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ABSTRACT

Linear attention models have recently emerged as computationally efficient alter-
natives to Transformers. Despite competitive performance on general common-
sense tasks, they still struggle to match Transformers on long-context retrieval
tasks. In this work, we re-examine linear attention models from the perspective of
memory writing. We propose that enabling linear attention models to learn selec-
tive ignoring provides a promising approach to addressing long-context retrieval
tasks under fixed memory capacity. Guided by this principle, we demonstrate how
to interpret and intervene in the behavior of linear attention models, thereby re-
vealing the true retrieval capabilities of popular models. Informed by these obser-
vations, we introduce Selective Ignoring Linear Attention (SILA), which incor-
porates a redesigned memory architecture and a weighted loss training strategy
to encourage selective memory writing. SILA exhibits remarkable long-context
retrieval capabilities, achieving 20 x context length extrapolation on the Passkey
Retrieval task, and demonstrating superior memory utilization efficiency on the
Needle-in-a-Haystack benchmark.

1 INTRODUCTION

The Transformer architecture and attention mechanism (Vaswani et al.| [2017) have been the domi-
nant architecture for language modeling over the past years. Transformer memorizes all past tokens
in the form of KV cache for next-token generation, which makes it accurate even on long sequences,
while also introducing the main drawback of the attention mechanism. As the sequence length
grows, the size of KV cache grows linearly and the computation cost grows quadratically, which
becomes a major bottleneck for efficient long-context inference.

Linear attention mechanisms are proposed to reduce the cost. Linear attention architectures are
essentially RNNs (Katharopoulos et al., 2020)—the memory occupation remains constant on context
with different length, and the computation cost grows linearly with sequence length. Despite their
efficiency, linear attention architectures suffer from a significant drawback: they can only utilize
constant memory space even when processing long contexts, placing them at a disadvantage in
long-context tasks (Arora et al., | 2024bja; |Bick et al., 2025).

However, most long-context tasks do not require memorizing the entire sequence to complete. Take
the classic task of Needle-in-a-Haystack (NIAH) as an example (Hsieh et al., [2024):

A special magic number is hidden within the following text. Make sure to
memorize it. I will quiz you about the number afterwards. ...(unrelated text)... The
special magic number for tested-formal is: 3136088. ...(unrelated text)... What is

the special magic number for tested-formal mentioned in the provided text?

If humans are asked to perform such a task, the strategy they would adopt is: remember the initial
instruction (“find the magic number”) and then ignore all irrelevant text in the subsequent massive
text until the target keywords (“magic number”) appear. This strategy only requires constant memory
overhead, regardless of sequence length. For linear attention models, this strategy means that much
of the information in a sequence is neither forgotten after being written to memory, nor stored in
a larger inference-time memory, but rather never written into memory at all. This strategy also



Under review as a conference paper at ICLR 2026

applies to a wider range of real-world long-text tasks, where an instruction is typically provided. The
instruction serves as a clue, allowing the model to skip irrelevant content and focus on task-relevant
segments, thus completing long-context tasks even when memory is strictly limited.

Consequently, we propose that enabling linear attention models to learn selective ignoring provides
a promising approach to addressing long-context retrieval tasks under fixed memory capacity. Based
on this principle, we make the following contributions:

* We re-evaluated the retrieval capabilities of popular linear attention models and observed
the pattern of memory writing in these models. We found that these models complete the
NIAH task through a specific preference for memorizing digit tokens, rather than demon-
strating a general memorize-and-retrieve capability for arbitrary tokens. By redesigning the
benchmark and intervention of memory writing, we explained how these models achieve
inflated performance on the NIAH task and revealed their true retrieval capabilities.

* We propose Selective Ignoring Linear Attention (SILA), redesigning both the architecture
of linear attention and its training strategy. We decouple the memory store and recall, and
introduce a memory-dependent gate to address the observed memory writing preference.
We identify and experimentally validate the conflict between standard next-token predic-
tion training and selective ignoring, developing a weighted loss training strategy that imple-
ments differential weighting across tokens. Models with these enhancements demonstrate
remarkable long-context retrieval capabilities.

2 BACKGROUND

Linear Attention Models. Different from Transformers, linear attention models use a memory
M with constant capacity for sequence modeling. Generally, the update and readout of M can be
written as online gradient descent (Behrouz et al.| 2024):

My =y M1 = BV a,  LMi—1, ke, ve), o; = My(qp) (D

where ~; and (3; are input-dependent forget gate and input gate respectively, M is a differentiable
parametric function, typically a linear layer. Appendix[A]offers a more detailed introduction to linear
attention models. Variants of linear attention models (Table [5) include different design for forget
gate (Yang et al.l 2024b; |2025b)), loss function (Behrouz et al., 2025a; [von Oswald et al.| [2025)),
structure of M (Sun et al.l 2025} [Behrouz et al., [2025aib; [2024)), layer architecture (Peng et al.}
20255 Beck et al., 2025)), optimizer for online SGD (Behrouz et al., [2025a)) etc. Recent researches
have proposed several hypotheses and enhancements for length extrapolation of linear attention
models, such as the unexplored states hypothesis (Ruiz & Gu, [2025), limited effective receptive
field hypothesis (Ben-Kish et al., 2025; |Ye et al., 2025)), and state overparameterization (Chen et al.,
20244). We offer a detailed analysis and comparison for these works in Appendix [B

In-Context Retrieval. The basic form of in-context retrieval, also referred to as in-context asso-
ciative recall, are described as follows:

context

A key [A] and an associative value [B] is provided in the context. In the end of input, the model
receives a query [A], and it is expected to retrieve the associated value [B]. The tokens [A] and
[B] can be arbitrary, so the key-value mapping can only be inferred from context instead of training
data. Theoretically, vanilla attention is proven to solve in-context retrieval of arbitrary length, while
linear attention models, do not have the guarantee (Arora et al., 2024a)). Essentially, it’s not possible
to compress an infinite long sequence into a constant memory.

In real-world benchmarks, instructions are added before the context, so models have some informa-
tion of [A] and [B] when searching the context. The instruction substantially impacts linear attention
models as they process context unidirectionally, which is validated in (Arora et al., 2024b). Thus,
to accurately evaluate the retrieval ability of linear attention models, we formalize the in-context
retrieval task in this paper as follows:

_ [A] .. [4 [B] ... [A] —= [B]

instruction  N——————r’

context
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By prepending an instruction containing information for [A], this task becomes theoretically solvable
with constant memory. This modification also aligns with the human cognitive patterns for such
tasks, as described in Section [T}

3 RE-EVALUATING THE RETRIEVAL CAPABILITIES OF LINEAR ATTENTION
MODELS

In this section, we propose several modifications to the original NIAH benchmark (Hsieh et al.,
2024 based on some key observations, which allow us to better reveal the true long-context retrieval
capabilities of linear attention models. Specifically, our analysis reveals that:

* The original NIAH benchmark evaluates models unreliably, leading to scores that are not
comparable across different benchmarking frameworks.

* Linear attention models rely heavily on memorizing specific digits to achieve high perfor-
mance on original NIAH tasks, which does not generalize to arbitrary retrieval targets.

3.1 BASIC SETUP

To evaluate the retrieval ability of linear attention models under instruction guidance in detail, we
first propose two prompt variants of NIAH tasks:

1. No-instruction variant (no inst for short): no instruction is given before context. The model
knows nothing about the task when processing the context, so that it must memorize the
whole context to complete the task.

2. Strong-instruction variant (strong inst for short): the original NIAH instruction, together
with the key for retrieval, is given before context, which the model can utilize to skip most
of the context during reading.

Detailed prompt format can be found in Appendix [C.I] For a basic comparison, Figure[Ta]shows the
performance of linear attention models with no inst versus strong inst. Models show a performance
improvement with strong inst, which is expected (Arora et al., 2024b). However, the improvement
is marginal, and these models still fail to extrapolate effectively to longer sequences.
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(a) NIAH-2 with strong inst and no inst (b) NIAH-2 with(out) sample-level shuffling

Figure 1: (a) Performance of linear attention models on NIAH-2 with strong inst and no inst. The
models show a slightly performance gain from the instruction. (b) Error range of measured scores
with and without sample-level shuffling (with strong inst). Scores without sample-level shuffling
are highly unstable, leading to inconsistent measurements across benchmark frameworks.

3.2 SAMPLE-LEVEL SHUFFLING OF HAYSTACKS

Secondly, we suggest shuffling the haystack for every sample during evaluation. Popular bench-
mark frameworks like RULER (Hsieh et al.|[2024) and 1m—-eval-harness (Gao et al.,[2024) use
a same haystack across all samples. However, we observed that the success of retrieval is largely
affected by the properties of the haystack. Since different benchmark frameworks use different
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haystacks, scores are neither directly comparable nor stable. As a quantitative measure, we com-
pared two settings: one using a single, fixed haystack for all samples (mirroring the original NIAH
benchmark’s behavior), and another using sample-level shuffling. We ran both benchmarks multiple
times to measure their error range. As shown in Figure [Ib} the benchmark without sample-level
shuffling is highly unreliable, whereas sample-level shuffling makes the scores much more stable.

3.3 PREFERENCE FOR DIGIT TOKENS IN MEMORY WRITING

Finally, we develop a variant of the NIAH benchmark that uses English words as retrieval targets
instead of digits. This modification stems from a key experimental observation: linear attention
models have a specific preference for memorizing digit tokens via special memory-writing patterns.

As shown in Equation [T} mainstream linear attention models control memory writing through an
input gate ;. Therefore, the variation of 3; within a sequence indicates the model’s preference
for memorizing certain tokens. We found that some specialized memory heads respond actively
(i.e., produce a high ;) at the positions of digit tokens (i.e., 0—9) but very passively to most other
tokens (Fig[2). In other words, these heads have a preference for memorizing digit tokens. In the
original NIAH tasks, the value to be retrieved is always a digit string (decimal or hexadecimal).
Therefore, the question arises: Do these models complete the NIAH tasks using a general memorize-
and-retrieve ability for arbitrary tokens, or do they rely on a specialized shortcut for digits to simplify
the task? To answer this question, we conducted two sets of experiments:
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Figure 2: Input gating patterns of DeltaNet-1.3B (left) and GatedDeltaNet-1.5B (right) in specific
heads, which exhibit spiky patterns around digit tokens.

The NIAH-Word Task We developed the NIAH-Word task, where the retrieval values are
changed to an English phrase. We then re-evaluated the linear attention models on this new task
and measured the performance gap compared to the case where retrieval values are digits (under

Table 1: NIAH (no inst) performance drop after changing the retrieval type from number to word.

Model \ NIAH-2 NIAH-Word

\ 1k 2k \ 1k 2k
Qwen3-0.6B \ 98.0 98.2 \ 98.8 96.6
Mamba2-370M 926 61.0 | 53.039.6) 28.4(32.6)
DeltaNet-1.3B 96.2 83.0 | 25.81704) 15.6 (J67.4)
GatedDeltaNet-1.5B | 97.4 944 | 51.4 (146.0) 29.6 (164.8)
RWKV7-0.4B 95.8 71.8 | 37.2 (5860 18.0(|53.8)
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no inst so that we can eliminate the effect from instructions). As shown in Table [T} all linear at-
tention models suffer a significant performance drop on NIAH-Word, while a Transformer-based
model (Yang et al.,[2025a)) is only slightly affected. This performance drop across different retrieval
value types is sufficient to show that the claimed scores of linear attention models on NIAH bench-
marks are not reliable: their performance is highly dependent on the retrieval value type, which is
not generalizable.

Intervention with Memory Writing In a subset of models, we recorded the positions of digit to-
kens in the input sample and overwrote the input gate value j3; at these positions with the sequence’s
average gate value. We validated that this intervention is not destructive, as shown in Appendix[C.2]
This intervention resets the writing strength for digit tokens to the average level, therefore elimi-
nating specialized writing strategy for them. After the intervention, retrieval scores dropped signif-
icantly (Fig[3). The results are sufficient to illustrate that the performance drop from the original
NIAH task to the NIAH-Word task is primarily caused by specialized input gating strategies. As a
gap still exists between NIAH with digit intervention and NIAH-Word, we hypothesize that other
components(e.g. forget gates, MLPs) in linear attention models may also be more sensitive to digit
tokens, since successful in-context retrieval requires not only storing tokens in memory (controlled
by the input gate), but also retrieving the desired tokens from it.
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80 804
< < l ~eo— NIAH-2
g 6"'1 T 601 l NIAH-2 with intervention
- -
% 404 % 404 —o-— NIAH-Word
£ | £ !
S 20+ S 20 v
< 4 <
0 04
T T T T T T T T
3k 4k 6k 8k 3k 4k 6k 8k
Sequence Length Sequence Length

Figure 3: Effect of input gate intervention on NIAH (no inst) across sequence lengths in DeltaNet-
1.3B (left) and GatedDeltaNet-1.5B (right).

The experiments above lead us to the conclusion that the general in-context retrieval ability of most
linear attention models is not as powerful as their performance on the original NIAH tasks might
suggest. Therefore, we suggest NIAH-Word should be a necessary measurement for retrieval
ability of linear attention models. We also show how memory-writing patterns can help explain
and even intervene with specific behaviors of linear attention models. This is also the inspiration for
our architecture design.

4 MODEL ARCHITECTURE OF SILA

In this section, we reformulate the linear attention architecture following the principle of selective
ignoring. To achieve enhanced selective memory writing capability, we postulate that the model
must fulfill two core requirements:

1. Not every token is required to be written to memory;

2. The model can dynamically determine whether a new token should be stored based on the
existing memory states.

Decoupling of Memory Store and Recall ~ Analysis of attention weights in pretrained Transformer
models indicates that a substantial number of tokens focus only on themselves, recent tokens, and
attention sinks (Xiao et al., 2025). Within the linear attention framework, the attention-weighted
sum is replaced by the operation M;(q;). To replicate this functionality, the memory state M; must
contain information corresponding to the current token, recent tokens, and attention sinks. Attention
sinks can be achieved by a non-zero initialized memory state. However, the necessity to contain the
current and recent tokens in M, implies that they are always written into memory, whether it is truly
important to remember or not. This leads to a tight coupling between memory writing (store) and
reading (recall). Crucially, even accessing only the current token requires it to be first written into
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Mainstream architecture: SILA architecture:
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Figure 4: The illustration of mainstream linear attention architecture (left) and SILA (right).

memory. To address this limitation, we propose decoupling these operations: recall should depend
solely on the past memory state while the current token is explicitly computed:

o = My_1(qr) + ar (k] - qe)ve (2)
where «; is a weight scalar. Since recall relies solely on M;_;, the decision of whether to store
the current key-value pair (k;, v;) into the memory state M, is now completely decoupled. This
directly fulfills requirement 1. Additionally, the use of short causal convolution (Yang et al., [2024b;
2025b; |Allen-Zhu|, 2025)) enables v, to directly incorporate neighboring token information, allowing
tokens without long-range dependencies to be entirely omitted from memory storage. A similar
implementation exists in RWKV7, termed “bonus”. However, it still uses the updated state for
recall, thus failed to achieve full decoupling.

Memory-dependent Gate To fulfill requirement 2, a straightforward approach is to employ
memory-dependent gates. The input gate and the forget gate are computed with not only the in-
put x;, but also the information retrieved from memory using k;:

O; = o (WiM_1(ke) + Woxy), 0 € {3,7} 3)

To mitigate the continuous decay induced by the forget gate over long distances, we replace the
sigmoid function with one that can reach 1 (ensuring no decay):

2
b(z) = {+ v (4)

1 x>0

Figure [] illustrates our architecture design. SILA is broadly adapted from Gated DeltaNet (Yang
et al.,[2025b), with enhancements to the gate computations and memory recall as outlined above:

By = sigmoid(Wgy M1k + Wpaxy), v = ¢(Wor M1k + Wooxy) @)
oy = Mi_1q; + Olt(k;r qt)ve, g = sigmoid(W,xy) (6)
My =y Mi—1 — Bi(My—1ky — vk, ™)

5 TRAINING STRATEGY OF SILA

Standard next-token prediction training treats every token equally, with the final loss computed as
the average of all token prediction losses. This approach works well for training Transformers, as
they maintain full access to all previous tokens and can thus gradually optimize the prediction for
each token. However, when applied to linear attention models, fixed memory capacity necessitates
trade-offs: achieving accurate predictions for certain tokens within long contexts may inevitably
compromise the prediction accuracy of others. Prior studies suggest that for a large portion of tokens,
prediction is inherently easy and doesn’t require reasoning or retrieval (Lin et al., 2024). Uniformly
weighting the loss across all tokens may hinder the model’s ability to fully develop reasoning and
retrieval capabilities. Thus, this conventional training strategy conflicts with the goal of encouraging
the model to learn selective ignoring.
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5.1 INVESTIGATION OF TRAINING STRATEGIES ON SYNTHETIC RETRIEVAL TASK

To validate our hypothesis, we conducted experiments on a small-scale synthetic benchmark. We
adapt a retrieval task (Fig[3) based on the in-context recall task from MAD-Lab (Poli et al, 2024).
Following Section [2} we prefixed the input sequence with the retrieval key and employed a large
vocabulary size to prevent the model from memorizing all possible key-value pairs. We evaluate
two training strategies:

 Standard next-token prediction: compute loss over all tokens (Standard Loss).
 Target-only prediction: compute loss only on the final predicted answer (Target-only Loss).

We trained shallow 2-layer models (dim=64, num_heads=2, state_size=5248) with the sequence
length of 128 and performed zero-shot evaluations on longer sequences. Models trained with Stan-
dard Loss (Fig [6a) exhibit a rapid decline in retrieval accuracy as the sequence length increases.
Notably, our models trained with Standard Loss displayed substantial variability across runs (at-
tributable to random initialization), suggesting the architecture may occasionally learn selective ig-
noring. In stark contrast, models trained with Target-only Loss (Fig[6b) demonstrated significantly
superior length extrapolation performance. The performance is maintained even at sequence lengths
100 times greater than those encountered during training. The experimental results validate our
hypothesis: to enable linear attention models to learn selective ignoring, it is imperative to avoid
treating all tokens equally during training.

0|C-00~00~-0|0~0

Figure 5: Synthetic retrieval task. Given a target key hint, the model needs to retrieve the corre-
sponding value from an input sequence consisting of random key-value pairs.
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Figure 6: Zero-shot evaluations on synthetic retrieval task.

5.2 TRAINING WITH WEIGHTED LOSS

We suggest that training linear attention models requires applying distinct weights to the loss of
each token (weighted loss). To achieve this, we employ a simple yet effective approach: compute
the weights using a reference pretrained Transformer model (Fig [7). This approach imposes no
constraints on the architecture or size of the reference model, provided it possesses robust long-
context retrieval capabilities. We first filter the attention weights, retaining only values above a
threshold, and zero out the attention sinks (the first column). This allows us to approximate the
most attended parts of each token. The filtered attention weights are then multiplied by the relative
positional distance and summed to compute the average retrieval distance of each token. Finally,
we apply logarithmic scaling to the average distances to derive the final weight for each token. This
approach achieves our objective: tokens relying solely on local context have low weights, while
tokens exhibiting long-distance dependencies have high weights. We also add an exponentially
decaying constant term to the weights: exp(—training_step/T) + weights. This ensures that
during the early stages of training, the model establishes a stable foundation in next-token prediction
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capabilities, while progressively transitioning to learn selective ignoring behavior in later stages.
Detailed pseudocode of loss weights computation is provided in Appendix [C.3]

0.00
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filter

weighted log

0.47

sum scale

0.18

Figure 7: Computing token-level loss weights via filtered attention and distance-aware scaling.

6 EXPERIMENTS

We evaluate SILA on typical long-context retrieval tasks. Due to limited computational resources,
we employed a small-scale 0.6B model (SILA-0.6B), with weights transferred from Qwen3-0.6B
(see Appendix [C.3|for details). Our model is trained on 15B tokens sampled from the FineWeb-Edu
dataset (Penedo et al., 2024). The first 10B tokens are trained with a context length of 1024, and
the remaining 5B tokens are trained with a context length of 4096. To validate the generality of the
proposed training strategy and compare architectural differences, we also trained a Gated DeltaNet
under identical configurations (GatedDelta+Ours-0.6B). All other baselines are from open-source
pretrained models (see Appendix for details). Although variations in model scale, training data,
and total training tokens may introduce some bias in the evaluations, the results remain sufficient to
substantiate our conclusions.

Passkey Retrieval Figure [8| shows the results of the Passkey Retrieval task (Chen et al.l 2024b),
which requires the model to retrieve a random number embedded within a long document of repeated
sentences. Retrieval tends to be more challenging when the number is inserted near the beginning
of the document (corresponding to a lower passkey depth), as it is farther from the final query.
Surprisingly, SILA maintains high accuracy until around 80k tokens. This is particularly notable
given that our model is only trained on a maximum context length of 4k without any fine-tuning.
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Figure 8: Results on Passkey Retrieval task.

Needle in a Haystack Following the NIAH benchmark outlined in Section |3} we evaluated SILA
and popular linear attention models. As shown in Table [2] SILA exhibits the least performance
degradation over long context lengths. Meanwhile, Gated DeltaNet trained with our proposed train-
ing strategy also shows outstanding performance. Given the differences in parameter counts and
state sizes between models, we further visualize the state size vs. NIAH performance landscape in
Figure[9] The results reveal that SILA achieves a substantial lead in memory utilization efficiency.

Commonsense reasoning An intuitive concern is whether our training strategy compromises gen-
eral task performance. To address this, we evaluated models on commonsense reasoning bench-
marks (Table . Compared to standard loss (i.e. w/o. weighted loss), the model trained with
weighted loss exhibits slight deterioration on certain tasks. Notably, prior studies have indicated
that such performance differences fall well within typical error margins (3%~5%) attributable to
random training seeds (Allen-Zhu, [2025)) and are often less significant than variations induced by
prompt engineering. Overall, all models exhibit comparable performance on commonsense reason-
ing tasks, as scaling laws suggest that such capabilities are primarily determined by training data
composition and total training tokens (Chang et al.,[2024; Grattafiori et al., 2024).
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Table 2: Performance comparison on NIAH (strong inst) benchmark.

Model State Size ‘ NIAH-1 NIAH-2 NIAH-Word
‘ 8k 16k 24k 32k ‘ 2k 4k 8k ‘ 1k 2k 4k
Qwen3-0.6B 57344 xseqlen ‘ 100.0 100.0 100.0 100.0 ‘ 100.0 100.0 100.0 ‘ 98.6 97.0 94.0
Mamba2-370M 13025280 100.0 544 248 9.0 73.2 14.0 14 | 862 322 24
Mamba2-780M 19513344 100.0 0.2 0.0 0.0 74.6 0.0 0.0 | 822 374 0.0
DeltaNet-1.3B 6881280 100.0 100.0 100.0 100.0 932 59.2 13.6 | 474 204 6.8
Gated DeltaNet-1.5B 13172736 94.8 62.0  38.8 33.6 97.0 742 306 | 740 378 11.6
RWKV7-0.4B 1622016 100.0  99.0 62.6 10.4 89.6 4438 10.0 | 57.8 262 10.2
RWKV7-1.5B 3244032 100.0 100.0 994 324 99.0 82,6 202 | 826 674 332
GatedDelta+Ours-0.6B 2179072 100.0 100.0 99.6 854 96.0 824 28,6 | 73.0 432 150
w/o. weighted loss 2179072 83.2  39.8 19.6 11.8 54.8 16.8 721242 96 3.0
SILA-0.6B 2179072 100.0 100.0 100.0 100.0 | 984 902 492 | 85.0 63.6 258
w/o. weighted loss 2179072 76.0 40.0 274 13.2 712 28.8 9.8 | 438 156 48
100 .SILA’0-6B Qwen;-046B 1007 Qwen3—0.61;
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Figure 9: State size vs. accuracy on NIAH benchmarks.
Table 3: Zero-shot performance comparison on commonsense reasoning.
Model # Training | ARC-e ARC-c LMB. Hella. Wino. PIQA | Avg.
Tokens(B) acc acc acc acc_n acc acc
Qwen3-0.6B | 30000 | 65.74 3345 5377 5379 5888 69.80 | 5591
Mamba2-370M 300 54.92 25.09 5579 4692 5533 7046 | 51.42
Mamba2-780M 300 61.03 2671  61.52 5492 60.06 72.09 | 56.06
DeltaNet-1.3B 100 58.59 2449 4836 50.22 52.80 70.62 | 50.85
Gated DeltaNet-0.4B 20 60.27 25.68 3472 4148 5043 66.05 | 46.44
RWKV7-0.4B 2000 68.22 31.74 58776 56.72 59.98 7247 | 57.98
GatedDelta+Ours-0.6B | 15 61.57 30.12 4531 4729 54.06 67.74 | 51.02
w/o. weighted loss 15 67.89 3430 4122 48.01 56.12 68.88 | 52.74
SILA-0.6B 15 65.45 3191 42.67 4440 5533 67.25 | 51.17
w/o. weighted loss 15 66.96 33.02 4129 4844 5627 69.15 | 52.52

Ablation & Analysis We designed experiments to separately evaluate the impacts of model archi-
tecture and training strategy. As shown in Table[2] the most significant improvement stems from our
proposed training strategy. For both SILA-0.6B and GatedDelta+Ours-0.6B, replacing the standard
loss with our weighted loss leads to substantial performance gains. In addition, the performance
difference between GatedDelta+Ours-0.6B and SILA-0.6B can also exhibit the improvements at-
tributable to architectural design. Notably, these results suggest that our models could have benefited
from more extensive training. GatedDelta+Ours-0.6B without the weighted loss (which corresponds
to a standard Gated DeltaNet initialized from Qwen3-0.6B and trained on 15B tokens) exhibits a
gap compared to the well-pretrained baseline models, indicating insufficient training. Nevertheless,
SILA-0.6B outperforms these baselines, despite their larger training data and parameter sizes.
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To verify whether our model can leverage instructions to achieve selective ignoring and thereby
enhance retrieval performance, we evaluated models under no inst and strong inst settings on NIAH-
Word. Results in Table ] show that SILA-0.6B obtains a clear performance boost from instructions,
while other models exhibit only small improvements. We also provide a visualization of memory
writing patterns in Appendix [D] which explains how the model uses selective memory writing to
enhance retrieval performance.

Table 4: Performance of linear attention models on NIAH-Word with no inst and strong inst. SILA-
0.6B shows a significant performance gain from the instruction.

Model | noinst strong inst

| 2k 4k | 2k 4k
Mamba2-780M 284 0.0 37.4 (19.0) 0.0 (10.0)
DeltaNet-1.3B 15.6 8.0 20.4 (14.8) 6.8 (10.0)
GatedDeltaNet-1.5B | 29.6 9.8 37.8 (18.2) 11.6 (11.8)
RWKV7-0.4B 18.0 9.6 26.2 (18.2) 10.2 (10.6)
SILA-0.6B | 3.0 10.6 | 63.6(1326) 25.8(1152)

7 CONCLUSION

In this work, we re-examine the long-context retrieval capabilities of linear attention models from
a memory writing perspective. Following the principle of selective ignoring, we propose improve-
ments to the model architecture and training methodology to enhance long-context performance.

Despite promising results, this work has limitations that open avenues for future research. While our
implementation employs a straightforward training strategy dependent on pretrained Transformers,
designing novel training paradigms to enable self-supervised learning for selective ignoring remains
an open challenge. Furthermore, in this study, we still assume that the model can read the text only
once to complete the task. Such a unidirectional pass is inherently limited compared to the full
context access ability of a Transformer. Given the advantage of linear complexity, linear attention
models with selective ignoring capabilities could potentially achieve both efficiency and accuracy
when integrated with controlled look-back mechanisms.
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A INTRODUCTION TO LINEAR ATTENTION MODELS

In language modeling tasks, Transformers use the softmax attention mechanism:
QK"
Vi
where Wo, Wi, Wy € R¥*4 X Q,K,V,0 € RT*? (consider a single attention head for
simplicity). The quadratic complexity O(T?) comes from the computation of attention map
softmax(QK " /v/dy). However, if the attention map can be decoupled into ¢(Q)¢(K) (where

¢ is usually an element-wise nonlinear function like SiLU), we will get the original version of linear
attention (Katharopoulos et al., |2020):

0 = (p(Q)p(K) ")V = ¢(Q)(p(K) V). 9)

Q=XWo,K=XWg,V=XWy, O = softmax (

V. ®)

which has linear complexity O(T). Equation@]can also be written as a recurrent form: it is mathe-
matically equivalent to

M= M +viglks)", Mo =0 (10)
o = Myp(ar) (1D
Update in equationcan also be seen as gradient descent with respect to £ = —v,[ - (M;_16(k;)).

More generally, most variants attention mechanism of linear attention models can be described as
online gradient optimization on arbitrary memory M with constant capacity:

M = 'YtMtfl - ﬁtth,lﬁ(Mtflaxt) (12)
Oy = Mt(Qt) (13)

Some architectures do not obey Equation [I] strictly, but the paradigm is very similar (Beck et al.
2024). Some typical instances of linear attention mechanisms are listed in Table |5} ~; and (3, are
forget gate and input gate respectively, which is input-dependent by v; = o(W,xy), B; = o(Wpxy).
From the online gradient descent perspective, the ; acts as weight decay factor, and the 3; acts as
the learning rate.

Table 5: Linear attention architectures.

Model Memory Update Rule

Mamba2 (Dao & Gu, 2024) My =y My +vik]

DeltaNet (Yang et al., 2024b) My = My (I - Bikik/) + Brvik/]

Gated DeltaNet (Yang et al., 2025b) M = M;_1v(I — Bikik/) + Brvik/] .
RWKV7 (Peng et al., 2025)) My = My (diag(y;) — BekiRy ) + Bevik,

Hy=vHi 1+ ﬁtktktT,
Gy =1Geq + 5tvtk;
TTT (Sun et al., 2025) My =Miy — BV pu,_ LIMi_1, ke, Vi)

Titans (Behrouz et al., 2024) iilt: jtyf?\_/tlt —livgjtﬂﬁ(/\/lt—h ki, Vi),

MesaNet (von Oswald et al.,[2025)

B ANALYSIS ON EXISTING EXTRAPOLATION METHODS

Several recent studies have already investigated length generalization, also known as length ex-
trapolation, in linear attention models. Some works like DeciMamba (Ben-Kish et al., 2025) and
LongMamba (Ye et al. 2025)) also proposed to enhance long-context capability through skipping
tokens during memory writing. Specifically, they manually suppress the writing strength of tokens
deemed less important (e.g., by setting their update weights to zero when the writing strength is
below a threshold or through top-k selection) in layers responsible for long-range dependencies.
However, assuming the existence of bias for digit tokens (Section [3.3)), merely suppressing writing
strength may not theoretically enhance general retrieval capabilities. For validation, we measured

13



Under review as a conference paper at ICLR 2026

the performance of these methods under the benchmark framework proposed in Section[3] It turns
out that these extrapolation methods indeed enhance performance on retrieval tasks related to digits
(NIAH-2). However, on more general retrieval tasks (NIAH-Word), their performance is only com-
parable to, or even inferior to that of the base model. This observation aligns with our conclusion of
digit preference.

Table 6: Performance of existing extrapolation methods compared to their base models. SP is ab-
breviation for state-passing.

Model ‘ NIAH-2 NIAH-Word

‘ 1k 2k 4k 8k ‘ 1k 2k 4k
Mamba-130M 52.8 9.2 3.0 2.6 | 16.0 2.4 2.0
DeciMamba-130M 842 728 12.6 1.4 6.4 3.4 0.8
Mamba2-1.3B 964 61.8 1.0 0.0 | 468 124 0.0
LongMamba-1.3B 97.0 61.8 336 160 | 502 13.8 4.6
Mamba2-370M 984 732 14.0 14 | 86.2 322 2.4
Mamba2-370M (SP) | 99.4 864 228 104 | 69.0 20.8 3.6
SILA-0.6B ‘ 996 984 90.2 49.2 ‘ 85.0 636 258

Another popular approach to enhancing the long-context processing capability of linear attention
models is state-passing (SP), or truncated backpropagation through time (TBTT). During training,
SP initializes the initial states of each sequence segment with the final states of the preceding seg-
ment, thereby effectively simulating longer sequence length in training or post training. Prior studies
have shown that applying SP to linear attention models, such as those in the Mamba family, can ef-
fectively mitigate the explosion of pointwise perplexity on long sequences (Yang et al.,[2024a}; Ruiz
& Gul [2025; Hu et al., [2025)).

To validate the effectiveness of state-passing on long-context retrieval tasks, we conducted state-
passing on Mamba2-370M official checkpoint with a setting similar to (Ruiz & Gul 2025)), and in-
vestigated the property of pointwise perplexity in various linear attention models. For state-passing,
we concatenated input samples from FineWeb-Edu (Penedo et al., 2024)) into sequences of 24k to-
kens and stopped gradients every 2k tokens. It turns out that state-passing significantly reduces
pointwise perplexity on long sequences for Mamba2-370M (Fig[I0), with improvement on NIAH-2
tasks (Table[6), but slight degradation on NIAH-Word tasks, suggesting that SP may not consistently
improve general retrieval capabilities.

Notably, the perplexity explosion phenomenon appears to be specific to Mamba-style architectures
and is not observed in other linear attention models we tested (Fig[I0). This implies that the issue
may stem from architectural characteristics rather than being a universal limitation of linear attention
mechanisms.

C EXPERIMENTAL DETAILS

C.1 NIAH BENCHMARK SETUP
An example original NIAH prompt format is given as following:

A special magic number is hidden within the following text. Make sure to memorize
it. I will quiz you about the number afterwards. ...(unrelated text)... One of the
special magic numbers for tested-formal is: 3136088. ...(unrelated text)... What is
the special magic number for tested-formal mentioned in the provided text?

The instruction part does provide guidance about the target of retrieval, i.e. the target is a string
of digits. The guidance can be weakened by providing no instruction at all, or be further strength-
ened by providing the key for retrieval. To clearly evaluate the effect of instruction guidance, we
conducted evaluation of the weakened and strengthened variant in this research.

The no inst variant corresponds to the weakened version, e.g.
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Figure 10: Pointwise perplexity of various linear attention models.

...(unrelated text)... One of the special magic numbers for tested-formal is:
3136088. ...(unrelated text)... What is the special magic number for tested-formal
mentioned in the provided text?

The strong inst variant corresponds to the strengthened version, e.g.

A special magic number is hidden within the following text. Make sure to
memorize it. I will quiz you about the number for tested-formal afterwards.
...(unrelated text)... One of the special magic numbers for tested-formal is:

3136088. ...(unrelated text)... What is the special magic number for tested-formal
mentioned in the provided text?

Under the unidirectional reading paradigm of linear attention models, the no inst variant requires
the model to memorize the whole context to give the answer in the end, while the strong inst variant
provides the option to skip most of the context.

C.2 VERIFICATION ON MEMORY WRITING INTERVENTION

In Section[3.3] we manually tweaked the writing strength in pretrained linear attention models. Here
we verify that the intervention is not destructive on general language modeling capabilities.

To verify this, we evaluate the models on commonsense benchmarks, with 4% (average percentage
of digit tokens in NIAH samples) token positions randomly chosen to reset the corresponding input
gate value to the average in sequence. We conduct this intervention across all layers and heads of the
model. We validate this setup on the LAMBADA benchmark. After random resetting of the input
gate value, the accuracy of DeltaNet-1.3B dropped from 48.36 to 47.62 (0.74), and the accuracy of
GatedDeltaNet-1.5B dropped from 50.16 to 49.16 (11.0), which we consider as marginal.

Therefore, resetting the writing strength under this percentage generally does not corrupt the capa-
bilities of linear attention models. With observation that similar intervention strongly affects the
performance of these models on NIAH benchmarks, we come to the conclusion that these models
specially memorize the tokens on the affected positions and utilize them for prediction, as stated in
Section[3.3]

C.3 TRAINING DETAILS
To reduce training costs, we first initialize our model by copying the embedding and MLP layer

weights from Qwen3, aligning the outputs of the linear attention layer with those of the Qwen3
attention layer on only 200M tokens. Specifically, we feed the hidden states from each Qwen3 layer
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to the linear attention layer and minimize the MSE loss between its output and that of Qwen3’s
attention layer. This process requires minimal computational overhead but provides a strong weight
initialization.

The pseudocode of loss weights computation is outlined in Algorithm[I] In subsequent pretraining,
the loss weight for each predicted token is set to exp(—training_tokens/10%) + weights. This

allows the model to initially learn basic next-token prediction capability, while the training progres-
sively transitions to pure weighted loss after around 5B tokens.

Algorithm 1 Compute Token-Level Loss Weights

Input: Attention weights A € REXHXTXT from a reference Transformer
Hyperparameter: Threshold 7 (e.g., 7 = 0.2), Scaling factor A (e.g., A = 0.5)
Output: Loss weights w € R”

Zero out the first column of A > remove attention to sink token
A+~ A-T[A > th] > thresholding
for each token positiont = 1 to T" do
wy 4 T Zle ZhH:1 Z;Zl Aipej- (t—17) > compute average retrieval distance
wy + log(A-wy + 1) > log scaling
end for
return w

Our models are trained on a total of 15B tokens sampled from the FineWeb-Edu dataset (Penedo
et al.,[2024): the first 10B tokens use a context length of 1024, while the remaining 5B tokens are
trained with an extended context length of 4096. No further post-training or fine-tuning is performed.

C.4 BASELINES

Due to constraints on computation resources, we employed existing pretrained models. Source of
used pretrained checkpoints are listed in Table |/l For DeltaNet, Mamba2 and RWKV7 series, we
used official checkpoints on HuggingFace. For GatedDeltaNet series, we used checkpoints from
m-a-p since there are no official checkpoints.

For inference frameworks, we used flash—-linear—attention|for most models, and official
implementation of mamba-ssm for Mamba2 series, custom Triton implementation for our archi-
tecture. It should be noticed that RWKV7 series also have |official implementation in CUDA. As
different implementations for inference of RWKV7 series show no difference on retrieval tasks, we
used implementation in flash-linear-attention for better compatibility to evaluation benchmarks.

Table 7: Pretrained checkpoints used in this research with links on HuggingFace.

Model Name HuggingFace Checkpoint

Qwen3-0.6B Qwen/Qwen3-0.6B-Base
Mamba-130M state—-spaces/mamba-130m
Mmaba2-370M state—-spaces/mamba2—-370m
Mamba2-780M state—spaces/mamba2—780m
DeltaNet-1.3B fla-hub/delta_-net-1.3B-100B

Gated DeltaNet-0.4B m-a-p/340M-20B-GatedDeltaNet-pure-baseline
Gated DeltaNet-1.5B° m-a-p/1.3B-100B-GatedDeltaNet-pure
RWKV7-0.4B fla-hub/rwkv7-0.4B-world

RWKV7-1.5B fla-hub/rwkv7-1.5B-world

" The checkpoint m—a-p/1.3B-100B-GatedDeltaNet-pure has an actual pa-
rameter count of 1.5B.

As most of the tested models are not instruction-tuned and do not support chat template officially,
we didn’t apply any chat template during evaluation. However, it’s worth noting that difference
in template does influence the retrieval performance. We evaluated RWKV7 series both with and
without chat template as it’s offcially supported, and found that chat template generally improved the
retrieval score (Table[8), although RWKV7 is declared to be trained without instruction tuning (Peng
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et al., [2025). To exclude factors related to prompt engineering and instruction tuning, we reported
all results in this research with unified template in completion style.

Table 8: Performance comparison w/ or w/o chat template. (strong inst)

Model | NIAH-1 NIAH-2 NIAH-Word
| 16k 24k | 2k 4k 8k | 1k 2k 4k

RWKV7-0.4Bwo template) | 99.0  62.6 | 89.6 44.8 10.0 | 57.8 26.2 10.2
RWKV7-0.4Bw/ templaey | 96.0 54.2 | 984 71.0 14.2 | 63.8 342 9.6

D VISUALIZATION OF MEMORY WRITING

To verify that SILA learns selective ignoring to improve long-context retrieval, we analyzed the
input gate activity in all memory heads and layers of SILA-0.6B. We found some specific patterns
as shown in Figure [T1] In these heads, once the prompt is prefixed by instruction, they will respond
significantly stronger at the retrieval key and answer tokens, while suppressing activity at other
positions. By selectively enhancing and suppressing input gate values across the sequence, the
model can achieve more effective memory management under instruction guidance.
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(a) Input gate patterns on no inst variant of NIAH-Word sample
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(c) Difference between (b) and (a)

Figure 11: The behavior of input gate in layer 22, head 14 in SILA-0.6B when processing one
NIAH-Word sample with no inst and strong inst variant. The positions of query/key and answer are
marked. Significant growth of gate value is only observed around retrieval key and answer tokens,
while suppression is widely observed in other regions. Under strong inst, the input gate attains its
highest values precisely at the query and answer positions, which is consistent with the intended
behavior of selective ignoring.
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