
Actor-Critic Algorithm for High-dimensional PDEs

Anonymous Author(s)
Affiliation
Address
email

Abstract

We develop a deep neural network model to solve high-dimensional nonlinear1

parabolic partial differential equations (PDE). Our model extends and advances2

the DBSDE model in the following 3 aspects: 1) the trainable parameters are3

reduced by N times, where N is the number of steps to discretize the PDE in4

time, 2) the model convergence rate is an order of magnitude faster, 3) our model5

has fewer tuning hyperparameters. . Our model is designed to maximally exploit6

the Markovian property of a BSDE system and utilizes an Actor-Critic network7

architecture. Our algorithm design leads to a significant speedup with higher8

accuracy level. We demonstrate the performance improvements with numerical9

experiments solving several well-known PDEs with dimensions on the order of10

100.11

1 Introduction12

High Dimensional partial differential equations (PDEs) are encountered in many branches of modern13

sciences such as the Schrödinger equation for quantum many-body problem, the nonlinear Black-14

Scholes equation for pricing financial derivatives, and the Hamilton-Jacobi-Bellman equation for15

multi-agent game theories. In this work, we introduce a new model that effectively address those16

issues by exploiting the Markovian property of the BSDE system, which is rarely discussed in the17

literature. The Markovian property enables us to utilize an Actor-Critic neural network architecture in18

solving high dimensional PDE problems for the first time. Taking advantage of the variance reduction19

affect of Actor-Critic, our model is shown to make some significant performance improvements20

compared to existing deep learning based PDE solvers:21

1. largely reduced trainable parameters fromO(Nd2) toO(d2): here N is the number of time22

steps that discretizes the temporal dimension, and d is the spatial dimension of the PDEs.23

Namely, our algorithm is relieved from the constraint that the network complexity needs24

to scale linearly with the time steps and requires only a light-weight network. Therefore,25

calculating the gradients for all parameters is faster and consumes less memory.26

2. faster convergence rate: In all the numerical experiments we studied, the convergence rate27

of our model is at least one order magnitude faster than DBSDE while giving the same (if28

not higher) level of solution accuracy. The fact that our algorithm requires less parameters29

and faster convergence rate leads to a significant run-time speed-up during training. For30

example, Quadratic Gradients equation is solved 18 times faster than that solved by DBSDE,31

and the Allen Cahn equation is 27 times faster than DBSDE.32

3. less hyperparameters to tune: The existing deep learning based solvers need to prescribe an33

1-d interval from which the initial solution is sampled. The range of the interval is defined by34

two hyperparameters. Numerically, we find that the convergence rate and solution accuracy35

are both sensitive to the choice of the two hyperparameters. Therefore, parameter tuning is a36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

necessity. By design, our model does not require such hyperparameters, which is partially37

attributed to the variance reduction affect of the Actor-Critic algorithm.38

2 Approach39

We start with the definition of a nonlinear parabolic PDE in the general form. Let u : [0,∞)×Rd →40

R, u 7→ u(t, x) be the unknown vectorial function with the dimension d, we seek to find the value of41

u at any given point ξ such that it satisfies the following general nonlinear parabolic PDE:42

∂u

∂t
+

1

2
Tr
(
σ(t, x)σ(t, x)T (Hessxu)

)
+∇u · µ(t, x) + f(t, x, u(t, x), σT (t, x)∇u(t, x)) = 0

(1)
with the terminal condition u(T, x) = g(x). Here t ∈ [0, T] and x ∈ Rd are the time and space43

variable respectively. µ(t, x) ∈ Rd and σ(t, x) ∈ Rd×d are known vector-valued functions. σT is44

the transpose of σ. ∇u and Hessxu represents the gradient and the Hessian of function u w.r.t x. Tr45

denotes the trace of a d× d matrix. f is a known scalar-valued nonlinear function. The goal is to find46

the solution u(0, ξ) for some point ξ ∈ Rd at t = 0.47

Following the same Feyman-Kac approach as in DBSDE model, we arrive at the equivalent discretized48

stochastic differential equations:49

Xtn+1
= Xtn + µ(tn, Xtn)(tn+1 − tn) + σ(tn, Xtn)∆Wtn

u(tn+1, Xtn+1
) = u(tn, Xtn) + ZTtn∆Wtn − f (tn, Xtn , u(tn, Xtn), Ztn)

(2)

where Ztn = [∇u(tn, Xtn)]
T
σ(tn, Xtn), and ∆Wtn = Wtn+1

−Wtn . From the numerical point50

of view, (2) defines a controlled stochastic dynamics that can be efficiently sampled by simulating51

Brownian processes Wtn , with µ and σ given. Note that N is a hyperparameter which needs to be52

tuned for different equations. The sensitivity study of N is yet available in the literature.53

A key feature that differentiates our model from others is that we exploit the Markovian property54

of the System (2). Therefore, we need to only deploy one multilayer feedforward network with55

batch-normalization, say θa, to approximate Ztn instead of a sequence of N multilayer feedforward56

networks which is currently adopted by other deep learning based models. In addition, we parametrize57

u(Xt=0) with a second multilayer feedforward network, say θv , while the other solvers use only one58

trainable parameter to represent the solution u(Xt=0) and train it together with the policy network.59

To some extent, θa is comparable to the policy network and θv to the critic network in model based60

reinforcement learning. A combination of such two networks within one framework is commonly61

referred to as the Actor-Critic algorithm.62

To close the loop, we still need to define a loss function for training:63

l(T) = E
[
|g(XT)− u({Xtn}0≤n≤N , {Wtn}0≤n≤N)|2

]
namely the loss function measures how close the predicted solution u(T, x) matches the terminal64

boundary condition. In practice, to prevent the loss from blowing up, we clip the quadratic function65

by linearly extrapolating the function beyond a predefined domain [−Dc, Dc], analogous to the trick66

used by Proximal Policy Optimization Schulman et al. (2017) which enforces a not-too-far policy67

update 1. We use Dc = 50 in all of our experiments.68

Given the temporal discretization above, the path {Xtn}0≤n≤N can be easily sampled using (2), the69

dynamics of which are problem dependent due to the µ and σ terms. Fig. 1 illustrates a forward pass70

and a backward pass in one iteration where θv and θa are updated.71

In terms of training process, Xt and Wt are sampled first by running the dynamics. We use θv72

to generate a guess, u(Xt=0) which is then passed forward in time to get u(Xt=T). The loss is73

backpropagated to update θv and θa with either stochastic gradient descent or other optimization74

methods alike. The total number of training steps is preset but we also find that using an early-stop75

mechanism usually leads to shorter run time while producing the same level of accuracy. 276

1The difference is that PPO puts the constraint on the KL-divergence between consecutive updates instead of
the least square measure.

2We do not use early-stopping in the numerical experiments as we want to have a fair comparison with other
models in terms of run-time and convergence rate.

2

Figure 1: Forward and backward propagation of the ith iteration

Table 1: Run-time and Relative-error for all numerical examples

PDE Examples Run Time
Actor-Critic

Run Time
(DBSDE)

Relative Error
Actor-Critic

Relative Error
(DBSDE)

Hamilton Jacobi Bellman 3 s 22 s 0.22% 0.53%
Burgers Type 20 s 122 s 3.4% 0.31%
Reaction Diffusion 132 s 801 s 0.61% 0.69%
Quadratic Gradients 9 s 166 s 0.06% 0.08%
Allen Cahn 5 s 138 s 0.25% 0.46%
Pricing Option 7 s 20 s 0.37% 0.56%

3 Preliminary Results77

We solve the same set of examples presented by Weinan et al. (2017); Han et al. (2018). We78

also intentionally use the same computing environment settings in order to pinpoint the algorithm79

advantage. The run-time, relative error of the experiments we solved are presented in Table. 1 along80

side those in DBSDE.81

3.1 Reduced trainable parameters82

The number of trainable parameters in our algorithm, ρ0, can be calculated as:83

ρ0 =2×
(
(d+ 10) + (d+ 10)2 + d(d+ 10)

)︸ ︷︷ ︸
fully connected layers of θa and θv

+ 2(d+ 10) + 2(d+ 10) + 2d︸ ︷︷ ︸
batch normalization layers of θa and θv

(3)

In comparison, the number of trainable parameters of DBSDE model is calculated as:84

ρ1 = 1 + d︸ ︷︷ ︸
u(0,ξ),∇u(0,ξ)

+ (N − 1)(2(d+ 10) + 2(d+ 10) + 2d)︸ ︷︷ ︸
batch normalization layers

+ (N − 1)(d(d+ 10) + (d+ 10)2 + d(d+ 10))︸ ︷︷ ︸
fully connected layers

(4)

Comparing (3) and (4), one immediately notice that:85

1. DBSDE uses one parameter to approximate u(0, ξ) and d parameters for ∇(0, ξ). We do86

not have those two sets of parameters.87

2. The network proposed by DBSDE is a MLP stacked N times where N is the time steps88

that discretize the temporal dimension, which leads to ρ1 ∼ O(Nd2) complexity, whereas89

ρ0 ∼ O(d2) in our model. Recall that N is a hyperparameter that needs to be tuned case by90

case. Therefore, having the network complexity controlled by N poses numerical challenges91

when N is large. Our model has no such constraint.92

3

3.2 Faster Convergence Rate93

Figure 2: Evolution of the target solution u(0, ξ) during training.

Compared to DBSDE, it is noteworthy that our model needs much fewer iterations to converge in94

general. Intuitively, this could be attributed to the fact that our neural network is shallower than95

DBSDE by N times, which naturally requires fewer samples to train. Recall the fact that our run-time96

per iteration is also shorter, together they can explain why our algorithm is significantly faster than97

DBSDE as previously discussed around Table 1. In addition to the convergence rate speedup, one98

also notices a significant drop in the variance. The important contributing factor is the actor critic99

architecture which by nature is an effective variance reduction technique.100

3.3 Fewer tuning hyperparameters101

DBSDE uses one trainable parameter to fit the solution u(0, ξ), which assumes a probability distribu-102

tion in a predefined region (xa, xb). Thus xa and xb are two hyperparemters that need to be chosen103

case by case. In comparison, we use the critic network to parametrize u(0, ξ). It is arguable that the104

network design is a hyperparameter by itself, but in practice, we use the same critic network structure105

with the same initialization procedure (xavier-uniform) in solving all the equations in table 1 and all106

achieved higher accuracy level than DBSDE. To some extent, the experiments suggest that the critic107

network, with initialization process properly designed, applies regularizing to u(0, ξ) automatically.108

4 Discussion and conclusion109

The limitation of our model, and in fact of all existing deep learning models for high dimensional110

PDEs, is only focusing on learning mappings between finite-dimensional spaces. Therefore, one111

needs to perform training every time the solution is to be evaluated at a new point. In practice this112

can be computationally expensive as the solutions are typically desired at a large collection of points.113

A future direction to lift the limitation is to generalize the neural networks proposed in this work114

to “neural operators” that learn mappings between function spaces. In 2-d and 3-d scenarios, the115

pioneering works of Li et al. (2021) and Liu et al. (2021) show that neural operators allow accurate116

transfer learning and even zero-shot super-resolution. However, due to the curse of dimensionality,117

simply generalizing their approach to high dimension scenarios is not feasible.118

References119

Han, J., Jentzen, A., and Weinan, E. Solving high-dimensional partial differential equations using120

deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.121

4

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar, A.122

Fourier neural operator for parametric partial differential equations, 2021.123

Liu, B., Kovachki, N., Li, Z., Azizzadenesheli, K., Anandkumar, A., Stuart, A., and Bhattacharya, K.124

A learning-based multiscale method and its application to inelastic impact problems, 2021.125

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy optimization126

algorithms. arXiv preprint arXiv:1707.06347, 2017.127

Weinan, E., Han, J., and Jentzen, A. Deep learning-based numerical methods for high-dimensional128

parabolic partial differential equations and backward stochastic differential equations. Communi-129

cations in Mathematics and Statistics, 5(4):349–380, 2017.130

5

	Introduction
	Approach
	Preliminary Results
	Reduced trainable parameters
	Faster Convergence Rate
	Fewer tuning hyperparameters

	Discussion and conclusion

