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Abstract

Maximal Update Parameterization (µP) has
shown significant promise in allowing zero-shot
hyperparameter transfer across neural network
scales, reducing the prohibitive cost of hyperpa-
rameter tuning for large models. However, the the-
oretical foundation behind the observed approxi-
mate transferability of hyperparameters remains
underexplored. Relying on a width-dominance
regime, which ensures that as width grows, cer-
tain terms of the learning dynamics dominate,
we establish the first fundamental separation of
scales in µP between macro-variables (e.g. loss
landscapes) and micro-variables (e.g. individual
weights). Our formulation explains why hyper-
parameter tuning can be effectively performed
in early training stages, i.e., early statistics effec-
tively approximate global hyperparameter optima,
implying the potential to further reduce the train-
ing costs required for searching optimal hyperpa-
rameters. We further apply our main theory to
explain an empirical deep learning phenomenon
discovered independently by prior work.

1. Introduction
The success of hyperparameter transfer in deep learning
relies critically on the choice of network parameterization.
Recent work introduced the Maximal Update parameteriza-
tion (µP), which enables reliable µTransfer of hyperparam-
eters from small proxy models to larger ones (Yang et al.,
2021). This breakthrough allows practitioners to efficiently
optimize hyperparameters on smaller, cheaper models while
retaining effectiveness when scaled to larger architectures.

However, the theoretical understanding of whether or why
early-stage tuning can transfer effectively across different
model scales remains limited. In practice, many large-scale
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model training pipelines adopt a similar, ad-hoc approach:
they identify hyperparameters from the first few epochs
and assume those settings generalize throughout training
to avoid prohibitively expensive full-run searches. While
widely used in industry to reduce cost, this early-stage strat-
egy lacks a rigorous theoretical grounding, motivating our
work. Specifically, it is unclear how the dynamics of opti-
mization adapt to changes in model size and interact with
µP to preserve hyperparameter validity. Bridging this gap
requires deeper insights into the interplay between parame-
terization, training stability, and the loss landscape across
scales. Such understanding could further enhance the ro-
bustness and efficiency of hyperparameter transfer.

This paper formalizes a novel scale-separation frame-
work, showing that the macro-level descriptors (e.g., gra-
dient norms, loss landscapes) converge at O(1/n), while
micro-level variables (individual weights) only converge
at Θ(1/

√
n). This theoretical lens provides an immediate

explanation for the ad-hoc industry practice of “early-stage”
hyperparameter tuning: even if individual weights are far
from their eventual values, large-width models induce stable
macro-level signals that can guide hyperparameter selection.
As a result, optimizing hyperparameters on a smaller proxy
model or a small fraction of training steps can approximate
globally optimal hyperparameters within O(1/n) error - po-
tentially reducing the cost of full-run searches substantially
in large-scale neural network pipelines.

Our work introduces several key technical advances:

• We introduce a stochastic differential equation (SDE)
framework that cleanly separates macro (loss land-
scapes) and micro (individual weight) variables in
large-width neural networks. This leads to a precise un-
derstanding of why hyperparameter tuning can succeed
early in training, marking the first rigorous application
of such SDE techniques to hyperparameter transfer.

• We develop a new mathematical treatment of how
loss landscapes vary with network width n, proving
that macro-level descriptors converge at O(1/n) while
micro-level weights evolve rigorously more slowly.
This width “regularity” underlies an O(1/n) bound on
hyperparameter transfer error, providing a principled
foundation for zero-shot transfer across scales.

• We extend our macro–micro separation framework to
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incorporate integrated learning rate descriptors, yield-
ing a novel theoretical account of the recently observed
“delay” phenomenon between dynamic learning rates
and validation loss (Tissue et al., 2024).

2. Related Work
Our framework complements classic wide-network theo-
ries. Neural tangent kernel (NTK) analyses (Jacot et al.,
2018), which linearize training in the infinite-width limit,
illuminate macroscopic behavior through a fixed kernel but
miss finite-width effects and individual weight trajectories.
Mean-field approaches (Mei et al., 2019), conversely, track
microscopic weight fluctuations yet do not explain the rapid
stabilization of aggregate quantities such as loss landscapes
or activation norms. Our finite-width, multiscale perspective
extends these insights, revealing that global signals stabilize
early — well before individual weights converge — and
are reliable guides for hyperparameter selection. Our main
proof technique is based on the SDE framework used in
(Xie et al., 2024), which we will discuss in Section 2.3.

2.1. µP Theory of Hyperparameter Transfer

Historically, hyperparameter tuning has been a costly step
when scaling up models. Practitioners often need to retune
from scratch for bigger models – a slow and expensive
process. Utilizing tensor program formulations giving rise
to a Gaussian Process interpretation of deep neural networks,
the theory of maximal update parameterization (Yang &
Hu, 2021; Yang et al., 2021; 2024a) provides theoretical
principles that ensure consistent training behavior across
different width scales of the model, enabling “zero-shot”
transfer of hyperparameters from narrow to wide models.

Subsequent work further explored how µP extends to trans-
fer across models of different depths (Bordelon et al., 2024)
(combined with techniques such as dynamical mean field
theory (Bordelon & Pehlevan, 2022)), different widths and
depths (Yang et al., 2024a), and even varied network ar-
chitectures (Chen et al., 2024). More recently, Lingle con-
ducted a large-scale experiment testing the effectiveness of
µP (Lingle, 2024). They found that upon empirical verifica-
tion of up to 10B transformers and training budgets of up to
190B tokens, µ-Transfer works as intended for the majority
of important cases and enumerated the exceptions.

2.2. Early Training Dynamics

Prior work has analyzed neural network training through
the lens of gradient flow dynamics, revealing distinct phase-
dependent behaviors. Recently, Yang et al. identified a
two-stage training process naturally partitioned by gradient
flow patterns, showing that training each regime separately
with tailored algorithms simplifies learning rate schedules
(Yang et al., 2024b). Meanwhile, in a two-mixture linear

classification task involving latent word correspondence
structures, they demonstrate that gradient descent dynamics
in a symmetric two-headed transformer with ReLU neurons
follow a three-stage progression (Yang et al., 2025).

In the early stage, the hyperparameter decisions are found
to be critical, as during this period the network is still close
to initialization where the theoretical guarantees hold, and
once they are locked in, later training dynamics become
more robust (Cohen et al., 2021). Empirically, it is folklore
in industry that optimal hyperparameters can be determined
in early training without having to wait until training comple-
tion (Goodfellow et al., 2016). There are many algorithms
for early halting, such as the irace package (López-Ibáñez
et al., 2016; Birattari et al., 2002), successive halving (SHA)
(Jamieson & Talwalkar, 2015), asynchronous successive
halving (ASHA) (Jamieson & Talwalkar, 2015), and hy-
perband - which applies SHA and ASHA multiple times
(Li et al., 2018). (Egele et al., 2024) confirmed that even
training after one epoch the hyperparameter optimization
obtained often achieves competitive performance.

2.3. Scaling Laws for Hyperparameters

Given the importance of hyperparameter tuning, various
empirical studies attempted to fit a scaling law of optimal
learning rate with respect to model size. Kaplan and Mc-
Candlish et al. found that larger models require a smaller
learning rate to prevent divergence, while noting also there
may be a dependence on network width (Kaplan et al., 2020).
DeepSeek AI found that the optimal learning rate gradually
decreases with the increase in compute budget C (dee, 2024).
However, the empirical scaling laws may be affected by the
various set-ups, such as the independent variables of choice
and the underlying fitted data (Lingle, 2024).

A recent work (Xie et al., 2024) predicts training loss and
optimal learning rate schedules, deriving convergence rates
and escape probabilities under time-inhomogeneous SDEs,
and providing an empirical scaling law for hyperparameters.
In comparison, we rigorously develop a width scaling theory
within µP to specifically analyze the separation of scales.
Unlike (Xie et al., 2024), whose width-agnostic treatment
applies to any non-convex problem, we impose extra local
convexity or smoothness on the meta-objective. This nar-
rower scope forfeits some generality but lets us rigorously
prove scale-separation results for hyperparameter choice -
findings that, in practice, still hold across nonconvex neural
networks (as seen in our experiments).

3. A Prior: Early-Stage Coarse-Graining for
Hyperparameter Tuning

We first show that, under suitable assumptions about model
parameterization and how global descriptors converge, the
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optimal hyperparameters for early-stage training approxi-
mate the optimal hyperparameters for the full training.

Theorem 3.1. Consider a neural network parametrized
using µP. Let η(t) denote the hyperparameter set at train-
ing step t, and η∗(t0) be the hyperparameter optima found
during early-stage training t ∈ [0, t0], where t0 ≪ T . We
further define η(t) to be the hyperparameter configuration
that, in the infinite-width limit, aligns with stable macro-
level statistics observed up to step t. The coarse-grained
hyperparameter set η(t0) approximates the optimal hyper-
parameters η∗∗ for the full training duration T :

η(t0) ≈ η∗∗, with an error bounded by O(1/n).

3.1. Assumptions

The first assumption is fundamental in the theory of µP,
where the cumulative drift is limited due to finite-width
effects, ensuring that those effects do not blow up or over-
shadow the error scale we derive.

Assumption 3.1 (Width Dominance). The width of the
neural network is much larger than training time: n ≫ T .

The next assumption recalls µP scaling (Yang et al., 2021).

Assumption 3.2 (µP Scaling). The model parameterization
follows µP rules, preserving maximal feature learning:

• Hidden weights W ∈ Rn×n are initialized as W ∼
N (0, 1/n) with learning rate η = η0.

• Input weights V are initialized as V ∼ N (0, 1) with
learning rate η = η0n.

• Output weights V ′ are initialized as V ′ ∼ N (0, 1/n2)
with learning rate η = η0/n.

An additional assumption in our framework is that, at suffi-
ciently large width, certain coarse-level descriptors of the
network — such as layerwise activation variances, gradient
norms, or average feature magnitudes — stabilize quickly
and exhibit a near time-invariant (or slowly varying) be-
havior over an early training window [0, t0]. We term this
property “self-similarity under coarse-graining.” 1

1This assumption has strong empirical and theoretical support
from wide network studies. On the theory front, prior µP work
(e.g., (Yang & Hu, 2021; Lingle, 2024)) shows that layer-wise
statistics such as activation variances and gradient norms stabilize
early in training and remain nearly invariant across widths, con-
sistent with infinite-width theories where macro-level descriptors
concentrate, as common in neural tangent kernel and mean-field
analyses. On the empirical front, recent large-scale experiments
(e.g., (Vyas et al., 2023; Dey et al., 2024)) also confirm that op-
timal hyperparameters stay stable across model scales, indirectly
verifying the training dynamics exhibit self-similarity.

Assumption 3.3 (Early-Stage Macro-Level Self-Similarity).
The early-stage statistics (e.g., activation variance, gradi-
ent norms) concentrate around stable values and exhibit
self-similar behavior when subjected to a coarse-graining
transformation (such as a time integral or moving average).
Formally, there exists a stable descriptor X∗(t) such that

X(t) = R
(
X(τ), 0 ≤ τ ≤ t

)
≈ X∗(t),

for t ∈ [0, t0], with deviations of O(1/n) at large width.

Here, R represents a “coarse-graining” operator—such as∫ t

0
· dτ or a weighted average—while X∗(t) is the stable

limiting reference for X(τ). Empirically, many large-scale
training runs show that, after a brief “burn-in” period, global
descriptors like activation norms and gradient magnitudes
vary minimally, supporting this assumption in practice.

Macro vs. Micro Variables under µP . Throughout this
work, we decompose all observation variables during the
network training process into two classes of variables:

• Micro-variables, which capture fine-grained, local
changes in the parameter space. A canonical ex-
ample is the deviation of weights from initialization,
µ(t) = θ(t) − θ(0). This micro-variable µ(t) tracks
how individual parameters drift during training. Un-
derstanding ∥µ(t)∥ or its coordinate-wise fluctuations
helps quantify slow, localized changes in the network.

• Macro-variables, which represent global or aggregated
statistics of the network. Typical macro-level descrip-
tors include activation statistics A(t) (e.g., layerwise
means / variances), gradient norms G(t), or the global
loss L(t). These variables concentrate and stabilize
faster at large width n (Bordelon & Pehlevan, 2022).

Under Maximal Update Parameterization (µP ), the update
rule for the network parameters θ(t) at training step t is

θ(t+ 1) = θ(t) − η∇L
(
θ(t)

)
,

where η is scaled by 1/n (or a similar rule) to ensure stable
feature learning across layers.

Coarse-Graining Transformation on Macro Variables.
Motivated by the observation (Assumption 3.3) that global
statistics often exhibit a self-similar or quasi-stationary be-
havior early in training, we define a coarse-graining operator
R acting on these macro descriptors. Concretely, for any
macro-level function f(t) (such as A(t) or G(t)), we set:

f(t) = R
(
f(t)

)
, where R

(
f(t)

)
=

∫ t

0

f(τ) dτ.
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The idea is that
∫ t

0
f(τ) dτ averages (or integrates) the

macro-level signal over training steps, smoothing out short-
term fluctuations while preserving the long-term stable trend.
If f(t) is reasonably stable, then f(t) provides a representa-
tive value upon which hyperparameters can be adapted.

Hyperparameter Evolution via A(t) and G(t). In par-
ticular, if η(t) denotes the hyperparameter set (e.g., learning
rates, momentum) at step t, one may write its update rule as

η(t+ 1) = F
(
η(t), A(t), G(t)

)
,

where A(t) = R
(
A(t)

)
and G(t) = R

(
G(t)

)
are coarse-

grained versions of the activation / gradient statistics. In
other words, the macro-variables first go through smoothen-
ing of local fluctuations, and then get pushed by the update
rule. At large width n, under µP stability, these macro-
level variables converge reliably, allowing η(t) to track a
near-fixed-point η∗:

F
(
η∗, A(t), G(t)

)
≈ η∗,

reflecting that once macro-variables and hyperparameters
reach a stable regime, their further updates remain small.
The fixed-point analysis here leverages the notion that micro-
level fluctuations in µ(t) do not prevent the macro-variables
from stabilizing, thereby guiding η(t) toward η∗ as n → ∞.

Finite-Width vs. Early-Stage Errors. At large width n,
the difference between the coarse-grained hyperparameters
η(t0) (determined at early time t0 ≪ T ) and the global
optimum η∗∗ can be decomposed into two parts:∣∣η(t0)− η∗∗

∣∣ ≤
∣∣η(t0)− η∗(∞)

∣∣︸ ︷︷ ︸
(Early-Stage Error)

+
∣∣η∗(∞)− η∗∗

∣∣︸ ︷︷ ︸
(Finite-Width Error)

.

Here, η∗(∞) denotes the optimal hyperparameters one
would find in the infinite-width limit, ignoring finite-width
corrections. We interpret and bound these two differences:

1. Early-Stage (Training-Duration) Error:
∣∣η(t0) −

η∗(∞)
∣∣. This captures the fact that η(t0) is determined

from only t0 ≪ T early-stage training data. If t0 ≪ T ,
it might not exactly match the infinite-width global op-
timum η∗(∞) that fully accounts for the entire training
horizon. As n → ∞, though, the macro-level statis-
tics (activation / gradient norms) quickly reach near-
stationarity, meaning that hyperparameters deduced
from the first t0 steps suffice to approximate the true
infinite-width optimum η∗(∞). This is observed empir-
ically when early training reveals stable signals about
learning-rate, momentum, etc. (Lingle, 2024).

2. Finite-Width Error:
∣∣η∗(∞) − η∗∗

∣∣. Even with
infinitely-many training steps to find η∗(∞) at infi-
nite width, real networks are at a finite but large width

n, so the actual optimal hyperparameters at width n,
η∗∗, differs slightly. By the law of large numbers and
concentration arguments at width n, fluctuations in
activation variances or gradients decay as Θ(1/

√
n).

In µP theory, such fluctuations sum to a final O(1/n)
mismatch between the infinite-width and the finite-
width optimum (Yang et al., 2021; Yang & Hu, 2021).

Thus, provided that (i) t0 ≪ T , which does not overly
constrain hyperparameter tuning, and (ii) n ≫ T , which
ensures early-stage tuning is both sufficiently representa-
tive (small early-stage error) and robust under finite-width
corrections (small finite-width error), these two sources of
error add up to O(1/n), as desired.

4. Main Result: Separation of Scales in µP
We now present our main result that under µP parameteriza-
tion, loss landscapes converge at rate O(1/n) with network
width, while individual weights evolve more slowly at rate
Θ(1/

√
n). This explains why hyperparameter transfer can

work effectively even before individual weights have con-
verged to their infinite-width behavior.

Theorem 4.1. Consider a neural network of width n trained
under µP parameterization. Let M(η) denote the expected
training loss after T steps with learning rate η (macro-
variable) - in other words, M(η) = EL(η) - and µ(t) =
θt − θ0 denote the deviation of weights from initialization
(micro-variable). Under suitable conditions, for any δ > 0,
with probability at least 1− δ:

1. For any |η1−η2| = O(1), |M(η1)−M(η2)| = O(1/n).
(Fast convergence of loss landscape).

2.For any fixed t ∈ [0, T ],E
[
∥µ(t)∥

]
= Θ

(
1/
√
n
)
. (Slow

convergence of weights).

4.1. Assumptions

Assumption 4.1 (L-smoothness). The loss function L(·) is
L-smooth (standard as in (Nesterov, 2014)):

∥∇L(x)−∇L(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rd(n).

The second assumption ensures that the noise introduced by
different data points during the estimation of the gradient is
unbiased and independent, given the weights:

Assumption 4.2 (Unbiased Estimator). Given any x ∈ RN

we assume that the entries of ∇F (x, ζi)−∇f(x) are i.i.d.
Gaussians N(0,Σg) for all i ∈ [D] where Σg is given.

These two assumptions lead to a concentration inequality
whose proof is in Proposition 2 of (Xie et al., 2024).

Proposition 4.2 (Gradient Noise Trace Boundedness). The
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stochastic gradient follows:

∇L̃(x) = ∇L(x) + ξ, where ξ ∼ N (0,Σ(x))

with covariance Σ(x) satisfying the trace bound:

|Tr(Σ(x))− Tr(Σg)| ≤ t

with probability ≥ 1 − 2 exp(−Dt2/(4Tr(Σ2
g) + 2tσ2

g))
where D is batch size, Σg is base covariance, and σ2

g its
maximum eigenvalue.

The third assumption is a standard regularity guarantee to
ensure the convergence of macro-variables under increasing
width, for example see (Soto, 2024). It holds for standard ac-
tivations (e.g., ReLU, GELU), and similar assumptions are
employed in the neural tangent kernel / stochastic gradient
descent literature and µP papers themselves2. We emphasize
that the bound is for the entire training path difference in the
function space, not just local Lipschitz gradient differences.

Assumption 4.3 (Width Regularity). For any widths n1 <
n2, there exists a mapping ϕ : Rd(n1) → Rd(n2) such that:

|L(θ;n1)− L(ϕ(θ);n2)| ≤ C|n1 − n2|/n1.

4.2. Proof of Theorem 4.1: Part 1 (Macroscopic)

We start by approximating the discrete SGD updates by a
continuous-time SDE, by Euler-Maruyama discretization,
under a standard small step assumption:

dθt = −η∇L(θt)dt+
√

η/nσ(θt)dWt

where σ(θt)σ(θt)
⊤ = Σ(θt) and Wt is Brownian motion.

We first establish how the macroscopic variable M(η) re-
lates to feature learning in µP through the following key
lemmas, whose proofs are deferred to the Appendix A.

Lemma 4.3 (Gradient Scaling). Under µP and Assumptions
3.1 - 3.3, for any fixed t:

E[∥∇L(θt)∥2] = O(1).

Lemma 4.4 (Hessian Scaling). Under µP and L-
smoothness (Assumption 4.1), for any θs:

∥∇2L(θs)∥F ≤ L
√

d(n)

where d(n) is the parameter dimension scaling with n.

2For example, (Yang & Hu, 2021) assumes that activations
are smooth (or smoothed ReLU), and many proofs invoke pseudo-
Lipschitz or bounded-derivative conditions to enable law-of-large-
numbers-type arguments to ensure that descriptors like average
activation variance or loss stabilize as width increases — empiri-
cally supported and analytically tractable.

This leads to:

Tr(∇2L(θs)Σ(θs)) ≤ ∥∇2L(θs)∥F ∥Σ(θs)∥F
≤ L

√
d(n) · O(

√
n) = O(n).

The subtle point is that the Lipschitz constant itself decays
as L = O(n−1/2) under µP scaling, so the product remains
only linear in n instead of n3/2.

Itô decomposition of the loss. Because L(θt) is twice
differentiable, Itô’s formula gives

dL(θt) = ⟨∇L(θt), dθt⟩+
1

2
Tr(∇2L(θt)dθtdθ

⊤
t )

= −η∥∇L(θt)∥2dt+
√

η/n⟨∇L(θt), σ(θt)dWt⟩

+
η

2n
Tr(∇2L(θt)Σ(θt))dt

where the last term comes from dθtdθ
⊤
t = η

nΣ(θt).

The second–order term in the Itô expansion carries a prefac-
tor η/n = Θ(n−2); hence (η/n) Tr(∇2LΣ) = O(n−1),
the same order as the drift term −η∥∇L∥2. Note that with-
out Lemma 4.4 the trace could scale as Ω(n3/2), the diffu-
sion term would dominate, and the O(1/n) macro rate used
in Proposition 4.6 could not be proved.

Taking expectation and integrating up to t (the martingale
term has zero mean) we obtain:

E[L(θt)]− L(θ0) =− η

∫ t

0

E[∥∇L(θs)∥2]ds

+
η

2n

∫ t

0

E[Tr(∇2L(θs)Σ(θs))]ds.

By the O(n) trace bound above and η = O(1/n), both
integrals are O(1/n). Hence the total drift of M(η;n) over
T steps is O(1/n), which precisely yields the statement of
Lemma 4.5 used in the proof of Proposition 4.6 later:

Lemma 4.5 (Finite-horizon loss drift). For any fixed train-
ing horizon T and every width n,∣∣M(η;n) − L(θ0;n)

∣∣ = O(1/n).

We are now ready to establish a fundamental result of width
scaling, on the expected T -step training loss:

Proposition 4.6 (Width Scaling in µP). For widths n1 < n2,
under Assumptions 4.1 - 4.3, let

M(η;n) = Eξ[L(θT ;n)]

be the expected loss after T steps of training with learning
rate η taken over the training noise ξ. Then,

|M(η;n1)−M(η;n2)| ≤ O(1/min(n1, n2)).

5



On the Provable Separation of Scales in Maximal Update Parameterization

Proposition 4.6 immediately implies that for any infinite se-
quence of increasing widths nk, M(η;nk) forms a Cauchy
sequence, giving rise to the limit M(η;∞) and a conver-
gence rate of O(1/n). Formally, this is stated as:

Corollary 4.7 (Existence of Limiting Landscape). Under
Assumptions 4.1 - 4.3, there exists a limiting landscape
M(η;∞) such that |M(η;n)−M(η;∞)| ≤ O(1/n).

Proposition 4.8 (Transfer Error Bound). Let η∗(n) be the
optimal learning rate for width n. The transfer error is:

M(η∗(n1);n2)−M(η∗(n2);n2) ≤ O(1/min(n1, n2)).

Indeed, by Proposition 4.6, the difference of M(η∗(n1);n2)
and M(η∗(n1);n1) is bounded by O(1/min(n1, n2)). By
optimality of η∗(n1) for width n1 and Proposition 4.6,

M(η∗(n1);n1) ≤ M(η∗(n2);n1)

≤ M(η∗(n2);n2) +O(1/min(n1, n2)).

Using the triangle inequality with M(η∗(n1);n1) as a com-
mon anchor, we have the desired result.

Having shown that the loss landscape itself varies only
O(1/n) with width, we now show that the minimizer of
that landscape with respect to η inherits the same regularity:

Lemma 4.9 (Learning Rate Transfer). Let η∗(n) =
argminM(η;n) be the optimal learning rate for width n.
Then under Assumptions 4.1 - 4.3, for n1 < n2:

|η∗(n1)− η∗(n2)| = O(1/min(n1, n2)).

That concludes the first part (macro-variable) proof.

4.3. Proof of Theorem 4.1: Part 2 (Microscopic)

For the microscopic variable, we first establish the upper
bound (§ 4.3.1), then proceed to the tight bound (§ 4.3.2).

4.3.1. PART 2.1: UPPER BOUND

From the SDE representation, the evolution of µ(t) follows:

dµ(t) = dθt = −η∇L(θt)dt+
√
η/nσ(θt)dWt.

Consider the evolution of E[∥µ(t)∥2], just as we derived in
the macroscopic variable part (using Itô lemma and taking
the expectation for the Itô martingale’s mean to vanish):

d

dt
E[∥µ(t)∥2] = −2ηE[⟨µ(t),∇L(θt)⟩] +

η

n
E[Tr(Σ(θt))].

By Young’s inequality, for any α > 0

⟨µ(t),∇L(θt)⟩ ≥ − 1

2α
∥µ(t)∥2 − α

2
∥∇L(θt)∥2.

Choosing α = 1
L and pulling it back to the µ(t) evolution

SDE, d
dt E ∥µ(t)∥2 is upper-bounded by the right side:

ηL E ∥µ(t)∥2︸ ︷︷ ︸
=O(

1
n )E ∥µ∥2

+
η

L
E ∥∇L(θt)∥2︸ ︷︷ ︸
=O(

1
n )

+
η

n
E[TrΣ(θt)]︸ ︷︷ ︸
=O(

1
n )

.

Note that under µP scaling, we have η = O(1/n) for hidden
weights3. Meanwhile, by Proposition 4.2, Tr(Σ(θt)) is close
to the base covariance Tr(Σg), which is Θ(n).

We write
d

dt
X(t) ≤ cX(t) + C, X(0) = 0 for X(t) =

E ∥µ(t)∥2, with c := ηmaxL = O(1/n) and C := O(1/n).
By Grönwall’s inequality, solving this gives

X(t) ≤ C

c

(
ect − 1

)
= O(1/n), 0 ≤ t ≤ T,

because ct = O(1/n) for fixed horizon T . Hence

E ∥µ(t)∥2 = O(1/n) =⇒ E ∥µ(t)∥ = O(1/
√
n).

The O(1/
√
n) upper bound proved here is the first half of

the tight Θ(1/
√
n) rate; the next subsection completes the

argument with an (1/
√
n) lower bound.

4.3.2. PART 2.2: TIGHT (LOWER) BOUND

Building on the differential inequality derived in § 4.3.1 we
now establish E ∥µ(t)∥ ≥ c/

√
n.

Lemma 4.10 (Non–Vanishing Diffusion Lower Bound). Fix
a width–independent horizon t ∈ [0, T ] and suppose As-
sumptions 3.1–3.3 and 4.1–4.3 hold. Let the parameter
displacement satisfy the SDE

dµ(t) = −η(t)∇L(θt) dt+

√
η(t)

n
σ(θt) dWt, σσ

⊤ = Σ,

where the LR obeys 0 < ηmin ≤ η(t) ≤ ηmax = O(n−1).

Assume ηmax ≤ γ ηmin with γ independent of n, and there
exists a constant c− ∈ (0, 1) independent of n such that

Pr
[
TrΣ(θs) ≥ c− n for all s ∈ [0, T ]

]
≥ 1− e−Ω(n).

(1)
Then, with sufficiently small γ, for every t ∈ [0, T ],

E
[
∥µ(t)∥2

]
≥ c− ηmin t

2n
− Cn, (2)

where C = C(L, ηmax, T ) is width–independent. Moreover
there exist width–independent constants c1(t), c2(t) > 0
such that

c1(t)n
−1/2 ≤ E

[
∥µ(t)∥

]
≤ c2(t)n

−1/2, ∀ t ∈ (0, T ].
(3)

In particular, for any fixed t0 > 0, E[∥µ(t0)∥] = Θ
(
n−1/2

)
.

3We clarify that this refers to the learning rate per parameter,
not the total per-layer update.
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Proof. Throughout the argument we write Ck > 0 for
generic constants whose numerical value may change from
one line to the next, but which depend only on fixed model
and schedule–parameters (T, L, ηmin, ηmax, c−, bounds
on ∥Σ∥, etc.) and never on the network width n.

Step 1: L2 differential inequality. Apply Itô’s formula:

d E∥µ(t)∥2

dt
= −2η(t)E⟨µ(t),∇L(θt)⟩+

η(t)

n
E
[
TrΣ(θt)

]
.

(4)
Note this is the very same differential identity that was
established in § 4.3.1; we will simply apply it in the oppo-
site direction. direction, retaining only the always–positive
diffusion term.

Step 2: bound the drift contribution. Because L is glob-
ally L–smooth (Ass. 4.1), ⟨µ,∇L⟩ ≤ L

2 ∥µ∥
2 + 1

2L∥∇L∥2.
Taking expectations and using Lemma 4.6 (E∥∇L∥2 ≤ C0),

−2η(t)E
[
⟨µ,∇L⟩

]
≥ −Lη(t)E

[
∥µ∥2

]
− η(t)

L
C0.

Step 3: bound the diffusion contribution. From (1) and
the union bound, E[TrΣ(θt)] ≥ 1

2c−n for all t ∈ [0, T ]

once n is large enough, hence η(t)
n E[TrΣ(θt)] ≥ 1

2c−ηmin.

Step 4: solve the inequality. Let y(t) := E∥µ(t)∥2. Com-
bine Steps 1–3 to obtain

ẏ(t) ≥ 1

2
c−ηmin−b y(t)−η(t)

L
C0, b := Lηmax = O(n−1).

(5)
Note η(t) ≤ ηmax = O(n−1) and ηmax ≤ γ ηmin. If γ is
small enough such that 4C0γ ≤ c−L. Then for all widths
4C0ηmax ≤ 4C0γηmin ≤ c−Lηmin, so the last term
in (4) can be bounded by 1

4c−ηmin. Set

a :=
1

4
c−ηmin > 0,

and note a is width–independent. Then (5) simplifies to

ẏ(t) ≥ a− b y(t), y(0) = 0.

Solving it gives

y(t) ≥ a

b

(
1− e−bt

)
≥ a t− 1

2 abt
2,

where the second inequality uses e−x ≤ 1− x+ 1
2x

2. As
bt = O(n−1) for any fixed horizon t ≤ T , we have

y(t) ≥ a t

2
= Θ

(
n−1

)
, 0 < t ≤ T.

This establishes the lower bound (2).

Step 5: fourth–moment bound. Because the drift
−η(t)∇L and diffusion

√
η(t)/nσ are globally Lipschitz

(in θ) with linear growth, standard SDE estimates (Øksendal
& Øksendal, 2003) give, for any k ≥ 1, E∥µ(t)∥2k ≤
C1 n

−k. In particular,

E∥µ(t)∥4 ≤ C1 n
−2. (6)

Step 6: Paley–Zygmund to upgrade to L1. Let Z :=
∥µ(t)∥2. From (2) and (6), EZ ≥ αn−1 and EZ2 ≤
C1n

−2 with α = 1
2c−ηmint − C > 0 once n is large. Pa-

ley–Zygmund implies Pr
[
Z ≥ 1

2EZ
]
≥ α2

4C1
=: δ(t) > 0.

Whenever Z ≥ 1
2EZ we have ∥µ(t)∥ ≥

√
α/(2n), so

E∥µ(t)∥ ≥
√

α

2n
Pr
[
Z ≥ 1

2EZ
]
≥ δ(t)

√
α√

2
n−1/2.

Concavity of x 7→
√
x gives the matching upper bound

E∥µ(t)∥ ≤
√

y(t) ≤ c2(t)n
−1/2. This proves (3).

Implications of Theorem 4.1 and Corollaries Our anal-
ysis reveals a fundamental separation between macro-
variables (loss landscapes) that converge at rate O(1/n) and
micro-variables (weights) that evolve more slowly at rate
Θ
(
1/
√
n
)
. The separation of scales is intimately connected

to feature learning (Yang et al., 2024a), supplementing prior
work (Vyas et al., 2023). The O(1/n) convergence of M(η)
to a well-defined limit means the loss landscape stabilizes
quickly with width while preserving learning capacity, and
guarantees reliable transfer of learning rates across scales.

5. Interpreting Learning Rate Scaling Laws
and Delay Phenomena

Recent empirical work (Tissue et al., 2024) suggests that
cross entropy training curves can be described by scal-
ing laws involving integrals of the learning rate, and that
changes in learning rate produce “delays” in validation loss
response. We now incorporate integrated learning rate de-
scriptors into our macro-level variables, showing that these
scaling laws and delay effects arise naturally. The original
notations are extended to our theorem statement.

We introduce a memory kernel q(τ) modeling the effect
of time-varying learning rate momentum in a continuous
limit: for example, the same concept of memory weight
captures how past states influence the current update in the
Generalized Langevin Equation and models integral equa-
tions in the dynamical mean-field theory for SGD literature.
Throughout we assume q : [0,∞) → R+ is measurable,∫∞
0

q(τ) dτ = 1, and supτ q(τ) < ∞.

Theorem 5.1. Under the Maximal Update Parameter-
ization (µP ), consider an infinitely wide neural network
trained with a time-varying learning rate η(t). We define
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the integrated learning rate variables as follows:

S1(t) =

∫ t

0

η(τ) dτ, S2(t) =

∫ t

0

η(τ)q(τ) dτ.

Based on q(τ) assumptions, S2(t) is finite and non-negative.

Assume that the loss landscape, when reduced to a one-
dimensional effective manifold parameterized by x4, sat-
isfies ℓ(x) ≈ L0 + A′x−α′

for large x and some A′ and
α′ > 0, in addition to the conditions in the following subsec-
tion, which guarantees stable infinite-width dynamics and
concentration of stochastic effects.

Then there exist constants A,C, α > 0 such that as n → ∞:

L(t) = L0 +AS1(t)
−α − CS2(t).

The −CS2(t) term encodes a systematic delay in how the
loss L(t) responds to learning rate changes, as it incorpo-
rates historical learning rate information.

5.1. Assumptions

Assume L(·) is L-smooth, as in Assumption 4.1; as well as
bounded gradients under µP : we ignore t-dependency and
consider sups≤T ∥∇L(θs)∥ = O(1) uniformly. 5 Further:

Assumption 5.1. Stable Infinite-Width Limit Under µP :
As n → ∞, define an infinite-width limiting trajectory θ∗(t)
that solves the deterministic ODE:

dθ∗(t)

dt
= −η0g(θ

∗(t)),

where g(θ∗) = limn→∞ ∇L(θ) scaled appropriately. This
stable limit exists as µP ensures no degenerate behavior.

Assumption 5.2. Macro-Level Descriptor Stability: Let
Xn(t) be a macro-level descriptor, e.g. the layer-wise acti-
vation variance. Assume

Xn(t) = X∗(t) +O(1/n), ∀t ≥ t0,

for some t0 ≪ T , where T is the total training horizon and
X∗(t) is a smooth, deterministic limiting descriptor. Early-
stage self-similarity means that after a short transient, Xn(t)
hovers close to a stable value trajectory X∗(t).

5.2. Proof

From the above assumptions, the following holds:
4This one-dimensional manifold assumption is typical in sim-

plifying large-width analyses, such as the standard neural tangent
kernel or dynamical mean field theory approaches.

5Indeed, under µP, at any time t, the per-layer learning rate
should still scale with width to ensure bounded updates. Our use
of time-varying η(t) assumes that such width scaling is preserved
pointwise in t, as is common in practical µP.

(i) Vanishing noise. Because the per-parameter learning-
rate satisfies η(s) = Θ(1/n) and TrΣ(θs) = Θ(n),
the covariance of the stochastic term in the SGD step
is η(s) TrΣ(θs)/n = Θ(1/n). By a matrix–Bernstein
inequality, which is a standard exponential decay result,
the cumulative noise over any finite horizon converges
to 0 almost surely as n → ∞.

(ii) ODE limit. Write p(n) for the total number of train-
able parameters at width n, so the ambient space is
Rp(n). With (i) and the uniform L-smooth gradient
bound, Kurtz–Protter weak-convergence theory (Gra-
ham et al., 1996) implies that the stochastic trajectory
θt ∈ Rp(n) converges (in the Skorokhod topology) to
the deterministic solution of

dθ∗(t)

dt
= − η0 ∇L

(
θ∗(t)

)
, θ∗(0) = θ0.

Consequently, the discrete update rule

θt+dt = θt − η(t)∇L(θt) dt+ η(t)Σ(θt)
1/2 dWt

reduces in the n → ∞ limit to dθt/dt = −η(t)∇L(θt).

We assume that the dominant training dynamics can be cap-
tured by a single scalar variable x(t) parametrizing a stable,
low-dimensional manifold of interest, i.e. there exists a
function θt such that L(θt) = ℓ(x(t)), for a suitably chosen
x(t). On this manifold, we write dx/dt = −g(x)η(t), for
some positive, smooth function g(x). Intuitively, g(x) is
the gradient magnitude along the direction of descent. We
assume 0 < C1 ≤ g(x) ≤ C2 along the trajectory; this
holds for cross-entropy with bounded activations.

We also recall the assumption that for large x, ℓ(x) ≈ L0 +
A′x−α′

with α′ > 0. This assumption means that as training
progresses (reflected by decreasing x), the loss approaches
L0 with a power-law decay in terms of x.

From dx
dt = −g(x)η(t), we separate variables and derive∫

dx

g(x)
= −

∫
η(t) dt = −S1(t),

where we recall S1(t) =
∫ t

0
η(τ) dτ .

As t → ∞, if η(t) remains positive and integrable, S1(t) →
∞. By integrating both sides and considering the inverse
relationship, we are able to express x as a function of S1(t):

x(t) = x(S1(t)).

For large x and correspondingly large S1(t), standard
asymptotic inversion yields a power-law type relationship.
Specifically, there exist constants A,α > 0 such that

ℓ(x(t)) = L0 +AS1(t)
−α.

8
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Now consider when η(t) is not fixed. We write η(t) =
η̄(t) + δη(t) where η̄(t) is a slowly–varying baseline sched-
ule and δη(t) is a signed perturbation capturing fast LR
adjustments. The memory descriptor therefore records only
the perturbative part

S2(t) =

∫ t

0

δη(τ) q(τ) dτ,

The baseline ODE ẋ0 = −η̄(t)g(x0) determines a reference
trajectory, and we set x(t) = x0(t) + x1(t). Linearizing to
first order yields (discarding quadratic-order terms)

ẋ1(t) = −η̄(t) g′(x0(t))x1(t)− δη(t) g(x0(t)).

Solving this scalar linear ODE gives

x1(t) = −C(t)

∫ t

0

δη(τ) q(τ) dτ = −C(t)S2(t),

with

I(t) := exp
(∫ t

0

η̄(s) g′
(
x0(s)

)
ds
)

C(t) :=
I(t) g

(
x0(t)

)∣∣g′(x0(t)
)∣∣ , C(t) > 0,

Starting from the baseline approximation ℓ(x) ≈ L0 +
AS−α

1 , substituting x(t) = x0(t) + x1(t) and retaining
the first–order term gives n → ∞

L(t) = L0 + AS1(t)
−α − C S2(t)

The negative correction −C S2(t) captures the delay phe-
nomenon: learning-rate changes are “remembered” through
S2(t) and only gradually reflected in the loss, matching the
empirical findings of Tissue et al. (2024).

Interpretation. We have shown that the loss L(t) can
be expressed as a scaling law involving S1(t) and S2(t).
This learning-rate delay phenomenon arises because macro-
level descriptors “register” learning rate changes rapidly,
but the micro-level parameters actually implementing those
changes do so more slowly. As a result, the final loss re-
sponds with a lag, reflecting the time it takes for the slower
(micro-level) parameter updates to “catch up” to the new
learning rate regime. This lag is what appears empirically in
training curves: a delay between adjusting the learning rate
and seeing the expected shift in the validation loss trend.

Intuitively, one can view S1(t) as the “instantaneous”
O(1/n) macro response predicted by Theorem 4.1, while
S2(t) is the integrated residual that accumulates until the
Θ(n−1/2) micro dynamics have travelled a comparable dis-
tance. Theorem 5.1 thus provides a mechanistic instantiation
of the scale–separation principle: the faster-equilibrating
macro channel yields the leading AS−α

1 decay, whereas the
slower micro channel produces the delayed −CS2 correc-
tion observed empirically by Tissue et al. (2024).

6. Conclusion and Outlook
We present the first scale–separation theory for hyperparam-
eter transfer under µP . By coupling an O(1/n) macro con-
vergence of the loss landscape with a tight Θ(1/

√
n) micro

evolution of the weight vector, we obtained quantitative er-
ror bounds that explain the empirical success of “early-stage”
tuning, and learning–rate delay curves. Besides recovering
existing µP phenomena, our analysis yields two design
guidelines: (i) updates must be co-scaled with width to keep
the diffusion term sub-dominant, and (ii) macro descriptors
should be chosen so that their µP drift is O(1/n).

Limitations and future directions. The clean separation
relies on two µP -specific facts: (a) hidden-layer learning
rates scale as η ∝ 1/n, so gradients remain order-one, and
(b) global statistics (activations, gradient norms) exhibit
early self-similarity. Other parameterizations break at least
one of these pillars. For example, in standard (“mean-field”)
scaling, gradients vanish as n → ∞, leading to lazy dy-
namics with no timescale gap; NTK scaling freezes features
near initialization, again precluding a macro/micro split.

We therefore view generalization beyond µP as the next
challenge. A promising route is the α–scaled family (α = 1
recovers µP , α = 1

2 the NTK) and the conjecture that α val-
ues closer to 1 may still support a weakened but non-trivial
scale separation. Other open problems include (i) adap-
tive optimizers (Adam, RMSProp), (ii) the minimal width
needed for reliable transfer, and (iii) joint width–depth scal-
ing. We believe that the techniques developed here, e.g.,
Itô decomposition paired with width-regularity, provide a
flexible starting point for these investigations.
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A. Additional Proofs in Section 4
A.1. Proof of Lemma 4.3

Proof. Under µP, preactivations ai remain O(1) during training (bounded for all widths). The gradient for hidden weights
W has the form:

∇L(W ) = aia
⊤
j +O(1/

√
n).

Under µP, η = O(1/n). This ensures ∥∇L(W )∥2 = O(1).

Indeed, µP dictates that the learning rate and gradient magnitudes are co-scaled to ensure stable updates: gradients scale
as O(1) for output layer weights (due to downstream fan-in), learning rate scale as O(1/n) for output weights; thus, their
product (weight update) remains O(1/n), matching the expected per-step update scale. This is consistent with µP’s core
principle that all layers receive comparably scaled updates across widths.

A.2. Proof of Lemma 4.4

Proof. By L-smoothness (Assumption 4.1), for any unit vectors u, v, |u⊤∇2L(θs)v| ≤ L. Therefore, each entry of ∇2L(θs)
is O(1). Under µP parameterization, d(n) = O(n2) for hidden layers.

A.3. Proof of Proposition 4.6

Proof. We combine three ingredients:

(i) Width regularity (Assump. 4.3): for some C > 0

|L(θ;n1)− L(ϕ(θ);n2)| ≤ C
|n1 − n2|

n1
.

(ii) Finite-horizon drift (Lemma 4.5): |M(η;n)− L(θ0;n)| = O(1/n) for every n.

(iii) Optimality at width n2: L(θ∗n2
;n2) ≤ L(θ;n2) ∀θ.

Insert L(θ0; ·) as a common anchor and apply the triangle inequality:

|M(η;n1)−M(η;n2)| ≤ |M(η;n1)− L(θ0;n1)|
+ |L(θ0;n1)− L(θ0;n2)|
+ |L(θ0;n2)−M(η;n2)|.

The first and third terms are O(1/ni) by Lemma 4.5 (finite-horizon drift).

On the second term, we apply width regularity (Assump. 4.3) with θ = θ0 to obtain (B) = O(1/n1). Symmetrically one
could write the bound with 1/n2; choosing min(n1, n2) gives the tightest rate.

Combining the three bounds yields |M(η;n1)−M(η;n2)| = O
(
1/min(n1, n2)

)
, which proves Proposition 4.6.

A.4. Proof of Lemma 4.9

Proof. By strong convexity of M(η;n) in η (from Assumption 4.1, L-smoothness):

|η∗(n1)− η∗(n2)| ≤ (1/α)∥∇ηM(η;n1)−∇ηM(η;n2)∥

where α is the strong convexity parameter. Meanwhile by the uniform convergence from Corollary 4.7, e.g., the fact that
M(η;n) converges uniformly at rate O(1/n) , the gradient difference is bounded by:

∥∇ηM(η;n1)−∇ηM(η;n2)∥ ≤ O(1/min(n1, n2)).
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Here we consider M(η;n)as the effective scalar function describing the expected loss after training steps T under a
macro-level parameter η. For wide enough networks, macro-level fluctuations vanish, and local expansions around η∗(n)
ensures an α−strongly convex local basin in η. This is akin to standard “strict local minimum” conditions in practical
large-scale NNs near an optimal learning rate. Importantly, this does not imply nor require global convexity of the full
model’s loss surface. Rather, we assume L-Lipschitz gradients in the standard sense of gradient-based methods, typically
used in nonconvex analyses to control the norm of the gradients and Hessians locally.

B. Simulations
We provide a proof–of–concept run confirming the qualitative macro–micro scale separation predicted by Theorem 4.1.

Setup. Two–layer MLP, input dimension 3072 (flattened CIFAR-10), hidden width n = 10 000 (ReLU), output width 10.
Weights are initialized with µP scaling, trained for 300 epochs using vanilla SGD (batch 128, no momentum/decay) and
cross-entropy loss. Learning-rate grid η ∈ {0.01, 0.02, . . . , 0.30}. We log (i) the training loss L(t; η) and (ii) the squared
weight drift ∥µ(t; η)∥2 = ∥θt − θ0∥2 every 10 epochs.

Fast stabilization of macro descriptors. We record maxη1,η2 |L(t; η1)− L(t; η2)|. By epoch 10 the spread is already
below 5×10−4 (¡0.2 % of the mean loss), and remains almost flat afterwards. This corroborates the O(1/n) bound for macro
variables (loss landscape) even though n is fixed. A practitioner could therefore identify the best LR bucket (low 0.01–0.1,
medium 0.11–0.15, high 0.16–0.30) within the first 60 epochs.

Slow evolution of micro variables. We then observe E ∥µ(t; η)∥2 for three representative learning rates. Despite the
macro loss plateauing early, ∥µ(t)∥2 keeps climbing roughly linearly until ≈ epoch 180 (high η) or 250 (low η), and its
standard deviation across η grows from 3.8×10−2 at epoch 10 to 1.1 at epoch 120. The contrast illustrates the Θ(1/

√
n)

slow scale of microscopic drift.

Take-away. Even on a single width, the experiment shows (i) loss differences become negligible long before training
converges, and (ii) weight movement continues and separates trajectories. Both behaviours are exactly what the scale-
separation theory predicts; wider networks or multiple n would allow quantitative verification of the 1/n vs. 1/

√
n rates,

which we leave for future work.
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