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Abstract

Reconstructing natural language from non-001
invasive electroencephalography (EEG) holds002
great promise as a language decoding technol-003
ogy for brain-computer interfaces (BCIs). How-004
ever, EEG-based language decoding is still in005
its nascent stages, facing several technical is-006
sues such as: 1) Absence of a hybrid strategy007
that can effectively integrate cross-modality008
(between EEG and text) self-learning with intra-009
modality self-reconstruction of EEG features010
or textual sequences; 2) Under-utilization of011
large language models (LLMs) to enhance012
EEG-based language decoding. To address013
above issues, we propose the Contrastive EEG-014
Text Masked Autoencoder (CET-MAE), a015
novel model that orchestrates compound self-016
supervised learning across and within EEG017
and text through a dedicated multi-stream en-018
coder. Furthermore, we develop a framework019
called E2T-PTR (EEG-to-Text decoding us-020
ing Pretrained Transferable Representations),021
which leverages pre-trained modules alongside022
the EEG stream from CET-MAE and further023
enables an LLM (specifically BART) to de-024
code text from EEG sequences. Comprehen-025
sive experiments conducted on the popular text-026
evoked EEG database, ZuCo, demonstrate the027
superiority of E2T-PTR, which outperforms the028
state-of-the-art in ROUGE-1 F1 and BLEU-029
4 scores by 8.34% and 32.21%, respectively.030
These results indicate significant advancements031
in the field and underscores the proposed frame-032
work’s potential to enable more powerful and033
widespread BCI applications. 1034

1 Introduction035

Decoding natural language from non-invasive brain036

recordings with electroencephalography (EEG) is037

an emerging topic that holds promising benefits038

for patients suffering from cognitive impairments039

or language disorders. Thanks to the burgeoning040

1Our code is available for reproducibility at the link:
https://anonymous.4open.science/r/CET-MAE-E544 .
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Figure 1: Text-evoked EEG Recording in ZuCo
datasets. Participants’ EEG and eye-tracking data are
simultaneously recorded during natural reading to cap-
ture text-evoked brain activity.

development of pre-trained large language mod- 041

els (LLMs) (Zhao et al., 2023a), the potential of 042

using an open vocabulary to decode human brain 043

activity has been gradually unlocked. Specifically, 044

through the commendable text understanding and 045

generation capabilities of cutting-edge LLMs (Tou- 046

vron et al., 2023; Ouyang et al., 2022), translat- 047

ing complex spatio-temporal EEG signals into nu- 048

anced textual representations, which is known as 049

EEG-to-Text, is achievable. Compared to con- 050

ventional paradigms of brain-computer interfaces 051

(BCIs), such as motor imagery (MI) (Al-Saegh 052

et al., 2021), steady-state visual evoked potential 053

(SSVEP) (Wang et al., 2017), and P300 (Cecotti 054

and Graser, 2011), EEG-to-Text can convey much 055

more intended commands from the human brain 056

to computers, and thus presents a more extensive 057

range of applications. Its potential as a novel and 058

powerful BCI paradigm marks a significant ad- 059

vancement in the field of BCIs. 060

Several existing EEG-to-Text studies (Li et al., 061

2022a; Chien et al., 2022) were focused on de- 062

veloping specialized pre-trained models for EEG 063

only, aiming to extract universal semantic repre- 064

sentations from the human brain. However, the 065

pre-trained model bridging EEG and text has been 066

ignored, which may be important to enhance the 067

representation learning for inter-modality conver- 068
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sion (Bai et al., 2023). This motivates us to de-069

velop a hybrid model to orchestrate compound070

pre-trained representations across and within EEG071

and text. This endeavor faces the core challenge:072

How to bridge the semantic gap between EEG073

and text while establishing an implicit mapping074

in the latent representation space? Responding to075

this challenge, we focus on self-supervised learn-076

ing (SSL), because of its great capability in multi-077

modal representation learning (Chen et al., 2024).078

Contrastive learning is one of the important SSL079

strategies, learning semantic-level representations080

across modalities (as CLIP does for language and081

image) (Radford et al., 2021). Masked model-082

ing methods exhibit significant capability of intra-083

modality self-reconstruction, such as BERT (De-084

vlin et al., 2019) in nature language processing and085

masked autoencoder (MAE) (He et al., 2022) in086

computer vision.087

Inspired by the above prevailing SSL strategies,088

we propose a novel pre-trained model to align EEG089

and text, Contrastive EEG-Text Masked Autoen-090

coder (CET-MAE), as shown in Figure2(a). CET-091

MAE integrates contrastive learning and masked092

signal modeling through a dedicated multi-stream093

encoder. It effectively learns pre-trained represen-094

tations of EEG and text by balancing the latent095

embeddings represented by self-reconstruction and096

the semantic-level aligned embeddings of text to-097

kens and text-evoked EEG features. In terms of098

masked signal modeling, CET-MAE implements a099

high mask ratio (specifically, 75%) on both EEG100

and text data, presenting a meaningful challenge for101

the model to handle an increased amount of miss-102

ing information during the reconstruction phase.103

This setting not only enhances the model’s under-104

standing of individual modality but also facilitates105

cross-modal interactions and support.106

Furthermore, to make the most of LLMs’ capa-107

bility in language understanding and generation108

as well as to fully use pre-trained representations109

learned by CET-MAE, we introduce a new EEG-to-110

Text decoding framework, EEG-to-Text using Pre-111

trained Transferable Representations (E2T-PTR).112

E2T-PTR utilizes pre-trained modules alongside113

the EEG stream from CET-MAE and further adopts114

the BART (Lewis et al., 2020) to decode language115

from EEG sequences. By transferring the pre-116

trained representations from CET-MAE, E2T-PTR117

significantly enhances EEG-to-Text decoding, sur-118

passing both the baseline and SOTA methods.119

Our main contributions are summarised below:120

• Introducing CET-MAE, the first pre-trained 121

EEG-text model for EEG-based language 122

decoding. CET-MAE integrates the self- 123

reconstruction of text and EEG features with 124

semantic alignment, forming a multi-stream 125

SSL framework for both intra-modality and 126

cross-modality representation learning. 127

• Developing a new EEG-to-Text framework 128

via E2T-PTR. The new E2T-PTR framework 129

can leverage CET-MAE’s pre-trained EEG 130

representations and the capabilities of LLMs 131

(BART) for text generation. 132

• Conducting extensive EEG-to-Text experi- 133

ments on three, four, and five reading tasks in 134

ZuCo. Our experiments are more comprehen- 135

sive than previous works by using more data 136

and including more methods for comparison. 137

Results show that our framework surpasses 138

previous works, and, thus, sets new SOTA 139

standards. 140

2 Related Works 141

2.1 Self-supervised Representations Learning 142

Multimodal self-supervised representation learning 143

aims to explore the interactions between different 144

modalities to produce semantically generalizable 145

representations for downstream tasks. 146

In recent years, there have been substantial pro- 147

gresses across various modalities, such as vision- 148

language pre-training (Zhao et al., 2023b; Lin et al., 149

2023). A range of existing methods rely on con- 150

trastive learning, which can effectively draw closer 151

to the global representations of matched pairs in 152

latent spaces with semantic-level self-supervised 153

constraints. But contrastive learning sometimes 154

tends to overlook the self-information of individ- 155

ual modalities, particularly at more granular lev- 156

els. On the other hand, multimodal masked signal 157

modeling integrates cross-modality self-learning 158

with intra-modality self-reconstruction, focusing 159

on reconstructing one modality from another. This 160

approach may help the model learn the associa- 161

tions between modalities. However, it may lead 162

to an excessive emphasis on fine-grained details, 163

potentially weakening the overall cross-modality 164

correlation and causing issues such as insensitivity 165

to whether the inputs are matched pairs. A series of 166

recent works, such as CMAE (Huang et al., 2023), 167

CAV-MAE (Gong et al., 2023) and SimVTP (Ma 168

et al., 2022), have already successfully integrated 169
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both contrastive learning and masked signal mod-170

eling so that their complement advantages can be171

utilized.172

Our work draws inspiration from the above SSL173

methods but with a novel strategy. In the pro-174

posed CET-MAE, the utilization of both text and175

EEG streams not only achieves an explicit con-176

trastive learning objective to capture global coor-177

dination but also avoids erroneous learning pro-178

cesses. Meanwhile, the utilization of the joint179

stream can facilitate the information interaction180

between modal-specific embeddings to achieve181

masked signal modeling effectively. To the best of182

our knowledge, this is the first EEG-to-Text masked183

autoencoder that attempts to establish transferable184

representation learning between EEG and text.185

2.2 Open Vocabulary EEG-to-Text Decoding186

Previous works (Nieto et al., 2022; Kamble et al.,187

2023) on EEG-to-Text have been severely confined188

by a limited number of (several or tens of) words in189

terms of vocabulary size. These closed-vocabulary190

efforts primarily focused on recognizing low-level191

linguistic features, such as individual words or syl-192

lables. However, these works can hardly capture193

more complex, high-level semantic and contextual194

aspects of language.195

The development of LLMs has significantly196

enhanced the field of EEG-based text decoding.197

The first work using LLM (Wang and Ji, 2022)198

integrates an additional EEG encoder to align199

the pre-trained BART for EEG-to-Text, providing200

important inspiration for subsequent works. C-201

SCL (Feng et al., 2023) employs curriculum learn-202

ing to effectively mitigate the discrepancy between203

subject-dependent and semantic-dependent EEG204

representations in EEG-to-Text translation. De-205

Wave (Duan et al., 2023) uses a quantized varia-206

tional encoder to convert continuous EEG signals207

into discrete sequences, alleviating the reliance208

on eye fixations. BELT (Zhou et al., 2023) pro-209

poses a novel semi-supervised learning framework210

that integrates contrastive learning into EEG-to-211

Text decoding. Despite advancements, prior ef-212

forts struggled to bridge the complex semantic213

gap between EEG and text on an open-vocabulary214

scale. Our proposed CET-MAE aims to tackle this215

challenge. Additionally, our E2T-PTR framework216

transfers CET-MAE’s representations and lever-217

ages the BART to achieve superior text generation218

outcomes.219

3 Methods 220

3.1 Preliminary 221

ZuCo benchmark dataset. For our work, we 222

use the ZuCo1.0 (Hollenstein et al., 2018) and 223

ZuCo2.0 (Hollenstein et al., 2023) datasets, which 224

contain the EEG and eye tracking data during five 225

natural reading tasks. The corpus for sentiment 226

reading (SR) task v1.0 comes from the movie re- 227

views. The corpus for the remaining four tasks is 228

sourced from Wikipedia and comprises two ver- 229

sions each of Natural Reading (NR) and Task- 230

Specific Reading (TSR), specifically NR v1.0, NR 231

v2.0, TSR v1.0, and TSR v2.0. The word-level 232

EEG was recorded and aligned by the eye-tracking 233

fixations, and the sentence-level EEG was recorded 234

during the entire reading procedure. We follow 235

the preprocessing and dataset splits established by 236

baseline work (Wang and Ji, 2022). 237

Natural masking ratios of EEG feature se- 238

quences. Our investigation reveals the word-level 239

contextual EEG presentations in ZuCo datasets are 240

severely corrupted due to missing eye-tracking fix- 241

ations, leading to mismatches between EEG raw 242

data and text, as shown in Figure1. This misalign- 243

ment leads to fragmented word-level EEG feature 244

sequences, which fails to capture the cohesive se- 245

mantics of entire sentences and inevitably compli- 246

cates the representations learning of EEG and text. 247

Different from previous works, we concatenate 248

the word-level EEG features and the sentence-level 249

EEG features as our EEG feature sequences E as 250

E = [Eword1, Eword2, .., EwordN , Esentence]. (1) 251

Incorporating sentence-level EEG features offers 252

several benefits. First, it provides a holistic view 253

of EEG sequences, enriching the interpretation of 254

overall sentence semantics. Secondly, it acts as a 255

form of data augmentation, which can mitigate the 256

issue of data incompleteness, thereby alleviating 257

semantic discrepancies caused by the misalignment 258

between word-level EEG and text. To provide a 259

clearer overview, we have presented the detailed 260

statistics of the natural masking ratio (NMR) of 261

EEG feature sequences under three categories of 262

reading task combinations in Appendix A. 263

Definitions in EEG-to-Text Decoding. Given 264

a sequence of EEG features E as the input to the 265

model M, the aim is to decode the ground-truth 266

word tokens W from open-vocabulary V via M. 267

These corresponding EEG-Text pairs ⟨E,W⟩ are 268

collected during natural readings. 269
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Figure 2: Illustration of the proposed EEG-text pre-training model (CET-MAE) and EEG-to-Text decoding
framework (E2T-PTR). (a) CET-MAE Model: CET-MAE features modality-specific autoencoders with a mask-
ing strategy for text and EEG features, complemented by a multi-stream transformer encoder that orchestrates
self-reconstruction and cross-modality semantic alignment, enhancing representation learning for EEG semantic
decoding. (b) E2T-PTR Framework: E2T-PTR transfers both word- and sentence-level EEG representations
extracted from CET-MAE’s pre-trained modules, further facilitating text generation through the BART.

During the testing phase, the model M operates270

with an implicit understanding of the ground-truth271

word tokens W. Its primary objective remains to272

decode the EEG feature sequences E to generate273

an output that closely matches tokens W. This in-274

volves the model generating the sequence of words275

with the highest probability within the probability276

distribution P of the V.277

3.2 EEG-Text Masking278

We perform random masking on the text tokens, fol-279

lowed by processing with BERT. For EEG masking,280

we adopted the following settings. Word-level EEG281

feature sequences are randomly masked, while282

sentence-level EEG feature sequences are compul- 283

sorily masked. This aims to force the model to 284

fully reconstruct the contextual semantics within 285

the sentence-level EEG feature sequences. 286

3.3 CET-MAE Encoder 287

As illustrated in Figure 2(a), the CET-MAE model 288

needs to extract the embeddings of text and EEG 289

separately and then feed the embeddings into the 290

multi-stream transformer encoder to learn the cross- 291

modal representations. 292

Text encoder. We utilize the pre-trained 293

encoder-decoder model BART as the text encoder. 294

Due to the suitable capabilities in natural language 295
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understanding and generation (Li et al., 2022b),296

we opt to freeze weights of the BART 2 encoder297

to maintain its high-level language comprehension298

from the last hidden states. Firstly, the text tokens299

are converted into high-quality text embeddings300

with positional encoding by BART. The learnable301

embeddings are then used to replace the masked302

word tokens.303

EEG encoder. The EEG encoder is designed304

as a Multi-layer Transformer Encoder ) (Vaswani305

et al., 2017) to capture the temporal relationships306

from EEG sequences with spatial and frequency307

features in each token. A learnable linear projec-308

tion layer is employed to transform the EEG em-309

beddings from the EEG encoder, aligning their di-310

mensions with those of the text embeddings.311

Multi-stream Transformer encoder. The piv-312

otal design of this module lies in the integration of313

EEG, text, and the joint streams. We implement314

the dual-modality streams for EEG-text contrastive315

learning, especially using a specialized head for316

each modality. It is equipped with the layer normal-317

ization (LN) and the feed-forward network (FFN)318

enabling the production of embeddings that pre-319

serve their unique properties(Gong et al., 2023).320

Notably, we control the learning process to en-321

sure that learnable vectors at masked positions do322

not enter into the text stream, thereby preventing323

the inclusion of misleading contrastive feedback.324

Equally crucial for the two reconstruction tasks, the325

joint stream is utilized to facilitate the integration326

of the embeddings from both text and EEG modali-327

ties. This design aims to deepen the interaction and328

enhance the cooperation between EEG and text,329

fostering a more effective learning synergy.330

3.4 CET-MAE Decoder331

We apply a lightweight Transformer encoder as332

the EEG decoder. For EEG reconstruction tasks,333

EEG embeddings are first mapped to the original334

dimensions through a learnable linear projection335

layer. Subsequently, EEG embeddings with learn-336

able masked tokens are inserted back into their orig-337

inal positions. The final EEG embeddings added to338

the positional embeddings are fed into the EEG de-339

coder. Since the text encoder has already encoded340

the masked tokens and captured their positional341

information within the text, we employ a learnable342

linear projection layer as the text decoder to predict343

the masked text tokens.344

2https://huggingface.co/facebook/bart-large

3.5 CET-MAE Training Objectives 345

CET-MAE is pre-trained by three objectives: (1) 346

Masked Text Modeling (LT ): it aims to predict 347

the masked text tokens by utilizing hybrid rep- 348

resentations that integrate information from both 349

textual and EEG embeddings. (2) Masked EEG 350

Modeling (LE): it learns to reconstruct the origi- 351

nal EEG feature sequences, especially predicting 352

masked word- and sentence-level features based 353

on hybrid representations, where the error is mea- 354

sured by mean square error (MSE). (3) EEG-Text 355

Contrastive Learning (LCL): it involves a process 356

where the corresponding EEG and text represen- 357

tations are computed by separate global average 358

pooling layers. The objective is to bring the aligned 359

pairs (matched EEG and text embeddings) closer 360

together while pushing unpaired ones further apart. 361

Our goal L is minimizing is the summation of these 362

three learning objectives: 363

L = λT · LT + λE · LE + λCL · LCL (2) 364

3.6 E2T-PTR Framework 365

The proposed E2T-PTR is illustrated in Figure 2(b). 366

It can be summarized into the following key points. 367

Word-sentence level input tokens. We add the 368

sentence-level EEG features as our input tokens. 369

As detailed in 3.1, concatenating the sentence-level 370

EEG feature sequences as the last token can effec- 371

tively alleviate the incoherent contextual semantics 372

due to gaps in word-level EEG features. 373

Effective transfer capability. We investigate 374

how to effectively transfer the cross-modality rep- 375

resentations learned from the CET-MAE to down- 376

stream tasks such as EEG-to-Text decoding. The 377

E2T-PTR employs a synergy of the following criti- 378

cal components: the EEG encoder, the linear pro- 379

jection layer, and the EEG-stream transformer en- 380

coder, all of which are integral components as out- 381

lined within the CET-MAE. For the LLM backbone, 382

we also apply the BART which excels at natural 383

language generation tasks. 384

Fine-tuning strategy. We fine-tune all param- 385

eters of E2T-PTR during the training phase. The 386

weights of CET-MAE are first loaded into the EEG 387

encoder, the linear projection layer, and the EEG- 388

stream transformer encoder. As the linguistic back- 389

bone of E2T-PTR, the BART is also fully fine-tuned 390

to improve its ability to generate fine-grained text 391

tokens from EEG embeddings. 392
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Method Training BLEU-N(%) ROUGE-1(%)
Sample N=1 N=2 N=3 N=4 P R F

EEG2Text (Wang and Ji, 2022) 10710 40.1 23.1 12.5 6.8 31.7 28.8 30.1
DeWave (Duan et al., 2023) 10710 41.35 24.15 13.92 8.22 33.71 28.82 30.69
E2T-PTR (proposed) 10710 42.09 25.13 14.84 8.99 35.86 30.01 32.61
C-SCL (Feng et al., 2023) 14567 35.91(—) 25.91(—) 21.31(—) 18.89(—) — — —
C-SCL* 14407 34.87(44.14) 25.32(31.61) 21.17(25.67) 18.98(22.51) 36.97 34.31 35.51
E2T-PTR (proposed) 14407 34.92(44.31) 25.43(31.67) 21.00(25.52) 18.59(22.22) 37.15 33.93 35.39
EEG2Text* 18791 58.06 49.98 46.21 44.13 52.31 48.76 50.41
E2T-PTR (proposed) 18791 59.20 50.77 46.82 44.63 53.76 50.03 51.77

Table 1: Comparison of our E2T-PTR framework with previous methods on the ZuCo dataset for three and four
reading tasks. * means that our reproduced results. Results enclosed in parentheses are calculated following the
approach of EEG2Text, which includes retaining consecutive repeated words in the generated text.

(1)
Ground Truth: He was first appointed to fill the Senate seat of Ernest Lundeen who had died in office.

EEG2Text: was a elected to the the position seat in the Hemy in died died in 18 in

E2T-PTR: was the elected to the the position seat of John Hemy, resigned resigned in office.

(2)
Ground Truth: Jeb Bush was born in Midland, Texas, where his father was running an oil drill company.

DeWave: uan Bush was a in 18way, Texas, in he father was an insurance refinery company.

E2T-PTR: uan Bush was born in Newway, Texas, and his father was a a insurance company company.

(3)

Ground Truth: After Raymond graduated from high school, he enrolled in the "Universidad del Sagrado Corazon"
(University of the Sacred Heart) of San Juan, where he earned a Bachelors Degree ...

E2T-PTR: the’s from Yale school, he went in the UniversityAmericancleities de Reyrado Corazon"
(University of the Sacred Heart) in Spain Francisco, Puerto he studied a Bachelor.ors ...

Table 2: EEG-to-Text decoding results. Bold words indicate exact match, Italic words indicate semantic resemblance,
and Underline words indicate error match. We evaluate the translation performance of the same test sentences
reported in EEG2Text, DeWave.

4 Experiments393

4.1 Datasets and Evaluation394

We pre-trained our CET-MAE models under three,395

four, and five reading tasks in ZuCo v1.0 and ZuCo396

v2.0. For fairness, we assessed the performance of397

E2T-PTR for the EEG-to-Text task under the identi-398

cal dataset scale used during the pre-training phase.399

We adopt the BLEU and ROUGE-1 scores for eval-400

uating the EEG-to-Text generation performance.401

More details are presented in Appendix B.402

4.2 Implementation Details403

The CET-MAE model features a robust EEG en-404

coder with transformer encoder blocks (6 layers,405

2048 hidden dimensions, and 8 attention heads).406

The EEG decoder is a lightweight transformer en-407

coder of 1 layer with 8 heads. The multi-stream408

transformer encoder is designed with 1 layer, a409

4096 hidden dimension, and 16 attention heads.410

The mask ratios for EEG feature sequences and tex-411

tual tokens are set at 75% (which can achieve the412

best results based on trial-and-error). For the CET-413

EEG Mask
Ratio (%)

Text Mask
Ratio (%)

BLEU-N (%)
N=1 N=2 N=3 N=4

25 25 42.14 25.02 14.55 8.62
50 25 41.74 24.75 14.39 8.52
50 50 41.80 24.69 14.25 8.40
75 50 41.93 25.02 14.72 8.81
75 75 42.09 25.13 14.84 8.99

Table 3: The performance of our E2T-PTR framework
under different combinations of CET-MAE mask ra-
tios rising from 25% to 50% , and to 75% across three
reading tasks.

MAE pertaining objective L, we set λT =0.1, λE=1, 414

λCL=0.01. This setting is refined through experi- 415

ments to balance the gradients of each loss in the 416

overall training objective, ensuring that the model 417

learns effectively from each task. We pre-train 418

the CET-MAE model from scratch for 100 epochs. 419

Subsequently, we fine-tune the E2T-PTR model 420

for EEG-to-Text tasks over 50 epochs, employing a 421

batch size of 32 and utilizing the AdamW optimizer. 422

More details are provided in Appendix C. 423
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4.3 Main Results424

Table 1 shows the performance of our E2T-PTR425

framework on the ZuCo benchmarks. In three read-426

ing tasks, E2T-PTR achieves BLEU-1 to BLEU-4427

SOTA scores of 42.09%, 25.13%, 14.84%, and428

8.99%, respectively. Moreover, it outperforms best429

in ROUGE-1 Precision, Recall, and F1 scores com-430

pared to recent works. Notably, without remov-431

ing repetitive generated word tokens, E2T-PTR432

surpasses C-SCL in BLEU-1 and BLEU-2 scores433

across four reading tasks. Particularly under the434

five reading tasks with 18791 training samples,435

E2T-PTR scores 59.20%, 50.77%, 46.82%, and436

44.63% in BLEU-1 to BLEU-4, significantly ex-437

ceeding the baseline work EEG2Text.438

Table2 presents a comparative analysis of the439

decoding results between our model and other mod-440

els under three reading tasks. Our model E2T-441

PTR demonstrates an enhanced ability to generate442

more complete grammatical structures, which is443

evident from the reduced error rates and increased444

semantic coherence in the decoded sentences, ex-445

emplified by expressions such as “his father was”446

and “Bush was born in”. Our model also excels447

in decoding common and proper nouns, such as448

“office” and “University of the Sacred Heart”. It449

also adeptly produces semantically similar words,450

such as, “appointed” vs “elected”, and “Ernest451

Lundeen” vs “John Hemy”. Intriguingly, upon ex-452

panding our training samples to 1.75 times (10710453

to 18791), we observe an obvious improvement454

in the translation quality of the model, especially455

concerning fine-grained recognition. As shown456

in Table 4, our model is capable of generating457

sentences that not only exhibit complete syntac-458

tic structures but also cover comprehensive de-459

tails, such as “(March 12, 1922 - October 21,460

1969)” and “(1891-1927)”. However, it’s notewor-461

thy that the model faced challenges in decoding462

named entities, particularly human names, such as463

misinterpreting “Robert Henry” as “Emerson” or464

“Barrymore” as “aldmore”, a phenomenon not lim-465

ited to these instances. More comprehensive results466

are included in the Appendix D.467

Our investigation delved into the transfer per-468

formance of CET-MAE across varying EEG and469

text masking ratios under three reading tasks. Ta-470

ble 3 details the performance shifts under different471

combinations of masking ratios rising from 25%472

to 50%, and to 75%. We discovered that the CET-473

MAE model excels at the higher masking ratios474

of 75%, starkly contrasting with the traditional 475

15% mask ratio suggested in BERT. This result 476

is consistent with recent findings in multi-modal 477

masked models (Ma et al., 2022; Geng et al., 2022), 478

suggesting that inter-modal interactions may pro- 479

mote performance improvement. We further pon- 480

der this phenomenon and suggest that, in terms of 481

CET-MAE structure, it appears to be suited for re- 482

constructing masked EEG features and predicting 483

masked word tokens. In terms of the masking strat- 484

egy, forcefully masking sentence-level EEG embed- 485

dings can better compel the model to learn global 486

semantic information. Furthermore, we discuss the 487

overall masking ratio for the EEG, the natural EEG 488

masking ratio under three reading tasks is 32.51% 489

as mentioned in Appendix A. Therefore, the total 490

masking ratio for the EEG is 83.13% 3 (32.51% of 491

natural + 50.62% of CET-MAE masked. 492

4.4 Ablation Studies 493

Table 5 details the ablation experiments, affirm- 494

ing the effectiveness of each component in our 495

approaches for EEG-to-Text generation quality. 496

First, sentence-level EEG features positively im- 497

pact BLEU scores, notably BLEU-1, underscoring 498

their importance in capturing essential semantic 499

information for improved text generation. Second, 500

CET-MAE, focusing on masked signal modeling 501

and contrastive learning between EEG and text, is 502

fundamental. Integrating CET-MAE with the base- 503

line framework (Wang and Ji, 2022) significantly 504

boosts BLEU scores, especially BLEU-4. Third, 505

combining E2T-PTR with CET-MAE enhances per- 506

formance across metrics, particularly Precision, Re- 507

call, and F1 score of ROUGE-1, showcasing E2T- 508

PTR’s role in effectively transferring CET-MAE’s 509

learned representations. 510

4.5 Transfer Performance of SSL Models 511

We further pre-train and compare the transfer per- 512

formance of the following SSL models: 1) Con- 513

trastive EEG-Text (CET) learning model: The CET 514

that has no reconstruction objective. For a fair 515

comparison, we implement CET using the same 516

encoder architecture (modal-specific encoders + 517

multi-stream encoder) with CET-MAE but remove 518

the reconstruction task (LE and LT ). We use this 519

model to investigate the impact of contrastive learn- 520

ing. 2) EEG-text masked autoencoder (ET-MAE) 521

model: The ET-MAE has the same architecture as 522

3Overall Masking Ratio = NMR + (1 - NMR) × CET-MAE
Masking Ratio.
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(1)
Ground Truth: Robert Henry Dee (born May 18, 1933 in Quincy, Massachusetts) is a former three-sport
letterman at Holy Cross College who was one of the first players signed by the Boston Patriots in 1960.

E2T-PTR: Emerson Dee (born May 18, 1933 in Quincy, Massachusetts) is a former three-sport
letterman at Holy Cross College who was one of the first players signed by the Boston Patriots in 1960.

(2)
Ground Truth: Barrymore married Katherine Corri Harris (1891-1927), an actress who starred in the 1918 film
The House of Mirth, on September 1, 1910 and divorced in 1916.

E2T-PTR: aldmore was Katherine Corri Harris (1891-1927), an actress who starred in the 1918 film
The House of Mirth, on September 1, 1910 and divorced in 1916.

Table 4: EEG-to-Text decoding example results on test sentences under five reading tasks. Bold words indicate
exact match, Italic words indicate semantic resemblance, and Underline words indicate error match.

Sentence-level EEG
feature sequences

CET-MAE E2T-PTR
Training
Sample

BLEU-N (%) ROUGE-1 (%)
N=1 N=2 N=3 N=4 P R F

✕ ✕ ✕ 10710 41.16 23.99 13.49 7.68 34.68 28.96 31.45
✓ ✕ ✕ 10710 41.63 24.48 13.96 8.06 35.13 29.27 31.83
✓ ✓ ✕ 10710 41.88 24.85 14.52 8.74 35.26 29.50 32.02
✓ ✓ ✓ 10710 42.09 25.13 14.84 8.99 35.86 30.01 32.61

Table 5: The results of ablation experiments on CET-MAE and E2T-PTR structures under three reading tasks. We
verified the effectiveness of each component and used BLEU-N (%) and ROUGE-1 (%) as the evaluation metrics.

Metrics (%)
Our SSL Models

CET ET-MAE CET-MAE

BLEU-1 41.77 41.80 42.09
BLEU-2 24.68 24.72 25.13
BLEU-3 14.33 14.43 14.84
BLEU-4 8.60 8.53 8.99
ROUGE-1 P 35.59 35.06 35.86
ROUGE-1 R 30.11 29.31 30.01
ROUGE-1 F 32.51 31.82 32.61

Table 6: Evaluating transfer performance across CET,
ET-MAE, and CET-MAE under three reading tasks.

CAV-MAE but the contrastive loss (LCL) is set to523

0. The masking strategy is the same as CET-MAE.524

We use this model to examine the effectiveness of525

masked signal modeling. 3) Our proposed CET-526

MAE is detailed in Section 3.527

To ensure fairness, CET and ET-MAE are pre-528

trained with the same pipeline as CET-MAE. We as-529

sess their EEG-to-Text transfer performance using530

the E2T-PTR framework. Results in Table 6 demon-531

strate CET-MAE’s superiority over two other SSL532

models (CET and ET-MAE) across most evalu-533

ation metrics. Specifically, CET-MAE achieves534

improvements of 0.32%, 0.45%, 0.51%, and 0.39%535

in BLEU-1 to BLEU-4, respectively, compared536

to CET. Against ET-MAE, CET-MAE records in-537

creases of 0.29%, 0.41%, 0.41%, and 0.46% for538

these metrics, respectively. The trend of enhance- 539

ment is consistent in ROUGE-1 metrics as well. 540

5 Conclusion 541

This study contributes to the development of EEG- 542

based language decoding by introducing an effec- 543

tive EEG-text pre-trained model, CET-MAE, and a 544

highly capable and LLM-empowered EEG-to-Text 545

decoding framework, E2T-PTR. CET-MAE uses a 546

multi-stream architecture to incorporate both intra- 547

and cross-modality SSL within one unified system: 548

1) Intra-modality streams explore representative 549

embeddings that reflect the intrinsic characteris- 550

tics of EEG or text sequences, leveraging masked 551

modeling with a mask ratio of up to 75%; 2) Inter- 552

modality stream provides dual-modal representa- 553

tions to enhance intra-modality reconstruction and 554

constrains the encoder to maximize semantic con- 555

sistency between text and its corresponding EEG 556

sequences. E2T-PTR transfers pre-trained EEG 557

representations and leverages BART’s capabilities 558

for text generation from these consistent and rep- 559

resentative features. Extensive experiments on the 560

latest text-evoked EEG dataset, ZuCo, demonstrate 561

the superiority of this work in both qualitative and 562

quantitative assessments. Our work in improving 563

EEG-based language decoding holds great signifi- 564

cance, as it has the potential to revolutionize BCI 565

technology and enhance the quality of life for indi- 566

viduals with communication impairments. 567

8



6 Limitation568

The limitations of our study are summarized as569

follows:570

Dataset Scale: The performance of both the571

CET-MAE model and the E2T-PTR framework572

is constrained by the scale of currently available573

datasets. We are in the process of developing our574

datasets to fully exploit the potential of our models575

and frameworks.576

Teacher Forcing: While our results are pushing577

the open vocabulary EEG-to-Text decoding perfor-578

mances to a new SOTA, they still depend on the579

implicit use of teacher forcing, a common precon-580

dition in recent studiess (Wang and Ji, 2022; Duan581

et al., 2023; Feng et al., 2023; Zhou et al., 2023; Xi582

et al., 2023). This reliance on teacher forcing could583

be constraining the full capabilities of the LLMs.584

Our future work will aim to reduce dependence585

on teacher forcing by exploring the autoregressive586

capabilities of LLMs.587

Exploration of LLMs: We plan to explore more588

advanced LLMs to enhance our EEG-to-Text de-589

coding capabilities. This will involve testing new590

models and techniques to improve performances591

and uncover deeper insights from EEG data.592

7 Ethics Statement593

In this work, we do not generate new EEG data,594

nor do we perform experiments on human subjects.595

We use the publicly available ZuCo v1.0 and ZuCo596

v2.0 datasets without any restrictions. We do not597

anticipate any harmful applications of our work.598
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A Natural Masking Ratio of Datasets785

To provide a clear perspective, we present the de-786

tailed statistics of the NMR of EEG feature se-787

quences for three categories of reading task combi-788

nations in Table7.789

B Datasets790

We utilize the combination of both ZuCo v1.0791

and ZuCo v2.0 to form the final ZuCo bench-792

mark. The EEG features are collected with a793

128-channel system under the sampling rate of794

500Hz. After the noise canceling process, only795

105 channels are used. There are 8 frequency796

bands determined in the ZuCo dataset as follows:797

theta1 (4–6 Hz), theta2 (6.5–8 Hz) alpha1 (8.5–10798

Hz), alpha2 (10.5–13 Hz), beta1 (13.5–18 Hz)799

beta2 (18.5–30 Hz) and gamma1 (30.5–40 Hz) and800

gamma2 (40–49.5 Hz). The Hilbert transform is ap-801

plied in each of these time series. The final features802

of the EEG are formed by concatenating features803

from all 8 frequency bands, resulting in a vector804

with a dimension of 840. For three reading tasks,805

we pre-train and fine-tune the models on “SR v1.0806

+ NR v1.0 + NR v2.0”. For four reading tasks, we807

choose the combination of “SR v1.0 + NR v1.0 +808

NR v2.0 + TSR v1.0”. For five reading tasks, the809

models are pre-trained and fine-tuned on “SR v1.0810

+ NR v1.0 + NR v2.0 + TSR v1.0 + TSR v2.0”. Dur-811

ing pre-training, the datasets were split into training812

and testing sets in a 90% to 10% ratio. During the813

EEG-to-Text fine-tuning phase, the datasets were814

further divided into training, validation, and testing815

sets with an 80%, 10%, and 10% split respectively.816

The test set samples remained consistent through-817

out the above two stages. The dataset statistics of818

EEG-to-Text decoding are detailed in Table 8.819

C Implementation Details820

Our training hyper-parameters are listed in Table 9.821

To ensure a fair comparison, we conducted both822

Reading
Tasks

Missing
Pairs

Total
words

NMR(%)

SRv1.0+NRv1.0+NRv2.0 90362 277966 32.51

SRv1.0+NRv1.0
+NRv2.0+TSRv1.0

137460 373817 36.77

SRv1.0+NRv1.0+NRv2.0
+TSRv1.0+TSRv2.0

204089 515979 39.55

Table 7: Statistics for natural masking ratios under three,
four, and five reading tasks in ZuCo benchmarks.

pre-training and fine-tuning for the EEG-to-Text 823

decoding task using datasets with the same combi- 824

nations of reading tasks. 825

D Generated Samples 826

We show more details in EEG-to-Text translation 827

results generated on our models in Table 10, Ta- 828

ble 11, and Table12. In our experiments, we aim 829

to select the same sentences from the test sets of 830

three, four, and five reading tasks where feasible. 831

This enables us to directly observe and compare 832

the generated results with the ground truth across 833

different task conditions. 834

E Subject-independent Performance 835

As reported in Table1, we present the average 836

BLEU-N and ROUGE-1 scores for all 30 subjects. 837

However, considering the individual variations of 838

brain activities during semantic processing and cog- 839

nitive operations within different subjects, we fur- 840

ther provide individual BLEU-N and ROUGE-1 841

scores for each subject. We use radar charts shown 842

in Figure3 and Figure4 to visually represent these 843

differences, allowing for an intuitive comparison 844

across subjects. For a detailed numeric breakdown 845

of these variances, refer to Table13 and Table14. 846

We utilize radar charts shown in Figure3 and Fig- 847

ure4 to visually represent these differences, allow- 848

ing for an intuitive comparison across subjects. 849

F Impact of the Multi-Stream Design 850

Our investigation, as detailed in Table 16, reveals 851

the transfer performance of a multi-stream design 852

in the CET-MAE and E2T-PTR frameworks. The 853

multi-stream approach, which provides the spe- 854

cialized handling of text and EEG using separate 855

streams, outperformed a single joint stream design. 856

Notably, in the E2T-PTR framework, leveraging 857

the EEG-specific stream for fine-tuning yielded a 858

marked improvement in EEG-to-Text task perfor- 859

mance over a joint modality stream. This modality- 860

focused approach appears to capitalize on the nu- 861

anced semantic information inherent in EEG em- 862

beddings, resulting in a more sophisticated and con- 863

textually relevant latent space. This is substantiated 864

by the observed uptick in BLEU and ROUGE met- 865

rics. Our study underscores the criticality of fine- 866

grained, modality-specific processing approaches 867

in the domain of EEG-Text representation learning. 868
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Reading Task Training Sample Validation Sample Testing Sample

SR v1.0 + NR v1.0+NR v2.0 10710 1332 1407
SRv1.0+NRv1.0+NRv2.0+TSRv1.0 14407 1790 1799
SRv1.0+NRv1.0+NRv2.0+TSRv1.0+TSRv2.0 18791 2287 2404

Table 8: Dataset Statistics of the EEG-to-Text decoding. SR: Normal Reading (Sentiment), NR: Normal Reading
(Wikipedia), TSR: Task Specific Reading (Wikipedia).

Hyperparameters Pre-training Fine-tuning

Models CET-MAE E2T-PTR
Reading Tasks 3 4 5 3 4 5
Datasets Splits 9:1 8:1:1
Epochs 100 50 40 40
Batch Size 32 32
Learning Rate 5e-7 2e-7 2e-5 2e-5
Optimizer AdamW, weight decay= 1e-2, betas =(0.9,0.999)
LR Scheduler Cosine Annealing, T_max=20
GPUs RTX4090

Table 9: Implementation details in our pre-training and fine-tuning.

Figure 3: The radar chart of 18 subjects from Subject YAG to YSD on each metric.

G Impact of the Masking Strategy869

The masking strategy is crucial in Masked Autoen-870

coders. For the text, the BERT masking strategy871

has proven highly effective. For the EEG modal-872

ity, we introduce a pivotal design that involves873

mandatory masking of sentence-level EEG feature874

sequences, as detailed in Section 3.2. We delve875

into the impact of this strategy on the EEG-to-Text876

decoding task. Comparative results between ran- 877

dom and forced masking strategies are presented in 878

Table 15. The forced masking strategy outperforms 879

the random masking strategy in the EEG-to-Text 880

decoding, highlighting the efficacy of our proposed 881

strategy in compelling the model to reconstruct the 882

contextual semantics within sentence-level EEG 883

feature sequences comprehensively. 884
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(1)
Ground Truth: At the urging of his wife, Columba, a devout Mexican Catholic, the Protestant Bush became a Roman Catholic.

E2T-PTR: the time of his wife, hea, he former Catholic Catholic, he actor pastorman a Catholic Catholic.

(2)
Ground Truth: While attending a motorcycle race, he met a local girl named Columba Garnica Gallo, whom he eventually married.

E2T-PTR: in the local school, he was his man boy named Marya,ett,o, who he later married.

(3)
Ground Truth: He then enrolled at Phillips Andover, a private boarding school in Massachusetts already attended by his
brother George.

E2T-PTR: was went in the Academy Mary College where private school school in Massachusetts. known by his father,.

(4)
Ground Truth: He took a job in real estate with Armando Codina, a 32-year-old Cuban immigrant and self-made American
millionaire.

E2T-PTR: was a job as the estate in theando Iice in who company-year-old Italian immigrant. former-made millionaire
millionaire.

(5)
Ground Truth: After earning his degree, Bush went to work in an entry level position in the international division of Texas
Commerce Bank, which was run by Ben Love.

E2T-PTR: the his bachelor in he became to work for the office- position at the Department banking of the Instruments..
where was later by theitott

(6)
Ground Truth: He later became an educator, teaching music theory at the University of the District of Columbia; he was also
director of the District of Columbia Music Center jazz workshop band.

E2T-PTR: was became a American and and at and and the University of California West of Columbia. and also also
a of the school of Columbia’s Department. department..

(7)
Ground Truth: Bush stayed in Houston with another family to finish the school year, and spent most summers and holidays
at the family estate, known as the Bush Compound.

E2T-PTR: was in the until his family, raise his year year. and then the of in summers there the family’s. including
as the Bush Ranchound.

(8)
Ground Truth: Robert Henry Dee (born May 18, 1933 in Quincy, Massachusetts) is a former three-sport letterman at Holy Cross
College who was one of the first players signed by the Boston Patriots in 1960.

E2T-PTR: Frost, (born April 5, 18) New, Massachusetts) is a retired United-timeport star carrier and the Cross College. played a of
the founders African to by the University Celtics. the.

Table 10: EEG-to-Text decoding example results on test sentences under three reading tasks. Bold words indicate
exact match, Italic words indicate semantic resemblance, and Underline words indicate error match.

Figure 4: The radar chart of 12 subjects from Subject ZKW-ZJS on each metric.
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(1)
Ground Truth: At the urging of his wife, Columba, a devout Mexican Catholic, the Protestant Bush became a Roman Catholic.

E2T-PTR: the academy of his mother, hea, she young Catholic-, she young preacher co an Catholic Catholic in

(2)
Ground Truth: While attending a motorcycle race, he met a local girl named Columba Garnica Gallo, whom he eventually married.

E2T-PTR: serving the Louisiana school he he met a man hero named Dela Jacksonett.ienne. who he would struck.

(3)
Ground Truth: He then enrolled at Phillips Andover, a private boarding school in Massachusetts already attended by his
brother George.

E2T-PTR: was returned in the University Mary College Massachusetts public school school in the. owned by his father,.

(4)
Ground Truth: He took a job in real estate with Armando Codina, a 32-year-old Cuban immigrant and self-made American
millionaire.

E2T-PTR: was many second as the estate with theando Feric, where local-year-old hotel shipping who hotel-trained millionaire
millionaire who

(5)
Ground Truth: After earning his degree, Bush went to work in an entry level position in the international division of Texas
Commerce Bank, which was run by Ben Love.

E2T-PTR: a his Ph at he went to work for the apprentice- role at the Springfield trade of the Instruments. at working he
subsequently by Jamesoittt

(6)
Ground Truth: He later became an educator, teaching music theory at the University of the District of Columbia; he was also
director of the District of Columbia Music Center jazz workshop band.

E2T-PTR: was earned president assistant at and English at at the University of Wisconsin Arts of Columbia, and also the a
of the Special School Columbia Library Project. line..

(7)
Ground Truth: Bush stayed in Houston with another family to finish the school year, and spent most summers and holidays
at the family estate, known as the Bush Compound.

E2T-PTR: was in Hollywood for his oil, work his term year, and to the summers and holidays at the sprawling estate,
the as the Bush Compound.

(8)
Ground Truth: Robert Henry Dee (born May 18, 1933 in Quincy, Massachusetts) is a former three-sport letterman at Holy Cross
College who was one of the first players signed by the Boston Patriots in 1960.

E2T-PTR: Joseph Bol,born July 22, 1923) Ball, Massachusetts) is best former Republican-timeides quarterbackman who the Cross
College, is elected of the founder " to to the University Bruins. 1993.

Table 11: EEG-to-Text decoding example results on test sentences under four reading tasks. Bold words indicate
exact match, Italic words indicate semantic resemblance, and Underline words indicate error match.
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(1)
Ground Truth: At the urging of his wife, Columba, a devout Mexican Catholic, the Protestant Bush became a Roman Catholic.

E2T-PTR: the academy of his mother, hea, she young Catholic Catholic, she young and accepted a Catholic Catholic in

(2)
Ground Truth: While attending a motorcycle race, he met a local girl named Columba Garnica Gallo, whom he eventually married.

E2T-PTR: serving a motorcycle race, he met a local girl named Columba Garnica Gallo, whom he eventually married.

(3)
Ground Truth: He then enrolled at Phillips Andover, a private boarding school in Massachusetts already attended by his
brother George.

E2T-PTR: was enrolled at Phillips Andover, a private boarding school in Massachusetts already attended by his brother George.

(4)
Ground Truth: He took a job in real estate with Armando Codina, a 32-year-old Cuban immigrant and self-made American
millionaire.

E2T-PTR: was his job with the estate with theco Ferela and and firm-year-old firm shipping who hotel-trained millionaire merchant.

(5)
Ground Truth: After earning his degree, Bush went to work in an entry level position in the international division of Texas
Commerce Bank, which was run by Ben Love.

E2T-PTR: a his degree, Bush went to work in an entry level position in the international division of Texas Commerce Bank,
which was run by Ben Love.

(6)
Ground Truth: He later became an educator, teaching music theory at the University of the District of Columbia; he was also
director of the District of Columbia Music Center jazz workshop band.

E2T-PTR: was became president educator, teaching music theory at the University of the District of Columbia; he was also
director of the District of Columbia Music Center jazz workshop band.

(7)
Ground Truth: Bush stayed in Houston with another family to finish the school year, and spent most summers and holidays
at the family estate, known as the Bush Compound.

E2T-PTR: is in Hollywood for his company, work his war year. and enrolled the summers and holidays at the sprawling estate,
the as the Bush Compound.

(8)
Ground Truth: Robert Henry Dee (born May 18, 1933 in Quincy, Massachusetts) is a former three-sport letterman at Holy Cross
College who was one of the first players signed by the Boston Patriots in 1960.

E2T-PTR: Emerson Dee (born May 18, 1933 in Quincy, Massachusetts) is a former three-sport letterman at Holy Cross College
who was one of the first players signed by the Boston Patriots in 1960.

Table 12: EEG-to-Text decoding example results on test sentences under five reading tasks. Bold words indicate
exact match, Italic words indicate semantic resemblance, and Underline words indicate error match.
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Subjects YAG YAK YMS YHS YSL YRK YRH YDR YIS YRP YLS YTL YFR YDG YAC YFS YMD YSD

BLEU-1 46.23 46.67 45.65 46.12 46.50 46.34 45.90 46.13 45.90 46.45 46.12 46.56 44.75 46.78 46.28 46.51 46.89 45.65
BLEU-2 28.98 28.93 28.80 28.94 29.57 29.10 28.88 29.28 28.78 29.41 28.94 29.63 27.79 29.60 28.70 29.93 29.82 28.52
BLEU-3 18.07 17.74 17.69 17.85 18.32 17.70 17.82 18.76 17.57 18.45 17.64 18.44 16.90 18.22 17.44 18.87 18.52 17.88
BLEU-4 11.27 10.85 11.09 11.04 11.22 10.70 10.89 12.10 10.64 11.82 10.67 11.44 9.88 11.34 10.50 12.09 11.48 11.18
ROUGE1-R 35.21 35.66 35.73 34.99 36.00 35.23 35.86 35.17 34.77 35.37 35.13 35.58 34.24 34.86 35.30 35.62 35.94 35.03
ROUGE1-P 41.55 42.46 42.88 41.91 43.32 41.69 42.36 41.53 41.29 42.20 42.20 42.04 40.27 41.37 42.30 42.84 42.97 41.90
ROUGE1-F1 38.02 38.65 38.87 38.04 39.22 38.09 38.73 37.97 37.66 38.39 38.24 38.45 36.92 37.72 38.41 38.79 39.04 38.05

Table 13: Subject-independent Performance of BLEU-N(%) and ROUGE-1 from Subject YAG to YSD.

Subjects ZKW ZPH ZAB ZKB ZMG ZJN ZDN ZJM ZGW ZDM ZKH ZJS

BLEU-1 37.99 38.49 38.16 38.02 37.97 38.31 37.84 38.05 38.36 38.15 38.19 37.11
BLEU-2 20.83 21.07 20.83 20.89 21.14 20.74 20.81 20.73 21.58 20.92 21.00 20.34
BLEU-3 10.82 11.19 11.14 10.91 11.40 11.16 11.19 10.72 11.75 10.90 11.13 10.48
BLEU-4 5.76 6.01 6.18 5.70 6.34 6.18 6.27 5.55 6.60 5.82 6.29 5.49
ROUGE1-R 25.34 25.21 24.51 25.38 25.44 25.53 25.46 25.27 26.15 25.08 25.78 24.15
ROUGE1-P 30.44 30.43 29.39 30.74 30.55 30.48 30.31 30.27 31.14 30.10 31.02 28.84
ROUGE1-F1 27.55 27.45 26.62 27.67 27.64 27.65 27.53 27.43 28.30 27.24 28.04 26.17

Table 14: Subject-independent performance of BLEU-N(%) and ROUGE-1 from Subject ZKW to ZJS.

Method
Training
Sample

Mask
Stragety

BLEU-N(%) ROUGE-1 (%)
N=1 N=2 N=3 N=4 P R F

E2T-PTR
10710 Random Mask 40.27 23.99 13.95 8.17 35.31 29.63 32.11
10710 Force Mask 42.09 25.13 14.84 8.99 35.86 30.01 35.61

Table 15: Investigating the impact of mask strategy in EEG feature sequences during CET-MAE pre-training.

Model Training
Sample

BLEU-N(%) ROUGE-1(%)
CET-MAE E2T-PTR N=1 N=2 N=3 N=4 P R F

✕ Joint Stream 10710 41.60 24.53 14.19 8.35 35.34 29.57 32.09
✓ Joint Stream 10710 41.61 24.57 14.34 8.52 35.74 29.79 32.37
✓ EEG Stream 10710 42.09 25.13 14.84 8.99 35.86 30.01 32.61

Table 16: We validated the performance impact of multi-stream design on pre-training and downstream tasks. The
✓ indicates the use of a multi-stream design during pre-training, while the ✕ indicates no use.
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