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ABSTRACT

Synthetic data has emerged as a key solution for preserving the privacy of original
data in fields dealing with sensitive information, such as healthcare and finance.
Recent advancements in foundation models have significantly improved the qual-
ity of synthetic data. However, most high-performance foundation models are only
available as black-box APIs, limiting fine-tuning capabilities and requiring private
data containing sensitive information to be transmitted to external servers. To ad-
dress this issue, PE was introduced as a privacy-preserving synthetic data genera-
tion method that leverages genetic algorithms with black-box foundation models.
Nevertheless, due to its evolutionary process, PE tends to repeatedly focus on a
limited subset of samples, leading to a significant reduction in the diversity of
the generated synthetic dataset. Since diversity is a crucial factor for enhancing
the utility of synthetic data and ensuring robustness across various scenarios, we
propose Div-PE, an improved approach that overcomes the diversity limitations
of PE through a sample-variant two-stage voting mechanism. This method en-
hances data diversity and yields a 17.2% gain in FID and an 11.0% increase in
downstream accuracy on ResNet-18, averaged over ImageNet, Camelyon17, and
UTKFace. Furthermore, Div-PE demonstrates its versatility by delivering strong
experimental results not only on image data but also across other modalities, in-
cluding tabular and text data, validating its applicability to a wide range of data
types.

1 INTRODUCTION

With the rapid improvement of AI performance and the broadening of its applications, concerns over
privacy violations through AI have also increased (Lee et al., 2024; Achuthan et al., 2024; Zhan et al.,
2025). In domains such as finance and healthcare, where sensitive information is frequently handled,
regulatory and legal restrictions often render training datasets for AI models not publicly available.
One promising solution that has drawn significant attention is the use of synthetic data. (Assefa
et al., 2020; Schreyer et al., 2019). Synthetic data are generated to mimic only the statistical dis-
tribution of real data without directly containing personal information (Lu et al., 2023), and have
been successfully used as an alternative to private data to address privacy concerns (Mendes et al.,
2025; Jordon et al., 2022; Gonzales et al., 2023; Arora et al., 2025; Qian et al., 2024; Nisevic et al.,
2025; Kaabachi et al., 2025; Balch et al., 2024; Potluru et al., 2023). However, even though synthetic
data do not explicitly include individual records and are therefore safer than real data, rare cases or
unique distributional features can still be exposed, leaving a risk of re-identification (Haim et al.,
2022; Fredrikson et al., 2015; Choquette-Choo et al., 2021; Tramèr et al., 2022; Wang et al., 2023).
To overcome these limitations, Differential Privacy (DP) (Dwork, 2006) has been widely applied.
Early approaches added noise to SGD gradients (Abadi et al., 2016), and more recent methods apply
DP to large foundation models (Lin et al., 2023; Xie et al., 2024) to generate synthetic data while
mathematically guaranteeing that the inclusion of any individual cannot be inferred.

Applying DP to the synthetic data generation process introduces several constraints. In particular,
recent studies have confirmed the presence of scaling laws across generative AI (Henighan et al.,
2020; Aghajanyan et al., 2023; Fan et al., 2024; Kaplan et al., 2020; Rosenfeld, 2021). Within this
context, foundation models trained on massive datasets with enormous computational resources ex-
hibit strong general-purpose performance across diverse domains (OpenAI, 2023; Rombach et al.,
2022; Betker et al., 2023; Touvron et al., 2023; Dubey et al., 2024; Anthropic, 2023; DeepMind,
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(a) Initial (b) PE (c) Ours

Figure 1: Performance comparison in a toy example with PCA visualization. We assigned unique
ancestry markers to samples in the initial population (a), and made them pass on their marker to
descendants when generating the next generation. At T = 17, Div-PE (c) ensures that all ancestral
lineages survive, while PE (b) sees one lineage (originating from ancestor 94) dominate all descen-
dants.

(a) Original (b) PE (c) Ours

Figure 2: Original and generated images (8.24, 10−2-DP) from ImageNet (top 2 rows) and Came-
lyon17 (bottom).

2023; Services, 2023; OpenAI, 2025), making it increasingly difficult for task-specific models to
keep pace. Consequently, both research and industrial applications are converging toward the use of
foundation models (Qin et al., 2024; Awais et al., 2025; Yuan, 2023). The challenge is that many
state-of-the-art (SOTA) foundation models are provided only as black-box APIs (OpenAI, 2023; An-
thropic, 2023; DeepMind, 2023; Services, 2023; OpenAI, 2025). This prevents fine-tuning, limiting
domain adaptability and complicating the application of DP methods that rely on gradient descent,
such as DPSGD (Abadi et al., 2016). Alternatives such as prompt engineering (Chen et al., 2023)
and prefix tuning (Li & Liang, 2021) provide partial customization, , yet transmitting training data to
external API servers introduces privacy risks such as eavesdropping and hijacking (He et al., 2023;
Li et al., 2022; Ghalebikesabi et al., 2023; Yue et al., 2023; Harder et al., 2023; 2021; Tang et al.,
2024).

To overcome these limitations, Private Evolution (PE) (Lin et al., 2023) was introduced as a frame-
work for privacy-preserving synthetic data generation in black-box settings, drawing inspiration
from evolutionary algorithms (Holland, 1975). The process begins by generating an initial popu-
lation and creating K variations of each sample. The fitness of each sample is then evaluated by
averaging the similarities of its variations, weighted by how many private samples select it as their
nearest neighbor. Controlled noise is added to these evaluations to guarantee DP. The most promis-
ing samples, with duplication allowed, are selected as parents for the next generation. This cycle
is repeated for T iterations, progressively guiding the synthetic distribution toward the private data
distribution.

While PE is notable as the first customization framework to incorporate DP in black-box settings, it
is not free from drawbacks, most notably the loss of diversity. As the evolutionary process proceeds,
the ancestry of all samples gradually converges, and the final dataset collapses into a collection of
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variations on a single data point. Figure 1 illustrates this issue with a toy example, and Figure 2
presents the image results.

In this paper, we identify the cause of the vanishing diversity problem in PE in the voting method,
and propose Diversified Private Evolution (Div-PE), which introduces a two-stage voting scheme to
enhance diversity. Inspired by natural ecosystems, where seemingly inferior individuals help main-
tain genetic variation, we allow samples not selected in the first round to reenter subsequent voting
rounds so that they can still contribute to the population. In the second round, superior samples vote
for candidates similar to themselves, promoting peer selection. This mechanism prevents superior
samples from monopolizing survival, fostering a more diverse and stable synthetic data ecosystem.

While this design intuitively increases diversity, it introduces certain challenges. In particular, treat-
ing all samples equally regardless of their fitness can lead to inefficiency. To address this, we allow
samples to adaptively vary in the next generation according to their relative distance to the private
distribution, assigning inferior samples a larger degree of variation so that they can catch up with su-
perior ones. We also incorporate demonstration-based variation through prompt engineering (Chen
et al., 2023; Li & Liang, 2021; Dong et al., 2022b), enabling superior samples to guide inferior ones.
In this way, synthetic data samples do not merely compete but support each other in evolving toward
their optimal form. Since both the synthetic data and the voting mechanism satisfy DP, this process
adheres to privacy standards through the post-processing property (Dwork et al., 2014b), improving
data diversity and utility without incurring any additional privacy cost.

By improving diversity in this way, Div-PE achieves greater practical modality scalability than PE.
Although PE is theoretically adaptable to various modalities, it has focused primarily on image data.
Images lie in a continuous space, whereas text is discrete and tabular data combines both structures.
This makes distinguishing variations between samples more difficult in text and tabular domains,
increasing the risk of diversity collapse. While Aug-PE (Xie et al., 2024) extends PE to text, tabular
data has not yet been explored. Div-PE addresses this gap by incorporating tabular data generation
and evaluation, thereby extending synthetic data generation beyond image and text to support a
wider range of practical applications.

Our main contributions are summarized as follows:

1. Diversity. We propose Div-PE, a framework for differentially private synthetic data gener-
ation that achieves substantial diversity improvement in black-box settings.

2. Quality. Our method attains SOTA performance with FID = 48.448 on ImageNet (Deng
et al., 2009), yielding more than an 11% gain in downstream accuracy.

3. Experimentation. We provide extensive experiments demonstrating the effectiveness of
Div-PE across image, text, and tabular modalities.

2 BACKGROUND AND RELATED WORKS

Differential Privacy (DP). DP provides a formal way to limit the influence of any single data
point on the output of a mechanism (Dwork, 2006). For any two datasets D and D′ that differ by at
most one individual, the output of a mechanismM remains nearly unchanged so that it is impossible
to determine whether a particular record is included in the input.

P
(
M(D) ∈ O

)
≤ eϵP

(
M(D′) ∈ O

)
+ δ (1)

If Equation 1 holds for every subsetO of possible outputs ofM, the mechanismM is said to satisfy
(ϵ, δ)-DP.

Private Evolution (PE). PE is a framework inspired by evolutionary algorithms (Holland, 1975)
that applies DP to image generation models without fine-tuning, relying only on black-box ac-
cess (Lin et al., 2023). Privacy is guaranteed in two key ways. First, throughout the entire process
of synthetic data generation, the foundation model never accesses the original data. The procedure
begins by generating an initial set of synthetic samples using descriptive prompts. The private data
participate only by voting for the synthetic samples that are closest to them in the population, thereby
guiding the refinement process. Because the information from private data is reflected solely through
voting, this mechanism not only determines the utility of the synthetic data but also represents a po-
tential point of privacy leakage (Hou et al., 2023; Gopi et al., 2020; Hong et al., 2022; Yu et al.,
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Figure 3: Overview of the proposed Div-PE framework. At each iteration t, every sample gen-
erates Ncan − 1 variants to form a candidate set. In the first voting (private→synthetic), private
samples vote for the nearest candidate, with Gaussian noise σ and threshold H applied. Groups
passing the threshold advance to the next generation St, while the others undergo a second voting
(synthetic→synthetic), where first-stage winners re-vote within each group to ensure at least one
survivor. Repeating this process for T iterations yields the final synthetic set ST .

2023). To mitigate this risk, DP is incorporated into the voting mechanism by adding controlled
noise to the votes, preventing the exposure of individual records in the original data. However, PE
suffers from limited diversity, as repeated iterations favor a small subset of high-performing sam-
ples and generate future populations primarily from their variations, leading to homogenization over
time.

Augmented PE (Aug-PE). Aug-PE (Xie et al., 2024) was proposed to alleviate this limitation by
enlarging the intermediate synthetic population by a factor of L, assigning a small probability for
relatively inferior samples to participate in forming the next generation. However, superior samples
still have a higher chance of reproducing multiple offspring, leaving the fundamental issue unre-
solved. The limited genetic pool of both PE and Aug-PE constrains diversity, which can in turn
degrade the performance of downstream tasks trained on the resulting synthetic data (Shipard et al.,
2023; Gong et al., 2019; Zhang et al., 2024).

3 PROPOSED METHOD

3.1 ARCHITECTURE

The proposed framework Div-PE is a synthetic data generation method that approximates the pri-
vate data distribution by repeatedly performing candidate generation and two-stage voting without
any parameter training. The key idea is to (i) generate diverse candidates through prompt-based ini-
tialization and variation, and (ii) select the next generation using the two-stage DP voting module
BISTAGE to guarantee both diversity and privacy. The overall architecture is illustrated in Figure 3,
and the detailed procedures are formalized in Algorithm 1 and Algorithm 2.

Div-PE Design. Algorithm 1 formalizes the complete pipeline of Div-PE for a single class. First, a
diverse prompt set Ppub is generated using public information Ipub (Line 1, Alg.1). The SEED API
then produces the initial synthetic set S0 (Line 2, Alg.1). At each iteration t = 1, . . . , T , the vari-
ation degree vt is determined by a scheduler deg(t) (Line 3, Alg.1). From the previous generation
St−1, Ncan − 1 variations are generated to construct the candidate set St

can (Lines 6–8, Alg.1). The
previous generation samples are then added to the candidate set (Line 11, Alg.1). Finally, the input
(Spriv, S

t
can, σ,H,Ncan) is passed to the BISTAGE module (Lines 12–13, Alg.1) to select the next

generation St through two-stage voting. Repeating this process T times yields the final synthetic set
ST .
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Algorithm 1 Diversified Private Evolution
(Div-PE)

Input: Private samples Spriv = {xpriv
i }Npriv

i=1
Public information Ipub
Number of synthetic samples Nsyn

Number of iterations T
Number of candidates Ncan

Noise multiplier σ
Threshold H
Variation scheduler deg(·)

Output: Synthetic samples ST

1: Ppub ← Prompt Generate(Nsyn, Ipub)
2: S0 ← SEED API(Ppub)
3: for t← 1, . . . , T do
4: vt ← deg(t)
5: St

can ← ∅
6: for si ∈ St−1 do
7: for c← 1, . . . , Ncan − 1 do
8: z ← VARIATE API(si, vt)
9: St

can ← St
can ∪ {z}

10: end for
11: end for
12: St

can ← St
can ∪ St−1

13: inp←
(
Spriv, S

t
can, σ,H,Ncan

)
14: St ← BISTAGE

(
inp)

15: end for
16: return ST

Algorithm 2 BI-stage Voting (BISTAGE)
Input: Private samples Spriv

Candidate pool Scan = {zj}
Ncan×Nsyn

j=1
Number of candidates Ncan

Noise multiplier σ
Threshold H
Distance function d(·, ·)

Output: Selected samples S

1: V (1) ← [0, . . . , 0]

2: for xpriv
i ∈ Spriv do

3: δj ← d
(
Φ(xpriv

i ),Φ(zj)
)

4: j∗ ← argminj δj
5: V (1)[j∗]← V (1)[j∗] + 1
6: end for
7: V (1) ← V (1) +N (0, σ2I)
8: V (1) ← max

(
V (1) −H, 0

)
9: best(1) ← FIND BEST(V (1), Ncan)

10: (idx sel(1), idx uns(1))← best(1)

11: V (2) ← [0, . . . , 0]

12: for s ∈ idx sel(1) do
13: for u ∈ idx uns(1) do
14: δj ← d

(
Φ(Ssyn[s]),Φ(zj)

)
15: j∗ ← argminj δj
16: V (2)[j∗]← V (2)[j∗] + 1
17: end for
18: end for
19: best(2) ← FIND BEST(V (2), Ncan)

20: (idx sel(2), )← best(2)

21: S ← Ssyn

[
idx sel(1) ∪ idx sel(2)

]
22: return S

Two-Stage Voting Mechanism. Algorithm 2 details the BISTAGE module that selects the next
generation from the candidate set Scan. In the First Voting stage, each private sample xpriv

i votes
for its nearest candidate zj∗ in the embedding space (Lines 1–5, Alg.2). Gaussian noise σ is then
added to the vote vector V (1), and a threshold H is applied (Lines 6–8, Alg.2). The FIND BEST
function selects the top-voted candidate in each group (Line 9, Alg.2). The detailed selection proce-
dure is described in Appendix A. Groups not selected in the first round proceed to the Second Voting
stage, where first-round winners vote within their own groups without noise to finalize the selection
(Lines 10–18, Alg.2). This process ensures that each group contributes at least one candidate to the
next generation St. For multi-class settings, the procedure is executed independently for each class.

Auto-Prompt. To broaden the diversity of synthetic data generation, Div-PE employs an Auto-
Prompt strategy that automatically expands the prompt set based on public information Ipub using
large language models (LLMs). We assume that Ipub consists of only a single keyword or short
phrase (e.g. a photo of a cat), which provides a limited expressive range and restricts both the di-
versity and the convergence speed of the candidate set St

can. To mitigate this, an LLM is used to
generate a prompt set

Ppub = {p1, p2, . . . , pNsyn
}

that matches the target number of synthetic samples Nsyn by enriching each input concept with
detailed attributes and conditions. Specifically, the following instruction is applied to guide the LLM
to produce richer yet single-sentence prompts:

5
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Make the following prompt more descriptive by adding appropriate details,
but end the result naturally with a single sentence.
{Input Prompt}
Enhanced Prompt:

This template converts each {Input Prompt} into an enhanced single-sentence prompt containing
contextual and concrete attributes.

Demonstration-Based Variation. For generations t ≥ 2, superior candidates guide the variation
of inferior candidates. Each synthetic sample zi ∈ St−1 forms a demonstration set Dt

i by probabilis-
tically selecting higher-voted samples according to the noise-added first voting vector V (1,t−1):

P (zj ∈ Dt
i) =

V
(1,t−1)
j∑

k∈Xt
i
V

(1,t−1)
k

, Xt
i =

{
j | V (1,t−1)

j ≥ V
(1,t−1)
i

}
. (2)

Since V (1,t−1) already includes DP noise from Algorithm 2 (Lines 7–8), no additional privacy cost
is incurred.

Adaptive Variation. Synthetic samples farther from the private distribution are assigned a higher
degree of variation to accelerate convergence. For each sample zi ∈ St−1, the variation degree vti at
generation t is set as

vti = deg(t)×max

(
0.1, 1− V

(1,t−1)
i

Npriv

)
(3)

where V
(1,t−1)
i is the noise-added first voting count. A smaller V (1,t−1)

i implies greater distance
from the private distribution and thus allows a larger variation. The scheduler deg(t) controls the
global exploration strength and can be increased when high-vote candidates remain distant from the
private distribution, which is typically the case in the early stages.

3.2 RATIONALE AND VALIDATION

3.2.1 DIFFERENTIAL PRIVACY

In the first voting of the t-th BISTAGE, the noise-added votes xi ∈ St
can received from private

samples are defined as

V t
i = max

(
f(xi) +N (0, σ2I)−H, 0

)
(4)

where N (0, σ2I) denotes Gaussian noise for privacy protection. Each private sample contributes
only one vote. Changing a single instance in Spriv changes the first voting result by at most 1 in
the l2 norm, giving sensitivity 1. The post-processing property guarantees that any further process-
ing of DP-protected data remains DP. Because the first voting stage satisfies (ϵ, δ)-DP, the second
stage also satisfies (ϵ, δ)-DP. DP is applied only once per iteration, so applying the Gaussian mech-
anism (Dwork et al., 2014a) over T iterations follows T adaptive composition (Dong et al., 2022a),
as analyzed in (Lin et al., 2023). Thus each iteration consumes a privacy budget of σ/

√
T within the

total budget ϵ.

Why not select many samples in the first voting. Each original sample selects a single synthetic
sample, keeping DP sensitivity at 1. Allowing multiple selections would increase sensitivity, require
more noise, and reduce the utility of synthetic data.

Why use synthetic data in the second voting. The privacy budget analysis assumes exactly one
private-data-based vote per iteration. If private data voted more than once per iteration, the privacy
budget would increase proportionally. Div-PE improves diversity without additional privacy cost by
using synthetic data for the second voting.

6
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3.2.2 ENSURING CONVERGENCE

Following the assumption of PE that at least M ≫ H private points lie in an L2 ball of diameter
D where the SEED API generates initial samples, private points in each cluster tend to vote for the
same synthetic sample when Ssyn is far from the private distribution. The selected samples converge
to Sprv within Wasserstein distance ≤ η (∀p ∈ [1,∞]) with probability ≥ 1− τ whenever

T ≫ d log(D/η)

logNcan
+ log(Nprv/τ), (5)

where d is the intrinsic dimension of the embedding space. Because the second-round voting already
satisfies DP, its convergence proof follows that of the non-private case (Lin et al., 2023).

Why select only one candidate per group in the second voting. The main limitation of PE
arises from the functional gap between the SEED API and the VARIATE API. The VARIATE API
produces only minor variations around selected samples and cannot match the diversity of the
SEED API. If the VARIATE API provided diversity comparable to the SEED API, the voting-based
convergence principle of PE would fail. Therefore, leveraging the diversity of the SEED API re-
quires selecting exactly one candidate per group to maintain diversity.

3.2.3 COST EFFICIENCY

Div-PE differs from PE only in the second voting. Let Nsyn be the number of synthetic samples
per iteration and Nsel the subset chosen in the first stage. The second stage selects the remaining
Nsyn −Nsel samples from unselected groups.

1. Selecting Nsel samples from Nsyn candidates requires O(Nsel) time.

2. Using Faiss, the nearest neighbor search takes O(logNsyn) for each of the Nsel samples,
giving a total complexity of O(Nsel · logNsyn).

Since the linear term dominates, the overall complexity of the second voting phase is

O(Nsel · logNsyn). (6)

Moreover, Div-PE calls APIs only during candidate generation, while the second voting operates
on pre-generated candidates. Parameters affecting API usage (e.g. K, L, and Ncan) are fixed across
experiments, ensuring identical API consumption for PE, Aug-PE, and Div-PE. Under these condi-
tions, Div-PE achieves superior performance with equal cost.

Why not increase variations of superior samples to improve diversity. Increasing the number
of variations requires additional API calls, which incur monetary cost for commercial black-box
APIs or GPU cost for local execution. Aug-PE improves diversity by generating more variations,
whereas Div-PE achieves better diversity at lower cost by enhancing the voting mechanism.

4 EXPERIMENTS

Data. We evaluate the proposed method across three modalities using representative benchmarks.
For image data we adopt ImageNet (Deng et al., 2009), Camelyon17 (Litjens et al., 2018), and
UTKFace (Zhang et al., 2017). For text data we use OpenReview (Xie et al., 2024) with acceptance
labels and Yelp (Zhang et al., 2015) with star ratings. For tabular data we use Adult (Becker &
Kohavi, 1996) with binary income labels and Body-Performance (Cho & contributors, 2021) with
multi-class physical condition labels.

Models. Our framework relies on two unified interfaces: a SEED API for initial generation and a
VARIATE API for controlled refinement. Stable Diffusion v1.5 (Rombach et al., 2022) is used as the
image generator, while Llama-2-7b-hf (Touvron et al., 2023) serves as the backbone for text and tab-
ular generation as well as for auto-prompt and variation across modalities. Further implementation
details are provided in the Appendix B.

7
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Modality Dataset Method ACC (↑) FID/W-dist (↓) Precision (↑) Recall (↑) Density (↑) Coverage (↑)

Image ImageNet PE 0.411 81.204 0.934 0.000 0.998 0.194
Aug-PE 0.732 48.359 0.891 0.677 0.998 0.545
Ours 0.889 45.058 0.878 0.247 0.924 0.648

Camelyon17 PE 0.626 290.747 0.000 0.000 0.000 0.000
Aug-PE 0.814 214.704 0.009 0.277 0.001 0.004
Ours 0.861 187.404 0.014 0.175 0.002 0.004

UTKFace PE 0.616 246.015 0.182 0.000 0.021 0.003
Aug-PE 0.732 167.086 0.082 0.094 0.011 0.005
Ours 0.774 113.497 0.084 0.048 0.012 0.020

Text OpenReview Aug-PE 0.370 0.017 0.104 0.551 0.031 0.032
Ours 0.440 0.012 0.233 0.625 0.163 0.254

Yelp Aug-PE 0.620 0.017 0.106 0.696 0.031 0.025
Ours 0.660 0.012 0.238 0.601 0.164 0.267

Tabular Adult Ours 0.918 0.017 0.721 0.719 0.340 0.629
Body-Performance Ours 0.772 0.023 0.460 0.436 0.126 0.394

Table 1: Overall performance across modalities under a fixed DP budget (ϵ=2.0, δ=10−4, T=17)
and candidate breadth. Best values within each dataset are bolded.

Metrics. We evaluate two key aspects. (i) Distributional similarity is measured by FID for im-
ages (Heusel et al., 2017), Wasserstein distance for text and tabular data, and by density and cover-
age for local and global alignment (Naeem et al., 2020). (ii) Label-conditioned utility is measured
by downstream accuracy, where models are trained on synthetic data and evaluated on held-out test
sets. We use a ResNet-18 classifier for images, a RoBERTa-based classifier for text (aligned with
Aug-PE), and a Random Forest classifier for tabular data. Higher density, coverage, and accuracy
are desirable (↑), whereas lower FID and Wasserstein indicate better fidelity (↓).

Hyperparameters. All methods use ϵ = 2.0, δ = 10−4, and T = 17. PE fixes pool size K = 8,
Aug-PE sets prompt-side exploration L = 8, and our two-stage method uses Ncan = 8. Other
hyperparameters are reported in the Appendix B.

4.1 MODALITY-SPECIFIC IMPLEMENTATIONS.

Across all modalities we apply two-stage selection, auto-prompt, demonstration and adaptive varia-
tion. For tabular data we employ GreaT (Borisov et al., 2022) to serialize rows into natural language
(e.g., “column1 is value1, column2 is value2, ...”), which enables schema-preserving text-based pro-
cessing. For demonstration, images use IP-Adapter conditioning (et al., 2023; Cubiq, 2024), whereas
text and tabular data use system-prompt exemplars.

4.2 OVERALL GENERATION PERFORMANCE

Table 1 summarizes results across all datasets. On ImageNet, compared to Aug-PE with accuracy
0.732, our method reaches 0.889; coverage expands from 0.545 to 0.648, and FID decreases from
48.359 to 45.058. Unlike PE with recall 0.000, ours maintains balanced recall 0.247 together with
strong precision. On Camelyon17, accuracy improves from 0.814 in Aug-PE to 0.861, and FID
drops from 214.704 to 187.404. Coverage stays at 0.004 in both, reflecting the limitation of natural-
image–pretrained foundation models in histopathology. Here PE collapses to density 0.000, while
ours preserves a small but non-trivial density of about 0.002. On UTKFace, accuracy rises from
0.732 in Aug-PE to 0.774, FID falls from 167.086 to 113.497, and coverage grows from 0.005 to
0.020, expanding support beyond the baseline.

For text benchmarks, Aug-PE benefits from prompt expansion but coverage remains limited. On
OpenReview, accuracy increases from 0.370 in Aug-PE to 0.440, Wasserstein distance decreases
from 0.017 to 0.012, and coverage expands from 0.032 to 0.254. On Yelp, accuracy rises from
0.620 to 0.660, Wasserstein decreases from 0.017 to 0.012, and coverage grows from 0.025 to 0.267,
providing more balanced class representation.
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Method Variant (ImageNet) ACC (↑) FID (↓) Precision (↑) Recall (↑) Density (↑) Coverage (↑)

Ours (auto) 0.830 48.448 0.795 0.301 0.860 0.674
Ours (auto+av) 0.850 48.475 0.783 0.418 0.871 0.657
Ours (auto+demo) 0.868 136.818 0.895 0.083 0.928 0.301
Ours (all) 0.889 45.058 0.878 0.247 0.924 0.648

Table 2: Ablation on ImageNet under a fixed DP budget (ϵ=2.0, δ=10−4, T=17). auto: auto-prompt
only; auto+av: auto-prompt with adaptive variation; auto+demo: auto-prompt with demonstration;
all: auto-prompt with adaptive variation and demonstration.

For tabular data, our method attains accuracy 0.918 on Adult with density 0.340 and coverage 0.629,
and accuracy 0.772 on Body-Performance with density 0.126 and coverage 0.394. This shows that
serialization-based generation preserves schema validity while broadening support.

4.3 ANALYSIS OF ABLATION PERFORMANCE

Table 2 evaluates auto-prompt, adaptive variation, and demonstration. Auto-prompt alone improves
coverage to 0.674 (vs. 0.545 in Aug-PE) with density 0.860. Adding adaptive variation raises den-
sity further to 0.871 and coverage 0.657, preventing collapse into dominant modes. Demonstration
guidance increases precision to 0.895 but reduces coverage to 0.301, despite high density 0.928.
Combining all three yields the most balanced outcome: accuracy 0.889, FID 45.058, density 0.924,
and coverage 0.648. In summary, auto-prompt diversifies support, adaptive variation stabilizes den-
sity, and demonstration sharpens fidelity, together avoiding the collapse of PE and the instability
of Aug-PE. In summary, auto-prompt diversifies support, adaptive variation stabilizes density, and
demonstration sharpens fidelity, together avoiding the collapse of PE and the instability of Aug-PE.

5 CONCLUSION

We proposed Div-PE, a framework designed to generate DP synthetic data without the need for
additional training. This approach is particularly suitable for the growing prevalence of black-box
environments, where model parameters remain inaccessible. While similar approaches have been
explored previously, Div-PE stands out by employing a two-stage voting mechanism and prompt
engineering to enhance diversity and adaptive variation, along with demonstration-based variation,
thereby improving the quality of synthetic data for a more diverse synthetic samples.

While Div-PE enables synthetic data generation using only APIs and leverages proprietary mod-
els without privacy concerns, it still faces inherent limitations. These limitations primarily arise
from the unavoidable replication of biases in foundation models and the dependence on pre-existing
knowledge within the model. This becomes particularly challenging in fields requiring high levels
of expertise, such as medical data, where the absence of model training can result in significant de-
ficiencies. This issue reflects ongoing research trends, which aim to control model outputs without
additional training (Dekoninck et al., 2024; Wang et al., 2024). In addition, there exists a trade-off
between diversity and convergence speed: drawing from a wider range of groups improves diversity
but slows convergence, whereas prior methods such as PE achieved faster convergence at the cost of
reduced diversity. Addressing these concerns will be crucial in the ongoing development of synthetic
data methodologies.

6 ETHICS STATEMENT

Our algorithm is designed to employ foundation models in a black-box manner while protecting the
privacy of the target dataset. Accordingly, the safety of the foundation models themselves is beyond
the scope of this study. Nevertheless, foundation models may exhibit biases inherited from their
training data, and they remain susceptible to prompt injection and related attacks that can bypass
built-in safeguards, potentially resulting in the generation of harmful, illegal, or sensitive content.
We emphasize that these risks originate from the underlying models rather than from our proposed
framework. Addressing such safety challenges remains an important direction for future research in
responsible deployment of large-scale generative models.
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APPENDIX

A SELECTING BEST SAMPLES

Algorithm 3 Find the Best Candidate for Each Group (FIND BEST)
Input: Vote vector votes

Number of candidates per group Ncan

Output: Best indices idx best, Zero-vote group indices idx zero

1: n← ⌈|votes|/Ncan⌉
2: idx best← ∅, idx zero← ∅
3: for g ← 0, . . . , n− 1 do
4: start← g ×Ncan

5: end← min
(
(g + 1)×Ncan, |votes|

)
6: b← argmaxj∈[start,end) votes[j]
7: if votes[b] = 0 then
8: idx zero← idx zero ∪ {start}
9: else

10: idx best← idx best ∪ {b}
11: end if
12: end for
13: return idx best, idx zero

The function takes the following inputs:

• Votes: An array containing the vote totals for each candidate.

• Number of Candidates (Ncan): The number of variations plus the original sample, form-
ing a group.

And produces the following outputs:

• BestIndex: Indices of the candidates with the highest votes in each group.

• ZeroIndex: Indices of the groups where all members received zero votes.

B EXPERIMENT SETTINGS

B.1 HYPERPARAMETERS

Table 4 summarizes the hyperparameters used in the experiments for PE, Aug-PE, and Div-PE. This
includes both shared parameters and method-specific settings, providing a comprehensive overview
necessary for reproducing the experiments and understanding the model performance.

The degree scheduler adjusts the variation degree over T , linearly decreasing it from de-
gree scheduler base to degree scheduler min. The num candidate parameter specifies the number
of candidates considered in each iteration. The prompt generator refers to the model used to extract
public prompts from public data. The demonstration parameter indicates the maximum number of
demonstration samples that can be utilized. In adaptive variation, the variation degree is linearly
adjusted from weight scheduler base to weight scheduler min over T iterations.

B.2 HARDWARE SPECIFICATION

Table 4 summarizes the hardware specification of the system where every experiment were con-
ducted in the paper. We have 4 GPUs in total but omitted the number since only a single GPU per
experiment was utilized.
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Figure 4: The graph illustrates the accuracy trends of downstream classification accuracy using syn-
thetic data generated for the ImageNet Goldfinch and Indigo Bunting classes through our DPSDivA
algorithm. The synthetic data was created with ϵ values ranging from 0.1 to 0.41, divided into 17
equal intervals. The results demonstrate the impact of varying ϵ on the downstream classification
accuracy, highlighting the relationship between differential privacy settings and classification accu-
racy. Notably, when ϵ ≥ 0.35, the accuracy exceeds 0.70, and even at very low ϵ = 0.41, an accuracy
of over 0.80 is achieved, approaching the original data’s accuracy of 0.85.
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Parameter PE Aug-PE Div-PE

count threshold 2
degree scheduler linear
degree scheduler base 1
degree scheduler min 0.7
T 17
feature extractor clip vit b 32
model stable-diffusion-v1-5
guidance scale 7.5
number of steps 20

K 8 1 -
L - 8 -
num candidate - - 8
demonstration - - 3
weight scheduler min - - 0.8
weight scheduler base - - 1

Table 3: Comparison of hyperparameters for PE, Aug-PE, and Div-PE. Shared values are centered,
and a separator line is added above method-specific parameters.

GPU NVIDIA RTX A6000
Memory 8 M393A8G40BB4-CWE
System SYS-740GP-TNRT

Processor 112 Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz
OS Ubuntu 18.04

Table 4: Hardware specification

C PERFORMANCE ANALYSIS

C.1 EFFECTS OF INDIVIDUAL COMPONENTS

Figure 6 illustrates the impact of the detailed components of Div-PE on KID and coverage. Div-PE
outperforms both PE and Aug-PE in both metrics. A closer examination of its individual com-
ponents reveals that applying all elements of Div-PE yields the best performance. Between the
demonstration-based variation and adative variation, the former achieves better results in terms of
KID, while the latter excels in coverage. It is important to note that KID reflects distributional simi-
larity, whereas coverage measures diversity.

The demonstration-based variation promotes the generation of samples resembling superior exam-
ples by directly influencing other samples, which enhances distributional similarity but slightly re-
duces diversity. In contrast, the adaptive variation assigns higher variation degrees to inferior sam-
ples, allowing for more freedom in their transformation. This approach benefits diversity but may
compromise distributional similarity. The best performance observed when both components are
applied simultaneously suggests that they have complementary effects.

C.2 EFFECTS OF PRIVACY PARAMETERS

Figure 4 presents the accuracy trends observed in downstream classification accuracy using syn-
thetic data generated for the ImageNet Goldfinch and Indigo Bunting classes through our proposed
DPSDivA algorithm. The synthetic data was generated with privacy budgets (ϵ) ranging from 0.1 to
0.41, divided into 17 equal intervals. The figure illustrates the relationship between differential pri-
vacy parameters and downstream classification accuracy, showcasing the trade-off between privacy
and performance. Specifically, when ϵ ≥ 0.35, the classification accuracy surpasses 0.70, and even
at a relatively low privacy budget of ϵ = 0.41, the accuracy exceeds 0.80, closely approaching the
original data’s accuracy of 0.85. This demonstrates the effectiveness of the DPSDivA algorithm in
maintaining high utility under strict privacy constraints.
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Figure 5: The distribution of clean and noisy counts in the first variation.

Sample Index Proportion (%)
73 15.0
68 12.2
61 8.8
59 7.2
55 6.4
97 5.1
37 4.9
51 3.7

Table 5: The proportion of noisy counts for samples exceeding the threshold.

D DIVERSITY ANALYSIS

Figure 5 shows the results of the voting for the first variation. It is important to note that the point at
which our algorithm clearly diverges from the baseline is during the voting and variations that follow
the initial generation. As shown in the figure, in the initial population, most samples do not receive
votes, with only a few minority samples receiving votes. Based on these results, if the next variation
is conducted, in the case of PE or AUG-PE, approximately 15 out of 100 samples would become
variations of sample 73 (Table 5). Specifically, out of 100 samples, 82 received a score of 0, and only
18 samples received all the votes. In such cases, both PE and AUG-PE eliminate the samples that
did not receive votes immediately, whereas our algorithm does not, allowing it to maintain greater
diversity compared to the two algorithms.

Figure 7 presents the PCA analysis for each algorithm. PCA reduction was performed independently
at each step rather than being fixed throughout. Notably, while the synthetic distributions of the three
algorithms appear similar at step 0, they exhibit significant differences at step 17. It is also evident
that the synthetic data at step 0 already demonstrates reduced diversity compared to the original data,
highlighting a fundamental limitation of synthetic data generation.

However, the diversity issue becomes even more pronounced for PE and Aug-PE, as their evolu-
tionary processes lead to a further reduction in diversity. In contrast, our algorithm successfully
maintains the initial diversity observed at step 0, demonstrating its robustness in preserving data
variation.

E MORE IMAGES ON IMAGENET

To highlight the limitations of existing methods in terms of diversity and demonstrate the effective-
ness of our proposed approach, we present additional generation results on ImageNet. As shown
in Figure 8 and 12, the original data exhibits a high degree of diversity, whereas the results gener-
ated by PE (Figure 9 and 13) and AUG-PE (Figure 10 and 14) lack such diversity. Figure 11 and
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Figure 6: We calculated KID (top) and coverage (bottom) by incorporating each component of Div-
PE — Auto-Prompt (prompt), demonstration-based variation (demo), and adaptive variation (av) on
BISTAGE (voting) — and compared the results with the baselines.

(a) PE (b) Aug-PE (c) Ours

Figure 7: The PCA visualizations clearly illustrate the disparity in sample diversity among the algo-
rithms.

15 demonstrate higher diversity compared to both baselines. These results directly demonstrate the
effectiveness of Div-PE.

F USE OF LARGE LANGUAGE MODELS

Large language models (e.g., ChatGPT) were used only for ancillary tasks, such as language editing
and translation of draft text. They did not contribute to the conception of ideas, experiment design,
or writing of substantive scientific content.
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Figure 8: Original data from the Goldfinch class in the ImageNet dataset.
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Figure 9: Synthetic data generated for the Goldfinch class in the ImageNet dataset using the DPSDA.
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Figure 10: Synthetic data generated for the Goldfinch class in the ImageNet dataset using the
DPSDA2.
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Figure 11: Synthetic data generated for the Goldfinch class in the ImageNet dataset using the DPS-
DivA.
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Figure 12: Original data from the Indigo Bunting class in the ImageNet dataset.
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Figure 13: Synthetic data generated for the Indigo Bunting class in the ImageNet dataset using the
DPSDA.
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Figure 14: Synthetic data generated for the Indigo Bunting class in the ImageNet dataset using the
DPSDA2.
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Figure 15: Synthetic data generated for the Indigo Bunting class in the ImageNet dataset using the
DPSDivA.
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