights assembly 0.301
iphone 11 pro case cute 0.419 colorado tail lights 0.289

iphone 11 pro case leopard 0.391 colorado headlights housing 0.237
iphone 11 pro case clear 0.379 colorado led headlights 0.234

iphone 11 pro case disney princess 0.372 2004 colorado headlights 0.230
iphone 11 pro case pink 0.364 colorado 2004 headlights 0.214

iphone 11 pro case totoro 0.353 colorado headlights 2004 0.208

Table 2: Two examples of generated queries and their associated likelihood.

Example 1 dodge led sign;

History
dodge banners;
mopar banner;
mopar poster

Source dodger posters

Target dodge posters

Rewritten w/o context dodger flag

Rewritten w/ context dodge poster

Example 2 samsung galaxy case;

History samsung galaxy a11 case;
samsung a11 case

Source samsung galaxy a7

Target samsung galaxy a7 case

Rewritten w/o context samsung galaxy a7 charger

Rewritten w/ context samsung galaxy a7 case

Table 3: Two examples of context-aware query rewriting
with and without context.

BART is fine-tuned in a setting similar to training994

the Transformer model. We adopt the BART-base995

architecture in all the experiments, which contains996

about 140M parameters.997

⋄ MeshBART (Chen and Lee, 2020) is a BART-998

based model that first concatenates the history999

query, and then feeds it to a pre-trained BART1000

model for query generation. Note that the original1001

method requires click information. We remove this1002

component as the proposed method do not need1003

such data.1004

⋄ BART+Aggregation is similar to Trans-1005

former+Aggregation, except we replace the Trans-1006

former backbone with the pre-trained seq2seq 1007

BART model. 1008

C Training details 1009

We use the Fairseq (Ott et al., 2019) code-base with 1010

PyTorch (Paszke et al., 2019) as the back-end to 1011

implement all the methods. All the experiments are 1012

conducted using 8 NVIDIA V100 (32GB) GPUs. 1013

For training a Transformer model from scratch, 1014

we adopt the Transformer-base (Vaswani et al., 1015

2017) architecture. We use Adam (Kingma and 1016

Ba, 2015) as the optimizer, and the learning rate 1017

is chosen from {3 × 10−4, 5 × 10−4, 1 × 10−3}. 1018

We use 4 heads for the weighted multi-head graph 1019

attention mechanism, where the head dimension 1020

is set to be 128 (note that the Transformer-base 1021

architecture has embedding dimension 512). 1022

For fine-tuning a BART model, we adopt the 1023

BART-base (Lewis et al., 2020) architecture. We 1024

use AdamW (Loshchilov and Hutter, 2019) as the 1025

optimizer, and the learning rate is chosen from 1026

{3 × 10−5, 5 × 10−5, 1 × 10−4}. Similar to the 1027

training from scratch scheme, we adopt 4 heads, 1028

each with dimension 192, for the weighted graph 1029

attention mechanism. 1030

For both training-from-scratch and fine-tuning, 1031

please refer to2 Ott et al. (2019) for more de- 1032

tails such as pre-processing steps and other hyper- 1033

parameters. 1034

2https://github.com/pytorch/fairseq/
blob/master/examples/translation/README.
md
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D Detailed Algorithm1035

Algorithm 1: Context-aware query rewrit-
ing.
Input: D: dataset containing sessions;

Initial parameters for the
Transformer encoder and the
Transformer decoder; Initial
parameters for four weighted graph
attention mechanism (Eq. 2):
wGATt→q, wGATq→c, wGATc→q,
wGATq→t; Initial parameters for
the aggregation network (Eq. 3); K:
the number of updates on the session
graph; N : the number of rewritten
queries for each session.

Output: A list that contains N generated
queries for each session in the
dataset.

Set result list: rewritten = [];
for each session in D do

/* Encode input data. */
Compute source representation Hs and

history representation Uh using the
Transformer encoder;
/* Apply weighted graph

attention. */
Obtain initial representations G0

t , G0
q ,

G0
c ;

for k = 1 · · ·K do
Gk−1/2
q = GATc→q(Gk−1

t ,Gk−1
q );

Gk
t = GATq→t(Gk−1/2

q ,Gk−1
t );

Gk
q = GATt→q(Gk

t ,G
k−1/2
q );

Gk
c = GATq→c(Gk−1/2

q ,Gk−1
c );

end
Set history representation
{hi}Nt+Nh

i=1 = GK
t ∪ GK

h ;
/* Apply aggregation

network. */
Compute session representation Hsess

from Hs and {hi}Nt+Nh
i=1 using Eq. 3;

/* Generate rewritten
queries. */

Generate N rewritten queries {qi}Ni=1

using the Transformer decoder and a
beam search procedure;
rewritten = rewritten+ {qi}Ni=1;

end
Output: Rewritten queries rewritten.
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