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Abstract

Recently slot filling has witnessed great devel-
opment thanks to deep learning and the avail-
ability of large-scale annotated data. How-
ever, it poses a critical challenge to handle a
novel domain whose samples are never seen
during training. The recognition performance
might be greatly degraded due to severe do-
main shifts. Most prior works deal with this
problem in a two-pass pipeline manner based
on metric learning. In practice, these dominant
pipeline models may be limited in computa-
tional efficiency and generalization capacity
because of non-parallel inference and context-
free discrete label embeddings. To this end, we
re-examine the typical metric-based methods,
and propose a new adaptive end-to-end metric
learning scheme for the challenging zero-shot
slot filling. Considering simplicity, efficiency
and generalizability, we present a cascade-style
joint learning framework coupled with context-
aware soft label representations and slot-level
contrastive representation learning to mitigate
the data and label shift problems effectively.
Extensive experiments on public benchmarks
demonstrate the superiority of the proposed ap-
proach over a series of competitive baselines.1

1 Introduction

Slot filling, as an essential component widely ex-
ploited in task-oriented conversational systems, has
attracted increasing attention recently (Zhang and
Wang, 2016; Goo et al., 2018; Gangadharaiah and
Narayanaswamy, 2019). It aims to identify a spe-
cific type (e.g., artist and playlist) for each
slot entity from a given user utterance. Owing to
the rapid development of deep neural networks and
with help from large-scale annotated data, research
on slot filling has made great progress with consid-
erable performance improvement (Qin et al., 2019;
Wu et al., 2020; Qin et al., 2020, 2021).

∗∗Corresponding author.
1The source code is available at https://github.com/

Switchsyj/AdaE2ML-XSF.
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Figure 1: Examples from SNIPS dataset. Apart from
data distribution shifts, the target domain contains novel
slot types that are unseen in the source domain label
space (e.g., Album and Service). Moreover, the slot enti-
ties tend to embody domain-specific nature in contrast
to the counterpart contexts.

Despite the remarkable accomplishments, there
are at least two potential challenges in realistic ap-
plication scenarios. First is the data scarcity prob-
lem in specific target domains (e.g., Healthcare
and E-commerce). The manually-annotated train-
ing data in these domains is probably unavailable,
and even the unlabeled training data might be hard
to acquire (Jia et al., 2019; Liu et al., 2020a). As a
result, the performance of slot filling models may
drop significantly due to extreme data distribution
shifts. The second is the existence of label shifts
(as shown in the example in Figure 1). The target
domain may contain novel slot types unseen in the
source-domain label space (Liu et al., 2018; Shah
et al., 2019; Liu et al., 2020b; Wang et al., 2021),
namely there is a mismatch between different do-
main label sets. This makes it difficult to apply the
source models to completely unseen target domains
that are unobservable during the training process.

Zero-shot domain generalization has been shown
to be a feasible solution to bridge the gap of domain
shifts with no access to data from the target domain.
Recent dominating advances focus on the two-step
pipeline fashion to learn the zero-shot model using
the metric learning paradigms (Shah et al., 2019;
Liu et al., 2020b; He et al., 2020; Wang et al., 2021;
Siddique et al., 2021). Nevertheless, besides inef-
ficient inference resulted from non-parallelization,
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the generalization capability of these models may
be limited due to lack of knowledge sharing be-
tween sub-modules, and context-independent dis-
crete static label embeddings. Although the al-
ternative question-answering (QA) based methods
(Du et al., 2021; Yu et al., 2021; Liu et al., 2022)
are able to achieve impressive results, they need
to manually design and construct the questions/-
queries, essentially introducing detailed descriptive
information about the slot types.

In this work, we revisit the metric-based zero-
shot cross-domain slot filling under challenging
domain (both data and label) shifts. We propose
an adaptive end-to-end metric learning scheme to
improve the efficiency and effectiveness of the zero-
shot model in favor of practical applications. For
one thing, we provide a cascade-style joint learning
architecture well coupled with the slot boundary
module and type matching module, allowing for
knowledge sharing among the sub-modules and
higher computational efficiency. Moreover, the
soft label embeddings are adaptively learnt by cap-
turing the correlation between slot labels and utter-
ance. For another, since slot terms with same types
tend to have the semantically similar contexts, we
propose a slot-level contrastive learning scheme
to enhance the slot discriminative representations
within different domain context. Finally, to verify
the effectiveness of the proposed method, we carry
out extensive experiments on different benchmark
datasets. The empirical studies show the superi-
ority of our method, which achieves effective per-
formance gains compared to several competitive
baseline methods.

Overall, the main contributions can be sum-
marized as follows: (1) Compared with existing
metric-based methods, we propose a more efficient
and effective end-to-end scheme for zero-shot slot
filling, and show our soft label embeddings perform
much better than previous commonly-used static
label representations. (2) We investigate the slot-
level contrastive learning to effectively improve
generalization capacity for zero-shot slot filling.
(3) By extensive experiments, we demonstrate the
benefits of our model in comparison to the existing
metric-based methods, and provide an insightful
quantitative and qualitative analysis.

2 Methodology

In this section, we first declare the problem to be
addressed about zero-shot slot filling, and then elab-

orate our solution to this problem.

2.1 Problem Statement

Suppose we have the source domain DS =
{(xS

i ,y
S
i )}

NS
i=1 with NS labeled samples from dis-

tribution PS , and the (testing) target domain DT =
{(yTj )}Cj=1 with C slot types from target distribu-
tion P T . We define ΩS as the label set of source
domain DS , and ΩT as the label set of target do-
main DT . Ωsh = ΩS ∩ ΩT denotes the common
slot label set shared by DS and DT . In the zero-
shot scenario, the label sets between different do-
mains may be mismatching, thus Ωsh ⊆ ΩS and
PS ̸= P T . The goal is to learn a robust and gen-
eralizable zero-shot slot filling model that can be
well adapted to novel domains with unknown test-
ing distributions.

2.2 Overall Framework

In order to deal with variable slot types within
an unknown domain, we discard the standard se-
quence labeling paradigm by cross-labeling (e.g.,
B-playlist, I-playlist). Instead, we adopt a
cascade-style architecture coupled with the slot
boundary module and typing module under a joint
learning framework. The boundary module is used
to detect whether the tokens in an utterance are slot
terms or not by the CRF-based labeling method
with BIO schema, while the typing module is used
to match the most likely type for the corresponding
slot term using the metric-based method. Since pre-
training model is beneficial to learn general repre-
sentations, we adopt the pre-trained BERT (Devlin
et al., 2019) as our backbone encoder2. Figure 2
shows the overall framework, which is composed
of several key components as follows:

Context-aware Label Embedding Let c =
[c1, · · · , c|ΩS |] (ci ∈ ΩS) denotes a slot la-
bel sequence consisting of all the elements of
ΩS . Given an input utterance sequence x =
[x1, · · · , xn] of n tokens with the correspond-
ing ground-truth boundary label sequence ybd =
[ybd1 , · · · , ybdn ] (ybdi ∈ {B, I, O}) and slot label se-
quence ysl = [ysl1 , · · · , ysln ] (ysli ∈ ΩS), the slot
label sequence acts as a prefix of the input utter-

2Notice that we assume the BERT model is used as our
encoder, but our method can also be integrated with other
model architectures (e.g., RoBERTa (Liu et al., 2019b)).
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Figure 2: Illustration of the overall framework. Figure (a) shows the cascade-style joint learning architecture coupled
with two core components: Metric-based Slot Typing and Slot Boundary Detection. Figure (b) shows the slot-level
contrastive learning module used only during training. The slot entity tokens with the same type are positive pairs
(i.e. the blue lines) while those with different types are negative ones (i.e. the red lines).

ance, which is then encoded by BERT3:

[rlabel; rutter] = BERT([c;x]), (1)

where rlabel and rutter denote the fused contextual
representations of the label and utterance sequence,
respectively.

For each slot type, the slot label matrix is ob-
tained by averaging over the representations of the
slot label tokens. Unlike the conventional discrete
and static label embeddings (Liu et al., 2020b; Sid-
dique et al., 2021; Ma et al., 2022) that capture
the semantics of each textual label separately, we
attempt to build the label-utterance correlation, and
the adaptive interaction between the slot labels and
utterance tokens encourages the model to learn the
context-aware soft label embeddings dynamically,
which will be exploited as the supervision informa-
tion for the metric learning.

Slot Boundary Detection To determine the slot
terms, we obtain the contextualized latent repre-
sentations of the utterance through a single-layer
BiLSTM,

hutter = BiLSTM(rutter). (2)

Then, a CRF layer is applied to the slot boundary
decoding, aiming to model the boundary label de-

3Considering the slot label sequence is not a natural lan-
guage sentence linguistically, we remove the [SEP] token used
to concatenate sentence pairs in BERT.

pendency. The negative log-likelihood objective
function can be formulated as follows:

e = Linear(hutter),

score(x,y) =

n∑
i=1

(Tyi−1,yi + ei[yi]),

Lbdy = − log p(ybd|x)

= − log
exp(score(x,ybd))∑

y′∈Yx
exp(score(x,y′))

,

(3)

where e ∈ Rn×3 denotes the three-way emission
vectors containing boundary information, T is the
3×3 learnable label transition matrix, and Yx is
the set of all possible boundary label sequences
of utterance x. While inference, we employ the
Viterbi algorithm (Viterbi, 1967) to find the best
boundary label sequence.

Metric-based Slot Typing Although slot bound-
ary module can select the slot terms from an ut-
terance, it fails to learn discriminative slot entities.
Thus, we design a typing module to achieve it in
parallel by semantic similarity matching between
slot labels and utterance tokens.

Concretely, we take advantage of the above
boundary information to locate the slot entity to-
kens of the utterance. We specially exploit the
soft-weighting boundary embedding vectors for en-
abling differentiable joint training, which are com-
bined with the contextual utterance representations



to obtain the boundary-enhanced representations:

rbound = softmax(e) ·Eb,

u = Linear(Concat(rutter, rbound)),
(4)

where Eb ∈ R3×db is a look-up table to store train-
able boundary embeddings, and db indicates the
embedding dimension. Meanwhile, the label em-
beddings are calculated by a bottleneck module
consisting of an up-projection layer and a down-
projection layer with a GELU (Hendrycks and Gim-
pel, 2016) nonlinearity:

v = Linearup(GELU(Lineardw(rlabel))). (5)

Furthermore, we leverage token-wise similarity
matching between L2-normalized utterance repre-
sentations and label embeddings. Since the slot
entities are our major concern for predicting types,
we ignore the non-entity tokens by mask provided
by the boundary gold labels, resulting in the slot
typing loss function defined as follows:

Ltyp = −
n∑

i=1

1[ybdi ̸=O]log
exp(⟨ui, sg(vi∗)⟩)∑|ΩS |
j=1 exp(⟨ui, sg(vj)⟩)

−
n∑

i=1

1[ybdi ̸=O] log
exp(⟨sg(ui),vi∗⟩)∑|ΩS |
j=1 exp(⟨sg(ui),vj⟩)

,

(6)

where ⟨·, ·⟩ measures the cosine similarity of two
embeddings, sg(·) stands for the stop-gradient oper-
ation that does not affect the forward computation,
i∗ indicates the index corresponding to the gold
slot label ysli , and 1[ybdi ̸=O] ∈ {0, 1} is an indicator
function, evaluating to 1 if ybdi is a non-O tag. Eq.
6 makes sure the label embeddings act as the super-
vision information (the 1st term) and meanwhile
are progressively updated (the 2nd term).

Slot-level Contrastive Learning Recent line of
works have investigated the instance-level con-
trastive learning by template regularization (Shah
et al., 2019; Liu et al., 2020b; He et al., 2020; Wang
et al., 2021). As slots with the same types tend to
have the semantically similar contexts, inspired by
Das et al. (2022), we propose to use the slot-level
contrastive learning to facilitate the discriminative
slot representations that may contribute to adapta-
tion robustness.4

4Different from Das et al. (2022), we do not use the Gaus-
sian embeddings produced by learnt Gaussian distribution
parameters. There are two main reasons: one is to ensure the
stable convergence of training, and the other is that the token
representations may not follow normal distribution.

More specifically, we define a supervised con-
trastive objective by decreasing the similarities be-
tween different types of slot entities while increas-
ing the similarities between the same ones. We just
pay attention to the slot entities by masking out
the parts with O boundary labels. Then, we gather
in-batch positive pairs P+ with the same slot type
and negative pairs P− with different ones:

s = ReLU(Linear(rutter)),

P+ = {(si, sj)|ysli = yslj , i ̸= j},
P− = {(si, sj)|ysli ̸= yslj , i ̸= j},

(7)

where s denotes the projected point embeddings,
and all example pairs are extracted from a mini-
batch. Furthermore, we adapt the NT-Xent loss
(Chen et al., 2020) to achieve the slot-level discrim-
ination, and the contrastive learning loss function
can be formulated as:

Lctr = − log

1
|P+|

∑
(si,sj)∈P+ exp(d(si, sj)/τ)∑

(si,sj)∈P exp(d(si, sj)/τ)
,

(8)

where P denotes P+ ∪ P−, d(·, ·) denotes the dis-
tance metric function (e.g., cosine similarity dis-
tance), and τ is a temperature parameter. We will
investigate different kinds of metric functions in
the following experiment section.

2.3 Training and Inference
During training, our overall framework is opti-
mized end-to-end with min-batch. The final train-
ing objective is to minimize the sum of the all loss
functions:

L = Lbdy + Ltyp + Lctr, (9)

where each part has been defined in the previous
subsections. During inference, we have the slot
type set of the target domain samples, and the test-
ing slot labels constitute the label sequence, which
is then concatenated with the utterance as the model
input. The CRF decoder predicts the slot bound-
aries of the utterance, and the predicted slot type
corresponds to the type with the highest-matching
score. We take the non-O-labeled tokens as slot
terms while the O-labeled tokens as the context.

3 Experiments

3.1 Datasets and Settings
To evaluate the proposed method, we conduct
the experiments on the SNIPS dataset for zero-



Domain ATP BR GW PM RB SCW SSE Avg.Model↓ (Src→Tgt, Unseen Rate) → (48→5, 40%) (39→14, 57%) (44→9, 44%) (44→9, 55%) (46→7, 71%) (52→2, 0%) (46→7, 57%)

CoachBERT (Liu et al., 2020b) 50.28 31.87 52.30 31.75 23.33 70.76 29.33 41.37
PCLCBERT (Wang et al., 2021) 30.38 20.89 32.99 25.55 20.76 62.40 13.82 29.54
LEONABERT (Siddique et al., 2021) 51.23 46.68 68.72 43.20 25.23 47.01 27.99 44.01
QASFBERT † (Du et al., 2021) 59.29 43.13 59.02 33.62 33.34 59.90 22.83 44.45
SLMRC† (Liu et al., 2022) 63.21 60.11 65.23 50.16 32.78 55.17 30.67 51.77
GZPLT5−Large‡ (Li et al., 2023) 59.83 61.23 62.58 62.73 45.88 71.30 48.26 58.82

Ours (w/o Slot-CL) 61.13 41.67 71.47 34.77 30.75 68.81 34.64 49.03
Ours 61.13 42.35 69.87 36.24 33.25 70.81 34.06 49.67

Table 1: F1-scores of zero-shot slot filling across different domains. Slot-CL denotes the slot-level contrastive
learning. We show the number of labels in the source and target domains. The unseen rate refers to the proportion of
non-overlapped source-target domain labels in the target label set. † denotes the QA-based methods that introduce
manually-designed query for each slot label. ‡ denotes the generative method along with prompts for each slot label.

shot settings (Coucke et al., 2018), which con-
tains 39 slot types across seven different do-
mains: AddToPlaylist (ATP), BookRestaurant
(BR), GetWeather (GW), PlayMusic (PM),
RateBook (RB), SearchCreativeWork (SCW)
and SearchScreeningEvent (SSE). Following
previous studies (Liu et al., 2020b; Siddique et al.,
2021), we choose one of these domains as the target
domain never used for training, and the remaining
six domains are combined to form the source do-
main. Then, we split 500 samples in the target
domain as the development set and the remainder
are used for the test set. Moreover, we consider
the case where the label space of the source and
target domains are exactly the same, namely the
zero-resource setting (Liu et al., 2020a) based on
named entity recognition (NER) task. We train our
model on the CoNLL-2003 (Sang and Meulder,
2003) dataset and evaluate on the CBS SciTech
News dataset (Jia et al., 2019).

3.2 Baselines

We compare our method with the following com-
petitive baselines using the pre-trained BERT as
encoder: (1) Coach. Liu et al. (2020b) propose
a two-step pipeline matching framework assisted
by template regularization; (2) PCLC.Wang et al.
(2021) propose a prototypical contrastive learning
method with label confusion; (3) LEONA. Sid-
dique et al. (2021) propose to integrate linguistic
knowledge (e.g., external NER and POS-tagging
cues) into the basic framework.

Although not our focused baselines, we also
compare against the advanced generative baselines
(Li et al., 2023) with T5-Large and QA-based meth-
ods (Du et al., 2021; Liu et al., 2022) that require
manual efforts to convert slot type descriptions into
sentential queries/questions, and process by means
of the machine reading comprehension (MRC) ar-

chitecture (Li et al., 2020).

3.3 Implementation Details

We use the pre-trained uncased BERTBASE model5

as the backbone encoder. The dimension of the
boundary embedding is set to 10. We use 0.1
dropout ratio for slot filling and 0.5 for NER. For
the contrastive learning module, we use the cosine
metric function and select the optimal tempera-
ture τ from 0.1 to 1. During training, the AdamW
(Loshchilov and Hutter, 2019) optimizer with a
mini-batch size 32 is applied to update all trainable
parameters, and the initial learning rate is set to
2e-5 for BERT and 1e-3 for other modules. All
the models are trained on NIVIDIA GeForce RTX
3090Ti GPUs for up to 30 epochs. The averaged
F1-score over five runs is used to evaluate the per-
formance. The best-performing model on the de-
velopment set is used for testing.

3.4 Zero-Shot Slot Filling

As shown in Table 1, our method achieves more
promising performance than previously proposed
metric-based methods on various target domains,
with an average about 5% improvements com-
pared with the strong baseline LEONA. We at-
tribute it to the fact that our proposed joint learn-
ing model make full use of the sub-modules, and
the context-aware soft label embeddings provide
better prototype representations. Moreover, we
also observe that the slot-level contrastive learn-
ing plays an important role in improving adapta-
tion performance. Our model with Slot-CL obtains
consistent performance gains over almost all the
target domains except for the SSE domain. We
suspect that it may result from slot entity confu-
sion. For example, for slot entities “cinema” and

5https://huggingface.co/bert-base-uncased
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“theatre” from SSE, they are usually annotated
with object_location_type, but “cinemas” in
“caribbean cinemas” and “theatres” in “star the-
atres” are annotated with location_name, which
is prone to be misled by the contrastive objective.
Additionally, without introducing extra manual
prior knowledge, our method achieves very com-
petitive performance compared with the QA-based
baselines.

3.5 Zero-Resource NER
In particular, we examine our method in the zero-
resource NER setting. As presented in Table 2,
our method is also adaptable to this scenario, and
exceed or match the performance of previous com-
petitive baselines. Meanwhile, the slot-level con-
trastive learning can yield effective performance
improvements.

Model F1

Liu et al. (2020a) 69.53
Jia et al. (2019) 73.59
Devlin et al. (2019) 74.23
Jia and Zhang (2020) 75.19
Wu et al. (2022) 75.06

Ours (w/o Slot-CL) 74.41
Ours 75.29

Table 2: NER results on the target domain (i.e., SciTech
News).

3.6 Ablation Study and Analysis
In order to better understand our method, we further
present some quantitative and qualitative analyses
that provides some insights into why our method
works and where future work could potentially im-
prove it.

Inference Speed One advantage of our frame-
work is the efficient inference process benefiting
from the well-parallelized design. We evaluate
the speed by running the model one epoch on the
BookRestaurant test data with batch size set to 32.
Results in Table 3 show that our method achieves
×13.89 and ×7.06 speedup compared with the ad-
vanced metric-based method (i.e., LEONA) and
QA-based method (i.e., SLMRC). This could be
attributed to our batch-wise decoding in parallel.
On the one hand, previous metric-based methods
use the two-pass pipeline decoding process and
instance-wise slot type prediction. On the other

hand, the QA-based methods require introducing
different queries for all candidate slot labels regard-
ing each utterance, increasing the decoding latency
of a single example.

Model Time Cost (s) Speedup

CoachBERT 70.98 17.14×
PCLCBERT 76.61 18.50×
LEONA 57.49 13.89×
SLMRC 29.21 7.06×

Ours 4.14 1.00×

Table 3: Comparison of inference efficiency. Speedup
denotes the ratio of time taken by slot prediction part of
different models to run one epoch on the BookRestau-
rant with batch size 32.

Label-Utterance Interaction Here we examine
how our model benefits from the label-utterance in-
teraction. As presented in Table 4, the performance
of our model drops significantly when eliminating
the interaction from different aspects , justifying
our design. Compared to the other degraded in-
teraction strategies, the utterance-label interaction
helps learn the context-aware label embeddings,
namely the utterance provides the context cues for
the slot labels. Furthermore, we also notice that
interaction between slot labels also makes sense.
When only let each slot label attend to itself and the
utterance, we observe the performance drop prob-
ably due to the loss of discriminative information
among different slot labels.

Interaction Strategy F1

Ours (w/o Slot-CL) 49.03
w/o Label → Utterance 45.42
w/o Utterance → Label 45.24
w/o Label ↔ Utterance 47.25
w/o Label ↔ Label 45.24

Table 4: Comparisons of different label-utterance inter-
action strategies for slot filling.

Effect of Context-aware Label Embedding We
study the effect of different types of label embed-
dings. Figure 3 shows the comparison results. We
can see that the proposed context-aware soft label
embedding outperforms other purely discrete or
decoupled embeddings, including discrete BERT,
decoupled BERT or GloVe (Pennington et al.,
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Figure 3: Comparisons of different label representa-
tions for slot filling. BERTdis and BERTdec denote the
discrete label embedding and the label-utterance decou-
pled embedding, respectively. The gray dashed line
represents the performance of our model without the
slot-level contrastive learning.

2014) embeddings. Interestingly, when fine-tuning,
we find that BERTdis works slightly better than
BERTdec, as it might be harmful to tune soft label
embeddings without utterance contexts. Further-
more, we observe a significant improvement of our
model when incorporating the GloVe static vectors,
suggesting that richer label semantics can make
a positive difference. Meanwhile, the discrete or
decoupled label embeddings without fine-tuning
may yield better results.

Metric Loss for Contrastive Learning Here
we explore several typical distance metric func-
tions (including Cosine, MSE, Smooth L1, and KL-
divergence) for the slot-level contrastive objective,
and we also consider the influence of temperature τ .
Figure 4 reveals that the temperature value directly
affects the final performance. Also, it shows better
results overall at around τ = 0.5 for each metric
function we take. We select the cosine similarity
function as our desired distance metric function,
due to its relatively good performance.
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Figure 4: Comparisons of different metric functions
with varying temperature τ for slot filling.

Few-Shot Setting To verify the effectiveness of
our method in the few-shot setting where the target
domain has a small amount of training examples,
we conduct experiments in the 20-shot and 50-shot
scenarios. In line with previous works, we take the
first K examples in the development set for train-
ing named the K-Shot scenario and the remaining
keeps for evaluation.

Table 5 illustrates that our method achieves su-
perior performance compared with other represen-
tative metric-based methods. However, we also
notice that our method without the slot-level con-
trastive learning obtains limited absolute improve-
ments as data size increase, indicating the slot-level
contrastive learning performs better in this case.

Model 20-Shot (1%) 50-Shot (2.5%)

Coach 64.27 75.51
LEONA 71.10 76.42
PCLC 54.32 72.18

Ours 75.16 82.39
w/o Slot-CL 70.49 81.42

Table 5: F1-scores over all target domains in the 20-shot
and 50-shot settings.

Unseen Slot Generalization Since label shift is
a critical challenge in zero-shot learning, to ver-
ify the generalization capacity, we specifically test
our method on the unseen target data. Following
Liu et al. (2022), we split the dataset into the seen
and unseen group, where we only evaluate on un-
seen slot entities during training in the unseenslot
group, while evaluate on the whole utterance in
the unseenuttr group. From Table 6, our method
performs better than other metric-based baselines,
showing the superiority of our method for unseen
domain generalization.

Model Seen Unseenuttr Unseenslot

Coach 51.73 34.23 11.66
PCLC 58.76 35.08 10.92
LEONA 63.54 40.06 12.32

Ours 65.80 46.85 21.23
w/o Slot-CL 64.24 41.04 14.57

Table 6: F1-scores for seen and unseen slots over all the
target domains.



Cross-Dataset Setting Considering slot labels
and utterances may vary significantly across dif-
ferent datasets, we further evaluate the proposed
method under the cross-dataset scenario, a more
challenging setting. Here we introduce another
popular slot filling dataset ATIS (Liu et al., 2019a).
It is used for the target (source) domain data while
the SNIPS for the source (target) domain data6,
as shown in Table 7. The results confirm that our
method still works well in this challenging setting.

Src→Tgt SNIPS→ATIS ATIS→SNIPS

Coach 14.35 9.76
LEONA 20.80 14.36
Ours 27.01 16.61

Table 7: F1-scores in the cross-dataset setting.

Visualization Figure 5 shows the visualization
of normalized slot entity representations before
similarity matching using t-SNE dimensionality
reduction algorithm (van der Maaten and Hinton,
2008). Obviously, our method can better obtain
well-gathered clusters when introducing the slot-
level contrastive learning, facilitating the discrimi-
native entity representations.

pizzeria
bakery

cuisine
restaurant_type
sort
spatial_relation
state

(a) w/ Slot-CL

pizzeria
bakery

cuisine
restaurant_type
sort
spatial_relation
state

(b) w/o Slot-CL

Figure 5: t-SNE visualization of the normalized rep-
resentations of different slot entities drawn from the
BookRestaurant that contains much unseen slot labels.

4 Related Work

Zero-shot Slot Filling In recent years, zero-shot
slot filling has received increasing attention. A
dominating line of research is the metric-learning
method, where the core idea is to learn a proto-
type representation for each category and classify

6We ignore the evaluation on the SGD (Rastogi et al.,
2020), which is a fairly large-scale dataset with extremely
unbalanced label distributions.

test data based on their similarities with prototypes
(Snell et al., 2017). For slot filling, the seman-
tic embeddings of textual slot descriptions usually
serve as the prototype representations (Bapna et al.,
2017; Lee and Jha, 2019; Zhu et al., 2020). Shah
et al. (2019) utilize both the slot description and a
few examples of slot values to learn semantic repre-
sentations of slots. Furthermore, various two-pass
pipeline schemes are proposed by separating the
slot filling task into two steps along with template
regularization (Liu et al., 2020b), adversarial train-
ing (He et al., 2020), contrastive learning (Wang
et al., 2021), linguistic prior knowledge (Siddique
et al., 2021). However, these mostly utilize the
context-free discrete label embeddings, and the
two-pass fashion has potential limitations due to a
lack of knowledge sharing between sub-modules
as well as inefficient inference. These motivate us
to exploit the context-aware label representations
under an end-to-end joint learning framework.

Another line of research is the QA-based meth-
ods that borrow from question-answering systems,
relying on manually well-designed queries. Du
et al. (2021) use a set of slot-to-question generation
strategies and pre-train on numerous synthetic QA
pairs. Yu et al. (2021) and Liu et al. (2022) apply
the MRC framework (Li et al., 2020) to overcome
the domain shift problem. Heo et al. (2022) modify
the MRC framework into sequence-labeling style
by using each slot label as query. Li et al. (2023)
introduce a generative framework using each slot
label as prompt. In our work, we mainly focus on
the metric-based method without intentionally in-
troducing external knowledge with manual efforts.

Contrastive Learning The key idea is to learn
discriminative feature representations by contrast-
ing positive pairs against negative pairs. Namely,
those with similar semantic meanings are pushed
towards each other in the embedding space while
those with different semantic meanings are pulled
apart each other. Yan et al. (2021) and Gao et al.
(2021) explore instance-level self-supervised con-
trastive learning where sample pairs are constructed
by data augmentation. Khosla et al. (2020) further
explore the supervised setting by contrasting the set
of all instances from the same class against those
from the other classes. Das et al. (2022) present a
token-level supervised contrastive learning solution
to deal with the few-shot NER task by means of
Gaussian embeddings.

Previous studies for slot filling mainly focus on



instance-level contrastive learning, which may be
sub-optimal for a fine-grained sequence labeling
task. Inspired by supervised contrastive learning,
we leverage a slot-level contrastive learning scheme
for zero-shot slot filling to learn the discriminative
representations for domain adaptation. For all ex-
isting slot entities within a mini-batch, we regard
those with the same type as the positive example
pairs and those with different type as negative ones.

5 Conclusion

In this paper, we tackle the problem of general-
ized zero-shot slot filling by the proposed end-to-
end metric learning based scheme. We propose a
cascade-style multi-task learning framework to effi-
ciently detect the slot entity from a target domain ut-
terance. The context-aware soft label embeddings
are shown to be superior to the widely-used discrete
ones. Regarding domain adaptation robustness, we
propose a slot level contrastive learning scheme to
facilitate the discriminative representations of slot
entities. Extensive experiments across various do-
main datasets demonstrate the effectiveness of the
proposed approach when handling unseen target
domains. Our investigation also confirms that se-
mantically richer label representations enable help
further boost the recognition performance, which
motivates us to further explore external knowledge
enhanced soft label embeddings for advancing the
metric-based method.

Limitations

Although our work makes a further progress in
the challenging zero-shot slot filling, it is subject
to several potential limitations. Firstly, since slot
label sequence is used as the prefix of the utter-
ance, this directly results in a long input sequence.
Secondly, our method may be negatively affected
by severe label ambiguity. There are some slot
entities with rather similar semantics, leading to
wrong slot type predictions. For example, “book
a manadonese restaurant”, the slot entity type of
“manadonese” is actually cuisine, but is easily
identified as country. One major reason is that
some utterances are relatively short and lack suf-
ficient contextual cues. Thirdly, the recognition
performance of metric-based methods may remain
difficult to exceed that of advanced QA-based or
generative methods due to the fact that the latter
manually introduces detailed slot label description
by well-designed queries or prompts.
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A Appendix

A.1 Code Implementation
Here we present the core pseudo code of the pro-
posed method.
class End2endSLUTagger(nn.Module):

def forward(bert_inp , num_type ,
lbl_bd , lbl_typ):

# (bsz , seq_len , hsz)
bert_repr = bert(* bert_inp)
r_utter = bert_repr[:,num_type

+1:]
r_label = bert_repr [:,1: num_type

+1]
# label adapter in Eq.5
v = adapter(r_label) + r_label
h_utter = lstm(r_utter)
e = proj(h_utter)
r_bound = matmul(softmax(e),

bound_emb.weight)
# (bsz , 1)
l_bdy = crf(e, lbl_bd)
u = proj(concat(token_repr ,

r_bound))

# (bsz , seq_len)
lbl_score = matmul(normalize(u),

normalize(v).T.detach ())
l_sglbl = cross_entropy(sg_score

, lbl_typ)
l_sglbl *= lbl_bd.ne('O')

utt_score = matmul(normalize(u).
detach (), normalize(v).T)

l_sgutt = cross_entropy(
utt_score , lbl_typ)

l_sgutt *= lbl_bd.ne('O')
# (bsz , 1)
l_typ = l_sglbl.sum(-1) +

l_sgutt.sum(-1)
# filter out paddings and non -

slot tokens
f_utt = proj(r_utter)
filt_ids = lbl_typ != idx_O
filt_emb = f_utt[filt_ids]
filt_typ = lbl_typ[filt_ids]
# repeat on the second dimension
inter_emb = filt_emb.unsqueeze

(1).repeat(1, num_slot , 1).view(
num_slot*num_slot , -1)

int_typ = filt_typ.unsqueeze (1).
repeat(1, num_slot).view(num_slot*
num_slot)

# repeat on the first dimension
rept_emb = filt_emb.unsqueeze (0)

.repeat(num_slot , 1, 1).view(
num_slot*num_slot , -1)

rept_typ = filt_typ.unsqueeze (0)
.repeat(num_slot , 1).view(num_slot*
num_slot)

sim_score = cosine_similarity(
inter_emb , rept_emb)

# view as (num_slot , num_slot)
denom_mask = (inter_emb !=

rept_emb)
numer_mask = denom * (int_typ ==

rept_typ)
loss = softmax(sim_score) /

temperature
# # calculate Slot -CL with Eq.8,

(bsz , 1)
l_ctr = -(loss*numer_mask).log()

+ (loss*denom_mask).log() +
num_mask.sum().log()

l_ctr = l_ctr.mean()

return l_bdy + l_typ + l_ctr

Listing 1: Pseudo code for our proposed method.
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