
RTP: RETHINKING TENSOR PARALLELISM WITH MEMORY DEDUPLICATION

Cheng Luo 1 Tianle Zhong 2 Geoffrey Fox 2

ABSTRACT
In the evolving landscape of neural network models, one prominent challenge stand out: the significant memory
overheads associated with training expansive models. Addressing this challenge, this study delves deep into the Ro-
tated Tensor Parallelism (RTP). RTP is an innovative approach that strategically focuses on memory deduplication
in distributed training environments. It boasts of unique features like a customized communication primitive and
the Flyweight Pattern initialization. Furthermore, RTP ensures a seamless overlap between partition computation
and partition weight communication, optimizing the training process. Our empirical evaluations underscore
RTP’s efficiency, revealing that its memory consumption during distributed system training is remarkably close to
the optimal - distributing the memory overhead of a single machine equitably among multiple machines. The
experimental results demonstrate that RTP is capable of achieving comparable performance to Distributed Data
Parallel while providing support for significantly larger models with near-linear scalability in terms of memory.
Code of RTP is available at https://github.com/wdlctc/rtp.

1 INTRODUCTION

The landscape of machine learning has been dramatically
reshaped by the exponential growth of neural network mod-
els. These architectures, with their intricate layers and vast
parameter sets, have catalyzed breakthroughs across diverse
domains. As these neural behemoths continue to push tech-
nological boundaries, the challenges they pose become in-
creasingly multifaceted. Beyond the complexities of their
design and deployment lies the colossal task of training
them. Given the massive storage overhead that comes with
its scale, there is a growing need for industry-grade tools
that can effectively simplify and accelerate the inference
and training process. These tools often face scalability and
efficiency issues in distributed environments.

To better understand the theoretical computation and mem-
ory consumption, we invoke the theoretical underpinnings
of Unlimited Memory Idealized Computer stands as an epit-
ome of unbounded potential. With its infinite memory like
Turing machine (Žák, 1983) , it represents an idealized sce-
nario where any computational problem, irrespective of its
scale, can be addressed without memory constraints. When
juxtaposed against the realm of neural network training, the
Unlimited Memory Idealized Computer serves as an optimal
benchmark. In this ideal world, a neural network model,
no matter how vast, would fit perfectly within the mem-

1Independent Researcher 2Computer Science Department and
Biocomplexity Institute, University of Virginia, Charlottesville,
VA, USA. Correspondence to: Cheng Luo <wdlctc@gmail.com>.

Preprint.

ory confines of, consuming memory in the most optimal
manner.

However, as we transition from this theoretical abstraction
to the tangible challenges of real-world parallel training
(Narayanan et al., 2019) and inference (Pope et al., 2023),
discrepancies emerge. The memory consumption of practi-
cal parallelism techniques often exceeds the optimal mem-
ory footprint represented by the idealized computer. This
excess can be conceptualized as ”Memory Duplication.”
Here we dissect various parallelism strategies elucidating
their respective memory footprints and the consequent mem-
ory duplication:

• Tensor Parallelism: Tensor parallelism (Shoeybi et al.,
2019) shards the model’s weights across multiple de-
vices, allowing for concurrent computation of large
tensors. However, the batch inputs and activations are
copied across multiple machines, leading to memory
duplication.

• Data Parallelism: This technique (Li et al., 2020)
distributes different data subsets across devices. While
it shards the batch inputs and activations, each machine
holds a complete copy of the model’s weights and
gradients, introducing significant memory duplication.

• Fully Sharded Data Parallelism (FSDP): FSDP
(Zhao et al., 2023) aims to reduce memory duplica-
tion by temporarily sharding the model’s weights and
gradients and reconstructing them on-demand. How-
ever, the time taken for reconstruction still introduces
memory duplication.

ar
X

iv
:2

31
1.

01
63

5v
1 

 [
cs

.D
C

] 
 2

 N
ov

 2
02

3

https://github.com/wdlctc/rtp


RTP: Rethinking Tensor Parallelism with Memory Deduplication

Techniques Activations Memory Cost Parameters Memory Cost Memory Duplication

No parallelism A W +G 0

Tensor parallel A×N W +G A× (N − 1)

Data Parallel A (W +G)×N (W +G)× (N − 1)

Pipeline Parallel A+Ap ×N W +G Ap ×N

FSDP A W +G+max(W,G)× (N − 1) max(W,G)× (N − 1)

RTP A W +G+max(W,G) max(W,G)

RTP Inplace A W +G 0∗

Table 1. Activations memory, Params Memory Duplicated Memory Buffer for total distributed system using different techniques. N
refers to number of workers, A,W,G refer the activation, weight and gradient memory, Ap is the intermediate activation of pipeline layer

• Pipeline Parallelism: By segmenting the model into
stages processed on different devices, pipeline paral-
lelism (Narayanan et al., 2019) can reduce the memory
footprint. However, the need to store intermediate
activations on multiple devices introduces memory du-
plication.

• Zero-Redundancy Parallelism: (Ren et al., 2021)
seeks to move the memory duplication from the GPU
to the CPU, aiming to ensure each model parameter or
activation is stored just once across all devices. While
it promises optimal memory usage, the shift from GPU
to CPU can introduce its own set of challenges.

In this paper, we delve deeper into the memory intricacies
of distributed training, focusing on a dimension that has
been largely overlooked: memory deduplication (Bugnion
et al., 1997). We introduce RTP (Rotated Tensor Paral-
lelism), a novel technique that seeks to minimize memory
duplication by strategically sharding activations and rotating
weights/gradients.

Our comprehensive analysis, detailed in Table 1 , juxta-
poses the memory requisites of various distributed training
methodologies, underscoring the ubiquity of memory du-
plication. We postulate that an optimal training framework
necessitates a paradigm wherein GPUs retain only sharded
activations and parameters, thereby minimizing memory
overheads. Conventional data parallelism, albeit efficacious
in certain scenarios, inherently mandates that GPUs main-
tain a complete layer for both forward and backward propa-
gation, an attribute that renders it suboptimal for achieving
desireable memory efficiency.

Our discussion leads us to the introduction of RTP, a fresh
perspective on tensor parallelism. At the heart of RTP’s
design is the integration of the ”rotation primitive” com-

bined with the Flyweight Memory Pattern. This unique
combination allows RTP to shard both model parameters
and activations efficiently, and prefetch weights from neigh-
bor worker. The primary goals are twofold: a significant
reduction in memory usage and a boost in training perfor-
mance. Furthermore, RTP’s rotation primitive ensures a
seamless overlap with computation, eliminating idle GPU
time. Through this mechanism, RTP achieves a harmoniza-
tion of FLOPS and memory usage, closely mirroring the
optimal benchmarks established by the idealized computer.

Preliminary evaluations indicate that RTP not only holds
its ground against established methodologies like FSDP
but also exhibits pronounced advantages. Notably, RTP
has demonstrated potential memory savings in excess of
75% compared to FSDP with comparable throughput per-
formance.

2 BACKGROUND

Large Language Models (LLMs) have become a corner-
stone in the realm of machine learning with billions of
parameters (llama 7B-70B(Touvron et al., 2023), PaLM2
340B(Dehghani et al., 2023), GPT-4 1.76T(OpenAI, 2023)).
The magnitude of these models can be so overwhelming that
accommodating them within the memory of a singular pro-
cessor becomes unfeasible (A100 80G (a10)). Consequently,
conventional training methodologies becomes impossible
when faced with LLMs. chan To address this, distributed
frameworks emerges as a pivotal solution. At its core, dis-
tributed training/inference is about partitioning (Pope et al.,
2023), a strategy that disperses the training workload across
multiple processors with two primary components: activa-
tions and parameters. By efficiently distributing these com-
ponents across processors, distributed frameworks including
Horovod(Sergeev & Del Balso, 2018),amazon sagemaker



RTP: Rethinking Tensor Parallelism with Memory Deduplication

Figure 1. RTP Algorithm Overview

(Liberty et al., 2020), Pytorch (Imambi et al., 2021), Tensor-
flow (Singh et al., 2020) enable the seamless and efficient
training/inference of LLMs, ensuring that the potential of
these vast models is fully realized without being hindered
by memory constraints.

2.1 Activation Partition

Activation Partitioning techniques are meticulously crafted
to distribute the input dataset and activations across multi-
ple devices, optimizing memory usage and computational
efficiency during training. Data parallelism (Li et al., 2020;
Dean et al., 2012), a cornerstone in this domain, partitions
the activations across devices, each handling a distinct sub-
set. This approach, while offering near-linear scaling ef-
ficiency and accelerating time-to-train with minimal code
modifications, grapples with the challenge of model weight
duplication across all devices, leading to large parameter
memory duplication scaling up with the number of devices.

2.2 Parameter Partition

Parameter Partitioning techniques focus on optimizing the
distribution of model parameters across devices to enhance
training efficiency. Tensor Parallelism (Shoeybi et al., 2019;
Narayanan et al., 2021), a pivotal technique in this realm,
shards model parameters to facilitate partial computations
on individual devices. By communicating activations at
necessary layer boundaries, it achieves a harmonious bal-
ance between memory usage and computational efficiency,
streamlining the training process. However, the activation
duplication are also scaling up with the number of devices.

2.3 Holistic Partition

Holistic Partitioning seeks to provide a unified approach
to distributed training by synergistically optimizing both
activations and parameters. Within this paradigm, several

techniques have emerged that offer comprehensive solu-
tions:

Fully Sharded Data Parallelism (FSDP): FSDP (Zhao
et al., 2023) offers a panoramic approach to model opti-
mization. By segmenting a model into digestible units, then
flattening and sharding all parameters within these units,
FSDP achieves optimal memory utilization. The sharded pa-
rameters are communicated and reconstructed as needed for
computations, and subsequently discarded, ensuring mini-
mal peak memory usage. This intricate methodology, en-
compassing model decomposition, parameter sharding, and
on-the-fly communication, guarantees both computational
efficiency and memory optimization.

Pipeline Parallelism: Pipeline Parallelism (Huang et al.,
2019; Kim et al., 2020; He et al., 2021; Narayanan et al.,
2019) introduces a methodical approach to distributed train-
ing. By dividing the model into distinct stages and distribut-
ing them across devices, it ensures that both parameters
and activations are efficiently partitioned. However, this
structure requires communication between stages with inter-
mediate activation.

RTP also emerges as an all-encompassing control mecha-
nism in distributed training, addressing both weights and
activations. A standout feature of RTP is its ability to signif-
icantly reduce memory duplication, thereby enhancing its
efficiency in distributed training scenarios.

3 DESIGN

RTP is designed to scale and accommodate large models
by leveraging the principles of sharding for both dense pa-
rameters and batched activations. By dissecting models
into smaller, autonomous modules, RTP ensures that each
worker can execute forward and backward operations inde-
pendently.



RTP: Rethinking Tensor Parallelism with Memory Deduplication

Distinct from its contemporaries, RTP’s approach to param-
eter and gradient management is streamlined. While FSDP
reconstructs full parameters and gradients, RTP maintains
sharded parameters and gradients of only one unit at any
given moment. This design choice, rooted in the capability
of each sharded parameter to function independently, en-
sures optimal memory usage and computational efficiency.

Figure 1 offers a visual representation of RTP’s workflow
which adopts a rotation mechanism for sharded parame-
ters and gradients across different workers. This example
employs two workers as an exemplar. The forward pass wit-
nesses a dynamic shift of weights between workers. Worker
1, initiating the forward pass based on its first shard of
weight, subsequently transmits its weight to the next worker
while simultaneously receiving weights from the preceding
worker. This iterative process, executed N-1 times, culmi-
nates in Worker 1 holding the weight of the subsequent
worker, rather than its original weight. The backward pass
operates in a mirror fashion. The weights traverse in reverse,
ensuring that by the end of the process, each worker recov-
ers its original weight. This design ensures that each worker
is involved in the send/receive process for every sharded
parameter exactly once, promoting balanced workload dis-
tribution and minimizing communication overheads.

Moreover, RTP introduces two distinct variations:

• In-place RTP: This version is optimized for memory
efficiency. Its memory requirements closely mirror
those of a idealized computer, ensuring minimal mem-
ory overhead during training. The in-place operations
(In-) ensure that the existing memory is reused, thereby
reducing the need for additional allocations.

• Out-of-place RTP: This version is optimized for
throughput. By enable overlapping and multi-stream
processing (Sourouri et al., 2014), it ensures that the
computational flow is unblocked, leading to faster pro-
cessing times.

3.1 Model Initialization

Our model initialization aims distribute various sub-modules
across multiple devices with alterations to the model’s ini-
tialization code. However A predominant obstacle emerged
due to the intrinsic architecture of renowned deep learning
frameworks such as PyTorch and TensorFlow. These plat-
forms, by default, bind forward propagation with reverse
transmission. This implies that even if parameters are in-
terchanged between devices during forward propagation,
the subsequent back propagation remains anchored to the
initial weights. To realize a cohesive gradient generation-
communication-update cycle, the deployment of multiple
module instances without additional memory cost became
significant challenge for RTP.

To address the aforementioned challenges, RTP introduced
the Flyweight Pattern initialization inspired by (Harmes &
Diaz, 2008). This innovative approach involves the creation
of multiple ”fake” modules that allocate model parameter
tensors to the same memory address. The primary objective
is to have these modules forward iteratively, paving the
way for the generation of multiple accumgrad backward
functions anchored to the interchanged weights. This design
facilitates the rotation of weights/gradients both before and
after gradient generation.

As the tensor transitions to the Flyweight model network
layer, it is channeled through multiple module instances
that point to the same memory address. This ensures that
all operations performed on the tensor are meticulously
recorded. During reverse transmission, these operations are
replayed, ensuring consistency and accuracy.

In essence, RTP’s approach to model initialization is both
innovative and efficient. By modifying the model and dis-
tributing it across GPUs, we ensure that each device retains
only one shard from the onset of the forward process to the
conclusion of the backward process. This design not only
optimizes memory usage but also streamlines the training
process.

3.2 Partition Strategies

RTP introduces the concept of a Partition factor, denoted as
N . This factor represents the number of ranks over which
parameters are distributed or sharded. In the context of
RTP, activations, weights, and gradients are partitioned by a
factor of N . While activations are partitioned on the batch
dimension, similar to strategies in Data Parallelism (DP) and
FSDP, weights and gradients undergo custom partitioning
tailored to the specific type of layers they belong to three
types of Partitioning: Output-Partition, Number-of-head-
Partition and Expert Partition

• Output-Partition: Layers such as Linear, Embedding,
and Convolution are partitioned based on the output
feature dimension. Post the RTP-based layer, a con-
catenation layer is introduced to merge the parallel
tensor outputs.

• Number-of-head-Partition: The Multihead attention
layer (Vaswani et al., 2017) undergoes a unique parti-
tioning strategy. The linear projections for Q, K, and
V calculations are divided into multiple linear projec-
tions in a column-parallel manner. This is achieved by
adjusting the first dimension, determining how many
attentions are computed collectively. The subsequent
Feed Forward Network is partitioned on the input di-
mension. This is because the preceding multihead
layer produces only 1/N of the output. By summing up
the N subcomponents of the attention output, we can



RTP: Rethinking Tensor Parallelism with Memory Deduplication

D A

BC

A B

CD

GPU0 GPU1

GPU2GPU3

GPU0 GPU1

GPU3 GPU2

Clockwise Rotation

DA

B C

A B

CD

GPU0 GPU1

GPU2GPU3

GPU0 GPU1

GPU3 GPU2

Counter-Clockwise Rotation

Figure 2. Clockwise Rotation and Counter-clockwise Rotation
Primitives Across 4 GPUs

seamlessly obtain the complete attention output.

• Expert Partition: The MoE (Mixture of Experts) layer
(Shazeer et al., 2017) is inherently designed to support
RTP’s partitioning strategy. The traditional all-to-all
output communication is replaced by RTP’s weight
rotating mechanism. This ensures that expert outputs
are naturally gathered without the need for extensive
communication overhead. In fact, MOE with RTP
would improve overall performance againest DP and
FSDP.

Moreover, to enhance communication efficiency, RTP or-
ganizes all parameters within a layer unit post-partitioning
into a structure called FlatParameter. This structure amalga-
mates the communication of its individual parameters and
distributes them uniformly across ranks. Conceptually, the
FlatParameter is a one-dimensional tensor, crafted by con-
catenating flattened original parameters and adding padding
to the clockwise. For instance, in the context of a linear
layer, both the weight and bias are merged. Similarly, for
a multi-head attention mechanism, the input and output
projections are combined under the FlatParameter umbrella.

3.3 Rotating Communication Primative

RTP employs two foundational techniques for commu-
nication optimization: Clockwise Rotation and Counter-
clockwise Rotation as shown in figure 2. These techniques
are inspired by the ring allreduce concept (You et al., 2018),
where each worker sends and receives distinct messages
to and from its adjacent workers. Specifically, we employ
clockwise rotation for the forward communication of weight
and counter-clockwise rotation for the backward commu-
nication of weight and gradient. Here the rotation commu-
nication primative is mainly focusing on prefetching the
next weights before the next partition forward operator and
prefetching the previous weights and gradients before the

next partition forward operator.

The primary challenge in optimizing communication is the
dominance of latencies in small transfers. As the scale
grows, both the Partition Weight and gradient size dimin-
ish. Although the previously proposed FlatParameter offers
some relief, it doesn’t provide a comprehensive solution.
To address the aforementioned challenges, we propose two
primary strategies:

• Out-of-place rotation: This strategy emphasizes over-
lapping, allowing for simultaneous communication and
computation. By leveraging multiple CUDA streams,
we achieve this overlap. However, this approach ne-
cessitates additional buffer storage. The Pytorch dis-
tributed c10d library offers a batch isend irecv ab-
straction, representing a set of Send/Recv primitives
that can be used concurrently. Furthermore, the
NCCL backend implementation in Pytorch provides
an internal NCCL stream for each device. This
stream is used for asynchronous execution, typically
on the default stream for calculations. These asyn-
chronous collectives return Work objects, and invoking
Work.wait() blocks the CPU thread until the collec-
tive completes. To achieve complete overlapping, RTP
employs separate CUDA streams for clockwise and
counter-clockwise rotation operations, ensuring the
overlap of these calculations.

• In-place rotation: This strategy focuses on blocking
both communication and computation. Training mod-
els with multiple streams or processes often leads to
increased memory usage due to parallel data loading
and the accumulation of intermediate variables. The
challenge of memory deduplication arises when using
out-of-place rotation with overlapping. To address this,
we propose in-place rotation with a non-overlapping
pattern, effectively eliminating memory deduplication.
This approach, devoid of the need for additional buffers,
aligns closely with the memory cost of idealized com-
puter.

3.4 Analysis

3.4.1 Computational Efficiency

Ecompute = N ×Kernel(
B

N
, I,

O

N
). (1)

The theoretical underpinning of RTP’s computational effi-
ciency posits it as tantamount to 1

N local computation, and
tantamount to DP/TP/FSDP computation. Yet, practical
GPU computations, especially when handling diminutive
kernels, are profoundly influenced by the kernel’s size and
architectural configuration. Specifically, segmenting the
weight into N distinct portions and executing it iteratively N



RTP: Rethinking Tensor Parallelism with Memory Deduplication

F0 F1 B1 B0
AG0 RS1 RS0

GPU0

GPU1

GPU2

GPU3

: All-Gather: Forward : Backward : Reduce-Scatter

F0 F1 B1 B0
AG0 RS1 RS0

F0 F1 B1 B0
AG0 RS1 RS0

F0 F1 B1 B0
AG0 RS1 RS0

AG0

AG0

AG0

AG0

AG1

AG1

AG1

AG1

AG1

AG1

AG1

AG1

Figure 3. FSDP Parallelism

F00 F01 F02

CR CR CR

F10 F11 F12

CR CR CR
B13 B12 B11

CCR CCR CCR
B03 B02 B01

CCR CCR CCR
GPU0

F01 F02 F03

CR CR
F11 F12 F13

CR CR CR

B10 B13 B12

CCR CCR CCR
B00 B03 B02

CCR CCR CCR
GPU1

F02 F03 F00

CR CR CR
F12 F13 F10

CR CR CR
B11 B10 B13

CCR CCR CCR
B01 B00 B03

CCR CCR CCR
GPU2

F03 F00 F01

CR CR CR
F13 F10 F11

CR CR CR
B12 B11 B10

CCR CCR CCR
B02 B01 B00

CCR CCR CCR
GPU3

: Forward : Backward : Clockwise Rotation : Counter-Clockwise Rotation

CR

F03

F00

F01

F02

F13

F10

F11

F12

B10

B11

B12

B13

B00

B01

B02

B03

Figure 4. RTP-inplace Parallelism

F00 F01 F02 F03

CR CR CR

F10 F11 F12 F13

CR CR CR
B13 B12 B11 B10

CCR CCR CCR
B03 B02 B01 B00

CCR CCR CCR
GPU0

F01 F02 F03 F00

CR CR
F11 F12 F13 F10

CR CR CR

B10 B13 B12 B11

CCR CCR CCR
B00 B03 B02 B01

CCR CCR CCR
GPU1

F02 F03 F00 F01

CR CR CR
F12 F13 F10 F11

CR CR CR
B11 B10 B13 B12

CCR CCR CCR
B01 B00 B03 B02

CCR CCR CCR
GPU2

F03 F00 F01 F02

CR CR CR
F13 F10 F11 F12

CR CR CR
B12 B11 B10 B13

CCR CCR CCR
B02 B01 B00 B03

CCR CCR CCR
GPU3

: Forward : Backward : Clockwise Rotation : Counter-Clockwise Rotation

CR

Figure 5. RTP-out-of-place Parallelism

times tends to be suboptimal compared to a singular execu-
tion of the entire kernel. This inefficiency is predominantly
attributed to:

Kernel Launch Overheads: The cumulative overheads in-
troduced by multiple kernel launches can be detrimental,
especially when executed in succession.

GPU Occupancy Concerns: Minuscule kernels often harness
only a fraction of the GPU’s computational prowess. This
underutilization can lead to significant portions of the GPU
remaining dormant.

To circumvent these challenges, one potential strategy is to
augment the kernel size. This can potentially attenuate the
non-linear slowdowns inherent with smaller kernels. Fur-
ther empirical evaluations, as discussed in the experimental
section, elucidate that RTP’s computational efficiency, espe-
cially for expansive language models, can be enhanced to
approximate 90% of the FSDP implementation.

3.4.2 Communication Efficiency

Ecommunicate = (N − 1)× Send/Recv(M/N). (2)

From a theoretical vantage point, RTP’s communication
efficiency mirrors that of FSDP, particularly in the context
of the allgather operation’s communication cost, which en-
tails the aggregation of 1/N weight fraction iteratively for
(N-1) times. Empirical evaluations, specifically our cus-
tom NCCL-test executed on 8 GPUs, corroborate that the
temporal cost associated with the clockwise-rotation and
counter-clockwise-rotation communication operations ex-
hibits a near-linear relationship with the allgather operation,
especially when the message size surpasses 1MB.



RTP: Rethinking Tensor Parallelism with Memory Deduplication

Figure 6. foundation model with Rotated Tensor Paralleism, rotating is clockwise rotating in the forward pass and counter-clockwise
roating in the backward pass

Figure 7. MOE-based foundation model with Rotated Tensor Paralleisn, rotating is clockwise rotating in the forward pass and counter-
clockwise roating in the backward pass

3.4.3 Overlapping

In the domain of distributed training, the concurrent ex-
ecution of communication and computation tasks is of
paramount importance to maximize efficiency. RTP en-
sure that GPU devices are consistently and fully utilized
throughout the distributed training process, thereby mini-
mizing potential downtime attributed to non-computational
operations. This is achieved by retaining computationally
capable shards in the distribution, which allows computa-
tion and communication to start simultaneously, whether
forward or backward propagation

Figure 5 presents a granular understanding of RTP’s overlap-
ping capabilities. This illustrative representation provides
insights into the concurrent execution of tasks in RTP, em-
phasizing its efficiency. Compared with FSDP. A salient
feature of RTP is its expedited startup time which is ar-
chitected to initiate both computation and communication
synchronously. This concurrent initiation not only stream-
lines the training process but also ensures a swifter startup
time for RTP, positioning it as a superior alternative in terms
of efficiency.

RTP out-of-place(figure 5) additionally achieves efficient
statistical calculation overlap by building communication
storage space, while RTP-inplace (figure 4)does not require
additional space and is closer to ideal storage. These two
methods embody the tradoff of computational efficiency and
storage efficiency.

3.4.4 Memory Arrangement

The efficacy of distributed training paradigms is often con-
tingent upon judicious memory management. Our RTP
framework introduces a nuanced approach to memory ar-
rangement, optimizing both space and computational effi-
ciency. RTP out-of-place earmarks a distinct communica-
tion buffer exclusively for rotation operations. This strategic
allocation not only streamlines the rotation process but also
engenders efficient overlapping, a critical facet for enhanc-
ing throughput in distributed training.

Within the RTP out-of-place paradigm shown in 5, rotation
operations recur N-1 times, parallel against computation
operations that iterate N times. This differential come from
local copy of the initital weight. Our memory arrange give
the pre-defined TTL of the communication buffer, which
invariably terminates prior to the culmination of the last
iteration, there emerges an opportunity for memory recycle.
Specifically, the memory segment, once dedicated to the
communication buffer, is adeptly repurposed for engender-
ing output activations. This dynamic memory reallocation
mechanism is emblematic of RTP’s commitment to optimal
resource utilization. In scenarios where activation mem-
ory requisites either mirror or surpass those of weights and
gradients, RTP’s out-of-place strategy exhibits a memory
footprint that approximates the theoretical optima.



RTP: Rethinking Tensor Parallelism with Memory Deduplication

4 RTP TRANSFORMERS

We take advantage of the structure of transformer networks
to create a simple RTP implementation with our customized
rotation primitives and a few merge operation. A trans-
former layer consists of a self attention block followed by a
feed forward layer. perceptron (MLP) as shown in Figure 6.
We introduce RTP in Embedding, linear and Self-attention.
A variant transformer layer replace feed forward layer with
mix-of-expert feed forward layer.

• Embedding and Linear Block: Both the embedding
and linear layers in transformers can be represented
using General Matrix Multiply (GEMM) operations.
Drawing inspiration from Megatron-LM, the weight
matrix is split along its columns, which corresponds
to the output dimension. The initial segment of the
MLP block involves a GEMM operation succeeded by
a GeLU nonlinearity. This design mandates N GEMM
operations coupled with N rotation communications.
The forward pass concludes with a concatenation oper-
ation, while the backward pass remains unaffected.

[Y1, Y2] = [

[
GEMM(X1, A1)
GEMM(X2, A1)

]
,

[
GEMM(X1, A2)
GEMM(X2, A2)

]
]

(3)

• Multiple-head-Attention Block: The multihead at-
tention operation is inherently parallelizable. The
GEMMs associated with the key (K), query (Q), and
value (V) matrices are partitioned in a column-parallel
manner. This design choice ensures that each attention
head’s matrix multiplication is localized to a single
GPU. The subsequent GEMM, stemming from the out-
put linear layer post self-attention, is parallelized along
its rows, corresponding to the input dimension. This
architecture necessitates N attention operations paired
with N rotation communications. The forward pass cul-
minates in an addition operation, leaving the backward
pass unaltered.

[Y1, Y2] = [ATTN(X1, A1) +ATTN(X2, A1),

ATTN(X1, A2) +ATTN(X2, A2)]

(4)

• MOE Block: The Mixture of Experts (MOE) block
introduces a new dimension to the RTP framework.
Traditional Data Parallelism (DP) and Fully Sharded
Data Parallelism (FSDP) necessitate the insertion of
all-to-all operations both before and after MOE com-
putations. However, RTP, with its rotation mechanism,
offers a more streamlined approach as shown in figure
7. Expert rotation within the MOE block is executed

as a sequential flow: starting with expert0, followed
by a rotation operation, transitioning to expert1, and
culminating in a concatenation operation. Furthermore,
the RTP-inplace variant allows for concurrent commu-
nication of expert weights during MOE computations,
enhancing computational efficiency. This integration
of expert computations and communications within the
RTP framework ensures enhanced performance and
reduced overheads.

Our RTP approach can be characterized as techniques aimed
at reducing memory duplication. We present further de-
tails about the RTP model with other rotation generation
in Appendix for reference. In summary, our approach as
described above is simple to implement, requiring only a
few extra contact and add operations added to the forward
and backward pass. It is orthogonal and complementary to
the pipeline model parallelism.

5 EVALUATIONS

We embarked on a rigorous evaluation of RTP on state-
of-the-art neural network models, contrasting the outcomes
with those of other prevalent techniques. The specifics of the
experiment are delineated in Section 5.1. The experiments
are categorized into three distinct sections. Section 5.2
delves into RTP’s proficiency in handling models of varying
magnitudes. Section 5.4 sheds light on the implications of
memory deduplication on training dynamics.

5.1 Experiment Setup

For these evaluations, we utilized models such as GPT2,
BERT-large, GPT2-large, GPT2-XL and GPT2-neo. The
LLM models were trained using RTP across 8 A100 80GB
GPUs, interconnected by a NVILINK. The primary aim was
to gauge the memory efficacy RTP in both training and infer-
ence of large-scale neural network models. Furthermore, we
deployed these networks to assess the performance with the
maximum batch size available. Metrics employed in these
experiments included Throughput per GPU, peak memory
allocated.

5.2 Memory Efficiency

In this section, we delve into the performance of RTP when
handling models of diverse scales, ranging from smaller
configurations to the massive GPT-XL 1.5B, and juxtapose
the results with FSDP and DDP. These configuration is
shown on 2, where the batchsize is set as 1.

The experimental outcomes are illustrated in Figure 8. The
memory efficiency of RTP gains over 75% that of FSDP and
85% of DP when evaluating models up to the scale of 774M.
However, while FSDP stop with memory constraints for



RTP: Rethinking Tensor Parallelism with Memory Deduplication

Models Attention Hidden Layers sequence Vocab Embedding
Heads Size length Size Size

GPT2 (117M) 16 768 12 512 50257 3072
BERT-large (340M) 16 1024 24 512 30522 4096

GPT2* (500M) 16 1280 20 1024 50257 5120
GPT2-large (774M) 16 1280 32 1024 50257 5120

GPT2-XL (1.5B) 16 1600 48 1024 50257 6400
GPT2-neo (2.7B) 16 2560 32 1024 50257 10240

Table 2. Model configurations used during evaluation. GPT2 (500M) is our customized model which can fit into A100 80 GPU with 8
batchsize

Figure 8. Model Capacity Evaluation. Tested with a DGX-A100
station with 8 A100 (80GB) GPUs. All the LOCAL BATCH SIZE

is 1.

models surpassing this threshold, RTP seamlessly accom-
modates the GPT-XL model (1.5B), showcasing its prowess
in memory efficiency and optimization.

5.3 Memory Deduplication

To empirically validate the memory deduplication prowess
of our proposed algorithm, we embarked on a comprehen-
sive evaluation involving three distinct neural network archi-
tectures: GPT, BERT-large, and a GPT-up-to-A100 tailored
to closely match the specifications of the A100 80G. These
evaluations were conducted on the single machine with
single-device DDP as idealized computer, a benchmark for
assessing algorithmic efficiency in real-world scenarios.

For the experiment, we set the global batch size to 8, im-
plying that on a singular A100 card, eight distinct sets of
distributed algorithms were executed concurrently on the
GPU, with each set having a batch size per GPU (global-
batch-size/gpu) of 1. The memory storage overhead on each
card was then meticulously recorded, and subsequently mul-
tiplied by eight to facilitate a direct comparison with the
storage overhead observed on the single GPU.

The figure 9 offers some compelling insights. Both RTP-

Figure 9. Model Deduplication Evaluation. Tested with a
DGX-A100 station with 8 A100 (80GB) GPUs. All the
GLOBAL BATCH SIZE is 8.

inplace and RTP-outplace variants showcased memory stor-
age metrics that were in close alignment with those of the
single machine. This is a testament to the efficiency of RTP
in optimizing memory usage without compromising on per-
formance. In stark contrast, both FSDP and TP exhibited
storage overheads that were two to four times greater than
the theoretical benchmarks set by the single machine.

This disparity underscores the optimized memory dedupli-
cation capabilities of RTP. The results unequivocally affirm
that RTP, both in its inplace and outplace variants, is adept
at ensuring optimal memory usage, making it a formidable
tool for researchers and practitioners aiming to maximize
computational efficiency while minimizing memory over-
heads.

5.4 Training Speed

To assess the overall efficiency of our approach, we con-
ducted an evaluation of the end-to-end iteration time for
the GPT-up-to-A100, as depicted in figure 14. Our empiri-
cal results demonstrate that the RTP, as introduced in this
study, results in a throughput reduction ranging from -13%
to -1.7% when compared to data parallelism. Furthermore,
when juxtaposed against FSDP, the performance fluctuates
between a reduction of -10% to -1.6%. Notably, as the



RTP: Rethinking Tensor Parallelism with Memory Deduplication

Figure 10. Throughput evaluation for GPT2-500M

Figure 11. Throughput evaluation for MOE GPT2-500M

batch size augments in tandem with the kernel size, the
performance disparity narrows, eventually converging at
approximately 1000 wps. The intricate relationship between
RTP performance, kernel size, and batch size augmentation
is elaborated upon in section 3.4.1. A particularly interesting
thing is that when the batchsize is full, the FSDP throughput
drops sharply and is strictly weaker than RTP by more than
50

In addition to the aforementioned evaluations, we also
turned our analytical lens towards the Mixture of Experts
(MoE) paradigm. MoE, renowned for its ability to effi-
ciently route input data to specialized sub-networks, was
evaluated in tandem with the throughput performances of
various methodologies, including DP, FSDP, and both RTP
variants. Our observations indicate that RTP would cause
throughput reduction ranging from -23% to -10% compared
to data parallelism and -19% to -9%. Also the large batch-
size downgrade case is also shown in MOE evaluations.

An interesting thing is that when the batchsize is increased,
the additional overhead on FSDP storage is slowly smoothed
out, which allows RTP and FSDP to reach the close maxi-
mum batchsize setting. This can be considered as the Mem-
ory Duplication of FSDP will be recycled and acted upon.

This effectively eliminates additional storage overhead due
to reuse, which would be discussed on appendix A. But at
the same time, after the batchsize is increased, Throughput
of RTP can outperform FSDP. We attribute this to the per-
fect overlapping of RTP. There is no additional waiting time
for calculation and communication in RTP, but FSDP needs
to wait for the first allgather to start working. This Brings
additional throughput benefits to RTP.

Moreover, RTP can achieve 10% to 40% performance gain
on V100 GPU with PCIE, refer appendix B for more infor-
mation.

6 CONCLUSION

The rapid evolution of neural network models has necessi-
tated innovative solutions to address the challenges of scala-
bility and efficiency in training. The paper introduces Ro-
tated Tensor Parallelism (RTP), a groundbreaking approach
that focuses on memory deduplication in distributed train-
ing environments. By strategically decomposing and shard-
ing batch tensors, RTP optimizes memory consumption
by emphasizing both activation and parameter deduplica-
tion. When compared with existing parallelism techniques,
RTP stands out in its ability to reduce memory overheads
and enhance training performance. Notably, RTP aligns
closely with the optimal memory benchmarks set by the
unlimited memory idealized computer and offers significant
memory savings compared to prevalent methods like Fully
Sharded Data Parallelism (FSDP). The introduction of RTP
underscores the importance of memory deduplication in en-
hancing the efficiency of distributed training systems and
positions it as a promising alternative to existing paradigms.

ACKNOWLEDGEMENTS

This work is partially supported by DE-SC0023452 grant
from the Department of Energy. The authors are thankful
for their support.

REFERENCES

In-place Operations. https://docs.nvidia.com/
deeplearning/nccl/user-guide/docs/
usage/inplace.html.

NVIDIA A100 Tensor Core GPU. https://www.
nvidia.com/en-us/data-center/a100/.

Bugnion, E., Devine, S., Govil, K., and Rosenblum, M.
Disco: Running commodity operating systems on scal-
able multiprocessors. ACM Transactions on Computer
Systems (TOCS), 15(4):412–447, 1997.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/inplace.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/inplace.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/inplace.html
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/


RTP: Rethinking Tensor Parallelism with Memory Deduplication

io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,
Mao, M., Ranzato, M., Senior, A., Tucker, P., Yang, K.,
et al. Large scale distributed deep networks. Advances in
neural information processing systems, 25, 2012.

Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P.,
Heek, J., Gilmer, J., Steiner, A. P., Caron, M., Geirhos,
R., Alabdulmohsin, I., et al. Scaling vision transformers
to 22 billion parameters. In International Conference on
Machine Learning, pp. 7480–7512. PMLR, 2023.

Harmes, R. and Diaz, D. The flyweight pattern. Pro
JavaScript Design Patterns, pp. 179–195, 2008.

He, C., Li, S., Soltanolkotabi, M., and Avestimehr,
S. Pipetransformer: Automated elastic pipelining for
distributed training of transformers. arXiv preprint
arXiv:2102.03161, 2021.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. Gpipe:
Efficient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32, 2019.

Imambi, S., Prakash, K. B., and Kanagachidambaresan, G.
Pytorch. Programming with TensorFlow: Solution for
Edge Computing Applications, pp. 87–104, 2021.

Kim, C., Lee, H., Jeong, M., Baek, W., Yoon, B., Kim, I.,
Lim, S., and Kim, S. torchgpipe: On-the-fly pipeline
parallelism for training giant models. arXiv preprint
arXiv:2004.09910, 2020.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P.,
Li, T., Paszke, A., Smith, J., Vaughan, B., Damania, P.,
et al. Pytorch distributed: Experiences on accelerating
data parallel training. arXiv preprint arXiv:2006.15704,
2020.

Liberty, E., Karnin, Z., Xiang, B., Rouesnel, L., Coskun,
B., Nallapati, R., Delgado, J., Sadoughi, A., Astashonok,
Y., Das, P., et al. Elastic machine learning algorithms
in amazon sagemaker. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of
Data, pp. 731–737, 2020.

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,
Devanur, N. R., Ganger, G. R., Gibbons, P. B., and Za-
haria, M. Pipedream: Generalized pipeline parallelism for

dnn training. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, pp. 1–15, 2019.

Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Pat-
wary, M., Korthikanti, V., Vainbrand, D., Kashinkunti, P.,
Bernauer, J., Catanzaro, B., et al. Efficient large-scale
language model training on gpu clusters using megatron-
lm. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis, pp. 1–15, 2021.

OpenAI. Gpt-4 technical report, 2023.

Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Bradbury,
J., Heek, J., Xiao, K., Agrawal, S., and Dean, J. Efficiently
scaling transformer inference. Proceedings of Machine
Learning and Systems, 5, 2023.

Ren, J., Rajbhandari, S., Aminabadi, R. Y., Ruwase, O.,
Yang, S., Zhang, M., Li, D., and He, Y. {ZeRO-Offload}:
Democratizing {Billion-Scale} model training. In 2021
USENIX Annual Technical Conference (USENIX ATC
21), pp. 551–564, 2021.

Sergeev, A. and Del Balso, M. Horovod: fast and easy
distributed deep learning in tensorflow. arXiv preprint
arXiv:1802.05799, 2018.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019.

Singh, P., Manure, A., Singh, P., and Manure, A. Intro-
duction to tensorflow 2.0. Learn TensorFlow 2.0: Imple-
ment Machine Learning and Deep Learning Models with
Python, pp. 1–24, 2020.

Sourouri, M., Gillberg, T., Baden, S. B., and Cai, X. Ef-
fective multi-gpu communication using multiple cuda
streams and threads. In 2014 20th IEEE International
Conference on Parallel and Distributed Systems (IC-
PADS), pp. 981–986. IEEE, 2014.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.



RTP: Rethinking Tensor Parallelism with Memory Deduplication

You, Y., Zhang, Z., Hsieh, C.-J., Demmel, J., and Keutzer,
K. Imagenet training in minutes. In Proceedings of the
47th International Conference on Parallel Processing, pp.
1–10, 2018.

Žák, S. A turing machine time hierarchy. Theoretical
Computer Science, 26(3):327–333, 1983.

Zhao, Y., Gu, A., Varma, R., Luo, L., Huang, C.-C., Xu, M.,
Wright, L., Shojanazeri, H., Ott, M., Shleifer, S., et al.
Pytorch fsdp: experiences on scaling fully sharded data
parallel. arXiv preprint arXiv:2304.11277, 2023.

A PEAK MEMORY SCALE WITH BATCH

In our evaluations, as depicted in Figure 12, we observed
distinct memory scaling behaviors between the Data Paral-
lelism (DP), Fully Sharded Data Parallelism (FSDP), and
our proposed RTP methodology. Specifically, while DP and
FSDP exhibited a non-linear scaling pattern, RTP demon-
strated a linear scaling trend.

A closer examination of the memory arrangement in DP and
FSDP reveals that certain memory allocated for weights and
gradients can be repurposed for activations. This overlap,
while efficient in terms of memory utilization, introduces
complexities that can affect the scaling behavior.

An intriguing observation was the behavior of FSDP as the
batch size increased. The additional overhead associated
with FSDP’s memory storage began to diminish, allowing
RTP and FSDP to converge towards the similar maximum
batch size. This behavior can be attributed to the recy-
cling and subsequent action on the memory duplication in
FSDP, effectively nullifying any additional storage over-
head through reuse. It has been discussed on FSDP paper’s
memory arrangement section.

Figure 12. Memory scale with batch size increase

Put anything that you might normally include after the refer-
ences as an appendix here, not in a separate supplementary
file. Upload your final camera-ready as a single pdf, includ-
ing all appendices.

Figure 13. Throughput evaluation for GPT on V100

Figure 14. Throughput evaluation for MOE GPT on V100

B THROUGHPUT ON V100
To assess the overall efficiency of our approach, we eval-
uated the end-to-end iteration time for the GPT variant
on 8 V100 32 GB with PCIE connection. Our find-
ings indicate that the RTP presented in this paper yield
a throughput reduce ranging between 21% and 37.1% over
the data paralleism, and -10% to 10% performance reduc-
tion/improvement againest FSDP. The performance gap is
becoming smaller when the batch size increase as kernel size
increase. This enhancement in throughput directly translates
to reduced training durations.

An interesting thing is that when the batchsize is increased,
throughput of RTP can outperform FSDP on V100. We
attribute this to the perfect overlapping of RTP. There is no
additional waiting time for calculation and communication
in RTP, but FSDP needs to wait for the first allgather to
start working. This Brings additional throughput benefits to
RTP. A100 with NVILINK bring significant compute and
network performace, where the gain of RTP would be mini-
mized and the memory tranfer time would be new challenge.
Fourtunaly, it can be solved by coupling with other technolo-
gies like flashattention (Dao et al., 2022). This performance
improvement is also shown on MOE experiment.


