

000 001 DIFFERENTIALLY PRIVATE SYNTHETIC DATA GENER- 002 ATION WITH DIVERSITY VIA APIs 003 004

005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT 009

011 Synthetic data has emerged as a key solution for preserving the privacy of original
012 data in fields dealing with sensitive information, such as healthcare and finance.
013 Recent advancements in foundation models have significantly improved the quality
014 of synthetic data. However, most high-performance foundation models are only
015 available as black-box APIs, limiting fine-tuning capabilities and requiring private
016 data containing sensitive information to be transmitted to external servers. To ad-
017 dress this issue, PE was introduced as a privacy-preserving synthetic data genera-
018 tion method that leverages genetic algorithms with black-box foundation models.
019 Nevertheless, due to its evolutionary process, PE tends to repeatedly focus on a
020 limited subset of samples, leading to a significant reduction in the diversity of
021 the generated synthetic dataset. Since diversity is a crucial factor for enhancing
022 the utility of synthetic data and ensuring robustness across various scenarios, we
023 propose Div-PE, an improved approach that overcomes the diversity limitations
024 of PE through a sample-variant two-stage voting mechanism. This method en-
025 hances data diversity and yields a 17.2% gain in FID and an 11.0% increase in
026 downstream accuracy on ResNet-18, averaged over ImageNet, Camelyon17, and
027 UTKFace. Furthermore, Div-PE demonstrates its versatility by delivering strong
028 experimental results not only on image data but also across other modalities, in-
029 cluding tabular and text data, validating its applicability to a wide range of data
030 types.

031 1 INTRODUCTION 032

033 With the rapid improvement of AI performance and the broadening of its applications, concerns over
034 privacy violations through AI have also increased (Lee et al., 2024; Achuthan et al., 2024; Zhan et al.,
035 2025). In domains such as finance and healthcare, where sensitive information is frequently handled,
036 regulatory and legal restrictions often render training datasets for AI models not publicly available.
037 One promising solution that has drawn significant attention is the use of synthetic data. (Assefa
038 et al., 2020; Schreyer et al., 2019). Synthetic data are generated to mimic only the statistical dis-
039 tribution of real data without directly containing personal information (Lu et al., 2023), and have
040 been successfully used as an alternative to private data to address privacy concerns (Mendes et al.,
041 2025; Jordon et al., 2022; Gonzales et al., 2023; Arora et al., 2025; Qian et al., 2024; Nisovic et al.,
042 2025; Kaabachi et al., 2025; Balch et al., 2024; Potluru et al., 2023). However, even though synthetic
043 data do not explicitly include individual records and are therefore safer than real data, rare cases or
044 unique distributional features can still be exposed, leaving a risk of re-identification (Haim et al.,
045 2022; Fredrikson et al., 2015; Choquette-Choo et al., 2021; Tramèr et al., 2022; Wang et al., 2023).
046 To overcome these limitations, Differential Privacy (DP) (Dwork, 2006) has been widely applied.
047 Early approaches added noise to SGD gradients (Abadi et al., 2016), and more recent methods apply
048 DP to large foundation models (Lin et al., 2023; Xie et al., 2024) to generate synthetic data while
mathematically guaranteeing that the inclusion of any individual cannot be inferred.

049 Applying DP to the synthetic data generation process introduces several constraints. In particular,
050 recent studies have confirmed the presence of scaling laws across generative AI (Henighan et al.,
051 2020; Aghajanyan et al., 2023; Fan et al., 2024; Kaplan et al., 2020; Rosenfeld, 2021). Within this
052 context, foundation models trained on massive datasets with enormous computational resources ex-
053 hibit strong general-purpose performance across diverse domains (OpenAI, 2023; Rombach et al.,
2022; Betker et al., 2023; Touvron et al., 2023; Dubey et al., 2024; Anthropic, 2023; DeepMind,

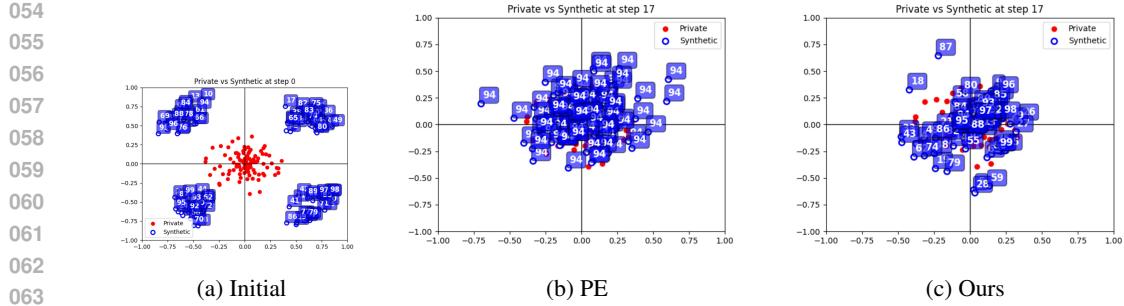


Figure 1: Performance comparison in a toy example with PCA visualization. We assigned unique ancestry markers to samples in the initial population (a), and made them pass on their marker to descendants when generating the next generation. At $T = 17$, Div-PE (c) ensures that all ancestral lineages survive, while PE (b) sees one lineage (originating from ancestor 94) dominate all descendants.

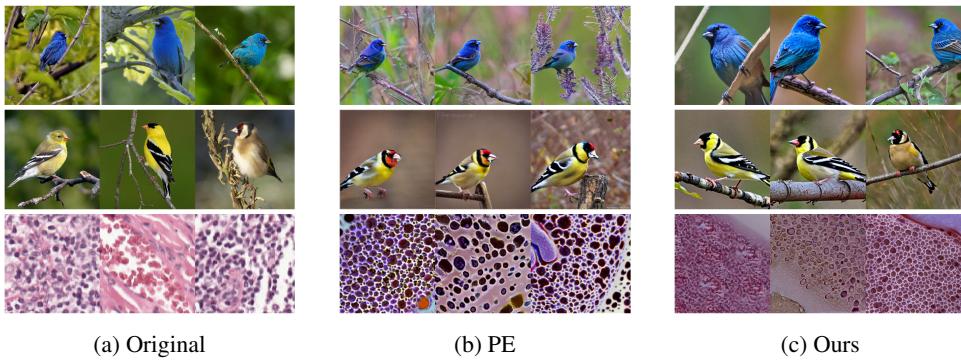


Figure 2: Original and generated images ($8.24, 10^{-2}$ -DP) from ImageNet (top 2 rows) and Camelyon17 (bottom).

2023; Services, 2023; OpenAI, 2025), making it increasingly difficult for task-specific models to keep pace. Consequently, both research and industrial applications are converging toward the use of foundation models (Qin et al., 2024; Awais et al., 2025; Yuan, 2023). The challenge is that many state-of-the-art (SOTA) foundation models are provided only as black-box APIs (OpenAI, 2023; Anthropic, 2023; DeepMind, 2023; Services, 2023; OpenAI, 2025). This prevents fine-tuning, limiting domain adaptability and complicating the application of DP methods that rely on gradient descent, such as DPSGD (Abadi et al., 2016). Alternatives such as prompt engineering (Chen et al., 2023) and prefix tuning (Li & Liang, 2021) provide partial customization, yet transmitting training data to external API servers introduces privacy risks such as eavesdropping and hijacking (He et al., 2023; Li et al., 2022; Ghalebikesabi et al., 2023; Yue et al., 2023; Harder et al., 2023; 2021; Tang et al., 2024).

To overcome these limitations, Private Evolution (PE) (Lin et al., 2023) was introduced as a framework for privacy-preserving synthetic data generation in black-box settings, drawing inspiration from evolutionary algorithms (Holland, 1975). The process begins by generating an initial population and creating K variations of each sample. The fitness of each sample is then evaluated by averaging the similarities of its variations, weighted by how many private samples select it as their nearest neighbor. Controlled noise is added to these evaluations to guarantee DP. The most promising samples, with duplication allowed, are selected as parents for the next generation. This cycle is repeated for T iterations, progressively guiding the synthetic distribution toward the private data distribution.

While PE is notable as the first customization framework to incorporate DP in black-box settings, it is not free from drawbacks, most notably the loss of diversity. As the evolutionary process proceeds, the ancestry of all samples gradually converges, and the final dataset collapses into a collection of

108 variations on a single data point. Figure 1 illustrates this issue with a toy example, and Figure 2
 109 presents the image results.
 110

111 In this paper, we identify the cause of the vanishing diversity problem in PE in the voting method,
 112 and propose Diversified Private Evolution (Div-PE), which introduces a two-stage voting scheme to
 113 enhance diversity. Inspired by natural ecosystems, where seemingly inferior individuals help main-
 114 tain genetic variation, we allow samples not selected in the first round to reenter subsequent voting
 115 rounds so that they can still contribute to the population. In the second round, superior samples vote
 116 for candidates similar to themselves, promoting peer selection. This mechanism prevents superior
 117 samples from monopolizing survival, fostering a more diverse and stable synthetic data ecosystem.
 118

119 While this design intuitively increases diversity, it introduces certain challenges. In particular, treat-
 120 ing all samples equally regardless of their fitness can lead to inefficiency. To address this, we allow
 121 samples to adaptively vary in the next generation according to their relative distance to the private
 122 distribution, assigning inferior samples a larger degree of variation so that they can catch up with su-
 123 perior ones. We also incorporate demonstration-based variation through prompt engineering (Chen
 124 et al., 2023; Li & Liang, 2021; Dong et al., 2022b), enabling superior samples to guide inferior ones.
 125 In this way, synthetic data samples do not merely compete but support each other in evolving toward
 126 their optimal form. Since both the synthetic data and the voting mechanism satisfy DP, this process
 127 adheres to privacy standards through the post-processing property (Dwork et al., 2014b), improving
 128 data diversity and utility without incurring any additional privacy cost.
 129

130 By improving diversity in this way, Div-PE achieves greater practical modality scalability than PE.
 131 Although PE is theoretically adaptable to various modalities, it has focused primarily on image data.
 132 Images lie in a continuous space, whereas text is discrete and tabular data combines both structures.
 133 This makes distinguishing variations between samples more difficult in text and tabular domains,
 134 increasing the risk of diversity collapse. While Aug-PE (Xie et al., 2024) extends PE to text, tabular
 135 data has not yet been explored. Div-PE addresses this gap by incorporating tabular data generation
 136 and evaluation, thereby extending synthetic data generation beyond image and text to support a
 137 wider range of practical applications.
 138

139 Our main contributions are summarized as follows:
 140

- 141 1. **Diversity.** We propose Div-PE, a framework for differentially private synthetic data gener-
 142 ation that achieves substantial diversity improvement in black-box settings.
 143
- 144 2. **Quality.** Our method attains SOTA performance with $\text{FID} = 48.448$ on ImageNet (Deng
 145 et al., 2009), yielding more than an 11% gain in downstream accuracy.
 146
- 147 3. **Experimentation.** We provide extensive experiments demonstrating the effectiveness of
 148 Div-PE across image, text, and tabular modalities.
 149

150 2 BACKGROUND AND RELATED WORKS

151 **Differential Privacy (DP).** DP provides a formal way to limit the influence of any single data
 152 point on the output of a mechanism (Dwork, 2006). For any two datasets \mathcal{D} and \mathcal{D}' that differ by at
 153 most one individual, the output of a mechanism \mathcal{M} remains nearly unchanged so that it is impossible
 154 to determine whether a particular record is included in the input.

$$155 \mathbb{P}(\mathcal{M}(\mathcal{D}) \in \mathcal{O}) \leq e^\epsilon \mathbb{P}(\mathcal{M}(\mathcal{D}') \in \mathcal{O}) + \delta \quad (1)$$

156 If Equation 1 holds for every subset \mathcal{O} of possible outputs of \mathcal{M} , the mechanism \mathcal{M} is said to satisfy
 157 (ϵ, δ) -DP.
 158

159 **Private Evolution (PE).** PE is a framework inspired by evolutionary algorithms (Holland, 1975)
 160 that applies DP to image generation models *without* fine-tuning, relying only on black-box ac-
 161 cess (Lin et al., 2023). Privacy is guaranteed in two key ways. First, throughout the entire process
 162 of synthetic data generation, the foundation model never accesses the original data. The procedure
 163 begins by generating an initial set of synthetic samples using descriptive prompts. The private data
 164 participate only by voting for the synthetic samples that are closest to them in the population, thereby
 165 guiding the refinement process. Because the information from private data is reflected solely through
 166 voting, this mechanism not only determines the utility of the synthetic data but also represents a po-
 167 tential point of privacy leakage (Hou et al., 2023; Gopi et al., 2020; Hong et al., 2022; Yu et al.,
 168 2023).

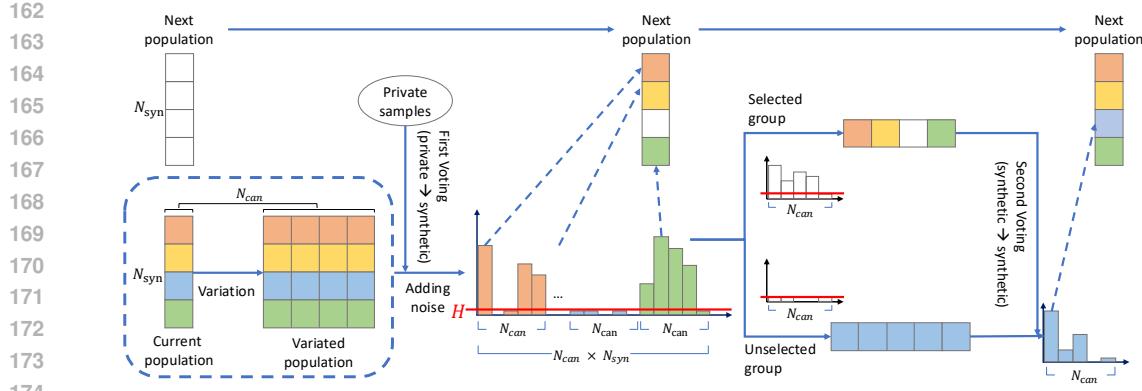


Figure 3: Overview of the proposed Div-PE framework. At each iteration t , every sample generates $N_{\text{can}} - 1$ variants to form a candidate set. In the *first voting* (private \rightarrow synthetic), private samples vote for the nearest candidate, with Gaussian noise σ and threshold H applied. Groups passing the threshold advance to the next generation S_t , while the others undergo a *second voting* (synthetic \rightarrow synthetic), where first-stage winners re-vote within each group to ensure at least one survivor. Repeating this process for T iterations yields the final synthetic set S_T .

2023). To mitigate this risk, DP is incorporated into the voting mechanism by adding controlled noise to the votes, preventing the exposure of individual records in the original data. However, PE suffers from limited diversity, as repeated iterations favor a small subset of high-performing samples and generate future populations primarily from their variations, leading to homogenization over time.

Augmented PE (Aug-PE). Aug-PE (Xie et al., 2024) was proposed to alleviate this limitation by enlarging the intermediate synthetic population by a factor of L , assigning a small probability for relatively inferior samples to participate in forming the next generation. However, superior samples still have a higher chance of reproducing multiple offspring, leaving the fundamental issue unresolved. The limited genetic pool of both PE and Aug-PE constrains diversity, which can in turn degrade the performance of downstream tasks trained on the resulting synthetic data (Shipard et al., 2023; Gong et al., 2019; Zhang et al., 2024).

3 PROPOSED METHOD

3.1 ARCHITECTURE

The proposed framework Div-PE is a synthetic data generation method that approximates the private data distribution by repeatedly performing candidate generation and two-stage voting without any parameter training. The key idea is to (i) generate diverse candidates through prompt-based initialization and variation, and (ii) select the next generation using the two-stage DP voting module BISTAGE to guarantee both diversity and privacy. The overall architecture is illustrated in Figure 3, and the detailed procedures are formalized in Algorithm 1 and Algorithm 2.

Div-PE Design. Algorithm 1 formalizes the complete pipeline of Div-PE for a single class. First, a diverse prompt set P_{pub} is generated using public information I_{pub} (Line 1, Alg.1). The SEED_API then produces the initial synthetic set S_0 (Line 2, Alg.1). At each iteration $t = 1, \dots, T$, the variation degree v_t is determined by a scheduler $\text{deg}(t)$ (Line 3, Alg.1). From the previous generation S_{t-1} , $N_{\text{can}} - 1$ variations are generated to construct the candidate set S_{can}^t (Lines 6–8, Alg.1). The previous generation samples are then added to the candidate set (Line 11, Alg.1). Finally, the input $(S_{\text{priv}}, S_{\text{can}}^t, \sigma, H, N_{\text{can}})$ is passed to the BISTAGE module (Lines 12–13, Alg.1) to select the next generation S_t through two-stage voting. Repeating this process T times yields the final synthetic set S_T .

216

217

218

219

Algorithm 1 Diversified Private Evolution (Div-PE)

220

Input: Private samples $S_{\text{priv}} = \{x_i^{\text{priv}}\}_{i=1}^{N_{\text{priv}}}$
 Public information I_{pub}
 Number of synthetic samples N_{syn}
 Number of iterations T
 Number of candidates N_{can}
 Noise multiplier σ
 Threshold H
 Variation scheduler $\text{deg}(\cdot)$

221

Output: Synthetic samples S_T

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

```

1:  $P_{\text{pub}} \leftarrow \text{Prompt\_Generate}(N_{\text{syn}}, I_{\text{pub}})$ 
2:  $S_0 \leftarrow \text{SEED\_API}(P_{\text{pub}})$ 
3: for  $t \leftarrow 1, \dots, T$  do
4:    $v_t \leftarrow \text{deg}(t)$ 
5:    $S_{\text{can}}^t \leftarrow \emptyset$ 
6:   for  $s_i \in S_{t-1}$  do
7:     for  $c \leftarrow 1, \dots, N_{\text{can}} - 1$  do
8:        $z \leftarrow \text{VARIATE\_API}(s_i, v_t)$ 
9:        $S_{\text{can}}^t \leftarrow S_{\text{can}}^t \cup \{z\}$ 
10:    end for
11:   end for
12:    $S_{\text{can}}^t \leftarrow S_{\text{can}}^t \cup S_{t-1}$ 
13:    $inp \leftarrow (S_{\text{priv}}, S_{\text{can}}^t, \sigma, H, N_{\text{can}})$ 
14:    $S_t \leftarrow \text{BISTAGE}(inp)$ 
15: end for
16: return  $S_T$ 

```

260

261

262

263

264

265

Two-Stage Voting Mechanism. Algorithm 2 details the BISTAGE module that selects the next generation from the candidate set S_{can} . In the *First Voting* stage, each private sample x_i^{priv} votes for its nearest candidate z_{j^*} in the embedding space (Lines 1–5, Alg.2). Gaussian noise σ is then added to the vote vector $V^{(1)}$, and a threshold H is applied (Lines 6–8, Alg.2). The FIND_BEST function selects the top-voted candidate in each group (Line 9, Alg.2). The detailed selection procedure is described in Appendix A. Groups not selected in the first round proceed to the *Second Voting* stage, where first-round winners vote within their own groups without noise to finalize the selection (Lines 10–18, Alg.2). This process ensures that each group contributes at least one candidate to the next generation S_t . For multi-class settings, the procedure is executed independently for each class.

266

267

Auto-Prompt. To broaden the diversity of synthetic data generation, Div-PE employs an Auto-Prompt strategy that automatically expands the prompt set based on public information I_{pub} using large language models (LLMs). We assume that I_{pub} consists of only a single keyword or short phrase (e.g. a photo of a cat), which provides a limited expressive range and restricts both the diversity and the convergence speed of the candidate set S_{can}^t . To mitigate this, an LLM is used to generate a prompt set

$$P_{\text{pub}} = \{p_1, p_2, \dots, p_{N_{\text{syn}}}\}$$

268

269

that matches the target number of synthetic samples N_{syn} by enriching each input concept with detailed attributes and conditions. Specifically, the following instruction is applied to guide the LLM to produce richer yet single-sentence prompts:

Algorithm 2 BI-stage Voting (BISTAGE)**Input:** Private samples S_{priv} Candidate pool $S_{\text{can}} = \{z_j\}_{j=1}^{N_{\text{can}} \times N_{\text{syn}}}$ Number of candidates N_{can} Noise multiplier σ Threshold H Distance function $d(\cdot, \cdot)$ **Output:** Selected samples S

```

1:  $V^{(1)} \leftarrow [0, \dots, 0]$ 
2: for  $x_i^{\text{priv}} \in S_{\text{priv}}$  do
3:    $\delta_j \leftarrow d(\Phi(x_i^{\text{priv}}), \Phi(z_j))$ 
4:    $j^* \leftarrow \arg \min_j \delta_j$ 
5:    $V^{(1)}[j^*] \leftarrow V^{(1)}[j^*] + 1$ 
6: end for
7:  $V^{(1)} \leftarrow V^{(1)} + \mathcal{N}(0, \sigma^2 I)$ 
8:  $V^{(1)} \leftarrow \max(V^{(1)} - H, 0)$ 
9:  $best^{(1)} \leftarrow \text{FIND\_BEST}(V^{(1)}, N_{\text{can}})$ 
10:  $(\text{idx\_sel}^{(1)}, \text{idx\_uns}^{(1)}) \leftarrow best^{(1)}$ 
11:  $V^{(2)} \leftarrow [0, \dots, 0]$ 
12: for  $s \in \text{idx\_sel}^{(1)}$  do
13:   for  $u \in \text{idx\_uns}^{(1)}$  do
14:      $\delta_j \leftarrow d(\Phi(S_{\text{syn}}[s]), \Phi(z_j))$ 
15:      $j^* \leftarrow \arg \min_j \delta_j$ 
16:      $V^{(2)}[j^*] \leftarrow V^{(2)}[j^*] + 1$ 
17:   end for
18: end for
19:  $best^{(2)} \leftarrow \text{FIND\_BEST}(V^{(2)}, N_{\text{can}})$ 
20:  $(\text{idx\_sel}^{(2)}, \dots) \leftarrow best^{(2)}$ 
21:  $S \leftarrow S_{\text{syn}}[\text{idx\_sel}^{(1)} \cup \text{idx\_sel}^{(2)}]$ 
22: return  $S$ 

```

270 Make the following prompt more descriptive by adding appropriate details,
 271 but end the result naturally with a single sentence.
 272 {Input Prompt}
 273 Enhanced Prompt:
 274

275 This template converts each {Input Prompt} into an enhanced single-sentence prompt containing
 276 contextual and concrete attributes.
 277

278 **Demonstration-Based Variation.** For generations $t \geq 2$, superior candidates guide the variation
 279 of inferior candidates. Each synthetic sample $z_i \in S_{t-1}$ forms a demonstration set D_i^t by probabilis-
 280 tically selecting higher-voted samples according to the noise-added first voting vector $V^{(1,t-1)}$:
 281

$$282 P(z_j \in D_i^t) = \frac{V_j^{(1,t-1)}}{\sum_{k \in X_i^t} V_k^{(1,t-1)}}, \quad X_i^t = \{j \mid V_j^{(1,t-1)} \geq V_i^{(1,t-1)}\}. \quad (2)$$

285 Since $V^{(1,t-1)}$ already includes DP noise from Algorithm 2 (Lines 7–8), no additional privacy cost
 286 is incurred.
 287

288 **Adaptive Variation.** Synthetic samples farther from the private distribution are assigned a higher
 289 degree of variation to accelerate convergence. For each sample $z_i \in S_{t-1}$, the variation degree v_i^t at
 290 generation t is set as
 291

$$292 v_i^t = \text{deg}(t) \times \max \left(0.1, 1 - \frac{V_i^{(1,t-1)}}{N_{\text{priv}}} \right) \quad (3)$$

295 where $V_i^{(1,t-1)}$ is the noise-added first voting count. A smaller $V_i^{(1,t-1)}$ implies greater distance
 296 from the private distribution and thus allows a larger variation. The scheduler $\text{deg}(t)$ controls the
 297 global exploration strength and can be increased when high-vote candidates remain distant from the
 298 private distribution, which is typically the case in the early stages.
 299

300 3.2 RATIONALE AND VALIDATION

302 3.2.1 DIFFERENTIAL PRIVACY

304 In the first voting of the t -th BISTAGE, the noise-added votes $x_i \in S_{\text{can}}^t$ received from private
 305 samples are defined as

$$306 V_i^t = \max(f(x_i) + \mathcal{N}(0, \sigma^2 \mathbf{I}) - H, 0) \quad (4)$$

308 where $\mathcal{N}(0, \sigma^2 \mathbf{I})$ denotes Gaussian noise for privacy protection. Each private sample contributes
 309 only one vote. Changing a single instance in S_{priv} changes the first voting result by at most 1 in
 310 the l_2 norm, giving sensitivity 1. The post-processing property guarantees that any further process-
 311 ing of DP-protected data remains DP. Because the first voting stage satisfies (ϵ, δ) -DP, the second
 312 stage also satisfies (ϵ, δ) -DP. DP is applied only once per iteration, so applying the Gaussian mech-
 313 anism (Dwork et al., 2014a) over T iterations follows T adaptive composition (Dong et al., 2022a),
 314 as analyzed in (Lin et al., 2023). Thus each iteration consumes a privacy budget of σ/\sqrt{T} within the
 315 total budget ϵ .
 316

317 **Why not select many samples in the first voting.** Each original sample selects a single synthetic
 318 sample, keeping DP sensitivity at 1. Allowing multiple selections would increase sensitivity, require
 319 more noise, and reduce the utility of synthetic data.

321 **Why use synthetic data in the second voting.** The privacy budget analysis assumes exactly one
 322 private-data-based vote per iteration. If private data voted more than once per iteration, the privacy
 323 budget would increase proportionally. Div-PE improves diversity without additional privacy cost by
 using synthetic data for the second voting.

324 3.2.2 ENSURING CONVERGENCE
325

326 Following the assumption of PE that at least $M \gg H$ private points lie in an L_2 ball of diameter
327 D where the SEED_API generates initial samples, private points in each cluster tend to vote for the
328 same synthetic sample when S_{syn} is far from the private distribution. The selected samples converge
329 to S_{prv} within Wasserstein distance $\leq \eta$ ($\forall p \in [1, \infty]$) with probability $\geq 1 - \tau$ whenever

$$330 \quad T \gg \frac{d \log(D/\eta)}{\log N_{\text{can}}} + \log(N_{\text{prv}}/\tau), \quad (5)$$

333 where d is the intrinsic dimension of the embedding space. Because the second-round voting already
334 satisfies DP, its convergence proof follows that of the non-private case (Lin et al., 2023).
335

336 **Why select only one candidate per group in the second voting.** The main limitation of PE
337 arises from the functional gap between the SEED_API and the VARIATE_API. The VARIATE_API
338 produces only minor variations around selected samples and cannot match the diversity of the
339 SEED_API. If the VARIATE_API provided diversity comparable to the SEED_API, the voting-based
340 convergence principle of PE would fail. Therefore, leveraging the diversity of the SEED_API re-
341 quires selecting exactly one candidate per group to maintain diversity.
342

343 3.2.3 COST EFFICIENCY

344 Div-PE differs from PE only in the second voting. Let N_{syn} be the number of synthetic samples
345 per iteration and N_{sel} the subset chosen in the first stage. The second stage selects the remaining
346 $N_{\text{syn}} - N_{\text{sel}}$ samples from unselected groups.
347

- 348 1. Selecting N_{sel} samples from N_{syn} candidates requires $\mathcal{O}(N_{\text{sel}})$ time.
- 349 2. Using Faiss, the nearest neighbor search takes $\mathcal{O}(\log N_{\text{syn}})$ for each of the N_{sel} samples,
350 giving a total complexity of $\mathcal{O}(N_{\text{sel}} \cdot \log N_{\text{syn}})$.
351

352 Since the linear term dominates, the overall complexity of the second voting phase is

$$353 \quad \mathcal{O}(N_{\text{sel}} \cdot \log N_{\text{syn}}). \quad (6)$$

355 Moreover, Div-PE calls APIs only during candidate generation, while the second voting operates
356 on pre-generated candidates. Parameters affecting API usage (e.g. K , L , and N_{can}) are fixed across
357 experiments, ensuring identical API consumption for PE, Aug-PE, and Div-PE. Under these condi-
358 tions, Div-PE achieves superior performance with equal cost.
359

360 **Why not increase variations of superior samples to improve diversity.** Increasing the number
361 of variations requires additional API calls, which incur monetary cost for commercial black-box
362 APIs or GPU cost for local execution. Aug-PE improves diversity by generating more variations,
363 whereas Div-PE achieves better diversity at lower cost by enhancing the voting mechanism.
364

365 4 EXPERIMENTS
366

367 **Data.** We evaluate the proposed method across three modalities using representative benchmarks.
368 For image data we adopt ImageNet (Deng et al., 2009), Camelyon17 (Litjens et al., 2018), and
369 UTKFace (Zhang et al., 2017). For text data we use OpenReview (Xie et al., 2024) with acceptance
370 labels and Yelp (Zhang et al., 2015) with star ratings. For tabular data we use Adult (Becker &
371 Kohavi, 1996) with binary income labels and Body-Performance (Cho & contributors, 2021) with
372 multi-class physical condition labels.
373

374 **Models.** Our framework relies on two unified interfaces: a SEED_API for initial generation and a
375 VARIATE_API for controlled refinement. Stable Diffusion v1.5 (Rombach et al., 2022) is used as the
376 image generator, while Llama-2-7b-hf (Touvron et al., 2023) serves as the backbone for text and tab-
377 ular generation as well as for auto-prompt and variation across modalities. Further implementation
details are provided in the Appendix B.

Modality	Dataset	Method	ACC (\uparrow)	FID/W-dist (\downarrow)	Precision (\uparrow)	Recall (\uparrow)	Density (\uparrow)	Coverage (\uparrow)
Image	ImageNet	PE	0.411	81.204	0.934	0.000	0.998	0.194
		Aug-PE	0.732	48.359	0.891	0.677	0.998	0.545
		Ours	0.889	45.058	0.878	0.247	0.924	0.648
	Camelyon17	PE	0.626	290.747	0.000	0.000	0.000	0.000
		Aug-PE	0.814	214.704	0.009	0.277	0.001	0.004
		Ours	0.861	187.404	0.014	0.175	0.002	0.004
	UTKFace	PE	0.616	246.015	0.182	0.000	0.021	0.003
		Aug-PE	0.732	167.086	0.082	0.094	0.011	0.005
		Ours	0.774	113.497	0.084	0.048	0.012	0.020
Text	OpenReview	Aug-PE	0.370	0.017	0.104	0.551	0.031	0.032
		Ours	0.440	0.012	0.233	0.625	0.163	0.254
	Yelp	Aug-PE	0.620	0.017	0.106	0.696	0.031	0.025
Tabular	Adult	Ours	0.918	0.017	0.721	0.719	0.340	0.629
	Body-Performance	Ours	0.772	0.023	0.460	0.436	0.126	0.394

Table 1: Overall performance across modalities under a fixed DP budget ($\epsilon=2.0$, $\delta=10^{-4}$, $T=17$) and candidate breadth. Best values within each dataset are bolded.

Metrics. We evaluate two key aspects. (i) *Distributional similarity* is measured by FID for images (Heusel et al., 2017), Wasserstein distance for text and tabular data, and by density and coverage for local and global alignment (Naeem et al., 2020). (ii) *Label-conditioned utility* is measured by downstream accuracy, where models are trained on synthetic data and evaluated on held-out test sets. We use a ResNet-18 classifier for images, a RoBERTa-based classifier for text (aligned with Aug-PE), and a Random Forest classifier for tabular data. Higher density, coverage, and accuracy are desirable (\uparrow), whereas lower FID and Wasserstein indicate better fidelity (\downarrow).

Hyperparameters. All methods use $\epsilon = 2.0$, $\delta = 10^{-4}$, and $T = 17$. PE fixes pool size $K = 8$, Aug-PE sets prompt-side exploration $L = 8$, and our two-stage method uses $N_{\text{can}} = 8$. Other hyperparameters are reported in the Appendix B.

4.1 MODALITY-SPECIFIC IMPLEMENTATIONS.

Across all modalities we apply two-stage selection, auto-prompt, demonstration and adaptive variation. For tabular data we employ GreaT (Borisov et al., 2022) to serialize rows into natural language (e.g., ‘‘column1 is value1, column2 is value2, ...’’), which enables schema-preserving text-based processing. For demonstration, images use IP-Adapter conditioning (et al., 2023; Cubiq, 2024), whereas text and tabular data use system-prompt exemplars.

4.2 OVERALL GENERATION PERFORMANCE

Table 1 summarizes results across all datasets. On ImageNet, compared to Aug-PE with accuracy 0.732, our method reaches 0.889; coverage expands from 0.545 to 0.648, and FID decreases from 48.359 to 45.058. Unlike PE with recall 0.000, ours maintains balanced recall 0.247 together with strong precision. On Camelyon17, accuracy improves from 0.814 in Aug-PE to 0.861, and FID drops from 214.704 to 187.404. Coverage stays at 0.004 in both, reflecting the limitation of natural-image-pretrained foundation models in histopathology. Here PE collapses to density 0.000, while ours preserves a small but non-trivial density of about 0.002. On UTKFace, accuracy rises from 0.732 in Aug-PE to 0.774, FID falls from 167.086 to 113.497, and coverage grows from 0.005 to 0.020, expanding support beyond the baseline.

For text benchmarks, Aug-PE benefits from prompt expansion but coverage remains limited. On OpenReview, accuracy increases from 0.370 in Aug-PE to 0.440, Wasserstein distance decreases from 0.017 to 0.012, and coverage expands from 0.032 to 0.254. On Yelp, accuracy rises from 0.620 to 0.660, Wasserstein decreases from 0.017 to 0.012, and coverage grows from 0.025 to 0.267, providing more balanced class representation.

Method Variant (ImageNet)	ACC (\uparrow)	FID (\downarrow)	Precision (\uparrow)	Recall (\uparrow)	Density (\uparrow)	Coverage (\uparrow)
Ours (auto)	0.830	48.448	0.795	0.301	0.860	0.674
Ours (auto+av)	0.850	48.475	0.783	0.418	0.871	0.657
Ours (auto+demo)	0.868	136.818	0.895	0.083	0.928	0.301
Ours (all)	0.889	45.058	0.878	0.247	0.924	0.648

Table 2: Ablation on ImageNet under a fixed DP budget ($\epsilon=2.0$, $\delta=10^{-4}$, $T=17$). **auto**: auto-prompt only; **auto+av**: auto-prompt with adaptive variation; **auto+demo**: auto-prompt with demonstration; **all**: auto-prompt with adaptive variation and demonstration.

For tabular data, our method attains accuracy 0.918 on Adult with density 0.340 and coverage 0.629, and accuracy 0.772 on Body-Performance with density 0.126 and coverage 0.394. This shows that serialization-based generation preserves schema validity while broadening support.

4.3 ANALYSIS OF ABLATION PERFORMANCE

Table 2 evaluates auto-prompt, adaptive variation, and demonstration. Auto-prompt alone improves coverage to 0.674 (vs. 0.545 in Aug-PE) with density 0.860. Adding adaptive variation raises density further to 0.871 and coverage 0.657, preventing collapse into dominant modes. Demonstration guidance increases precision to 0.895 but reduces coverage to 0.301, despite high density 0.928. Combining all three yields the most balanced outcome: accuracy 0.889, FID 45.058, density 0.924, and coverage 0.648. In summary, auto-prompt diversifies support, adaptive variation stabilizes density, and demonstration sharpens fidelity, together avoiding the collapse of PE and the instability of Aug-PE. In summary, auto-prompt diversifies support, adaptive variation stabilizes density, and demonstration sharpens fidelity, together avoiding the collapse of PE and the instability of Aug-PE.

5 CONCLUSION

We proposed Div-PE, a framework designed to generate DP synthetic data without the need for additional training. This approach is particularly suitable for the growing prevalence of black-box environments, where model parameters remain inaccessible. While similar approaches have been explored previously, Div-PE stands out by employing a two-stage voting mechanism and prompt engineering to enhance diversity and adaptive variation, along with demonstration-based variation, thereby improving the quality of synthetic data for a more diverse synthetic samples.

While Div-PE enables synthetic data generation using only APIs and leverages proprietary models without privacy concerns, it still faces inherent limitations. These limitations primarily arise from the unavoidable replication of biases in foundation models and the dependence on pre-existing knowledge within the model. This becomes particularly challenging in fields requiring high levels of expertise, such as medical data, where the absence of model training can result in significant deficiencies. This issue reflects ongoing research trends, which aim to control model outputs without additional training (Dekoninck et al., 2024; Wang et al., 2024). In addition, there exists a trade-off between diversity and convergence speed: drawing from a wider range of groups improves diversity but slows convergence, whereas prior methods such as PE achieved faster convergence at the cost of reduced diversity. Addressing these concerns will be crucial in the ongoing development of synthetic data methodologies.

6 ETHICS STATEMENT

Our algorithm is designed to employ foundation models in a black-box manner while protecting the privacy of the target dataset. Accordingly, the safety of the foundation models themselves is beyond the scope of this study. Nevertheless, foundation models may exhibit biases inherited from their training data, and they remain susceptible to prompt injection and related attacks that can bypass built-in safeguards, potentially resulting in the generation of harmful, illegal, or sensitive content. We emphasize that these risks originate from the underlying models rather than from our proposed framework. Addressing such safety challenges remains an important direction for future research in responsible deployment of large-scale generative models.

486 REFERENCES
487

488 Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
489 Li Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC*
490 *conference on computer and communications security*, pp. 308–318, 2016.

491 Krishnashree Achuthan, Sasangan Ramanathan, Sethuraman Srinivas, and Raghu Raman. Advanc-
492 ing cybersecurity and privacy with artificial intelligence: current trends and future research direc-
493 tions. *Frontiers in Big Data*, 7:1497535, 2024.

494 Armen Aghajanyan, Lili Yu, Alexis Conneau, Wei-Ning Hsu, Karen Hambardzumyan, Susan Zhang,
495 Stephen Roller, Naman Goyal, Omer Levy, and Luke Zettlemoyer. Scaling laws for generative
496 mixed-modal language models. In *International Conference on Machine Learning*, pp. 265–279.
497 PMLR, 2023.

498 Anthropic. Claude api documentation. <https://www.anthropic.com/clause>, 2023. Ac-
499 cessed: 2025-09-18.

500 Anmol Arora, Siegfried Karl Wagner, Robin Carpenter, Rajesh Jena, and Pearse A Keane. The
501 urgent need to accelerate synthetic data privacy frameworks for medical research. *The Lancet
502 Digital Health*, 7(2):e157–e160, 2025.

503 Samuel A Assefa, Danial Dervovic, Mahmoud Mahfouz, Robert E Tillman, Prashant Reddy, and
504 Manuela Veloso. Generating synthetic data in finance: opportunities, challenges and pitfalls. In
505 *Proceedings of the First ACM International Conference on AI in Finance*, pp. 1–8, 2020.

506 Muhammad Awais, Muzammal Naseer, Salman Khan, Rao Muhammad Anwer, Hisham Cholakkal,
507 Mubarak Shah, Ming-Hsuan Yang, and Fahad Shahbaz Khan. Foundation models defining a
508 new era in vision: a survey and outlook. *IEEE Transactions on Pattern Analysis and Machine
509 Intelligence*, 2025.

510 Tucker Balch, Vamsi K Potluru, Deepak Paramanand, and Manuela Veloso. Six levels of privacy: A
511 framework for financial synthetic data. *arXiv preprint arXiv:2403.14724*, 2024.

512 Barry Becker and Ronny Kohavi. Adult [dataset]. UCI Machine Learning Repository, 1996. URL
513 <https://doi.org/10.24432/C5XW20>.

514 James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
515 Zhuang, Joyce Lee, Yufei Guo, Wesam Manassra, Prafulla Dhariwal, Casey Chu, Yunxin Jiao, and
516 Aditya Ramesh. Improving image generation with better captions. <https://cdn.openai.com/papers/dall-e-3.pdf>, 2023. Accessed: 2025-07-03.

517 Vadim Borisov, Kathrin Sessler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Lan-
518 guage models are realistic tabular data generators. In *The Eleventh International Conference on
519 Learning Representations*, 2022.

520 Banghao Chen, Zhaofeng Zhang, Nicolas Langrené, and Shengxin Zhu. Unleashing the potential of
521 prompt engineering in large language models: a comprehensive review, 2023.

522 Min Cho and contributors. Body performance dataset. UCI Machine Learning Repository, 2021.
523 URL <https://archive.ics.uci.edu/ml/datasets/Body+Performance>.

524 Christopher A. Choquette-Choo, Florian Tramer, Nicholas Carlini, and Nicolas Papernot. Label-
525 only membership inference attacks. In Marina Meila and Tong Zhang (eds.), *Proceedings of
526 the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine
527 Learning Research*, pp. 1964–1974. PMLR, 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/choquette-choo21a.html>.

528 Cubiq. Diffusers ipadapter. https://github.com/cubiq/Diffusers_IPAdapter,
529 2024. Accessed: 2025-05-16.

530 Google DeepMind. Palm, palm 2, and gemini api documentation. https://ai.google.dev/palm_docs, 2023. Accessed: 2025-09-18.

540 Jasper Dekoninck, Marc Fischer, Luca Beurer-Kellner, and Martin Vechev. Controlled text gen-
 541 eration via language model arithmetic. In *The Twelfth International Conference on Learning*
 542 *Representations*, 2024.

543

544 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 545 hierarchical image database. In *Computer Vision and Pattern Recognition, 2009. CVPR 2009.* *IEEE Conference on*, pp. 248–255. IEEE, 2009. URL <https://ieeexplore.ieee.org/abstract/document/5206848>.

546

547 Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential privacy. *Journal of the Royal*
 548 *Statistical Society Series B: Statistical Methodology*, 84(1):3–37, 2022a.

549

550

551 Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
 552 Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. *arXiv preprint arXiv:2301.00234*,
 553 2022b.

554

555 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 556 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 557 *arXiv preprint arXiv:2407.21783*, 2024.

558

559 Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and
 560 Ingo Wegener (eds.), *Automata, Languages and Programming*, pp. 1–12, Berlin, Heidelberg,
 2006. Springer Berlin Heidelberg. ISBN 978-3-540-35908-1.

561

562 Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. *Foundations*
 563 *and trends® in theoretical computer science*, 9(3–4):211–407, 2014a.

564

565 Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. *Foundations*
 566 *and Trends® in Theoretical Computer Science*, 9(3–4):211–407, 2014b.

567

568 Ye et al. Ip-adapter: Text-compatible image prompt adapter for text-to-image diffusion models.
 569 *arXiv:2308.06721*, 2023.

570

571 Lijie Fan, Kaifeng Chen, Dilip Krishnan, Dina Katabi, Phillip Isola, and Yonglong Tian. Scaling
 572 laws of synthetic images for model training... for now. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7382–7392, 2024.

573

574 Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confi-
 575 dence information and basic countermeasures. In *Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security*, CCS ’15, pp. 1322–1333, New York, NY, USA,
 576 2015. Association for Computing Machinery. ISBN 9781450338325. doi: 10.1145/2810103.
 577 2813677. URL <https://doi.org/10.1145/2810103.2813677>.

578

579 Sahra Ghalebikesabi, Leonard Berrada, Sven Gowal, Ira Ktena, Robert Stanforth, Jamie Hayes, So-
 580 ham De, Samuel L. Smith, Olivia Wiles, and Borja Balle. Differentially private diffusion models
 581 generate useful synthetic images, 2023.

582

583 Zhiqiang Gong, Ping Zhong, and Weidong Hu. Diversity in machine learning. *Ieee Access*, 7:
 64323–64350, 2019.

584

585 Aldren Gonzales, Guruprabha Guruswamy, and Scott R Smith. Synthetic data in health care: A
 586 narrative review. *PLOS Digital Health*, 2(1):e0000082, 2023.

587

588 Sivakanth Gopi, Pankaj Gulhane, Janardhan Kulkarni, Judy Hanwen Shen, Milad Shokouhi, and
 589 Sergey Yekhanin. Differentially private set union. In *International Conference on Machine Learning*, pp. 3627–3636. PMLR, 2020.

590

591 Niv Haim, Gal Vardi, Gilad Yehudai, michal Irani, and Ohad Shamir. Reconstructing train-
 592 ing data from trained neural networks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
 593 and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL
<https://openreview.net/forum?id=Sxk8Bse3RKO>.

594 Frederik Harder, Kamil Adamczewski, and Mijung Park. Dp-merf: Differentially private mean em-
 595 beddings with randomfeatures for practical privacy-preserving data generation. In *International*
 596 *conference on artificial intelligence and statistics*, pp. 1819–1827. PMLR, 2021.

597

598 Frederik Harder, Milad Jalali, Danica J. Sutherland, and Mijung Park. Pre-trained perceptual features
 599 improve differentially private image generation. *Transactions on Machine Learning Research*,
 600 2023. ISSN 2835-8856. URL <https://openreview.net/forum?id=R6W7zkMz0P>.

601 Jiyan He, Xuechen Li, Da Yu, Huishuai Zhang, Janardhan Kulkarni, Yin Tat Lee, Arturs Backurs,
 602 Nenghai Yu, and Jiang Bian. Exploring the limits of differentially private deep learning with
 603 group-wise clipping. In *The Eleventh International Conference on Learning Representations*,
 604 2023. URL <https://openreview.net/forum?id=oze0c1VGPeX>.

605 Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
 606 Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
 607 modeling. *arXiv preprint arXiv:2010.14701*, 2020.

608

609 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 610 Gans trained by a two time-scale update rule converge to a local nash equilibrium. In *Advances*
 611 *in Neural Information Processing Systems*, volume 30, 2017.

612 John H. Holland. *Adaptation in Natural and Artificial Systems*. University of Michigan Press, Ann
 613 Arbor, MI, 1975.

614

615 Junyuan Hong, Lingjuan Lyu, Jiayu Zhou, and Michael Spranger. Outsourcing training without up-
 616 loading data via efficient collaborative open-source sampling. In *Advances in Neural Information*
 617 *Processing Systems*, volume 35, pp. 20133–20146, 2022.

618

619 Charlie Hou, Hongyuan Zhan, Akshat Shrivastava, Sid Wang, Aleksandr Livshits, Giulia Fanti, and
 620 Daniel Lazar. Privately customizing prefinetuning to better match user data in federated learning.
 621 *arXiv preprint arXiv:2302.09042*, 2023.

622

623 James Jordon, Lukasz Szpruch, Florimond Houssiau, Mirko Bottarelli, Giovanni Cherubin, Carsten
 624 Maple, Samuel N Cohen, and Adrian Weller. Synthetic data—what, why and how? *arXiv preprint*
 625 *arXiv:2205.03257*, 2022.

626

627 Bayrem Kaabachi, Jérémie Despraz, Thierry Meurers, Karen Otte, Mehmed Halilovic, Bogdan Ku-
 628 lynch, Fabian Prasser, and Jean Louis Raisaro. A scoping review of privacy and utility metrics
 629 in medical synthetic data. *NPJ digital medicine*, 8(1):60, 2025.

630

631 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 632 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 633 models. *arXiv preprint arXiv:2001.08361*, 2020.

634

635 Hao-Ping Lee, Yu-Ju Yang, Thomas Serban Von Davier, Jodi Forlizzi, and Sauvik Das. Deepfakes,
 636 phrenology, surveillance, and more! a taxonomy of ai privacy risks. In *Proceedings of the 2024*
 637 *CHI Conference on Human Factors in Computing Systems*, pp. 1–19, 2024.

638

639 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. *arXiv*
 640 *preprint arXiv:2101.00190*, 2021.

641

642 Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
 643 strong differentially private learners. In *International Conference on Learning Representations*,
 644 2022. URL <https://openreview.net/forum?id=bVuP31tATMz>.

645

646 Zinan Lin, Sivakanth Gopi, Janardhan Kulkarni, Harsha Nori, and Sergey Yekhanin. Differentially
 647 private synthetic data via foundation model apis 1: Images. *arXiv preprint arXiv:2305.15560*,
 2023.

648

649 Geert Litjens, Peter Bandi, Babak Ehteshami Bejnordi, Oscar Geessink, Maschenka Balkenhol, Pe-
 650 ter Bult, Altuna Halilovic, Meyke Hermsen, Rob van de Loo, Rob Vogels, Quirine F Manson,
 651 et al. From detection of individual metastases to classification of lymph node status at the patient
 652 level: the camelyon17 challenge. *IEEE Transactions on Medical Imaging*, 37(12):2867–2875,
 653 2018. doi: 10.1109/TMI.2018.2867350.

648 Yingzhou Lu, Minjie Shen, Huazheng Wang, Xiao Wang, Capucine van Rechem, Tianfan Fu,
 649 and Wenqi Wei. Machine learning for synthetic data generation: a review. *arXiv preprint*
 650 *arXiv:2302.04062*, 2023.

651 Jorge M Mendes, Aziz Barbar, and Marwa Refaei. Synthetic data generation: a privacy-preserving
 652 approach to accelerate rare disease research. *Frontiers in Digital Health*, 7:1563991, 2025.

653 Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable
 654 fidelity and diversity metrics for generative models. In *International Conference on Machine*
 655 *Learning*, pp. 7176–7185. PMLR, 2020.

656 Maja Nisevic, Dusko Milojevic, and Daniela Spajic. Synthetic data in medicine: Legal and ethical
 657 considerations for patient profiling. *Computational and Structural Biotechnology Journal*, 28:
 658 190, 2025.

659 OpenAI. Gpt-4 technical report, 2023.

660 OpenAI. Introducing gpt-5 for developers. <https://openai.com/index/introducing-gpt-5-for-developers/>, 2025. Accessed: 2025-09-18.

661 Vamsi K Potluru, Daniel Borrajo, Andrea Coletta, Niccolò Dalmasso, Yousef El-Laham, Elizabeth
 662 Fons, Mohsen Ghassemi, Sriram Gopalakrishnan, Vikesh Gosai, Eleonora Kreačić, et al. Synthetic
 663 data applications in finance. *arXiv preprint arXiv:2401.00081*, 2023.

664 Zhaozhi Qian, Thomas Callender, Bogdan Cebere, Sam M Janes, Neal Navani, and Mihaela van der
 665 Schaar. Synthetic data for privacy-preserving clinical risk prediction. *Scientific Reports*, 14(1):
 666 25676, 2024.

667 Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe
 668 Zhou, Yufei Huang, Chaojun Xiao, et al. Tool learning with foundation models. *ACM Computing*
 669 *Surveys*, 57(4):1–40, 2024.

670 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 671 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference*
 672 *on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, June 2022.

673 Jonathan S Rosenfeld. Scaling laws for deep learning. *arXiv preprint arXiv:2108.07686*, 2021.

674 Marco Schreyer, Timur Sattarov, Bernd Reimer, and Damian Borth. Adversarial learning of deep-
 675 fakes in accounting. *arXiv preprint arXiv:1910.03810*, 2019.

676 Amazon Web Services. Amazon bedrock foundation models api reference.
 677 https://docs.aws.amazon.com/bedrock/latest/APIReference/API_ListFoundationModels.html, 2023. Accessed: 2025-09-18.

678 Jordan Shipard, Arnold Wiliem, Kien Nguyen Thanh, Wei Xiang, and Clinton Fookes. Diversity
 679 is definitely needed: Improving model-agnostic zero-shot classification via stable diffusion. In
 680 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 769–
 681 778, 2023.

682 Xinyu Tang, Richard Shin, Huseyin A Inan, Andre Manoel, Fatemehsadat Mireshghallah, Zinan Lin,
 683 Sivakanth Gopi, Janardhan Kulkarni, and Robert Sim. Privacy-preserving in-context learning with
 684 differentially private few-shot generation. In *The Twelfth International Conference on Learning*
 685 *Representations*, 2024. URL <https://openreview.net/forum?id=oZtt0pRn01>.

686 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 687 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
 688 Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
 689 Fu, Wenjin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 690 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 691 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 692 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 693 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 694 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,

702 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 703 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 704 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 705 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
 706 2023.

707

708 Florian Tramèr, Reza Shokri, Ayrton San Joaquin, Hoang Le, Matthew Jagielski, Sanghyun Hong,
 709 and Nicholas Carlini. Truth serum: Poisoning machine learning models to reveal their se-
 710 crets. In *Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communica-
 711 tions Security*, CCS '22, pp. 2779–2792, New York, NY, USA, 2022. Association for Com-
 712 puting Machinery. ISBN 9781450394505. doi: 10.1145/3548606.3560554. URL <https://doi.org/10.1145/3548606.3560554>.

714

715 Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian Xu,
 716 Zidi Xiong, Ritik Dutta, Rylan Schaeffer, Sang T. Truong, Simran Arora, Mantas Mazeika, Dan
 717 Hendrycks, Zinan Lin, Yu Cheng, Sanmi Koyejo, Dawn Song, and Bo Li. Decodingtrust: A
 718 comprehensive assessment of trustworthiness in GPT models. In *Thirty-seventh Conference on
 719 Neural Information Processing Systems Datasets and Benchmarks Track*, 2023. URL <https://openreview.net/forum?id=kaHpo8OZw2>.

720

721 Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, Anthony Chen, Huaxia Li, Xu Tang, and Yao Hu.
 722 Instantid: Zero-shot identity-preserving generation in seconds, 2024.

723

724 Chulin Xie, Zinan Lin, Arturs Backurs, Sivakanth Gopi, Da Yu, Huseyin A Inan, Harsha Nori,
 725 Haotian Jiang, Huishuai Zhang, Yin Tat Lee, Bo Li, and Sergey Yekhanin. Differentially private
 726 synthetic data via foundation model apis 2: Text, 2024.

727

728 Da Yu, Sivakanth Gopi, Janardhan Kulkarni, Zinan Lin, Saurabh Naik, Tomasz Lukasz Religa,
 729 Jian Yin, and Huishuai Zhang. Selective pre-training for private fine-tuning. *arXiv preprint
 730 arXiv:2305.13865*, 2023.

731

732 Yang Yuan. On the power of foundation models. In *International conference on machine learning*,
 733 pp. 40519–40530. PMLR, 2023.

734

735 Xiang Yue, Huseyin Inan, Xuechen Li, Girish Kumar, Julia McAnallen, Hoda Shajari, Huan Sun,
 736 David Levitan, and Robert Sim. Synthetic text generation with differential privacy: A simple and
 737 practical recipe. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings
 738 of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
 739 Papers)*, pp. 1321–1342, Toronto, Canada, July 2023. Association for Computational Linguistics.
 doi: 10.18653/v1/2023.acl-long.74.

741

742 Xiao Zhan, Juan Carlos Carrillo, William Seymour, and Jose Such. Malicious llm-based conversa-
 743 tional ai makes users reveal personal information. *arXiv preprint arXiv:2506.11680*, 2025.

744

745 Jieyu Zhang, Bohan Wang, Zhengyu Hu, Pang Wei W Koh, and Alexander J Ratner. On the trade-
 746 off of intra-/inter-class diversity for supervised pre-training. *Advances in Neural Information
 747 Processing Systems*, 36, 2024.

748

749 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
 750 classification. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 28. Curran Associates, Inc.,
 751 2015. URL [https://proceedings.neurips.cc/paper_files/paper/2015/
 752 file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf).

753

754 Zhifei Zhang, Yang Song, and Hairong Qi. Utkface [dataset], 2017. URL <https://susandqq.github.io/UTKFace/>.

756 APPENDIX

757

758 **A SELECTING BEST SAMPLES**

760

761 **Algorithm 3** Find the Best Candidate for Each Group (FIND_BEST)

762

Input: Vote vector $votes$

763

Number of candidates per group N_{can}

764

Output: Best indices idx_best , Zero-vote group indices idx_zero

765

```

766 1:  $n \leftarrow \lceil |votes|/N_{can} \rceil$ 
767 2:  $idx\_best \leftarrow \emptyset$ ,  $idx\_zero \leftarrow \emptyset$ 
768 3: for  $g \leftarrow 0, \dots, n - 1$  do
769 4:    $start \leftarrow g \times N_{can}$ 
770 5:    $end \leftarrow \min((g + 1) \times N_{can}, |votes|)$ 
771 6:    $b \leftarrow \arg \max_{j \in [start, end]} votes[j]$ 
772 7:   if  $votes[b] = 0$  then
773 8:      $idx\_zero \leftarrow idx\_zero \cup \{start\}$ 
774 9:   else
775 10:     $idx\_best \leftarrow idx\_best \cup \{b\}$ 
776 11:   end if
777 12: end for
778 13: return  $idx\_best$ ,  $idx\_zero$ 
779

```

780

The function takes the following inputs:

781

- **Votes:** An array containing the vote totals for each candidate.
- **Number of Candidates (N_{can}):** The number of variations plus the original sample, forming a group.

786

And produces the following outputs:

787

- **BestIndex:** Indices of the candidates with the highest votes in each group.
- **ZeroIndex:** Indices of the groups where all members received zero votes.

791

792

B EXPERIMENT SETTINGS

793

794

B.1 HYPERPARAMETERS

795

Table 4 summarizes the hyperparameters used in the experiments for PE, Aug-PE, and Div-PE. This includes both shared parameters and method-specific settings, providing a comprehensive overview necessary for reproducing the experiments and understanding the model performance.

799

800

The degree scheduler adjusts the variation degree over T , linearly decreasing it from $degree_scheduler_base$ to $degree_scheduler_min$. The $num_candidate$ parameter specifies the number of candidates considered in each iteration. The prompt generator refers to the model used to extract public prompts from public data. The demonstration parameter indicates the maximum number of demonstration samples that can be utilized. In adaptive variation, the variation degree is linearly adjusted from $weight_scheduler_base$ to $weight_scheduler_min$ over T iterations.

805

806

B.2 HARDWARE SPECIFICATION

807

808

809

Table 4 summarizes the hardware specification of the system where every experiment were conducted in the paper. We have 4 GPUs in total but omitted the number since only a single GPU per experiment was utilized.

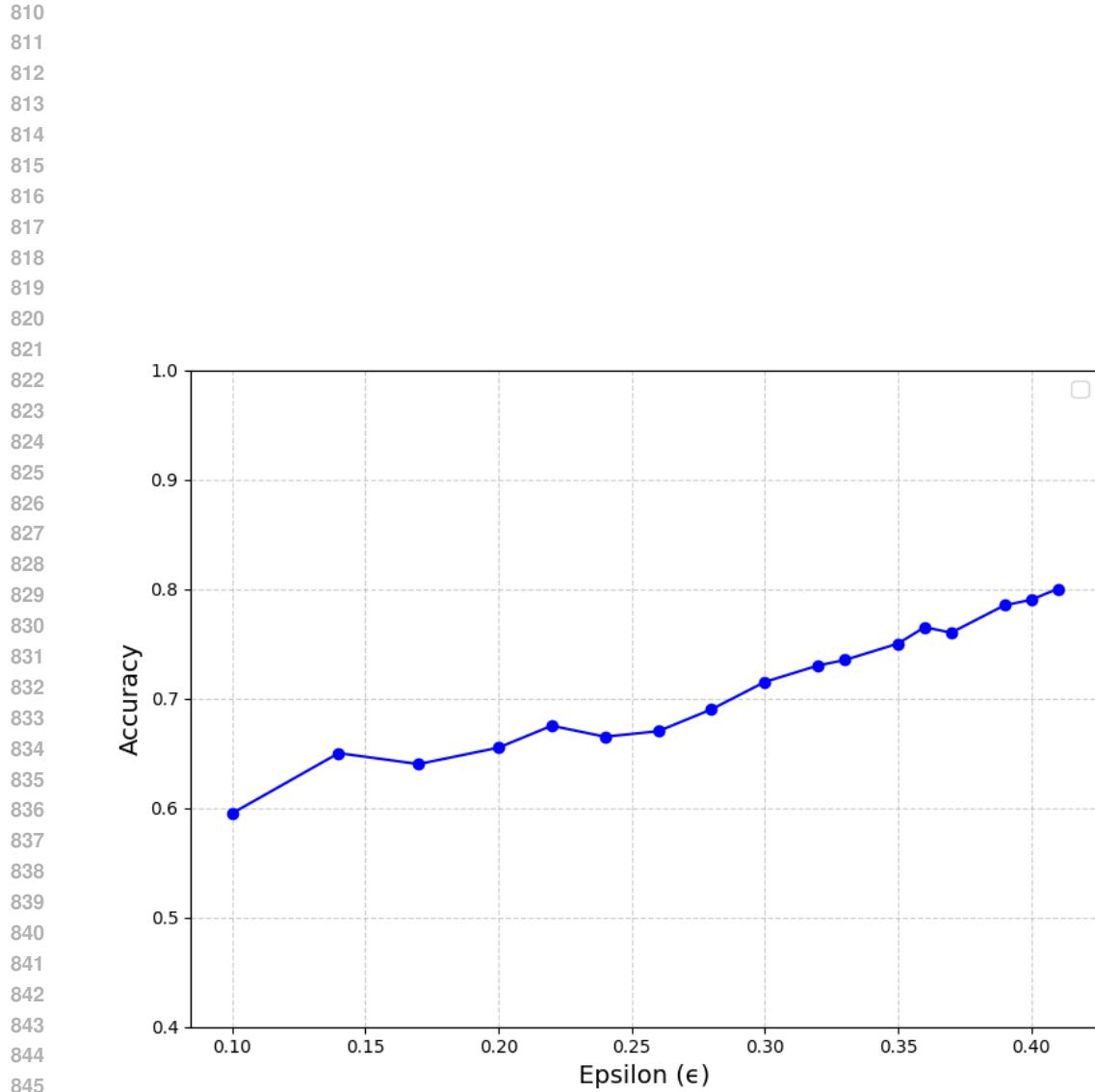


Figure 4: The graph illustrates the accuracy trends of downstream classification accuracy using synthetic data generated for the ImageNet Goldfinch and Indigo Bunting classes through our DPSDivA algorithm. The synthetic data was created with ϵ values ranging from 0.1 to 0.41, divided into 17 equal intervals. The results demonstrate the impact of varying ϵ on the downstream classification accuracy, highlighting the relationship between differential privacy settings and classification accuracy. Notably, when $\epsilon \geq 0.35$, the accuracy exceeds 0.70, and even at very low $\epsilon = 0.41$, an accuracy of over 0.80 is achieved, approaching the original data's accuracy of 0.85.

Parameter	PE	Aug-PE	Div-PE
count_threshold		2	
degree_scheduler		linear	
degree_scheduler_base		1	
degree_scheduler_min		0.7	
T		17	
feature extractor		clip_vit.b_32	
model		stable-diffusion-v1-5	
guidance scale		7.5	
number of steps		20	
K	8	1	-
L	-	8	-
num_candidate	-	-	8
demonstration	-	-	3
weight_scheduler_min	-	-	0.8
weight_scheduler_base	-	-	1

Table 3: Comparison of hyperparameters for PE, Aug-PE, and Div-PE. Shared values are centered, and a separator line is added above method-specific parameters.

GPU	NVIDIA RTX A6000
Memory	8 M393A8G40BB4-CWE
System	SYS-740GP-TNRT
Processor	112 Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz
OS	Ubuntu 18.04

Table 4: Hardware specification

C PERFORMANCE ANALYSIS

C.1 EFFECTS OF INDIVIDUAL COMPONENTS

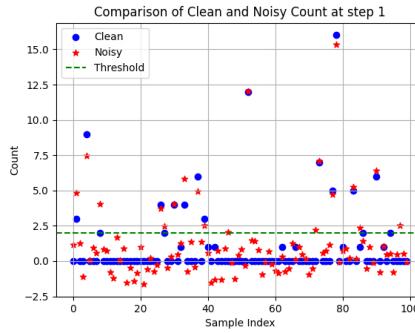
Figure 6 illustrates the impact of the detailed components of Div-PE on KID and coverage. Div-PE outperforms both PE and Aug-PE in both metrics. A closer examination of its individual components reveals that applying all elements of Div-PE yields the best performance. Between the demonstration-based variation and adaptive variation, the former achieves better results in terms of KID, while the latter excels in coverage. It is important to note that KID reflects distributional similarity, whereas coverage measures diversity.

The demonstration-based variation promotes the generation of samples resembling superior examples by directly influencing other samples, which enhances distributional similarity but slightly reduces diversity. In contrast, the adaptive variation assigns higher variation degrees to inferior samples, allowing for more freedom in their transformation. This approach benefits diversity but may compromise distributional similarity. The best performance observed when both components are applied simultaneously suggests that they have complementary effects.

C.2 EFFECTS OF PRIVACY PARAMETERS

Figure 4 presents the accuracy trends observed in downstream classification accuracy using synthetic data generated for the ImageNet Goldfinch and Indigo Bunting classes through our proposed DPSDivA algorithm. The synthetic data was generated with privacy budgets (ϵ) ranging from 0.1 to 0.41, divided into 17 equal intervals. The figure illustrates the relationship between differential privacy parameters and downstream classification accuracy, showcasing the trade-off between privacy and performance. Specifically, when $\epsilon \geq 0.35$, the classification accuracy surpasses 0.70, and even at a relatively low privacy budget of $\epsilon = 0.41$, the accuracy exceeds 0.80, closely approaching the original data's accuracy of 0.85. This demonstrates the effectiveness of the DPSDivA algorithm in maintaining high utility under strict privacy constraints.

918
919
920
921
922
923
924
925
926
927
928
929



930
931

Figure 5: The distribution of clean and noisy counts in the first variation.

932
933
934
935
936
937
938
939
940
941

Sample Index	Proportion (%)
73	15.0
68	12.2
61	8.8
59	7.2
55	6.4
97	5.1
37	4.9
51	3.7

942
943
944

Table 5: The proportion of noisy counts for samples exceeding the threshold.

945
946

D DIVERSITY ANALYSIS

947
948
949
950
951
952
953
954
955

Figure 5 shows the results of the voting for the first variation. It is important to note that the point at which our algorithm clearly diverges from the baseline is during the voting and variations that follow the initial generation. As shown in the figure, in the initial population, most samples do not receive votes, with only a few minority samples receiving votes. Based on these results, if the next variation is conducted, in the case of PE or AUG-PE, approximately 15 out of 100 samples would become variations of sample 73 (Table 5). Specifically, out of 100 samples, 82 received a score of 0, and only 18 samples received all the votes. In such cases, both PE and AUG-PE eliminate the samples that did not receive votes immediately, whereas our algorithm does not, allowing it to maintain greater diversity compared to the two algorithms.

956
957
958
959
960

Figure 7 presents the PCA analysis for each algorithm. PCA reduction was performed independently at each step rather than being fixed throughout. Notably, while the synthetic distributions of the three algorithms appear similar at step 0, they exhibit significant differences at step 17. It is also evident that the synthetic data at step 0 already demonstrates reduced diversity compared to the original data, highlighting a fundamental limitation of synthetic data generation.

961
962
963
964
965

However, the diversity issue becomes even more pronounced for PE and Aug-PE, as their evolutionary processes lead to a further reduction in diversity. In contrast, our algorithm successfully maintains the initial diversity observed at step 0, demonstrating its robustness in preserving data variation.

966
967

E MORE IMAGES ON IMAGENET

968
969
970
971

To highlight the limitations of existing methods in terms of diversity and demonstrate the effectiveness of our proposed approach, we present additional generation results on ImageNet. As shown in Figure 8 and 12, the original data exhibits a high degree of diversity, whereas the results generated by PE (Figure 9 and 13) and AUG-PE (Figure 10 and 14) lack such diversity. Figure 11 and

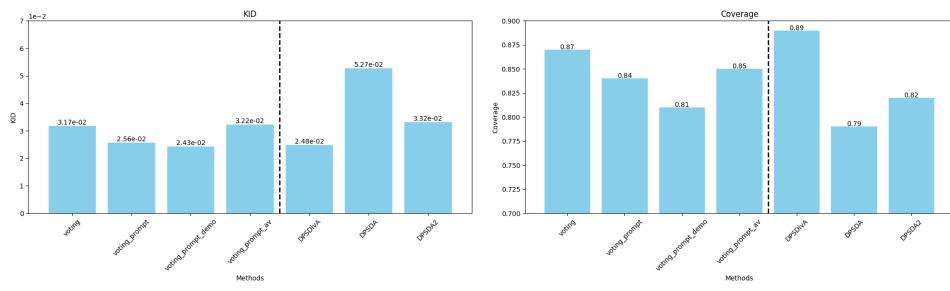


Figure 6: We calculated KID (top) and coverage (bottom) by incorporating each component of Div-PE — Auto-Prompt (prompt), demonstration-based variation (demo), and adaptive variation (av) on BISTAGE (voting) — and compared the results with the baselines.

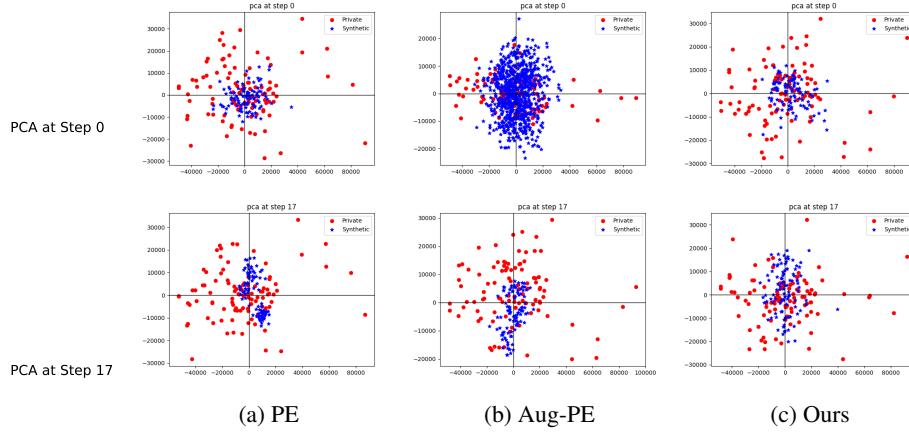


Figure 7: The PCA visualizations clearly illustrate the disparity in sample diversity among the algorithms.

15 demonstrate higher diversity compared to both baselines. These results directly demonstrate the effectiveness of Div-PE.

F USE OF LARGE LANGUAGE MODELS

Large language models (e.g., ChatGPT) were used only for ancillary tasks, such as language editing and translation of draft text. They did not contribute to the conception of ideas, experiment design, or writing of substantive scientific content.

Figure 8: Original data from the Goldfinch class in the ImageNet dataset.

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 9: Synthetic data generated for the Goldfinch class in the ImageNet dataset using the DPSDA.

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

Figure 10: Synthetic data generated for the Goldfinch class in the ImageNet dataset using the DPSDA2.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Figure 11: Synthetic data generated for the Goldfinch class in the ImageNet dataset using the DPS-DivA.

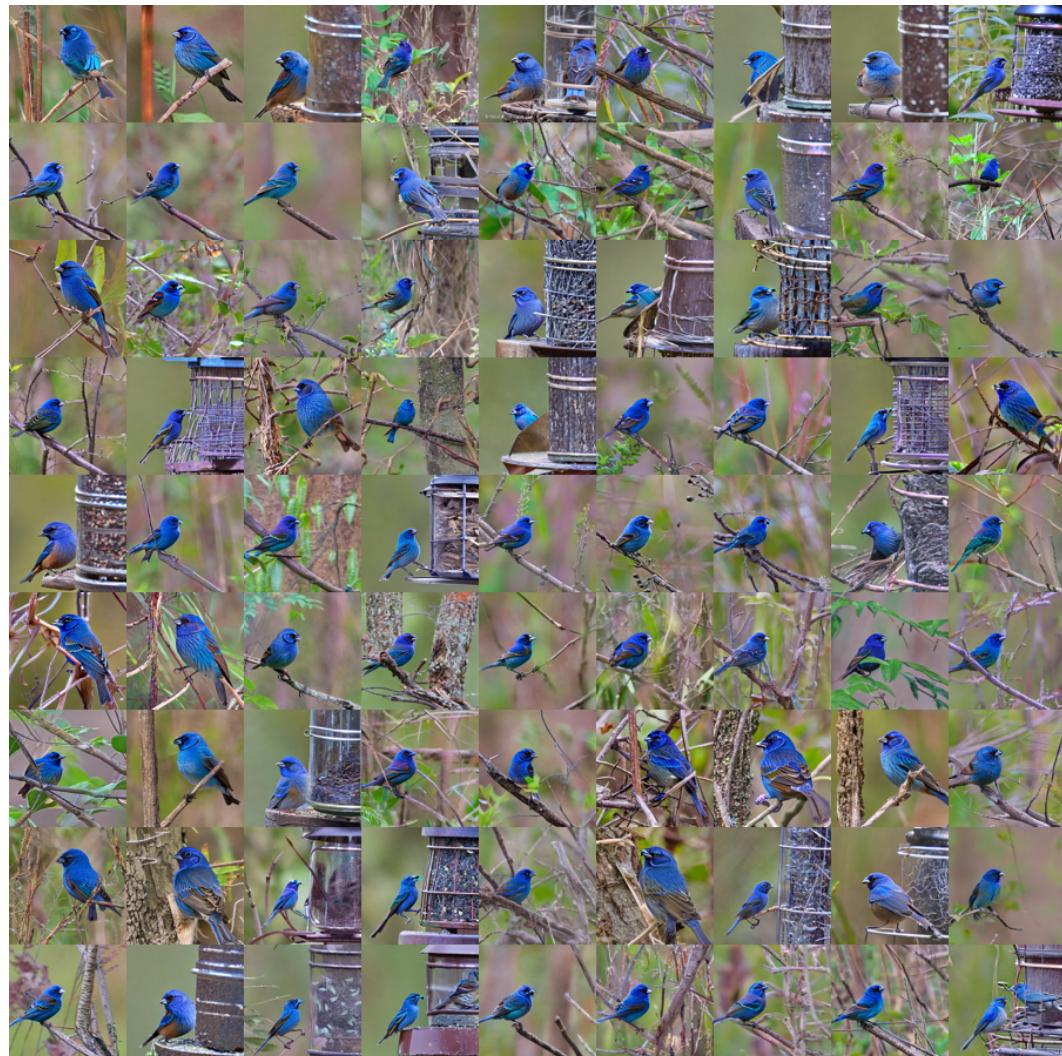
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285

Figure 12: Original data from the Indigo Bunting class in the ImageNet dataset.

1296
1297
1298
1299
1300
1301
1302
1303
1304



1339
1340 Figure 13: Synthetic data generated for the Indigo Bunting class in the ImageNet dataset using the
1341 DPSDA.
1342
1343
1344
1345
1346
1347
1348
1349

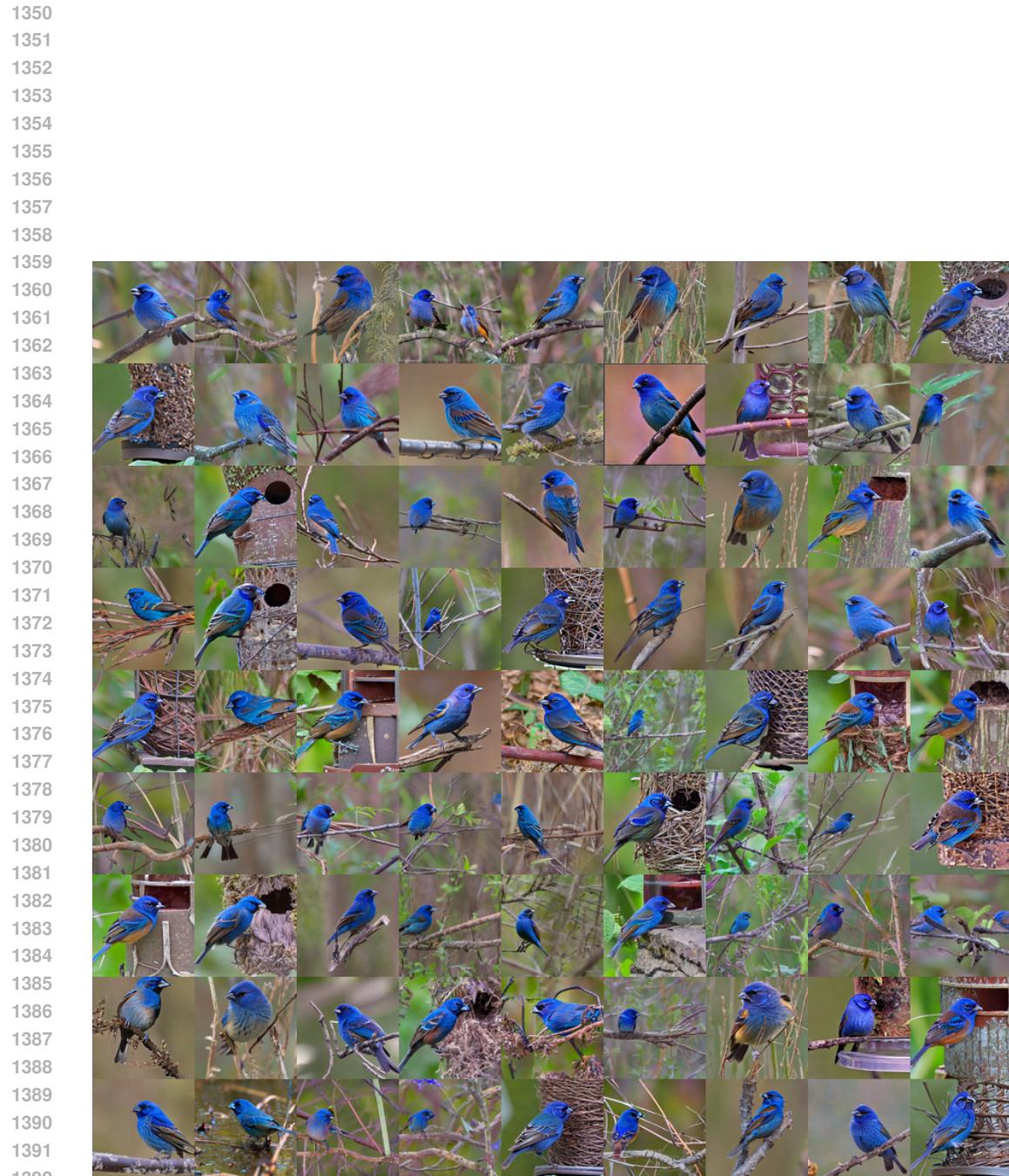


Figure 14: Synthetic data generated for the Indigo Bunting class in the ImageNet dataset using the DPSDA2.

1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Figure 15: Synthetic data generated for the Indigo Bunting class in the ImageNet dataset using the DPSDivA.