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ABSTRACT

Linear attention models have recently emerged as computationally efficient alter-
natives to Transformers. Despite competitive performance on general common-
sense tasks, they still struggle to match Transformers on long-context retrieval
tasks. In this work, we re-examine linear attention models from the perspective of
memory writing. We propose that enabling linear attention models to learn selec-
tive ignoring provides a promising approach to addressing long-context retrieval
tasks under fixed memory capacity. Guided by this principle, we demonstrate how
to interpret and intervene in the behavior of linear attention models, thereby re-
vealing the true retrieval capabilities of popular models. Informed by these obser-
vations, we introduce Selective Ignoring Linear Attention (SILA), which incor-
porates a redesigned memory architecture and a weighted loss training strategy
to encourage selective memory writing. SILA exhibits remarkable long-context
retrieval capabilities, achieving 20× context length extrapolation on the Passkey
Retrieval task, and demonstrating superior memory utilization efficiency on the
Needle-in-a-Haystack benchmark.

1 INTRODUCTION

The Transformer architecture and attention mechanism (Vaswani et al., 2017) have been the domi-
nant architecture for language modeling over the past years. Transformer memorizes all past tokens
in the form of KV cache for next-token generation, which makes it accurate even on long sequences,
while also introducing the main drawback of the attention mechanism. As the sequence length
grows, the size of KV cache grows linearly and the computation cost grows quadratically, which
becomes a major bottleneck for efficient long-context inference.

Linear attention mechanisms are proposed to reduce the cost. Linear attention architectures are
essentially RNNs (Katharopoulos et al., 2020)—the memory occupation remains constant on context
with different length, and the computation cost grows linearly with sequence length. Despite their
efficiency, linear attention architectures suffer from a significant drawback: they can only utilize
constant memory space even when processing long contexts, placing them at a disadvantage in
long-context tasks (Arora et al., 2024b;a; Bick et al., 2025).

However, most long-context tasks do not require memorizing the entire sequence to complete. Take
the classic task of Needle-in-a-Haystack (NIAH) as an example (Hsieh et al., 2024):

A special magic number is hidden within the following text. Make sure to
memorize it. I will quiz you about the number afterwards. ...(unrelated text)... The
special magic number for tested-formal is: 3136088. ...(unrelated text)... What is

the special magic number for tested-formal mentioned in the provided text?

If humans are asked to perform such a task, the strategy they would adopt is: remember the initial
instruction (“find the magic number”) and then ignore all irrelevant text in the subsequent massive
text until the target keywords (“magic number”) appear. This strategy only requires constant memory
overhead, regardless of sequence length. For linear attention models, this strategy means that much
of the information in a sequence is neither forgotten after being written to memory, nor stored in
a larger inference-time memory, but rather never written into memory at all. This strategy also
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applies to a wider range of real-world long-text tasks, where an instruction is typically provided. The
instruction serves as a clue, allowing the model to skip irrelevant content and focus on task-relevant
segments, thus completing long-context tasks even when memory is strictly limited.

Consequently, we propose that enabling linear attention models to learn selective ignoring provides
a promising approach to addressing long-context retrieval tasks under fixed memory capacity. Based
on this principle, we make the following contributions:

• We re-evaluated the retrieval capabilities of popular linear attention models and observed
the pattern of memory writing in these models. We found that these models complete the
NIAH task through a specific preference for memorizing digit tokens, rather than demon-
strating a general memorize-and-retrieve capability for arbitrary tokens. By redesigning the
benchmark and intervention of memory writing, we explained how these models achieve
inflated performance on the NIAH task and revealed their true retrieval capabilities.

• We propose Selective Ignoring Linear Attention (SILA), redesigning both the architecture
of linear attention and its training strategy. We decouple the memory store and recall, and
introduce a memory-dependent gate to address the observed memory writing preference.
We identify and experimentally validate the conflict between standard next-token predic-
tion training and selective ignoring, developing a weighted loss training strategy that imple-
ments differential weighting across tokens. Models with these enhancements demonstrate
remarkable long-context retrieval capabilities.

2 BACKGROUND

Linear Attention Models. Different from Transformers, linear attention models use a memory
M with constant capacity for sequence modeling. Generally, the update and readout ofM can be
written as online gradient descent (Behrouz et al., 2024):

Mt = γtMt−1 − βt∇Mt−1
L(Mt−1,kt,vt), ot =Mt(qt) (1)

where γt and βt are input-dependent forget gate and input gate respectively, M is a differentiable
parametric function, typically a linear layer. Appendix A offers a more detailed introduction to linear
attention models. Variants of linear attention models (Table 5) include different design for forget
gate (Yang et al., 2024b; 2025b), loss function (Behrouz et al., 2025a; von Oswald et al., 2025),
structure of M (Sun et al., 2025; Behrouz et al., 2025a;b; 2024), layer architecture (Peng et al.,
2025; Beck et al., 2025), optimizer for online SGD (Behrouz et al., 2025a) etc. Recent researches
have proposed several hypotheses and enhancements for length extrapolation of linear attention
models, such as the unexplored states hypothesis (Ruiz & Gu, 2025), limited effective receptive
field hypothesis (Ben-Kish et al., 2025; Ye et al., 2025), and state overparameterization (Chen et al.,
2024a). We offer a detailed analysis and comparison for these works in Appendix B.

In-Context Retrieval. The basic form of in-context retrieval, also referred to as in-context asso-
ciative recall, are described as follows:

... [A] [B] ...︸ ︷︷ ︸
context

[A] → [B]

A key [A] and an associative value [B] is provided in the context. In the end of input, the model
receives a query [A], and it is expected to retrieve the associated value [B]. The tokens [A] and
[B] can be arbitrary, so the key-value mapping can only be inferred from context instead of training
data. Theoretically, vanilla attention is proven to solve in-context retrieval of arbitrary length, while
linear attention models, do not have the guarantee (Arora et al., 2024a). Essentially, it’s not possible
to compress an infinite long sequence into a constant memory.

In real-world benchmarks, instructions are added before the context, so models have some informa-
tion of [A] and [B] when searching the context. The instruction substantially impacts linear attention
models as they process context unidirectionally, which is validated in (Arora et al., 2024b). Thus,
to accurately evaluate the retrieval ability of linear attention models, we formalize the in-context
retrieval task in this paper as follows:

[A]
instruction

... [A] [B] ...︸ ︷︷ ︸
context

[A] → [B]

2
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By prepending an instruction containing information for [A], this task becomes theoretically solvable
with constant memory. This modification also aligns with the human cognitive patterns for such
tasks, as described in Section 1.

3 RE-EVALUATING THE RETRIEVAL CAPABILITIES OF LINEAR ATTENTION
MODELS

In this section, we propose several modifications to the original NIAH benchmark (Hsieh et al.,
2024) based on some key observations, which allow us to better reveal the true long-context retrieval
capabilities of linear attention models. Specifically, our analysis reveals that:

• The original NIAH benchmark evaluates models unreliably, leading to scores that are not
comparable across different benchmarking frameworks.

• Linear attention models rely heavily on memorizing specific digits to achieve high perfor-
mance on original NIAH tasks, which does not generalize to arbitrary retrieval targets.

3.1 BASIC SETUP

To evaluate the retrieval ability of linear attention models under instruction guidance in detail, we
first propose two prompt variants of NIAH tasks:

1. No-instruction variant (no inst for short): no instruction is given before context. The model
knows nothing about the task when processing the context, so that it must memorize the
whole context to complete the task.

2. Strong-instruction variant (strong inst for short): the original NIAH instruction, together
with the key for retrieval, is given before context, which the model can utilize to skip most
of the context during reading.

Detailed prompt format can be found in Appendix C.1. For a basic comparison, Figure 1a shows the
performance of linear attention models with no inst versus strong inst. Models show a performance
improvement with strong inst, which is expected (Arora et al., 2024b). However, the improvement
is marginal, and these models still fail to extrapolate effectively to longer sequences.
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(a) NIAH-2 with strong inst and no inst
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Figure 1: (a) Performance of linear attention models on NIAH-2 with strong inst and no inst. The
models show a slightly performance gain from the instruction. (b) Error range of measured scores
with and without sample-level shuffling (with strong inst). Scores without sample-level shuffling
are highly unstable, leading to inconsistent measurements across benchmark frameworks.

3.2 SAMPLE-LEVEL SHUFFLING OF HAYSTACKS

Secondly, we suggest shuffling the haystack for every sample during evaluation. Popular bench-
mark frameworks like RULER (Hsieh et al., 2024) and lm-eval-harness (Gao et al., 2024) use
a same haystack across all samples. However, we observed that the success of retrieval is largely
affected by the properties of the haystack. Since different benchmark frameworks use different
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haystacks, scores are neither directly comparable nor stable. As a quantitative measure, we com-
pared two settings: one using a single, fixed haystack for all samples (mirroring the original NIAH
benchmark’s behavior), and another using sample-level shuffling. We ran both benchmarks multiple
times to measure their error range. As shown in Figure 1b, the benchmark without sample-level
shuffling is highly unreliable, whereas sample-level shuffling makes the scores much more stable.

3.3 PREFERENCE FOR DIGIT TOKENS IN MEMORY WRITING

Finally, we develop a variant of the NIAH benchmark that uses English words as retrieval targets
instead of digits. This modification stems from a key experimental observation: linear attention
models have a specific preference for memorizing digit tokens via special memory-writing patterns.

As shown in Equation 1, mainstream linear attention models control memory writing through an
input gate βt. Therefore, the variation of βt within a sequence indicates the model’s preference
for memorizing certain tokens. We found that some specialized memory heads respond actively
(i.e., produce a high βt) at the positions of digit tokens (i.e., 0-9) but very passively to most other
tokens (Fig 2). In other words, these heads have a preference for memorizing digit tokens. In the
original NIAH tasks, the value to be retrieved is always a digit string (decimal or hexadecimal).
Therefore, the question arises: Do these models complete the NIAH tasks using a general memorize-
and-retrieve ability for arbitrary tokens, or do they rely on a specialized shortcut for digits to simplify
the task? To answer this question, we conducted two sets of experiments:

(a) DeltaNet-1.3B, Layer 3, Head 7 (b) GatedDeltaNet-1.5B, Layer 5, Head 0

Figure 2: Input gating patterns of DeltaNet-1.3B (left) and GatedDeltaNet-1.5B (right) in specific
heads, which exhibit spiky patterns around digit tokens.

The NIAH-Word Task We developed the NIAH-Word task, where the retrieval values are
changed to an English phrase. We then re-evaluated the linear attention models on this new task
and measured the performance gap compared to the case where retrieval values are digits (under

Table 1: NIAH (no inst) performance drop after changing the retrieval type from number to word.

Model NIAH-2 NIAH-Word

1k 2k 1k 2k

Qwen3-0.6B 98.0 98.2 98.8 96.6

Mamba2-370M 92.6 61.0 53.0 (↓39.6) 28.4 (↓32.6)
DeltaNet-1.3B 96.2 83.0 25.8 (↓70.4) 15.6 (↓67.4)
GatedDeltaNet-1.5B 97.4 94.4 51.4 (↓46.0) 29.6 (↓64.8)
RWKV7-0.4B 95.8 71.8 37.2 (↓58.6) 18.0 (↓53.8)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

no inst so that we can eliminate the effect from instructions). As shown in Table 1, all linear at-
tention models suffer a significant performance drop on NIAH-Word, while a Transformer-based
model (Yang et al., 2025a) is only slightly affected. This performance drop across different retrieval
value types is sufficient to show that the claimed scores of linear attention models on NIAH bench-
marks are not reliable: their performance is highly dependent on the retrieval value type, which is
not generalizable.

Intervention with Memory Writing In a subset of models, we recorded the positions of digit to-
kens in the input sample and overwrote the input gate value βt at these positions with the sequence’s
average gate value. We validated that this intervention is not destructive, as shown in Appendix C.2.
This intervention resets the writing strength for digit tokens to the average level, therefore elimi-
nating specialized writing strategy for them. After the intervention, retrieval scores dropped signif-
icantly (Fig 3). The results are sufficient to illustrate that the performance drop from the original
NIAH task to the NIAH-Word task is primarily caused by specialized input gating strategies. As a
gap still exists between NIAH with digit intervention and NIAH-Word, we hypothesize that other
components(e.g. forget gates, MLPs) in linear attention models may also be more sensitive to digit
tokens, since successful in-context retrieval requires not only storing tokens in memory (controlled
by the input gate), but also retrieving the desired tokens from it.

Figure 3: Effect of input gate intervention on NIAH (no inst) across sequence lengths in DeltaNet-
1.3B (left) and GatedDeltaNet-1.5B (right).

The experiments above lead us to the conclusion that the general in-context retrieval ability of most
linear attention models is not as powerful as their performance on the original NIAH tasks might
suggest. Therefore, we suggest NIAH-Word should be a necessary measurement for retrieval
ability of linear attention models. We also show how memory-writing patterns can help explain
and even intervene with specific behaviors of linear attention models. This is also the inspiration for
our architecture design.

4 MODEL ARCHITECTURE OF SILA

In this section, we reformulate the linear attention architecture following the principle of selective
ignoring. To achieve enhanced selective memory writing capability, we postulate that the model
must fulfill two core requirements:

1. Not every token is required to be written to memory;
2. The model can dynamically determine whether a new token should be stored based on the

existing memory states.

Decoupling of Memory Store and Recall Analysis of attention weights in pretrained Transformer
models indicates that a substantial number of tokens focus only on themselves, recent tokens, and
attention sinks (Xiao et al., 2025). Within the linear attention framework, the attention-weighted
sum is replaced by the operationMt(qt). To replicate this functionality, the memory stateMt must
contain information corresponding to the current token, recent tokens, and attention sinks. Attention
sinks can be achieved by a non-zero initialized memory state. However, the necessity to contain the
current and recent tokens inMt implies that they are always written into memory, whether it is truly
important to remember or not. This leads to a tight coupling between memory writing (store) and
reading (recall). Crucially, even accessing only the current token requires it to be first written into

5
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Mainstream architecture: 
write before read, input-dependent gating

SILA architecture: 
read before write, memory-dependent gating

1 Write 2 Read 1 Read

Linear Projection

Memory Writing

Memory 
Forgetting

Information 
about 

Information 
about 

2 Write
Memory Writing

Memory Forgetting

Figure 4: The illustration of mainstream linear attention architecture (left) and SILA (right).

memory. To address this limitation, we propose decoupling these operations: recall should depend
solely on the past memory state while the current token is explicitly computed:

ot =Mt−1(qt) + αt(k
⊤
t · qt)vt (2)

where αt is a weight scalar. Since recall relies solely on Mt−1, the decision of whether to store
the current key-value pair (kt, vt) into the memory state Mt is now completely decoupled. This
directly fulfills requirement 1. Additionally, the use of short causal convolution (Yang et al., 2024b;
2025b; Allen-Zhu, 2025) enables vt to directly incorporate neighboring token information, allowing
tokens without long-range dependencies to be entirely omitted from memory storage. A similar
implementation exists in RWKV7, termed “bonus”. However, it still uses the updated state for
recall, thus failed to achieve full decoupling.

Memory-dependent Gate To fulfill requirement 2, a straightforward approach is to employ
memory-dependent gates. The input gate and the forget gate are computed with not only the in-
put xt, but also the information retrieved from memory using kt:

□t = σ(W1Mt−1(kt) +W2xt),□ ∈ {β, γ} (3)
To mitigate the continuous decay induced by the forget gate over long distances, we replace the
sigmoid function with one that can reach 1 (ensuring no decay):

ϕ(x) =

{
2

ex+e−x x < 0

1 x ≥ 0
(4)

Figure 4 illustrates our architecture design. SILA is broadly adapted from Gated DeltaNet (Yang
et al., 2025b), with enhancements to the gate computations and memory recall as outlined above:

βt = sigmoid(Wβ1Mt−1kt +Wβ2xt), γt = ϕ(Wγ1Mt−1kt +Wγ2xt) (5)

ot =Mt−1qt + αt(k
⊤
t · qt)vt, αt = sigmoid(Wαxt) (6)

Mt = γtMt−1 − βt(Mt−1kt − vt)k
⊤
t (7)

5 TRAINING STRATEGY OF SILA

Standard next-token prediction training treats every token equally, with the final loss computed as
the average of all token prediction losses. This approach works well for training Transformers, as
they maintain full access to all previous tokens and can thus gradually optimize the prediction for
each token. However, when applied to linear attention models, fixed memory capacity necessitates
trade-offs: achieving accurate predictions for certain tokens within long contexts may inevitably
compromise the prediction accuracy of others. Prior studies suggest that for a large portion of tokens,
prediction is inherently easy and doesn’t require reasoning or retrieval (Lin et al., 2024). Uniformly
weighting the loss across all tokens may hinder the model’s ability to fully develop reasoning and
retrieval capabilities. Thus, this conventional training strategy conflicts with the goal of encouraging
the model to learn selective ignoring.
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5.1 INVESTIGATION OF TRAINING STRATEGIES ON SYNTHETIC RETRIEVAL TASK

To validate our hypothesis, we conducted experiments on a small-scale synthetic benchmark. We
adapt a retrieval task (Fig 5) based on the in-context recall task from MAD-Lab (Poli et al., 2024).
Following Section 2, we prefixed the input sequence with the retrieval key and employed a large
vocabulary size to prevent the model from memorizing all possible key-value pairs. We evaluate
two training strategies:

• Standard next-token prediction: compute loss over all tokens (Standard Loss).
• Target-only prediction: compute loss only on the final predicted answer (Target-only Loss).

We trained shallow 2-layer models (dim=64, num heads=2, state size=5248) with the sequence
length of 128 and performed zero-shot evaluations on longer sequences. Models trained with Stan-
dard Loss (Fig 6a) exhibit a rapid decline in retrieval accuracy as the sequence length increases.
Notably, our models trained with Standard Loss displayed substantial variability across runs (at-
tributable to random initialization), suggesting the architecture may occasionally learn selective ig-
noring. In stark contrast, models trained with Target-only Loss (Fig 6b) demonstrated significantly
superior length extrapolation performance. The performance is maintained even at sequence lengths
100 times greater than those encountered during training. The experimental results validate our
hypothesis: to enable linear attention models to learn selective ignoring, it is imperative to avoid
treating all tokens equally during training.

?

Figure 5: Synthetic retrieval task. Given a target key hint, the model needs to retrieve the corre-
sponding value from an input sequence consisting of random key-value pairs.
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Figure 6: Zero-shot evaluations on synthetic retrieval task.

5.2 TRAINING WITH WEIGHTED LOSS

We suggest that training linear attention models requires applying distinct weights to the loss of
each token (weighted loss). To achieve this, we employ a simple yet effective approach: compute
the weights using a reference pretrained Transformer model (Fig 7). This approach imposes no
constraints on the architecture or size of the reference model, provided it possesses robust long-
context retrieval capabilities. We first filter the attention weights, retaining only values above a
threshold, and zero out the attention sinks (the first column). This allows us to approximate the
most attended parts of each token. The filtered attention weights are then multiplied by the relative
positional distance and summed to compute the average retrieval distance of each token. Finally,
we apply logarithmic scaling to the average distances to derive the final weight for each token. This
approach achieves our objective: tokens relying solely on local context have low weights, while
tokens exhibiting long-distance dependencies have high weights. We also add an exponentially
decaying constant term to the weights: exp(−training step/τ) + weights. This ensures that
during the early stages of training, the model establishes a stable foundation in next-token prediction
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capabilities, while progressively transitioning to learn selective ignoring behavior in later stages.
Detailed pseudocode of loss weights computation is provided in Appendix C.3.

Figure 7: Computing token-level loss weights via filtered attention and distance-aware scaling.

6 EXPERIMENTS

We evaluate SILA on typical long-context retrieval tasks. Due to limited computational resources,
we employed a small-scale 0.6B model (SILA-0.6B), with weights transferred from Qwen3-0.6B
(see Appendix C.3 for details). Our model is trained on 15B tokens sampled from the FineWeb-Edu
dataset (Penedo et al., 2024). The first 10B tokens are trained with a context length of 1024, and
the remaining 5B tokens are trained with a context length of 4096. To validate the generality of the
proposed training strategy and compare architectural differences, we also trained a Gated DeltaNet
under identical configurations (GatedDelta+Ours-0.6B). All other baselines are from open-source
pretrained models (see Appendix C.4 for details). Although variations in model scale, training data,
and total training tokens may introduce some bias in the evaluations, the results remain sufficient to
substantiate our conclusions.

Passkey Retrieval Figure 8 shows the results of the Passkey Retrieval task (Chen et al., 2024b),
which requires the model to retrieve a random number embedded within a long document of repeated
sentences. Retrieval tends to be more challenging when the number is inserted near the beginning
of the document (corresponding to a lower passkey depth), as it is farther from the final query.
Surprisingly, SILA maintains high accuracy until around 80k tokens. This is particularly notable
given that our model is only trained on a maximum context length of 4k without any fine-tuning.
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Figure 8: Results on Passkey Retrieval task.

Needle in a Haystack Following the NIAH benchmark outlined in Section 3, we evaluated SILA
and popular linear attention models. As shown in Table 2, SILA exhibits the least performance
degradation over long context lengths. Meanwhile, Gated DeltaNet trained with our proposed train-
ing strategy also shows outstanding performance. Given the differences in parameter counts and
state sizes between models, we further visualize the state size vs. NIAH performance landscape in
Figure 9. The results reveal that SILA achieves a substantial lead in memory utilization efficiency.

Commonsense reasoning An intuitive concern is whether our training strategy compromises gen-
eral task performance. To address this, we evaluated models on commonsense reasoning bench-
marks (Table 3). Compared to standard loss (i.e. w/o. weighted loss), the model trained with
weighted loss exhibits slight deterioration on certain tasks. Notably, prior studies have indicated
that such performance differences fall well within typical error margins (3%∼5%) attributable to
random training seeds (Allen-Zhu, 2025) and are often less significant than variations induced by
prompt engineering. Overall, all models exhibit comparable performance on commonsense reason-
ing tasks, as scaling laws suggest that such capabilities are primarily determined by training data
composition and total training tokens (Chang et al., 2024; Grattafiori et al., 2024).
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Table 2: Performance comparison on NIAH (strong inst) benchmark.

Model State Size NIAH-1 NIAH-2 NIAH-Word

8k 16k 24k 32k 2k 4k 8k 1k 2k 4k

Qwen3-0.6B 57344×seqlen 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.6 97.0 94.0

Mamba2-370M 13025280 100.0 54.4 24.8 9.0 73.2 14.0 1.4 86.2 32.2 2.4
Mamba2-780M 19513344 100.0 0.2 0.0 0.0 74.6 0.0 0.0 82.2 37.4 0.0
DeltaNet-1.3B 6881280 100.0 100.0 100.0 100.0 93.2 59.2 13.6 47.4 20.4 6.8
Gated DeltaNet-1.5B 13172736 94.8 62.0 38.8 33.6 97.0 74.2 30.6 74.0 37.8 11.6
RWKV7-0.4B 1622016 100.0 99.0 62.6 10.4 89.6 44.8 10.0 57.8 26.2 10.2
RWKV7-1.5B 3244032 100.0 100.0 99.4 32.4 99.0 82.6 20.2 82.6 67.4 33.2

GatedDelta+Ours-0.6B 2179072 100.0 100.0 99.6 85.4 96.0 82.4 28.6 73.0 43.2 15.0
w/o. weighted loss 2179072 83.2 39.8 19.6 11.8 54.8 16.8 7.2 24.2 9.6 3.0

SILA-0.6B 2179072 100.0 100.0 100.0 100.0 98.4 90.2 49.2 85.0 63.6 25.8
w/o. weighted loss 2179072 76.0 40.0 27.4 13.2 71.2 28.8 9.8 43.8 15.6 4.8
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Figure 9: State size vs. accuracy on NIAH benchmarks.

Table 3: Zero-shot performance comparison on commonsense reasoning.

Model # Training ARC-e ARC-c LMB. Hella. Wino. PIQA Avg.
Tokens(B) acc acc acc acc n acc acc

Qwen3-0.6B 30000 65.74 33.45 53.77 53.79 58.88 69.80 55.91

Mamba2-370M 300 54.92 25.09 55.79 46.92 55.33 70.46 51.42
Mamba2-780M 300 61.03 26.71 61.52 54.92 60.06 72.09 56.06
DeltaNet-1.3B 100 58.59 24.49 48.36 50.22 52.80 70.62 50.85
Gated DeltaNet-0.4B 20 60.27 25.68 34.72 41.48 50.43 66.05 46.44
RWKV7-0.4B 2000 68.22 31.74 58.76 56.72 59.98 72.47 57.98

GatedDelta+Ours-0.6B 15 61.57 30.12 45.31 47.29 54.06 67.74 51.02
w/o. weighted loss 15 67.89 34.30 41.22 48.01 56.12 68.88 52.74

SILA-0.6B 15 65.45 31.91 42.67 44.40 55.33 67.25 51.17
w/o. weighted loss 15 66.96 33.02 41.29 48.44 56.27 69.15 52.52

Ablation & Analysis We designed experiments to separately evaluate the impacts of model archi-
tecture and training strategy. As shown in Table 2, the most significant improvement stems from our
proposed training strategy. For both SILA-0.6B and GatedDelta+Ours-0.6B, replacing the standard
loss with our weighted loss leads to substantial performance gains. In addition, the performance
difference between GatedDelta+Ours-0.6B and SILA-0.6B can also exhibit the improvements at-
tributable to architectural design. Notably, these results suggest that our models could have benefited
from more extensive training. GatedDelta+Ours-0.6B without the weighted loss (which corresponds
to a standard Gated DeltaNet initialized from Qwen3-0.6B and trained on 15B tokens) exhibits a
gap compared to the well-pretrained baseline models, indicating insufficient training. Nevertheless,
SILA-0.6B outperforms these baselines, despite their larger training data and parameter sizes.

9
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To verify whether our model can leverage instructions to achieve selective ignoring and thereby
enhance retrieval performance, we evaluated models under no inst and strong inst settings on NIAH-
Word. Results in Table 4 show that SILA-0.6B obtains a clear performance boost from instructions,
while other models exhibit only small improvements. We also provide a visualization of memory
writing patterns in Appendix D, which explains how the model uses selective memory writing to
enhance retrieval performance.

Table 4: Performance of linear attention models on NIAH-Word with no inst and strong inst. SILA-
0.6B shows a significant performance gain from the instruction.

Model no inst strong inst

2k 4k 2k 4k

Mamba2-780M 28.4 0.0 37.4 (↑9.0) 0.0 (↑0.0)
DeltaNet-1.3B 15.6 8.0 20.4 (↑4.8) 6.8 (↑0.0)
GatedDeltaNet-1.5B 29.6 9.8 37.8 (↑8.2) 11.6 (↑1.8)
RWKV7-0.4B 18.0 9.6 26.2 (↑8.2) 10.2 (↑0.6)

SILA-0.6B 31.0 10.6 63.6 (↑32.6) 25.8 (↑15.2)

7 CONCLUSION

In this work, we re-examine the long-context retrieval capabilities of linear attention models from
a memory writing perspective. Following the principle of selective ignoring, we propose improve-
ments to the model architecture and training methodology to enhance long-context performance.

Despite promising results, this work has limitations that open avenues for future research. While our
implementation employs a straightforward training strategy dependent on pretrained Transformers,
designing novel training paradigms to enable self-supervised learning for selective ignoring remains
an open challenge. Furthermore, in this study, we still assume that the model can read the text only
once to complete the task. Such a unidirectional pass is inherently limited compared to the full
context access ability of a Transformer. Given the advantage of linear complexity, linear attention
models with selective ignoring capabilities could potentially achieve both efficiency and accuracy
when integrated with controlled look-back mechanisms.

REFERENCES

Zeyuan Allen-Zhu. Physics of Language Models: Part 4.1, Architecture Design and the Magic
of Canon Layers. SSRN Electronic Journal, May 2025. https://ssrn.com/abstract=
5240330.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, et al. Zoology: Mea-
suring and improving recall in efficient language models. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net,
2024a. URL https://openreview.net/forum?id=LY3ukUANko.

Simran Arora, Aman Timalsina, Aaryan Singhal, Benjamin Spector, Sabri Eyuboglu, et al. Just read
twice: closing the recall gap for recurrent language models. July 2024b. doi: 10.48550/ARXIV.
2407.05483.
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Maximilian Beck, Korbinian Pöppel, Phillip Lippe, Richard Kurle, Patrick M. Blies, et al. xlstm 7b:
A recurrent llm for fast and efficient inference. March 2025. doi: 10.48550/ARXIV.2503.13427.

10

https://ssrn.com/abstract=5240330
https://ssrn.com/abstract=5240330
https://openreview.net/forum?id=LY3ukUANko
http://papers.nips.cc/paper_files/paper/2024/hash/c2ce2f2701c10a2b2f2ea0bfa43cfaa3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/c2ce2f2701c10a2b2f2ea0bfa43cfaa3-Abstract-Conference.html


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time, 2024.
URL https://arxiv.org/abs/2501.00663.

Ali Behrouz, Zeman Li, Praneeth Kacham, Majid Daliri, Yuan Deng, et al. Atlas: Learning to op-
timally memorize the context at test time, 2025a. URL https://arxiv.org/abs/2505.
23735.

Ali Behrouz, Meisam Razaviyayn, Peilin Zhong, and Vahab Mirrokni. It’s all connected: A journey
through test-time memorization, attentional bias, retention, and online optimization, 2025b. URL
https://arxiv.org/abs/2504.13173.

Assaf Ben-Kish, Itamar Zimerman, Shady Abu-Hussein, Nadav Cohen, Amir Globerson, et al. Dec-
imamba: Exploring the length extrapolation potential of mamba. In The Thirteenth International
Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenRe-
view.net, 2025. URL https://openreview.net/forum?id=iWSl5Zyjjw.

Aviv Bick, Eric P. Xing, and Albert Gu. Understanding the skill gap in recurrent models: The role
of the gather-and-aggregate mechanism. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=hWYisuBbp7.

Ernie Chang, Matteo Paltenghi, Yang Li, Pin-Jie Lin, Changsheng Zhao, et al. In . Franck Dernon-
court, Daniel Preoţiuc-Pietro, and Anastasia Shimorina (eds.), Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Processing: Industry Track, pp. 80–97, Miami,
Florida, US, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
emnlp-industry.8. URL https://aclanthology.org/2024.emnlp-industry.8/.

Yingfa Chen, Xinrong Zhang, Shengding Hu, Xu Han, Zhiyuan Liu, and Maosong Sun. Stuffed
mamba: Oversized states lead to the inability to forget. October 2024a. doi: 10.48550/ARXIV.
2410.07145.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, et al. LongloRA: Effi-
cient fine-tuning of long-context large language models. In The Twelfth International Confer-
ence on Learning Representations, 2024b. URL https://openreview.net/forum?id=
6PmJoRfdaK.

Tri Dao and Albert Gu. Transformers are ssms: generalized models and efficient algorithms through
structured state space duality. In Proceedings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org, 2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, et al. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, et al.
The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, et al. RULER:
What’s the real context size of your long-context language models? In First Conference on
Language Modeling, 2024. URL https://openreview.net/forum?id=kIoBbc76Sy.

Xiang Hu, Jiaqi Leng, Jun Zhao, Kewei Tu, and Wei Wu. Random long-context access for mamba
via hardware-aligned hierarchical sparse attention. April 2025. doi: 10.48550/ARXIV.2504.
16795.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In Proceedings of the 37th Inter-
national Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, vol-
ume 119 of Proceedings of Machine Learning Research, pp. 5156–5165. PMLR, 2020. URL
http://proceedings.mlr.press/v119/katharopoulos20a.html.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, et al. In . A. Glober-
son, L. Mackey, D. Belgrave, A. Fan, U. Paquet, et al. (eds.), Advances in Neural
Information Processing Systems, volume 37, pp. 29029–29063. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/3322a9a72a1707de14badd5e552ff466-Paper-Conference.pdf.

11

https://arxiv.org/abs/2501.00663
https://arxiv.org/abs/2505.23735
https://arxiv.org/abs/2505.23735
https://arxiv.org/abs/2504.13173
https://openreview.net/forum?id=iWSl5Zyjjw
https://openreview.net/forum?id=hWYisuBbp7
https://aclanthology.org/2024.emnlp-industry.8/
https://openreview.net/forum?id=6PmJoRfdaK
https://openreview.net/forum?id=6PmJoRfdaK
https://zenodo.org/records/12608602
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=kIoBbc76Sy
http://proceedings.mlr.press/v119/katharopoulos20a.html
https://proceedings.neurips.cc/paper_files/paper/2024/file/3322a9a72a1707de14badd5e552ff466-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/3322a9a72a1707de14badd5e552ff466-Paper-Conference.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Guilherme Penedo, Hynek Kydlı́cek, Loubna Ben Allal, Anton Lozhkov, Margaret Mitchell,
et al. In . Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet,
et al. (eds.), Advances in Neural Information Processing Systems 38: Annual Conference on
Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, De-
cember 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/
2024/hash/370df50ccfdf8bde18f8f9c2d9151bda-Abstract-Datasets_
and_Benchmarks_Track.html.

Bo Peng, Ruichong Zhang, Daniel Goldstein, Eric Alcaide, Xingjian Du, et al. Rwkv-7 ”goose” with
expressive dynamic state evolution, 2025. URL https://arxiv.org/abs/2503.14456.

Michael Poli, Armin W Thomas, Eric Nguyen, Pragaash Ponnusamy, Björn Deiseroth, et al. In
. Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, et al.
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 40908–40950. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/poli24a.html.

Ricardo Buitrago Ruiz and Albert Gu. Understanding and improving length generalization in recur-
rent models, 2025. URL https://arxiv.org/abs/2507.02782.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, et al. Learning to (learn at test time):
Rnns with expressive hidden states, 2025. URL https://arxiv.org/abs/2407.04620.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, et al. In . Is-
abelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, et al.
(eds.), Advances in Neural Information Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Johannes von Oswald, Nino Scherrer, Seijin Kobayashi, Luca Versari, Songlin Yang, et al. Mesanet:
Sequence modeling by locally optimal test-time training. June 2025. doi: 10.48550/ARXIV.2506.
05233.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, junxian guo, Shang Yang, et al. Duoattention: Effi-
cient long-context LLM inference with retrieval and streaming heads. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=cFu7ze7xUm.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, et al. Qwen3 technical report,
2025a. URL https://arxiv.org/abs/2505.09388.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024a. URL https:
//openreview.net/forum?id=ia5XvxFUJT.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. In . A. Glober-
son, L. Mackey, D. Belgrave, A. Fan, U. Paquet, et al. (eds.), Advances in Neural In-
formation Processing Systems, volume 37, pp. 115491–115522. Curran Associates, Inc.,
2024b. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/d13a3eae72366e61dfdc7eea82eeb685-Paper-Conference.pdf.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
delta rule. In The Thirteenth International Conference on Learning Representations, 2025b. URL
https://openreview.net/forum?id=r8H7xhYPwz.

Zhifan Ye, Kejing Xia, Yonggan Fu, Xin Dong, Jihoon Hong, et al. Longmamba: Enhancing
mamba’s long-context capabilities via training-free receptive field enlargement. In The Thirteenth
International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.
OpenReview.net, 2025. URL https://openreview.net/forum?id=fMbLszVO1H.

12

http://papers.nips.cc/paper_files/paper/2024/hash/370df50ccfdf8bde18f8f9c2d9151bda-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/370df50ccfdf8bde18f8f9c2d9151bda-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/370df50ccfdf8bde18f8f9c2d9151bda-Abstract-Datasets_and_Benchmarks_Track.html
https://arxiv.org/abs/2503.14456
https://proceedings.mlr.press/v235/poli24a.html
https://arxiv.org/abs/2507.02782
https://arxiv.org/abs/2407.04620
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=cFu7ze7xUm
https://openreview.net/forum?id=cFu7ze7xUm
https://arxiv.org/abs/2505.09388
https://openreview.net/forum?id=ia5XvxFUJT
https://openreview.net/forum?id=ia5XvxFUJT
https://proceedings.neurips.cc/paper_files/paper/2024/file/d13a3eae72366e61dfdc7eea82eeb685-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d13a3eae72366e61dfdc7eea82eeb685-Paper-Conference.pdf
https://openreview.net/forum?id=r8H7xhYPwz
https://openreview.net/forum?id=fMbLszVO1H


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A INTRODUCTION TO LINEAR ATTENTION MODELS

In language modeling tasks, Transformers use the softmax attention mechanism:

Q = XWQ,K = XWK , V = XWV , O = softmax(
QK⊤
√
dk

)V. (8)

where WQ,WK ,WV ∈ Rd×d, X,Q,K, V,O ∈ RT×d (consider a single attention head for
simplicity). The quadratic complexity O(T 2) comes from the computation of attention map
softmax(QK⊤/

√
dk). However, if the attention map can be decoupled into ϕ(Q)ϕ(K) (where

ϕ is usually an element-wise nonlinear function like SiLU), we will get the original version of linear
attention (Katharopoulos et al., 2020):

O = (ϕ(Q)ϕ(K)⊤)V = ϕ(Q)(ϕ(K)⊤V ). (9)

which has linear complexity O(T ). Equation 9 can also be written as a recurrent form: it is mathe-
matically equivalent to

Mt =Mt−1 + vtϕ(kt)
⊤, M0 = 0 (10)

ot =Mtϕ(qt) (11)

Update in equation 10 can also be seen as gradient descent with respect to L = −v⊤
t ·(Mt−1ϕ(kt)).

More generally, most variants attention mechanism of linear attention models can be described as
online gradient optimization on arbitrary memoryM with constant capacity:

Mt = γtMt−1 − βt∇Mt−1L(Mt−1,xt) (12)

ot =Mt(qt) (13)
Some architectures do not obey Equation 1 strictly, but the paradigm is very similar (Beck et al.,
2024). Some typical instances of linear attention mechanisms are listed in Table 5. γt and βt are
forget gate and input gate respectively, which is input-dependent by γt = σ(Wγxt), βt = σ(Wβxt).
From the online gradient descent perspective, the γt acts as weight decay factor, and the βt acts as
the learning rate.

Table 5: Linear attention architectures.

Model Memory Update Rule

Mamba2 (Dao & Gu, 2024) Mt = γtMt−1 + vtk
⊤
t

DeltaNet (Yang et al., 2024b) Mt =Mt−1(I− βtktk
⊤
t ) + βtvtk

⊤
t

Gated DeltaNet (Yang et al., 2025b) Mt =Mt−1γt(I− βtktk
⊤
t ) + βtvtk

⊤
t

RWKV7 (Peng et al., 2025) Mt =Mt−1(diag(γt)− βtκ̂tκ̂
⊤
t ) + βtvtk̃

⊤
t

MesaNet (von Oswald et al., 2025) Ht = γtHt−1 + βtktk
⊤
t ,

Gt = γtGt−1 + βtvtk
⊤
t

TTT (Sun et al., 2025) Mt =Mt−1 − β∇Mt−1L(Mt−1,kt,vt)

Titans (Behrouz et al., 2024) St = ηtSt−1 − β∇Mt−1L(Mt−1,kt,vt),
Mt = γtMt−1 + St

B ANALYSIS ON EXISTING EXTRAPOLATION METHODS

Several recent studies have already investigated length generalization, also known as length ex-
trapolation, in linear attention models. Some works like DeciMamba (Ben-Kish et al., 2025) and
LongMamba (Ye et al., 2025) also proposed to enhance long-context capability through skipping
tokens during memory writing. Specifically, they manually suppress the writing strength of tokens
deemed less important (e.g., by setting their update weights to zero when the writing strength is
below a threshold or through top-k selection) in layers responsible for long-range dependencies.
However, assuming the existence of bias for digit tokens (Section 3.3), merely suppressing writing
strength may not theoretically enhance general retrieval capabilities. For validation, we measured

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

the performance of these methods under the benchmark framework proposed in Section 3. It turns
out that these extrapolation methods indeed enhance performance on retrieval tasks related to digits
(NIAH-2). However, on more general retrieval tasks (NIAH-Word), their performance is only com-
parable to, or even inferior to that of the base model. This observation aligns with our conclusion of
digit preference.

Table 6: Performance of existing extrapolation methods compared to their base models. SP is ab-
breviation for state-passing.

Model NIAH-2 NIAH-Word

1k 2k 4k 8k 1k 2k 4k

Mamba-130M 52.8 9.2 3.0 2.6 16.0 2.4 2.0
DeciMamba-130M 84.2 72.8 12.6 1.4 6.4 3.4 0.8
Mamba2-1.3B 96.4 61.8 1.0 0.0 46.8 12.4 0.0
LongMamba-1.3B 97.0 61.8 33.6 16.0 50.2 13.8 4.6
Mamba2-370M 98.4 73.2 14.0 1.4 86.2 32.2 2.4
Mamba2-370M (SP) 99.4 86.4 22.8 10.4 69.0 20.8 3.6

SILA-0.6B 99.6 98.4 90.2 49.2 85.0 63.6 25.8

Another popular approach to enhancing the long-context processing capability of linear attention
models is state-passing (SP), or truncated backpropagation through time (TBTT). During training,
SP initializes the initial states of each sequence segment with the final states of the preceding seg-
ment, thereby effectively simulating longer sequence length in training or post training. Prior studies
have shown that applying SP to linear attention models, such as those in the Mamba family, can ef-
fectively mitigate the explosion of pointwise perplexity on long sequences (Yang et al., 2024a; Ruiz
& Gu, 2025; Hu et al., 2025).

To validate the effectiveness of state-passing on long-context retrieval tasks, we conducted state-
passing on Mamba2-370M official checkpoint with a setting similar to (Ruiz & Gu, 2025), and in-
vestigated the property of pointwise perplexity in various linear attention models. For state-passing,
we concatenated input samples from FineWeb-Edu (Penedo et al., 2024) into sequences of 24k to-
kens and stopped gradients every 2k tokens. It turns out that state-passing significantly reduces
pointwise perplexity on long sequences for Mamba2-370M (Fig 10), with improvement on NIAH-2
tasks (Table 6), but slight degradation on NIAH-Word tasks, suggesting that SP may not consistently
improve general retrieval capabilities.

Notably, the perplexity explosion phenomenon appears to be specific to Mamba-style architectures
and is not observed in other linear attention models we tested (Fig 10). This implies that the issue
may stem from architectural characteristics rather than being a universal limitation of linear attention
mechanisms.

C EXPERIMENTAL DETAILS

C.1 NIAH BENCHMARK SETUP

An example original NIAH prompt format is given as following:

A special magic number is hidden within the following text. Make sure to memorize
it. I will quiz you about the number afterwards. ...(unrelated text)... One of the

special magic numbers for tested-formal is: 3136088. ...(unrelated text)... What is
the special magic number for tested-formal mentioned in the provided text?

The instruction part does provide guidance about the target of retrieval, i.e. the target is a string
of digits. The guidance can be weakened by providing no instruction at all, or be further strength-
ened by providing the key for retrieval. To clearly evaluate the effect of instruction guidance, we
conducted evaluation of the weakened and strengthened variant in this research.

The no inst variant corresponds to the weakened version, e.g.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 10: Pointwise perplexity of various linear attention models.

...(unrelated text)... One of the special magic numbers for tested-formal is:
3136088. ...(unrelated text)... What is the special magic number for tested-formal

mentioned in the provided text?

The strong inst variant corresponds to the strengthened version, e.g.

A special magic number is hidden within the following text. Make sure to
memorize it. I will quiz you about the number for tested-formal afterwards.
...(unrelated text)... One of the special magic numbers for tested-formal is:

3136088. ...(unrelated text)... What is the special magic number for tested-formal
mentioned in the provided text?

Under the unidirectional reading paradigm of linear attention models, the no inst variant requires
the model to memorize the whole context to give the answer in the end, while the strong inst variant
provides the option to skip most of the context.

C.2 VERIFICATION ON MEMORY WRITING INTERVENTION

In Section 3.3, we manually tweaked the writing strength in pretrained linear attention models. Here
we verify that the intervention is not destructive on general language modeling capabilities.

To verify this, we evaluate the models on commonsense benchmarks, with 4% (average percentage
of digit tokens in NIAH samples) token positions randomly chosen to reset the corresponding input
gate value to the average in sequence. We conduct this intervention across all layers and heads of the
model. We validate this setup on the LAMBADA benchmark. After random resetting of the input
gate value, the accuracy of DeltaNet-1.3B dropped from 48.36 to 47.62 (↓0.74), and the accuracy of
GatedDeltaNet-1.5B dropped from 50.16 to 49.16 (↓1.0), which we consider as marginal.

Therefore, resetting the writing strength under this percentage generally does not corrupt the capa-
bilities of linear attention models. With observation that similar intervention strongly affects the
performance of these models on NIAH benchmarks, we come to the conclusion that these models
specially memorize the tokens on the affected positions and utilize them for prediction, as stated in
Section 3.3.

C.3 TRAINING DETAILS

To reduce training costs, we first initialize our model by copying the embedding and MLP layer
weights from Qwen3, aligning the outputs of the linear attention layer with those of the Qwen3
attention layer on only 200M tokens. Specifically, we feed the hidden states from each Qwen3 layer

15
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to the linear attention layer and minimize the MSE loss between its output and that of Qwen3’s
attention layer. This process requires minimal computational overhead but provides a strong weight
initialization.

The pseudocode of loss weights computation is outlined in Algorithm 1. In subsequent pretraining,
the loss weight for each predicted token is set to exp(−training tokens/109) + weights. This
allows the model to initially learn basic next-token prediction capability, while the training progres-
sively transitions to pure weighted loss after around 5B tokens.

Algorithm 1 Compute Token-Level Loss Weights

Input: Attention weights A ∈ RL×H×T×T from a reference Transformer
Hyperparameter: Threshold τ (e.g., τ = 0.2), Scaling factor λ (e.g., λ = 0.5)
Output: Loss weights w ∈ RT

Zero out the first column of A ▷ remove attention to sink token
A← A · I[A ≥ th] ▷ thresholding
for each token position t = 1 to T do

wt ← 1
LH

∑L
l=1

∑H
h=1

∑t
j=1 Al,h,t,j · (t− j) ▷ compute average retrieval distance

wt ← log(λ · wt + 1) ▷ log scaling
end for
return w

Our models are trained on a total of 15B tokens sampled from the FineWeb-Edu dataset (Penedo
et al., 2024): the first 10B tokens use a context length of 1024, while the remaining 5B tokens are
trained with an extended context length of 4096. No further post-training or fine-tuning is performed.

C.4 BASELINES

Due to constraints on computation resources, we employed existing pretrained models. Source of
used pretrained checkpoints are listed in Table 7. For DeltaNet, Mamba2 and RWKV7 series, we
used official checkpoints on HuggingFace. For GatedDeltaNet series, we used checkpoints from
m-a-p since there are no official checkpoints.

For inference frameworks, we used flash-linear-attention for most models, and official
implementation of mamba-ssm for Mamba2 series, custom Triton implementation for our archi-
tecture. It should be noticed that RWKV7 series also have official implementation in CUDA. As
different implementations for inference of RWKV7 series show no difference on retrieval tasks, we
used implementation in flash-linear-attention for better compatibility to evaluation benchmarks.

Table 7: Pretrained checkpoints used in this research with links on HuggingFace.

Model Name HuggingFace Checkpoint

Qwen3-0.6B Qwen/Qwen3-0.6B-Base
Mamba-130M state-spaces/mamba-130m
Mmaba2-370M state-spaces/mamba2-370m
Mamba2-780M state-spaces/mamba2-780m
DeltaNet-1.3B fla-hub/delta net-1.3B-100B
Gated DeltaNet-0.4B m-a-p/340M-20B-GatedDeltaNet-pure-baseline
Gated DeltaNet-1.5B* m-a-p/1.3B-100B-GatedDeltaNet-pure
RWKV7-0.4B fla-hub/rwkv7-0.4B-world
RWKV7-1.5B fla-hub/rwkv7-1.5B-world

* The checkpoint m-a-p/1.3B-100B-GatedDeltaNet-pure has an actual pa-
rameter count of 1.5B.

As most of the tested models are not instruction-tuned and do not support chat template officially,
we didn’t apply any chat template during evaluation. However, it’s worth noting that difference
in template does influence the retrieval performance. We evaluated RWKV7 series both with and
without chat template as it’s offcially supported, and found that chat template generally improved the
retrieval score (Table 8), although RWKV7 is declared to be trained without instruction tuning (Peng
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et al., 2025). To exclude factors related to prompt engineering and instruction tuning, we reported
all results in this research with unified template in completion style.

Table 8: Performance comparison w/ or w/o chat template. (strong inst)

Model NIAH-1 NIAH-2 NIAH-Word

16k 24k 2k 4k 8k 1k 2k 4k

RWKV7-0.4B(w/o template) 99.0 62.6 89.6 44.8 10.0 57.8 26.2 10.2
RWKV7-0.4B(w/ template) 96.0 54.2 98.4 71.0 14.2 63.8 34.2 9.6

D VISUALIZATION OF MEMORY WRITING

To verify that SILA learns selective ignoring to improve long-context retrieval, we analyzed the
input gate activity in all memory heads and layers of SILA-0.6B. We found some specific patterns
as shown in Figure 11. In these heads, once the prompt is prefixed by instruction, they will respond
significantly stronger at the retrieval key and answer tokens, while suppressing activity at other
positions. By selectively enhancing and suppressing input gate values across the sequence, the
model can achieve more effective memory management under instruction guidance.
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(a) Input gate patterns on no inst variant of NIAH-Word sample
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(b) Input gate patterns on strong inst variant of NIAH-Word sample
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(c) Difference between (b) and (a)

Figure 11: The behavior of input gate in layer 22, head 14 in SILA-0.6B when processing one
NIAH-Word sample with no inst and strong inst variant. The positions of query/key and answer are
marked. Significant growth of gate value is only observed around retrieval key and answer tokens,
while suppression is widely observed in other regions. Under strong inst, the input gate attains its
highest values precisely at the query and answer positions, which is consistent with the intended
behavior of selective ignoring.
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