© o N O g A~ W N =

- o

22
23
24
25
26

27
28
29
30
31
32

33
34
35
36

Actor-Critic Algorithm for High-dimensional PDEs

Anonymous Author(s)
Affiliation
Address

email

Abstract

We develop a deep neural network model to solve high-dimensional nonlinear
parabolic partial differential equations (PDE). Our model extends and advances
the DBSDE model in the following 3 aspects: 1) the trainable parameters are
reduced by N times, where N is the number of steps to discretize the PDE in
time, 2) the model convergence rate is an order of magnitude faster, 3) our model
has fewer tuning hyperparameters. . Our model is designed to maximally exploit
the Markovian property of a BSDE system and utilizes an Actor-Critic network
architecture. Our algorithm design leads to a significant speedup with higher
accuracy level. We demonstrate the performance improvements with numerical
experiments solving several well-known PDEs with dimensions on the order of
100.

1 Introduction

High Dimensional partial differential equations (PDEs) are encountered in many branches of modern
sciences such as the Schrodinger equation for quantum many-body problem, the nonlinear Black-
Scholes equation for pricing financial derivatives, and the Hamilton-Jacobi-Bellman equation for
multi-agent game theories. In this work, we introduce a new model that effectively address those
issues by exploiting the Markovian property of the BSDE system, which is rarely discussed in the
literature. The Markovian property enables us to utilize an Actor-Critic neural network architecture in
solving high dimensional PDE problems for the first time. Taking advantage of the variance reduction
affect of Actor-Critic, our model is shown to make some significant performance improvements
compared to existing deep learning based PDE solvers:

1. largely reduced trainable parameters from O(Nd?) to O(d?): here N is the number of time
steps that discretizes the temporal dimension, and d is the spatial dimension of the PDEs.
Namely, our algorithm is relieved from the constraint that the network complexity needs
to scale linearly with the time steps and requires only a light-weight network. Therefore,
calculating the gradients for all parameters is faster and consumes less memory.

2. faster convergence rate: In all the numerical experiments we studied, the convergence rate
of our model is at least one order magnitude faster than DBSDE while giving the same (if
not higher) level of solution accuracy. The fact that our algorithm requires less parameters
and faster convergence rate leads to a significant run-time speed-up during training. For
example, Quadratic Gradients equation is solved 18 times faster than that solved by DBSDE,
and the Allen Cahn equation is 27 times faster than DBSDE.

3. less hyperparameters to tune: The existing deep learning based solvers need to prescribe an
1-d interval from which the initial solution is sampled. The range of the interval is defined by
two hyperparameters. Numerically, we find that the convergence rate and solution accuracy
are both sensitive to the choice of the two hyperparameters. Therefore, parameter tuning is a

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



37
38

40
41
42

43
44
45
46
47

48
49

50
51
52
53

54
55
56
57
58
59
60
61
62

63

64
65
66
67
68

69
70
71

72
73
74
75
76

necessity. By design, our model does not require such hyperparameters, which is partially
attributed to the variance reduction affect of the Actor-Critic algorithm.

2 Approach

We start with the definition of a nonlinear parabolic PDE in the general form. Let u: [0, 00) x R? —
R, u — u(t, x) be the unknown vectorial function with the dimension d, we seek to find the value of
w at any given point ¢ such that it satisfies the following general nonlinear parabolic PDE:

— + =Tr (o(t,z)o(t, )" (Hessxn)) + Vu - p(t, z) + f(t, 2, u(t,z),0” (t,z)Vu(t,z)) =0
(D
with the terminal condition u(T,z) = g(z). Here t € [0,T] and z € R are the time and space
variable respectively. (¢, z) € R? and o(t, 2) € R4*? are known vector-valued functions. o7 is
the transpose of 0. Vu and Hess, u represents the gradient and the Hessian of function v w.r.t x. Tr
denotes the trace of a d x d matrix. f is a known scalar-valued nonlinear function. The goal is to find
the solution u(0, &) for some point £ € R? att = 0.

Following the same Feyman-Kac approach as in DBSDE model, we atrive at the equivalent discretized
stochastic differential equations:

Xty = Xo, 4 plln, X, )(tngr — tn) + 0 (tn, Xe, JAW,

u(tn-i-lv th+1) = u(tna th) + th; AWy, — f (tna th,u(tn, th)v Ztn)
where Z,, = [Vu(tn, X;,)]" 0(tn, Xy,), and AW, = Wi,.., — Wy, From the numerical point
of view, (2) defines a controlled stochastic dynamics that can be efficiently sampled by simulating

Brownian processes W, _, with ¢ and o given. Note that N is a hyperparameter which needs to be
tuned for different equations. The sensitivity study of [V is yet available in the literature.

2

A key feature that differentiates our model from others is that we exploit the Markovian property
of the System (2). Therefore, we need to only deploy one multilayer feedforward network with
batch-normalization, say 0, to approximate Z;, instead of a sequence of N multilayer feedforward
networks which is currently adopted by other deep learning based models. In addition, we parametrize
u(Xy=0) with a second multilayer feedforward network, say 6,,, while the other solvers use only one
trainable parameter to represent the solution u(X;—¢) and train it together with the policy network.
To some extent, #, is comparable to the policy network and 6, to the critic network in model based
reinforcement learning. A combination of such two networks within one framework is commonly
referred to as the Actor-Critic algorithm.

To close the loop, we still need to define a loss function for training:
IT)=E [|9(XT) — u({Xt, Yosnsn, {We, Yosnen) [’

namely the loss function measures how close the predicted solution « (7', ) matches the terminal
boundary condition. In practice, to prevent the loss from blowing up, we clip the quadratic function
by linearly extrapolating the function beyond a predefined domain [—D.., D,], analogous to the trick
used by Proximal Policy Optimization [Schulman et al.| (2017) which enforces a not-too-far policy
update|'| We use D, = 50 in all of our experiments.

Given the temporal discretization above, the path {X; }o<n<n can be easily sampled using , the
dynamics of which are problem dependent due to the  and o terms. Fig. [T|illustrates a forward pass
and a backward pass in one iteration where 6,, and 6, are updated.

In terms of training process, X; and W, are sampled first by running the dynamics. We use 6,
to generate a guess, u(X¢—o) which is then passed forward in time to get u(X;—7). The loss is
backpropagated to update 6,, and 6, with either stochastic gradient descent or other optimization
methods alike. The total number of training steps is preset but we also find that using an early-stop
mechanism usually leads to shorter run time while producing the same level of accuracy.

IThe difference is that PPO puts the constraint on the KL-divergence between consecutive updates instead of
the least square measure.

2We do not use early-stopping in the numerical experiments as we want to have a fair comparison with other
models in terms of run-time and convergence rate.



78
79
80
81

82

83

84

85

87

88
89
90
91
92

DD —EE
@D @D back propagation 1(9:” 9;)

0,1 =6, +nVe,l
gLt =@t + Vg, !

Figure 1: Forward and backward propagation of the iy, iteration

Table 1: Run-time and Relative-error for all numerical examples

Run Time Run Time Relative Error  Relative Error

PDE Examples Actor-Critic  (DBSDE)  Actor-Critic  (DBSDE)
Hamilton Jacobi Bellman 3s 22s 0.22% 0.53%
Burgers Type 20s 122 3.4% 0.31%
Reaction Diffusion 132s 801s 0.61% 0.69%
Quadratic Gradients 9s 1665 0.06% 0.08%
Allen Cahn 5s 138s 0.25% 0.46%
Pricing Option 7s 20s 0.37% 0.56%

3 Preliminary Results

We solve the same set of examples presented by Weinan et al.| (2017); Han et al.| (2018). We
also intentionally use the same computing environment settings in order to pinpoint the algorithm
advantage. The run-time, relative error of the experiments we solved are presented in Table. [T]along

side those in DBSDE.

3.1 Reduced trainable parameters
The number of trainable parameters in our algorithm, pg, can be calculated as:

po =2 x ((d+10) + (d +10)* + d(d + 10)) + 2(d + 10) + 2(d + 10) + 2d

— 3)
fully connected layers of 6, and 6., batch normalization layers of 6, and 6,
In comparison, the number of trainable parameters of DBSDE model is calculated as:
= 1+d N —1)(2(d+10) +2(d + 10) + 2d
pL +d  + (N - 1)(2(d+10) + 2(d + 10) + 2d)
u(0,£),Vu(0,£) batch normalization layers
4)

+ (N = 1)(d(d + 10) + (d + 10)* + d(d + 10))

fully connected layers

Comparing (3) and @), one immediately notice that:

1. DBSDE uses one parameter to approximate u(0, ¢) and d parameters for V(0, ). We do

not have those two sets of parameters.

. The network proposed by DBSDE is a MLP stacked NV times where NN is the time steps

that discretize the temporal dimension, which leads to p; ~ O(Nd?) complexity, whereas
po ~ O(d?) in our model. Recall that IV is a hyperparameter that needs to be tuned case by
case. Therefore, having the network complexity controlled by N poses numerical challenges
when N is large. Our model has no such constraint.



93

94
95
96
97
98
99
100

101

102
103
104
105
106
107
108

109

110
111
112
113
114
115
116
117
118

119

120
121

3.2 Faster Convergence Rate

AllenCahn BurgesType HJB
4 [
05 Model Model T
—— Actor-Critic —— Actor-Critic 4
004 DBSDE 3 DBSDE °
2 E] 23
© 0.3 ] <
> > 2 >
02 & 52
© © ©
o1 =g = Model
/ T U R, 1 —— Actor-Critic
0.0 T
0 [ | DBSDE
0
0 1 2 3 4 0 1 2 3 0.0 0.5 1.0 15
Number of iteration steps ~ 1e3 Number of iteration steps ~ 1e4 Number of iteration steps 13
PricingOption QuadraticGradients ReactionDiffusion
Model Model 20
50 . 3 -
—— Actor-Critic —— Actor-Critic \
° DBSDE © DBSDE ® —
=] = S15
g 40 T2 T
> > >
g g B0
@ 30 © ©
= =1 - [ Model
A A A A ) 0.5 | —— Actor-Critic
2 A DBSDE
0
0 1 2 3 4 0 1 2 3 4 0.0 0.5 1.0 1.5 20 25
Number of iteration steps  1e3 Number of iteration steps 13 Number of iteration steps ~ 1e4

Figure 2: Evolution of the target solution (0, £) during training.

Compared to DBSDE, it is noteworthy that our model needs much fewer iterations to converge in
general. Intuitively, this could be attributed to the fact that our neural network is shallower than
DBSDE by N times, which naturally requires fewer samples to train. Recall the fact that our run-time
per iteration is also shorter, together they can explain why our algorithm is significantly faster than
DBSDE as previously discussed around Table([T] In addition to the convergence rate speedup, one
also notices a significant drop in the variance. The important contributing factor is the actor critic
architecture which by nature is an effective variance reduction technique.

3.3 Fewer tuning hyperparameters

DBSDE uses one trainable parameter to fit the solution « (0, £), which assumes a probability distribu-
tion in a predefined region (z,, xp). Thus z, and z; are two hyperparemters that need to be chosen
case by case. In comparison, we use the critic network to parametrize u (0, £). It is arguable that the
network design is a hyperparameter by itself, but in practice, we use the same critic network structure
with the same initialization procedure (xavier-uniform) in solving all the equations in table[I]and all
achieved higher accuracy level than DBSDE. To some extent, the experiments suggest that the critic
network, with initialization process properly designed, applies regularizing to «(0, £) automatically.

4 Discussion and conclusion

The limitation of our model, and in fact of all existing deep learning models for high dimensional
PDEs, is only focusing on learning mappings between finite-dimensional spaces. Therefore, one
needs to perform training every time the solution is to be evaluated at a new point. In practice this
can be computationally expensive as the solutions are typically desired at a large collection of points.
A future direction to lift the limitation is to generalize the neural networks proposed in this work
to “neural operators” that learn mappings between function spaces. In 2-d and 3-d scenarios, the
pioneering works of |Li et al.|(2021) and |Liu et al.|(2021) show that neural operators allow accurate
transfer learning and even zero-shot super-resolution. However, due to the curse of dimensionality,
simply generalizing their approach to high dimension scenarios is not feasible.

References

Han, J., Jentzen, A., and Weinan, E. Solving high-dimensional partial differential equations using
deep learning. Proceedings of the National Academy of Sciences, 115(34):8505-8510, 2018.



122
123

124
125

126
127

128
129
130

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar, A.
Fourier neural operator for parametric partial differential equations, 2021.

Liu, B., Kovachki, N., Li, Z., Azizzadenesheli, K., Anandkumar, A., Stuart, A., and Bhattacharya, K.
A learning-based multiscale method and its application to inelastic impact problems, 2021.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Weinan, E., Han, J., and Jentzen, A. Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations. Communi-
cations in Mathematics and Statistics, 5(4):349-380, 2017.



	Introduction
	Approach
	Preliminary Results
	Reduced trainable parameters
	Faster Convergence Rate
	Fewer tuning hyperparameters

	Discussion and conclusion

