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ABSTRACT

Large language models (LLMs) have achieved remarkable success across vari-
ous NLP tasks with a focus on English due to English-centric pre-training and
limited multilingual data. In this work, we focus on the problem of translation,
and while some multilingual LLMs claim to support for hundreds of languages,
models often fail to provide high-quality responses for mid- and low-resource
languages, leading to imbalanced performance heavily skewed in favor of high-
resource languages. We introduce X-ALMA, a model designed to ensure top-
tier performance across 50 diverse languages, regardless of their resource lev-
els. X-ALMA surpasses state-of-the-art open-source multilingual LLMs, such as
Aya-101 (Üstün et al., 2024) and Aya-23 (Aryabumi et al., 2024), in every single
translation direction on the FLORES-200 and WMT’23 test datasets according
to COMET-22. This is achieved by plug-and-play language-specific module ar-
chitecture to prevent language conflicts during training and a carefully designed
training regimen with novel optimization methods to maximize the translation
performance. After the final stage of training regimen, our proposed Adaptive-
Rejection Preference Optimization (ARPO) surpasses existing preference opti-
mization methods in translation tasks.1

1 INTRODUCTION

Large language models (LLMs) such as the GPT series (Brown et al., 2020; OpenAI, 2023), Mistral
(Jiang et al., 2023), LLaMA series (Touvron et al., 2023a;b; Dubey et al., 2024), Gemma series
(Team et al., 2024a;b), inter alia have demonstrated impressive performance across various NLP
tasks. However, the efficacy of LLMs has primarily been evaluated on English tasks, with their
multilingual capabilities receiving less attention due to the models being predominantly pre-trained
on English and the scarcity of multilingual data. Recently, there has been a shift towards multilingual
studies in LLMs. For instance, LLaMA 3 and 3.1 (Dubey et al., 2024) expand the vocabulary from
32K to 128K and pre-train on multilingual texts; Üstün et al. (2024) have introduced Aya-101, a
multilingual generative model supporting 101 languages; and BigTranslate (Yang et al., 2023) and
LLaMAX (Lu et al., 2024) scale LLM-based multilingual translation models to over 100 languages.

Despite the increased language support in LLMs, their performance across most languages falls
short of practical application expectations, especially for mid- and low-resource languages (weak-
ness 1). Furthermore, the performance of high-resource languages tends to be inferior compared
to LLMs trained with fewer languages, a phenomenon known as the ‘curse of multilinguality’
(Conneau et al., 2020) (weakness 2). The weaknesses are prevalent in most current state-of-the-
art (SoTA) massively multilingual models: overall quality decreases as the number of supported
languages increases. Although methods such as building models by focusing on a smaller number
of high-resource languages like German and Chinese can achieve satisfactory performance for these
languages and mitigate these weaknesses (Aryabumi et al., 2024; Xu et al., 2024a;b; Alves et al.,

‡Work done at Microsoft.
1Code is released at https://github.com/fe1ixxu/ALMA. Models and Dataset are released at

https://huggingface/X-ALMA.
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2024), they neglect the needs of mid- and low-resource languages. In this work, we address these
weaknesses and build a multilingual model that achieves consistently high performance across 50
diverse languages, regardless of resource level, with a focus on multilingual machine translation.

Figure 1: Depiction of the general inverse trend between the number of supported languages and
average translation performance. While many state-of-the-art multilingual models claim to support
hundreds of languages, the translation quality is not as high as in models trained on fewer languages,
particularly for mid- and low-resource languages. This is reflected in the trend of decreasing average
scores as more languages are supported. In contrast, we propose X-ALMA, which extends ALMA-R
(Xu et al., 2024a;b) by supporting 44 additional diverse languages with even higher average perfor-
mance, offering top performance across all supported languages, regardless of resource level.

To visualize these weaknesses, let us closely examine current models in the context of multilingual
translation. We evaluate each model on the overlapping set of languages that are supported by the
model and the 50 languages we focus on in this paper.2 As shown in Figure 1, there is a clear trend:
as the number of supported languages increases, the average translation performance decreases. This
is intuitively understandable, as it is difficult for mid- and low-resource languages to reach the same
level of performance as high-resource languages, thus lowering the overall average. For instance,
ALMA-R (Xu et al., 2024b) achieves the highest average translation performance across the 6 lan-
guages it supports, while NLLB-200 (Team et al., 2022) exhibits the lowest average performance on
50 languages, largely due to poorer results in low-resource languages. Although this comparison is
not entirely fair due to the varying number of languages tested, it provides a general indication of
above-mentioned weaknesses in multilingual models.3

Despite the ability of current multilingual models to support hundreds of languages, the hollow
purple star ‘ ’ in the figure represents our ideal model, where the inclusion of more languages does
not diminish the average performance. In this work, we introduce our multilingual translation model,
X-ALMA, represented by the solid golden star ‘ ’ in Figure 1, which extends ALMA(-R) (Xu et al.,
2024a;b) from 6 languages to 50 languages. ALMA-R is one of top-performing translation models
built on LLMs, comparable to WMT winners and GPT-4-turbo. Despite the addition of 44 more
languages, X-ALMA even achieves slightly higher average performance compared to ALMA-R.

We summarize our main contributions as follows, including our model architecture design and train-
ing methodology.

Plug-and-Play Architecture: For capacity reasons, we design X-ALMA with several different
modules with each module serving a group of similar languages. These modules can either be
plugged into the base model individually for the inference of target languages—reducing the neces-

2This is to depict a trend, and we acknowledge that scores are not directly comparable across languages.
3Here we evaluated these models using FLORES-200 (Team et al., 2022) test data and reporting the average

COMET-22 (Rei et al., 2022) across all languages, to or from English.
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sity of loading all expert parameters and saving memory—or all modules can be loaded together in
a mixture-of-experts (MoE) way (Shazeer et al., 2017; Lepikhin et al., 2021).

Effective Training Recipe: The training regimen for X-ALMA consists of three pre-training stages
and two post-training stages, each crucial for achieving optimal performance. Furthermore, in the
final stage, we introduce Adaptive-Rejection Preference Optimization (ARPO), designed to maxi-
mize performance and address the ‘over-rejection’ issue (detailed explanation in Section 4) in trans-
lation preference learning, which current optimization methods struggle to resolve.

State-of-the-Art Performance and Data Release: X-ALMA outperforms existing open-source
multilingual translation models across 50 diverse languages for every single direction only training
on publicly available data, as measured by COMET-22. To enable future work, we also release the
preference learning data for 50 languages and the model checkpoints.

2 BACKGROUND

2.1 PROBLEM DEFINITION

We consider a decoder-only LLM, denoted as πθ, parameterized by θ, for multilingual machine
translation tasks. Let D represent the multilingual dataset, consisting of pairs of a source sentence
x and the corresponding perfect translation y, represented as D = {x, y}. Given a prompt I that
instructs the model to perform the translation, our goal is to maximize the log-likelihood of the
multilingual parallel dataset D: maxθ E(x,y)∼D[log πθ(y|x, I)].

2.2 RELATED WORK

Multilingual Translation Massively Multilingual Translation models (Johnson et al., 2017), in-
cluding open-source models such as PRISM Thompson & Post (2020a;b), M2M-100 (Fan et al.,
2020), and NLLB (Team et al., 2022) combine translation between many language pairs in a single
encoder-decoder model. T5 (Raffel et al., 2020) and mT5 (Xue et al., 2021) considered translation
one of multitask learning.

LLM-Based Translation Initially, decoder-only LLMs struggled to match the performance of con-
ventional encoder-decoder models for MT. For example, GPT-3.5 slightly under-performed the con-
current WMT winners (Hendy et al., 2023), and large open-source models like OPT-175B (Zhang
et al., 2022) performed worse than the 1.3B parameter NLLB model (Team et al., 2022), even on
high-resource languages, as demonstrated by Zhu et al. (2024b). This lead to an increased interest
in smaller LLMs, such as 7B or 13B models, because even smaller models like NLLB-1.3B showed
strong translation capabilities. However, first generation LLM-based MT models such as TIM (Zeng
et al., 2023), SWIE (Chen et al., 2023), and BayLing (Zhang et al., 2023) still lag behind encoder-
decoder models in performance. The under performance of LLMs on translation lead to hybrid
approaches combining LLMs with dedicated NMT models (Petrick et al., 2023; Hoang et al., 2024).
Recently, GPT-4 (OpenAI, 2023) has been reported to achieve top performance in the WMT com-
petition (Kocmi et al., 2023), and smaller LLM-based models, like ALMA(-R) (Xu et al., 2024a;b)
and Tower (Alves et al., 2024), have demonstrated comparable performance to GPT-4 by employ-
ing their specialized training methods. However, the high performance of LLM-based translation
models is limited to a small subset of languages.

Massively Multilingual LLM The limited scope of languages in LLM-based MT models stems
primarily from English-focused pre-training and the use of restricted vocabularies. However, this
limitation has driven interest in expanding these models to support a broader range of languages. The
simplest approach to extending current LLM-based MT models involves expanding the vocabulary
and training on large amounts of parallel data across additional languages (Yang et al., 2023), but this
approach has been shown to degrade model performance. Aya-101 (Üstün et al., 2024) revisits the
encoder-decoder architecture, building a multilingual model based on the largest MT5 (Xue et al.,
2020), designed not only for translation but also for general multilingual QA. Similarly, LLaMAX
(Lu et al., 2024) extends LLaMA-2 and LLaMA-3 to over 100 languages. However, multilingual
models often suffer from reduced performance on mid- and low-resource languages, which can also
negatively impact high-resource language performance. To mitigate this, the decoder-only model
Aya-23 (Aryabumi et al., 2024) focuses exclusively on 23 high-resource languages to maximize
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Figure 2: High-level architecture design of the plug-and-play multilingual model. Each language
group is assigned a specific module that works alongside the base model. These language-specific
modules handle inputs exclusively from their respective language groups, enabling the model to
effectively adapt to different linguistic characteristics while leveraging the shared base model for
comprehensive multilingual learning.

their performance and avoid the ‘curse of multilinguality’. While limiting the number of supported
languages can indeed alleviate some challenges, it reverses the goal of building truly multilingual
models and neglects the needs of mid- and low-resource languages. In this paper, we expand ALMA-
R from 6 languages to 50, ensuring robust performance across all languages.

3 METHODS

3.1 MODEL ARCHITECTURE

Our model architecture consists of: (1) a dense base model, and (2) multiple language-specific (LS)
modules. The core concept of LS modules is to prevent conflicts between languages during training,
such as gradient conflicts (Wang et al., 2021). This design has similarities with the mixture-of-
experts (MoE) approach (Shazeer et al., 2017; Lepikhin et al., 2021), but diverges by not using a
neural-based gate to assign tokens to experts (LS modules). Instead, similar to Xu et al. (2023),
the assignment is hard-gated, i.e., input data is assigned exclusively to the module designated for
its language. Consequently, only the base model and the corresponding LS module are activated,
depending on the input language. Languages are categorized into distinct groups, with each group
sharing a common LS module. An overview of the model architecture is illustrated in Figure 2.

In detail, the base model architecture is built upon the LLaMA-2 architecture (Touvron et al., 2023b).
Each LS module comprises low-rank adaptations (LoRAs) (Hu et al., 2021) integrated into all linear
layers within the attention and multi-layer perceptron (MLP) layers. The total number of parameters
for each LS module is approximately 15% of the base model.

Why This Design? While model architectures such as MoE activate only one expert per example,
all experts must still reside in GPU memory during training and inference, necessitating high-end
GPUs. Moreover, MoE has been reported for its parameter inefficiency in multilingual settings,
e.g., hard-gated language assignment can achieve similar performance to MoE while using 4 times
fewer parameters (Xu et al., 2023). Compared to MoE, our design offers three distinct model-
loading strategies for both training and inference: (1) selectively loading a single, on-demand LS
module, which alleviates GPU memory constraints; (2) merging LS modules with the base model to
generate a new LS LLM model that retains the same parameter count as the base model, facilitating
subsequent use; and (3) loading both the base model and all LS modules as a larger, combined
model, similar to the approach employed by MoE.

3.2 LANGUAGE GROUPING

In this paper, we consider a total of 50 languages, encompassing 14 scripts and 18 language fam-
ilies, to capture the linguistic diversity. The languages are categorized into 8 groups based on two
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Table 1: Language grouping based on linguistic features and balanced number of languages.
Group ID Linguistic Feature Languages

1 Germanic languages af, da, de, is, nl, no, sv, (en)
2 Romance Languages ca, es, gl, it, pt, ro, (en)
3 Eastern and Southern Slavic Languages bg, mk, ru, sr, uk, (en)
4 Southeast Asian Languages fr, id, mg, ms, th, vi, (en)
5 Central and Eastern European Languages cs, el, hu, lt, lv, pl, (en)
6 Eurasian Language Mix et, fi, ja, ka, ko, zh, (en)
7 Indo-Aryan Languages gu, hi, mr, ne, ur, (en)
8 Turkic and Semitic Languages ar, az, fa, he, kk, ky, tr, uz, (en)

criteria: (1) each group should consist of languages that are as similar as possible, and (2) the
number of languages in each group should be balanced. We opted not to use automated tools like
Lang2Vec (Littell et al., 2017) for grouping, as we found that manual grouping based on human
linguistic knowledge yields more accurate classification in line with our criteria. The specific lan-
guages within each group are presented in Table 1 with their ISO-639-1 code. Note that English
(en) is included in all groups to ensure that each group can perform English-centric translation.
More detailed information on these languages is provided in Appendix A.

3.3 TRAINING RECIPE

We provide a comprehensive description of the training recipe for the X-ALMA model, including
three pre-training stages and two post-training stages. An overview of this training recipe is depicted
in the workflow diagram in Appendix B. The specifics of each stage are elaborated upon as follows.

Pre-Training Stage 1: Monolingual Fine-Tuning Base Model The first stage of pre-training is
dedicated exclusively to the base model. During this phase, we fine-tune the base model using 20B
monolingual tokens from all 50 languages, with a sampling ratio proportional to the size of the
available monolingual data for each language, as suggested by Xu et al. (2024a). This stage aims to
facilitate the model’s acquisition of fundamental knowledge across all languages.

Pre-Training Stage 2: Monolingual Fine-Tuning Language-Specific Modules In all subsequent
stages, the base model remains frozen, and the focus shifts to fine-tuning LS modules. During the
second stage of pre-training, each LS module is fine-tuned with 10B monolingual tokens exclusively
from the languages within its respective group. This stage is designed to enable each LS module to
emphasize on learning general knowledge across the specific languages.

Pre-Training Stage 3: Pseudo-Monolingual Fine-tuning In this stage, we continue to fine-tune
the LS modules using pseudo-monolingual data from each module’s language group. This pseudo-
monolingual data is constructed from parallel sentences. While previous studies have indicated
that simple instruction tuning with a large volume of parallel sentences for instruction tuning can
degrade model performance (Xu et al., 2024a; Zhu et al., 2024a), recent research demonstrates that
utilizing parallel data in the pre-training stage can enhance multilingual alignment (Alves et al.,
2024; Kondo et al., 2024; Lu et al., 2024). Similar to these approaches, we combine each available
translation pair to create a new sentence in either a <source sentence><target sentence> or <target
sentence><source sentence> manner, with the order of the source and target sentence in each pair
determined randomly. We then concatenate all the combined translations to construct the pseudo-
monolingual data. Each LS module is fine-tuned on 1.25B tokens.

Post-Training Stage 1: Supervised Fine-tuning Building on the insights from prior research that
small but high-quality multilingual datasets are sufficient to yield impressive performance (Maillard
et al., 2023; Xu et al., 2024a), we supervised fine-tune (SFT) the model using a small, high-quality
parallel dataset at this stage with the translation prompt suggested by Xu et al. (2024a). This fine-
tuning is performed using a simple causal language modeling (CLM) loss.

Post-Training Stage 2: Preference Optimization We also introduce Adaptive Rejection Prefer-
ence Optimization (ARPO) to further enhance translation quality across all languages. ARPO is
designed to address the ‘over-rejection’ issue in MT preference learning, a challenge that other pref-
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erence optimization methods struggle to manage effectively. We will elaborate on our motivations,
methodology, and preference data construction in the following section.

4 ADAPTIVE-REJECTION PREFERENCE OPTIMIZATION

4.1 LIMITATIONS IN CURRENT PREFERENCE LEARNING

When constructing preference data for MT, it is essential that the dis-preferred translation is also of
high quality to ensure meaningful model improvement (Xu et al., 2024b). This results in a scenario
where the preferred and dis-preferred translations are often very similar, differing by only a few
words, which is quite different from the preference data used in open-ended question-answering
(QA) tasks (A detailed example is shown in Appendix C). While many preference optimization
methods have proven effective in various NLP tasks (Rafailov et al., 2024; Azar et al., 2024; Hong
et al., 2024; Meng et al., 2024), we find that they are not well-suited for the MT task because they
tend to reject the entire dis-preferred translation which is similar to the preferred one. This approach
can inadvertently lead to the rejection of most tokens in the preferred translation as well, resulting
in a phenomenon we term over-rejection, where the writing style of the translation outputs is forced
away from the preferred data distribution (further analysis and examples in Section 6.1).

Mathematically speaking, the preference optimization problem can be generally formulated given a

dataset D =
{
x(i), y

(i)
w , y

(i)
l

}N

i=1
, where each data point consists of a prompt (source sentence) x, a

preferred response (translation) yw, and a dis-preferred response yl, for a total of N data points:

L = E(x,yw,yl)∼D

[
f
(
rθ(yw|x)− rθ(yl|x)

)]
, (1)

where f(·) : R → R is a general non-linear function. In many instances, such as in the DPO
method (Rafailov et al., 2024), f is the negative log-likelihood of the Bradley-Terry objective, i.e.,
f(·) = − log σ(·). Here, rθ(y|x) represents the reward of y, calculated according to log-probability
of the policy model parameterized by θ. In the case of DPO, the reward function is defined as
rθ(y|x) = β log(πθ(y|x))− β log(πref(y|x)), where β is a hyperparameter and πref is the reference
model.

As indicated by Equation 1, when yw and yl are too similar, the difference between rθ(yw|x) and
rθ(yl|x) tends to be small and even near 0. Consequently, the near-zero difference between rewards
causes the preference loss to a constant value, such as f(0) = − log σ(0) in the case of DPO. This
makes it challenging for the optimization process to distinguish between the two options, hindering
meaningful improvements.

The challenge becomes even more pronounced in a finite-data regime. While an infinite number of
response pairs with small but precise preference differences could mitigate the optimization difficul-
ties, translation preference data is often sparse and may contain noise (e.g., the AI-labeled preference
data used by Xu et al. (2024b) contains only 2K samples per direction). Consequently, the model is
prone to overfitting to these minor differences, which poses a significant empirical challenge and can
lead to suboptimal learning outcomes, particularly when dealing with a large response (translation)
space, as is the case with LLMs.

4.2 ADAPTIVE REJECTION

To mitigate the over-rejection, we introduce an adaptive penalty, denoted as τθ, which controls the
strength of the dis-preferred term in the loss:

LARPO = E(x,yw,yl)∼D

[
f
(
rθ(yw|x)− τθ(yw, yl) · rθ(yl|x)

)]
. (2)

The value of τθ is determined by the similarity between yw and yl, ranging from 0 to 1:

τθ(yw, yl) = min(eη·zθ(yw,yl) − 1, 1), (3)
where η is a hyperparameter, and zθ(yw, yl) is a function that quantifies the distance between the
the preferred and dis-preferred responses by measuring absolute difference of their average log-
likelihoods:

zθ(yw, yl) = abs(
log(πθ(yw|x))

|yw|
− log(πθ(yl|x))

|yl|
), (4)
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When yw and yl are very similar, the absolute difference between their averaged log-likelihoods is
small, resulting in τθ close to 0, thereby reducing the impact of the dis-preferred term on the loss and
mitigate rejection on this translation. Conversely, when the difference between yw and yl is large,
τθ close to 1, turning the loss back to a standard preference optimization loss.

In the multilingual MT task, we start with contrastive preference optimization (CPO) (Xu et al.,
2024b), which has proven to be one of the most effective optimization methods for translation.

LCPO = −E(x,yw,yl)∼D

[
log σ

(
β log πθ(yw|x)− β log πθ(yl|x)

)
︸ ︷︷ ︸

preference loss

+ log πθ(yw|x)︸ ︷︷ ︸
BC loss

]
. (5)

CPO consists of two components: preference loss and behavior cloning (BC) loss (Hejna et al.,
2023). The BC loss helps prevent the model from drifting too far from the original task. Then, we
incorporate adaptive rejection into the preference term in CPO, resulting in a new loss function:

LARPO = −E(x,yw,yl)∼D

[
log σ

(
β log πθ(yw|x)−τθ(yw, yl)·β log πθ(yl|x)

)
+log πθ(yw|x)

]
. (6)

5 EXPERIMENTS

5.1 DATA

Monolingual and Parallel Data Following the introduction of 50 languages in Section 3.2, we
focus on 98 English-centric translation directions, both into and from English. We test on Flores-200
test data (Team et al., 2022) and WMT’23 (Kocmi et al., 2023). For pre-training stages 1 and 2, we
use monolingual data from OSCAR (Ortiz Su’arez et al., 2019). In pre-training stage 3, we construct
pseudo-monolingual data using NLLB (Schwenk et al., 2021; Heffernan et al., 2022; Team et al.,
2022)4 and OPUS (Tiedemann, 2012; Zhang et al., 2020) parallel training data. Web crawled data
(included in NLLB) has been shown to contain substantial mis-aligned and mis-translated segments
(Khayrallah & Koehn, 2018; Kreutzer et al., 2022) and low-quality machine translated segments
(Thompson et al., 2024). Therefore, in the SFT step—building on the insights from Xu et al. (2024a)
that a small amount of high-quality data can significantly enhance translation performance—we use
the Flores-200 dev set and NTREX (Barrault et al., 2019; Federmann et al., 2022) test data as our
training data to ensure the quality. Given that both Flores-200 and NTREX are multi-way-parallel
datasets (all languages share the same English source sentences), we also incorporate the WMT’15-
22 test data in training. The final data size in the SFT stage for each direction ranges from 3K to 7K,
with an average of 4K per direction.

Preference Data Construction Given the scarcity of preference datasets for multilingual MT, we
describe our approach to constructing preference data for 50 languages. Starting with the parallel
data used in SFT, for each source sentence x, we generate a translation yxalma using X-ALMA that
has been fine-tuned through SFT. Then, the reference translation yref is designated as the preferred
translation, and yxalma as the dis-preferred one, forming our initial preference dataset, denoted as
D1 = {x, yref, yxalma}. Unlike Xu et al. (2024b), we avoid the use of reference-free methods like
XCOMET (Guerreiro et al., 2023) for ranking translations in preference data construction to avoid
potential bias, as the same metrics are used for evaluation. As a result,D1 might contain some noise
due to the assumption that reference translations are always preferred. To reduce this noise, for
high-resource languages, we also employ GPT-4o to produce revised translations ygpt conditioned
on (x, yxalma), drawing on studies that show post-editing by LLMs can improve translation quality
(Ki & Carpuat, 2024; Feng et al., 2024; Raunak et al., 2023). We show the prompts in Appendix D.
Thus, our second preference dataset is defined as D2 = {x, ygpt, yxalma}. We then concatenate the
two datasets to form the final preference dataset, denoted as D = D1 ∪ D2.

5.2 EVALUATION

We report COMET-22 (Rei et al., 2022) as our main metric as suggested by Freitag et al. (2023;
2024). In Appendix E, we also include XCOMET-XL (without references) (Guerreiro et al., 2023) as
recommended by Xu et al. (2024b), and BLEU (Papineni et al., 2002; Post, 2018) for completeness.

4https://huggingface.co/datasets/allenai/nllb
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Table 2: The overall results of Flores test data across each language group in en→xx. Scores
are reported using COMET-22. X-ALMA outperforms both massively multilingual models, such
as Aya-101, and models focus specifically on high-resource languages, like Aya-23. ‘All’ repre-
sents the average performance across all languages in the group, while ‘High’ refers to the average
performance for high-resource languages in the group. Bold numbers represent the highest scores.

Models Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8
All High All High All High All High All High All High All High All High

LLaMA-3.1-8B-Instruct 80.8 79.8 83.7 84.2 79.1 69.2 76.3 85.8 79.0 81.2 71.1 71.8 70.1 69.6 78.3 84.4
NLLB-3.3B 88.2 88.8 88.3 88.1 89.4 89.1 87.1 88.2 89.2 89.8 87.5 87.5 80.1 80.9 88.1 87.5
LLaMAX3-Alpaca-8B 86.4 86.9 86.8 86.6 85.7 82.0 81.7 86.2 86.6 87.1 86.0 87.3 76.5 76.6 82.6 83.6
Aya-101 85.0 85.7 86.8 86.2 87.7 85.6 85.8 85.5 88.4 88.7 87.5 87.3 76.2 75.5 86.8 86.3
Aya-23-8B 75.1 84.7 86.6 86.6 74.4 75.7 74.6 88.7 70.6 77.3 67.1 79.8 68.9 79.3 76.0 87.9
Aya-23-35B 79.6 86.5 87.1 87.0 77.6 78.5 76.7 88.6 82.1 86.0 73.9 84.4 61.9 79.1 68.8 87.8
X-ALMA (only SFT) 89.5 89.7 89.2 88.9 90.7 90.2 88.1 89.1 90.6 90.7 90.1 90.4 82.6 81.4 89.2 88.9
X-ALMA 89.6 89.9 89.4 89.0 90.9 90.5 88.6 89.5 91.0 91.1 90.6 90.8 83.2 81.9 89.4 89.2

Table 3: The overall COMET-22 scores of Flores test data across each language group in xx→en.
Similarly, X-ALMA outperforms all baselines.

Models Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8
All High All High All High All High All High All High All High All High

LLaMA-3.1-8B-Instruct 68.8 77.6 70.9 76.9 51.2 53.8 65.6 76.4 54.8 60.2 58.8 66.9 47.6 53.7 53.7 67.5
NLLB-3.3B 79.1 81.8 84.5 85.0 84.3 83.8 81.1 85.4 74.9 76.0 76.1 77.3 88.3 88.9 79.5 81.6
LLaMAX3-Alpaca-8B 88.3 88.5 88.1 87.9 87.0 86.8 86.2 87.9 87.0 87.2 81.7 87.7 83.6 88.9 84.7 87.7
Aya-101 87.2 88.2 87.6 87.6 85.4 85.5 86.2 87.6 86.3 86.5 86.5 86.7 84.8 87.5 85.9 87.1
Aya-23-8B 84.6 88.2 87.9 87.7 83.3 83.3 79.8 88.5 82.9 85.2 79.9 86.1 71.8 89.1 76.7 88.0
Aya-23-35B 87.4 88.9 88.8 88.6 86.3 86.2 82.3 88.7 86.4 87.2 85.9 88.0 79.4 89.6 82.7 88.6
X-ALMA (only SFT) 89.1 89.2 88.8 88.6 87.9 87.7 87.7 88.8 87.9 88.1 88.2 88.3 89.3 89.8 87.5 88.4
X-ALMA 89.4 89.5 89.2 89.0 88.1 87.8 88.0 88.9 88.2 88.4 88.7 88.8 89.6 90.1 88.0 88.9

5.3 TRAINING SETUP

We use ALMA-13B-Pretrain (Xu et al., 2024a) as our backbone model, which is pre-trained on 6
languages and based on LLaMA-2 (Touvron et al., 2023b). Following Xu et al. (2024a), we pre-train
the backbone model with a batch size of 256, a warm-up ratio of 0.01, and sequences containing
up to 512 tokens. In the post-training stage, the model is fine-tuned for many-to-many multilingual
translation manner using 1 epoch with a batch size of 128, and other settings remain unchanged. For
preference learning, we set η as 1.5 and β as 0.1 for all experiments.

5.4 BASELINES

We use the strongest open-source massively multilingual translation models as our baselines, in-
cluding NLLB-200 (Team et al., 2022), Aya-101 (Üstün et al., 2024), and LLaMAX3-Alpaca (Lu
et al., 2024). Additionally, we compare our model’s translation performance with Aya-23-8B and
Aya-35B (Aryabumi et al., 2024) to demonstrate that increasing the number of supported languages
does not compromise the performance of high-resource languages, effectively mitigating the curse
of multilinguality. We also include LLaMA-3.1-8B-Instruct as a baseline to assess the performance
of one of the latest strong LLMs in multilingual translation.

5.5 RESULTS

We present the average performance for each language group in both en→xx and xx→en direc-
tions on the Flores-200 test data in Tables 2 and 3. The results for WMT’23 in both directions are
provided in Table 4. Detailed results for each translation direction can also be found in Appendix E.

Compared with SoTA Multilingual Open Models: General instruction-tuned LLaMA-3.1 signifi-
cantly lags behind models specifically designed for translation, so we primarily focus on other mod-
els. X-ALMA outperforms other massively multilingual models such as NLLB-3.3B, LLaMAX3-
Alpaca-8B, and Aya-101 on average across all language groups, both into and from English for
both Flores-200 and WMT’23 test sets. Furthermore, X-ALMA surpasses Aya-23-8B and Aya-23-
35B—both of which are tailored for high-resource languages—on average across all high-resource
languages in each group. In fact, as detailed in Appendix E, X-ALMA surpasses all baselines in all
translation directions according to COMET-22 and outperforms in 97 out of 98 directions based on
XCOMET-XL, achieving top translation performance for all languages considered.
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Table 4: Results on WMT’23 dataset reported using COMET-22. The symbol→ represents trans-
lations from English into the target language, while← indicates translations into English.

Models de zh ja ru uk he Avg.
→ ← → ← → ← → ← → ← → ← → ←

ALMA-R-13B 84.0 85.5 85.0 80.6 - - 85.5 83.3 - - - - - -
TowerInstruct-7B-v0.2 83.1 84.6 85.6 80.5 - - 85.3 83.1 - - - - - -
NLLB-3.3B 79.7 66.6 79.6 67.8 81.6 65.8 83.8 76.7 82.8 79.0 83.6 79.9 81.8 72.6
LlamaX3-8B 73.3 79.4 81.5 79.3 81.8 80.1 81.6 81.3 80.6 84.9 82.5 83.0 80.2 81.3
Aya-101 75.1 81.6 78.6 73.7 84.6 77.3 83.1 81.4 82.7 84.5 82.0 82.9 81.0 80.2
Aya-23-8B 80.4 82.1 85.3 78.8 86.5 80.2 84.3 81.6 84.3 85.0 84.3 84.9 84.2 82.1
Aya-23-35B 80.7 82.3 84.6 79.7 86.4 81.6 84.7 82.2 84.0 85.7 84.1 85.9 84.1 82.9
X-ALMA (only SFT) 84.1 85.3 86.1 80.3 86.8 81.6 85.9 82.4 85.3 86.4 86.1 84.4 85.7 83.4
X-ALMA 84.4 85.7 86.7 80.9 87.5 82.4 86.3 83.3 85.5 86.8 86.2 85.6 86.1 84.1

Table 5: Average performance comparison of various preference optimization methods for en→xx
and xx→en on Group 6.

Models Avg. en→xx Avg. xx→en
BLEU COMET-22 XCOMET-XL BLEU COMET-22 XCOMET-XL

XALMA (only SFT) 26.5 90.1 80.3 32.1 88.2 77.4
+ DPO 0.7 53.6 51.1 7.1 79.2 64.6

+ BC 23.5 90.2 80.0 27.8 87.5 77.4
+ SimPO 0.0 16.7 1.5 0.0 16.4 8.9

+ BC 23.3 89.7 78.7 26.6 87.1 76.5
+ KTO 22.1 89.8 79.2 26.4 87.1 76.5

+ BC 26.4 90.3 80.4 29.2 87.5 77.1
+ ORPO 23.0 85.8 75.9 22.7 81.8 70.8
+ CPO 22.2 90.2 79.9 26.5 87.8 77.0
+ ARPO (Final X-ALMA) 27.8 90.6 81.3 32.2 88.7 78.4

Effectiveness of ARPO: ARPO delivers consistent improvements compared to SFT-only models in
Flores-200 and WMT’23. Similarly, as shown in the full results in Appendix E, ARPO enhances
performance in every translation direction as measured by COMET-22 and delivers improvements
in 95 out of 98 directions according to XCOMET-XL. We also compare the effectiveness of ARPO
against other preference optimization methods in Section 6.1.

6 ANALYSIS

All analyses are conducted on languages in Group 6, as it is the most challenging group to learn due
to its mix of typologically diverse Asian and European languages.

6.1 PREFERENCE OPTIMIZATION COMPARISON

Here, we compare ARPO with other popular optimization methods, including DPO (Rafailov et al.,
2024), KTO (Ethayarajh et al., 2024), ORPO (Hong et al., 2024), SimPO (Meng et al., 2024), and the
original CPO (Xu et al., 2024b). As indicated by CPO findings, directly applying preference learning
to the MT task can harm the model, but adding a behavior cloning (BC) regularizer can stabilize
training and improve the performance (Xu et al., 2024b). Following them, we also incorporate a BC
regularizer into optimization methods that do not originally include it to provide a fair comparison.
Table 5 presents the comparison of preference optimization methods across all three metrics. As
shown, ARPO clearly outperforms all baselines.

Over-Rejection Over-rejection manifests itself under the significant shift in writing style away
from the preferred data distribution. We observe a clear and big BLEU scores drop across all other
preference optimization methods, indicating a decline in lexical matching. However, for certain
methods, such as DPO + BC, KTO + BC, and CPO, both COMET scores do not decrease as dras-
tically (and in some cases even improve slightly for en→xx), suggesting that the models still pro-
duce accurate translations that maintain the same semantic meaning, but with a different writing
style. Some translation examples generated by CPO are provided in Appendix F. Unlike ARPO,
methods such as CPO tend to produce a wider range of writing styles to convey the same meaning
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as the reference, many of which are accurate and non-detrimental. However, excessive shifts in
writing style still can introduce translation errors that negatively impact overall quality. These small
number of errors, concealed within a lot of stylistic deviations, are where over-rejection occurs. As
hypothesized in Section 4, the significant style shift is caused by the model rejecting dis-preferred
translations that are similar to preferred ones, leading to an excessive rejection of certain writing
styles from the preferred data. However, ARPO addresses this issue by constraining the stylistic
variation within a more controlled range, thereby mitigating errors caused by over-rejection.

For other methods such as naive DPO and SimPO, which even though work well in other NLP
tasks, the over-rejection severely impairs the model’s ability to generate meaningful translations.
The introduction of ARPO significantly mitigate the over-rejection issue (stable BLEU scores) and
maximize the translation qualities (the highest scores in two COMET metrics).

6.2 ABLATION STUDY

Training Recipe We investigate the impact of each step in the training recipe on model perfor-
mance. The average results for Group 6, both into and from English, are presented in the left part of
Figure 3. The results show a clear trend of consistent performance improvement with each step in
the training process. Note that ‘None’ is the initial checkpoint in our recipe, ALMA-13B-Pretrain.

Parallel Data for SFT For SFT, we use high-quality parallel data from three sources: NTREX,
WMT, and the Flores-200 dev set. Here, we investigate how combining parallel datasets affects per-
formance during the SFT stage. As shown on the right of Figure 3, using only NTREX data already
achieves impressive average translation performance for Group 6. Adding high-quality WMT data
further boosts average performance, particularly for translations into English data. We hypothesize
that this improvement stems from the increased diversity of English data, which mitigates overfitting
to the NTREX English domain—a known issue with multi-way-parallel data, as observed by Aha-
roni et al. (2019). Conversely, incorporating more Flores-200 dev data (also multi-way-parallel) into
training does not result in significant gains, also suggesting that the strong translation performance
is not driven by in-domain Flores-200 data.
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Figure 3: Left: ablation study on each stage of the training recipe, demonstrating that adding each
stage leads to consistent performance improvements. Right: ablation study on the impact of parallel
data composition during the SFT stage. Adding WMT data to NTREX significantly enhances model
performance, while adding Flores-200 data provides no noticeable improvement.

7 CONCLUSION

We tackled the challenge of achieving high translation quality while scaling to a large number of
languages, a limitation seen in many state-of-the-art multilingual models. We have introduced X-
ALMA, an LLM-based multilingual translation system that prioritizes translation quality across all
supported 50 languages, regardless of resource level. X-ALMA surpasses SoTA open models such
as Aya-101 and Aya-23 in all translation directions on the FLORES-200 and WMT’23 test datasets,
as measured by COMET-22. X-ALMA is built on a plug-and-play architecture with language-
specific modules, complemented by a carefully designed training recipe. In particular, the final
stage of the recipe, ARPO, achieves further performance gains and outperforms existing preference
optimization methods in translation tasks, while successfully mitigating the over-rejection issue.
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Koehn, André Martins, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt
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Kevin Heffernan, Onur Çelebi, and Holger Schwenk. Bitext mining using distilled sentence rep-
resentations for low-resource languages. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2022, pp. 2101–2112,
Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.findings-emnlp.154. URL https://aclanthology.org/2022.
findings-emnlp.154.

Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W Bradley Knox, and
Dorsa Sadigh. Contrastive prefence learning: Learning from human feedback without rl. arXiv
preprint arXiv:2310.13639, 2023.

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf, Vikas Raunak, Mohamed Gabr, Hitokazu Mat-
sushita, Young Jin Kim, Mohamed Afify, and Hany Hassan Awadalla. How good are gpt models
at machine translation? a comprehensive evaluation. arXiv preprint arXiv:2302.09210, 2023.

Hieu Hoang, Huda Khayrallah, and Marcin Junczys-Dowmunt. On-the-fly fusion of large language
models and machine translation. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.),
Findings of the Association for Computational Linguistics: NAACL 2024, pp. 520–532, Mex-
ico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-naacl.35. URL https://aclanthology.org/2024.findings-naacl.35/.

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model. arXiv preprint arXiv:2403.07691, 2(4):5, 2024.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

12

https://arxiv.org/abs/2010.11125
https://aclanthology.org/2022.sumeval-1.4
https://aclanthology.org/2023.wmt-1.51/
https://aclanthology.org/2024.wmt-1.2/
https://aclanthology.org/2022.findings-emnlp.154
https://aclanthology.org/2022.findings-emnlp.154
https://aclanthology.org/2024.findings-naacl.35/


Published as a conference paper at ICLR 2025

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil
Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, Macduff Hughes, and Jeffrey
Dean. Google‘s multilingual neural machine translation system: Enabling zero-shot transla-
tion. Transactions of the Association for Computational Linguistics, 5:339–351, 2017. doi:
10.1162/tacl a 00065. URL https://aclanthology.org/Q17-1024/.

Huda Khayrallah and Philipp Koehn. On the impact of various types of noise on neural machine
translation. In Alexandra Birch, Andrew Finch, Thang Luong, Graham Neubig, and Yusuke
Oda (eds.), Proceedings of the 2nd Workshop on Neural Machine Translation and Generation,
pp. 74–83, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
10.18653/v1/W18-2709. URL https://aclanthology.org/W18-2709/.

Dayeon Ki and Marine Carpuat. Guiding large language models to post-edit machine translation
with error annotations. arXiv preprint arXiv:2404.07851, 2024.

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden, Ondřej Bojar, Anton Dvorkovich, Christian
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Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, Anna Sun, Skyler
Wang, Guillaume Wenzek, Al Youngblood, Bapi Akula, Loic Barrault, Gabriel Mejia Gonzalez,
Prangthip Hansanti, John Hoffman, Semarley Jarrett, Kaushik Ram Sadagopan, Dirk Rowe, Shan-
non Spruit, Chau Tran, Pierre Andrews, Necip Fazil Ayan, Shruti Bhosale, Sergey Edunov, Angela
Fan, Cynthia Gao, Vedanuj Goswami, Francisco Guzmán, Philipp Koehn, Alexandre Mourachko,
Christophe Ropers, Safiyyah Saleem, Holger Schwenk, and Jeff Wang. No language left be-
hind: Scaling human-centered machine translation. 2022. URL https://arxiv.org/abs/
2207.04672.

Brian Thompson and Matt Post. Automatic machine translation evaluation in many languages via
zero-shot paraphrasing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 90–121, Online, November 2020a. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2020.emnlp-main.8. URL https://aclanthology.
org/2020.emnlp-main.8/.

Brian Thompson and Matt Post. Paraphrase generation as zero-shot multilingual translation: Dis-
entangling semantic similarity from lexical and syntactic diversity. In Proceedings of the Fifth
Conference on Machine Translation, pp. 561–570, Online, November 2020b. Association for
Computational Linguistics. URL https://aclanthology.org/2020.wmt-1.67/.

Brian Thompson, Mehak Dhaliwal, Peter Frisch, Tobias Domhan, and Marcello Federico. A
shocking amount of the web is machine translated: Insights from multi-way parallelism. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Com-
putational Linguistics: ACL 2024, pp. 1763–1775, Bangkok, Thailand, August 2024. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.103. URL https:
//aclanthology.org/2024.findings-acl.103/.

Jörg Tiedemann. Parallel data, tools and interfaces in OPUS. In Nicoletta Calzolari, Khalid Choukri,
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Ahmet Üstün, Viraat Aryabumi, Zheng-Xin Yong, Wei-Yin Ko, Daniel D’souza, Gbemileke
Onilude, Neel Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid, et al. Aya model: An in-
struction finetuned open-access multilingual language model. arXiv preprint arXiv:2402.07827,
2024.

Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. Gradient vaccine: Investigating and
improving multi-task optimization in massively multilingual models. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
F1vEjWK-lH_.

Haoran Xu, Weiting Tan, Shuyue Li, Yunmo Chen, Benjamin Van Durme, Philipp Koehn, and
Kenton Murray. Condensing multilingual knowledge with lightweight language-specific mod-
ules. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 1575–1587, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.97. URL
https://aclanthology.org/2023.emnlp-main.97.

Haoran Xu, Young Jin Kim, Amr Sharaf, and Hany Hassan Awadalla. A paradigm shift in machine
translation: Boosting translation performance of large language models. In The Twelfth Interna-
tional Conference on Learning Representations, 2024a. URL https://openreview.net/
forum?id=farT6XXntP.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton
Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of llm
performance in machine translation. In Forty-first International Conference on Machine Learning,
2024b.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text transformer. arXiv
preprint arXiv:2010.11934, 2020.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. mT5: A massively multilingual pre-trained text-to-text transformer. In
Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven
Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 483–498, Online, June 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.naacl-main.41. URL https://aclanthology.org/
2021.naacl-main.41/.

Wen Yang, Chong Li, Jiajun Zhang, and Chengqing Zong. Bigtrans: Augmenting large lan-
guage models with multilingual translation capability over 100 languages. arXiv preprint
arXiv:2305.18098, 2023.

Jiali Zeng, Fandong Meng, Yongjing Yin, and Jie Zhou. Tim: Teaching large language models to
translate with comparison. arXiv preprint arXiv:2307.04408, 2023.

Biao Zhang, Philip Williams, Ivan Titov, and Rico Sennrich. Improving massively multilin-
gual neural machine translation and zero-shot translation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational Linguistics, pp. 1628–1639, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.148. URL
https://aclanthology.org/2020.acl-main.148.

Shaolei Zhang, Qingkai Fang, Zhuocheng Zhang, Zhengrui Ma, Yan Zhou, Langlin Huang, Mengyu
Bu, Shangtong Gui, Yunji Chen, Xilin Chen, et al. Bayling: Bridging cross-lingual alignment and
instruction following through interactive translation for large language models. arXiv preprint
arXiv:2306.10968, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

16

https://openreview.net/forum?id=F1vEjWK-lH_
https://openreview.net/forum?id=F1vEjWK-lH_
https://aclanthology.org/2023.emnlp-main.97
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP
https://aclanthology.org/2021.naacl-main.41/
https://aclanthology.org/2021.naacl-main.41/
https://aclanthology.org/2020.acl-main.148


Published as a conference paper at ICLR 2025

Dawei Zhu, Sony Trenous, Xiaoyu Shen, Dietrich Klakow, Bill Byrne, and Eva Hasler. A
preference-driven paradigm for enhanced translation with large language models. In Kevin Duh,
Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pp. 3385–3403, Mexico City, Mexico, June 2024a. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.186. URL https:
//aclanthology.org/2024.naacl-long.186.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu, Shujian Huang, Lingpeng Kong, Jiajun Chen,
and Lei Li. Multilingual machine translation with large language models: Empirical results and
analysis. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Findings of the Association
for Computational Linguistics: NAACL 2024, pp. 2765–2781, Mexico City, Mexico, June 2024b.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.176. URL
https://aclanthology.org/2024.findings-naacl.176.

Vilém Zouhar, Shuoyang Ding, Anna Currey, Tatyana Badeka, Jenyuan Wang, and Brian Thomp-
son. Fine-tuned machine translation metrics struggle in unseen domains. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pp. 488–500, Bangkok, Thailand, Au-
gust 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-short.45. URL
https://aclanthology.org/2024.acl-short.45/.

17

https://aclanthology.org/2024.naacl-long.186
https://aclanthology.org/2024.naacl-long.186
https://aclanthology.org/2024.findings-naacl.176
https://aclanthology.org/2024.acl-short.45/


Published as a conference paper at ICLR 2025

APPENDIX CONTENTS

Appendix Sections Contents
Appendix A Language Information

Appendix B Illustration of Training Recipe

Appendix C Reward Differences of MT and QA

Appendix D Prompts

Appendix E Full Results of All Directions

Appendix F Examples of Over-Rejection

A LANGUAGE INFORMATION

We provide detailed information on the eight language groups, including their scripts, language
families, and resource levels, in Table 6. Each group includes English to ensure that each language-
specific module supports English-centric translation and to prevent catastrophic forgetting of En-
glish. While we primarily grouped languages based on linguistic similarity, the grouping is not
perfect. This is due to the need to balance the number of languages in each group and the inherent
nature of language resources. For example, Group 6 is a mix of Asian and European languages,
and although most languages in Group 4 are Southeast Asian languages, we include French as an
additional bonus language to facilitate cross-lingual transfer, especially since most languages in this
group are low- and mid-resource.

Table 6: Detailed information of all langauges.

Language ISO-639-1 Script Family Subgroup Resource
English en Latin Indo-European Germanic High

Group 1: Germanic languages
Afrikaans af Latin Indo-European Germanic Mid

Danish da Latin Indo-European Germanic Mid
Dutch nl Latin Indo-European Germanic High

German de Latin Indo-European Germanic High
Icelandic is Latin Indo-European Germanic Low

Norwegian no Latin Indo-European Germanic Low
Swedish sv Latin Indo-European Germanic High

Group 2: Romance Languages
Catalan ca Latin Indo-European Italic High
Galician gl Latin Indo-European Italic Mid
Italian it Latin Indo-European Italic High

Portuguese pt Latin Indo-European Italic High
Romanian ro Latin Indo-European Italic Mid
Spanish es Latin Indo-European Italic High

Group 3: Eastern and Southern Slavic Languages
Bulgarian bg Cyrillic Indo-European Balto-Slavic Mid

Macedonian mk Cyrillic Indo-European Balto-Slavic Low
Russian ru Cyrillic Indo-European Balto-Slavic High
Serbian sr Cyrillic Indo-European Balto-Slavic High

Ukrainian uk Cyrillic Indo-European Balto-Slavic Mid
Group 4: Southeast Asian Languages

French fr Latin Indo-European Italic High
Indonesian id Latin Austronesian Malayo-Polynesian Mid
Malagasy mg Latin Austronesian Malayo-Polynesian Low

Malay ms Latin Austronesian Malayo-Polynesian Mid
Thai th Thai Tai-Kadai Kam-Tai Mid

Vietnamese vi Latin Austronesian Vietic High
Continued on next page
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Language ISO-639-1 Script Family Subgroup Resource
Group 5: Central and Eastern European Languages

Czech cs Latin Indo-European Balto-Slavic High
Greek el Greek Indo-European Graeco-Phrygian Mid

Hungarian hu Latin Uralic Finnic High
Latvian lv Latin Indo-European Balto-Slavic Mid

Lithuanian lt Latin Indo-European Balto-Slavic Mid
Polish pl Latin Indo-European Balto-Slavic High

Group 6: Eurasian Language Mix
Chinese zh Han Sino-Tibetan Sinitic High
Estonian et Latin Uralic Finnic Mid
Finnish fi Latin Uralic Finnic High

Georgian ka Georgian Kartvelian Georgian-Zan Mid
Japanese ja Japanese Japonic Japanesic High
Korean ko Hangul Koreanic Korean High

Group 7: Indo-Aryan Languages
Gujarati gu Gujarati Indo-European Indo-Aryan Low
Hindi hi Devanagari Indo-European Indo-Aryan High

Marathi mr Devanagari Indo-European Indo-Aryan Low
Nepali ne Devanagari Indo-European Indo-Aryan Low
Urdu ur Arabic Indo-European Indo-Aryan Mid

Group 8: Turkic and Semitic Languages
Arabic ar Arabic Afro-Asiatic Semitic High

Azerbaijani az Arabic/Latin Turkic Common Turkic Low
Hebrew he Hebrew Afro-Asiatic Semitic Mid
Kazakh kk Cyrillic Turkic Common Turkic Mid
Kyrgyz ky Cyrillic Turkic Common Turkic Low
Persian fa Arabic Indo-European Iranian High
Turkish tr Latin Turkic Common Turkic High
Uzbek uz Latin Turkic Common Turkic Low

B ILLUSTRATION OF TRAINING RECIPE

Here, we illustrate an overview of our 5-step training recipe in Figure 4.

Figure 4: This diagram of the multi-stage process of fine-tuning a multilingual model. In Pre-
Training Stage 1, the base model is fine-tuned using 20B tokens of monolingual data from 50
languages. The process continues with Pre-Training Stage 2, where language-specific modules
are fine-tuned with 10B monolingual tokens. Pre-Training Stage 3 introduces pseudo-monolingual
fine-tuning, using randomly concatenated parallel sentences to improve multilingual alignment. The
model then undergoes Post-Training Stage 1, where SFT is performed on high-quality parallel data,
followed by Post-Training Stage 2, which applies Adaptive Contrastive Preference Optimization to
address over-rejection issues in translation preference learning.
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C REWARD DIFFERENCES OF MT AND QA

Here, we present a comparison of the reward difference between machine translation (MT) tasks
and open-ended question answering (QA) tasks in preference learning. Figure 5 illustrates the cu-
mulative distribution of reward differences for the MT preference dataset, as described in Section
5, alongside the multilingual preference data from the Aya open-ended QA dataset (Singh et al.,
2024) for languages in Group 6. The reward differences are sorted in ascending order, and their
cumulative probabilities are displayed. The reward difference is computed using the CPO loss func-
tion: log πθ(yw|x)− log πθ(yl|x). The construction of the Aya preference dataset follows the same
methodology as the MT preference data, where we fine-tune the Aya QA dataset via SFT and use
the fine-tuned model to generate answers for the training data. System-generated responses are
treated as dis-preferred, while original references are considered preferred. As shown in Figure 5,
the open-ended QA task exhibits significantly larger reward differences compared to machine trans-
lation. For instance, the maximum reward difference for the smallest 80% of MT preference data is
20, whereas it is approximately 300 for Aya QA. Similarly, the maximum reward difference for the
MT preference data is 131, while that for Aya QA is nearly tenfold larger.
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Figure 5: Cumulative distribution of reward differences between machine translation and open-
ended question answering tasks in contrastive preference optimization.

D PROMPTS

In Figure 6, we present the prompt used for GPT-4o post-editing during the construction of the
preference dataset, as well as the prompt used for X-ALMA in generating translations.

E FULL RESULTS

We report translation quality using XCOMET-XL, as recent WMT metric shared tasks (Freitag et al.,
2023; 2024) have found high correlation between trained metrics like XCOMET-XL and human
preferences. However, those findings are limited to a few languages, and correlation with human
judgments has also been shown to degrade for trained metrics in out of domain (relative to WMT,
i.e. FLORES) settings (Zouhar et al., 2024). For these reasons we also report the more traditional
BLEU metric.

Tables 7 to 14 present the results for each translation direction across language groups in the Flores-
200 dataset, while Table 15 shows the full results for the WMT’23 dataset. On the Flores-200
dataset, X-ALMA surpasses all other open-source multilingual models in every translation direction
according to COMET-22, and in 97 out of 98 directions according to XCOMET-XL. Additionally,
ARPO, when compared to SFT, demonstrates superior performance in all translation directions re-
ported by COMET-22 and in 95 out of 98 directions according to XCOMET-XL.
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System: 
You are a native speaker of both <source language>  and <target language> . You are 
an expert post editor of translations from <source language>  into <target language> 
and a helpful assistant dedicated to improving translation quality. You will be 
provided with a source sentence in <source language>  and its translation in <target 
language> . Your task is to carefully analyze provided source sentence and 
translation, and suggest improvements to the translation. Note that you only need to 
generate a refined translation in <target sentence>  and do not generate anything else.

User: 
The source sentence in <source language>  is: <source sentence>
The translation in <target language>  is: <X-ALMA translated sentence>
Note that you only need to generate a refined translation in <target language>  and do 
not generate anything else.

------------------------------------------------------------------------------------------------------------

<s>[INST] Translate this from <source language>  to <target language>:
<source language> : <source sentence>
<target language> : [/INST]

GPT-4o Post-Edit Prompt

X-ALMA Translation Chat Template

Figure 6: Prompts used for GPT-4o post editing and X-ALMA translation generation.

Table 7: Full results for Group 1 in the Flores test data.
Models en→af en→da en→de en→is

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
LLaMA-3.1-8B-Instruct 34.4 84.8 74.5 37.3 86.6 71.7 30.2 77.5 68.8 11.9 69.4 53.6
NLLB-3.3B 38.9 87.4 74.8 44.5 90.0 76.8 40.0 88.1 76.2 24.5 84.6 74.1
LLaMAX2-Alpaca-7B 38.1 86.2 73.2 40.3 89.5 76.2 32.2 86.6 75.0 20.4 82.9 72.3
LLaMAX3-Alpaca-8B 38.5 86.0 72.7 38.2 88.6 73.6 31.4 85.4 72.4 18.3 81.2 69.5
Aya-101 22.5 78.8 40.8 34.2 87.6 62.9 29.3 84.3 67.5 20.9 84.3 74.5
Aya-23-8B 17.6 79.6 68.2 19.3 76.4 56.6 36.8 88.1 77.0 1.6 38.4 9.6
Aya-23-35B 26.7 81.2 67.9 29.0 82.9 65.5 37.0 88.1 77.2 5.9 51.0 28.6
X-ALMA (only SFT) 44.2 87.5 75.0 48.6 91.8 79.2 41.2 88.7 77.9 28.0 87.2 78.5
X-ALMA (Ours) 43.0 87.6 75.8 48.9 92.0 79.7 41.1 88.8 78.0 27.4 87.2 78.5

en→nl en→no en→sv Avg. en→xx
BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET

LLaMA-3.1-8B-Instruct 22.1 81.1 72.5 27.0 85.6 74.0 34.4 80.8 67.3 28.2 80.8 68.9
NLLB-3.3B 27.5 87.5 76.7 33.0 88.9 76.6 44.3 90.7 78.0 36.1 88.2 76.2
LLaMAX2-Alpaca-7B 23.4 86.4 76.2 30.1 88.9 78.1 39.3 89.6 77.7 32.0 87.1 75.5
LLaMAX3-Alpaca-8B 23.3 86.3 75.9 28.0 87.8 74.2 38.7 89.1 75.6 30.9 86.4 73.4
Aya-101 22.1 85.8 72.2 26.9 87.5 69.0 31.3 86.9 61.2 26.7 85.0 64.0
Aya-23-8B 26.0 87.9 78.8 15.7 77.3 60.0 20.8 78.3 59.7 19.7 75.1 58.5
Aya-23-35B 26.6 87.7 78.2 22.1 82.4 67.6 28.8 83.7 67.9 25.2 79.6 64.7
X-ALMA (only SFT) 29.3 88.8 80.2 35.0 90.6 80.8 47.0 91.7 80.8 39.1 89.5 78.9
X-ALMA (Ours) 29.5 89.0 80.4 34.2 90.8 81.5 47.2 91.8 81.0 38.7 89.6 79.3

af→en da→en de→en is→en

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
LLaMA-3.1-8B-Instruct 14.5 66.2 33.9 21.0 66.5 52.5 36.0 78.6 72.3 3.2 43.4 42.0
NLLB-3.3B 40.6 80.3 62.7 34.4 83.0 66.0 28.6 81.3 64.5 16.2 64.2 42.9
LLaMAX2-Alpaca-7B 53.5 88.9 76.1 46.0 89.7 79.8 41.4 88.9 78.5 31.2 84.8 75.0
LLaMAX3-Alpaca-8B 53.1 89.0 76.0 45.3 89.6 79.6 40.5 88.8 78.4 32.5 85.6 75.8
Aya-101 43.2 86.1 65.4 42.4 89.2 75.9 39.7 88.5 77.9 27.2 82.3 68.4
Aya-23-8B 46.9 85.3 70.6 42.6 87.7 76.8 43.9 89.3 78.9 13.0 68.0 46.5
Aya-23-35B 54.3 88.3 74.9 47.3 89.7 79.4 45.1 89.5 78.6 24.5 78.5 66.1
X-ALMA (only SFT) 58.8 89.9 76.2 49.6 90.2 79.5 45.7 89.6 78.7 37.7 87.1 76.3
X-ALMA (Ours) 58.6 90.0 76.6 49.7 90.7 80.4 45.3 89.8 79.2 37.4 87.2 76.6

nl→en no→en sv→en Avg. xx→en
BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET

LLaMA-3.1-8B-Instruct 27.6 78.7 74.1 23.1 72.7 54.1 36.2 75.5 70.5 23.1 68.8 57.1
NLLB-3.3B 25.3 81.9 68.0 32.1 80.7 63.9 35.0 82.3 64.4 30.3 79.1 61.8
LLaMAX2-Alpaca-7B 30.4 87.1 78.7 41.5 88.5 79.3 46.0 89.8 80.1 41.4 88.2 78.2
LLaMAX3-Alpaca-8B 30.1 87.1 78.3 41.8 88.5 79.1 45.6 89.5 79.6 41.3 88.3 78.1
Aya-101 30.1 86.9 78.3 39.5 88.1 76.0 44.3 89.4 78.5 38.1 87.2 74.4
Aya-23-8B 31.9 87.5 79.0 38.5 86.5 75.8 42.6 87.9 76.7 37.0 84.6 72.0
Aya-23-35B 33.9 87.8 78.8 43.2 88.5 78.8 46.9 89.5 79.6 42.2 87.4 76.6
X-ALMA (only SFT) 34.2 87.6 78.2 45.7 89.1 79.0 50.0 90.2 79.8 46.0 89.1 78.2
X-ALMA (Ours) 33.9 88.1 79.3 45.7 89.5 79.5 50.5 90.6 80.6 45.9 89.4 78.9
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Table 8: Full results for Group 2 in the Flores test data.
Models en→ca en→es en→gl en→it

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
Llama-3.1 37.5 86.8 77.8 25.0 83.9 77.2 30.2 84.3 74.0 24.9 81.7 72.8
NLLB-3.3B 43.1 87.8 77.6 28.6 86.5 80.0 35.7 87.3 76.8 31.3 88.5 80.5
LLaMAX2-Alpaca-7B 37.7 87.2 78.1 25.1 85.5 79.0 31.5 86.5 77.2 26.0 87.0 78.9
LLaMAX3-Alpaca-8B 36.3 86.5 76.5 24.1 85.0 76.1 31.2 86.4 76.6 26.5 86.9 77.7
Aya-101 37.8 87.1 77.9 24.2 85.3 78.2 32.7 86.7 78.0 25.6 87.0 78.5
Aya-23-8B 25.1 81.7 71.9 27.8 86.4 80.6 17.2 82.7 77.3 30.2 88.4 81.0
Aya-23-35B 33.1 83.9 73.8 27.7 86.2 80.1 25.3 84.2 76.4 30.5 88.2 80.3
X-ALMA (only SFT) 45.7 89.0 80.6 29.5 87.2 81.8 39.0 88.4 80.1 32.5 89.1 82.1
X-ALMA (Ours) 45.3 89.0 80.6 29.5 87.3 81.0 38.8 88.7 80.6 32.7 89.3 82.3

en→pt en→ro Avg. en→xx
BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET

Llama-3.1 42.4 84.2 75.7 30.5 81.2 75.1 31.7 83.7 75.4
NLLB-3.3B 49.6 89.6 80.4 37.6 90.2 87.1 37.6 88.3 80.4
LLaMAX2-Alpaca-7B 41.9 88.6 79.7 31.8 88.6 85.9 32.3 87.2 79.8
LLaMAX3-Alpaca-8B 41.5 88.1 77.0 32.7 88.1 84.0 32.0 86.8 78.0
Aya-101 32.5 85.3 60.5 34.9 89.4 86.9 31.3 86.8 76.6
Aya-23-8B 48.4 89.9 81.7 37.9 90.6 89.3 31.1 86.6 80.3
Aya-23-35B 48.6 89.7 81.0 38.4 90.7 88.9 33.9 87.1 80.1
X-ALMA (only SFT) 49.9 90.2 82.4 42.2 91.5 90.6 39.8 89.2 82.9
X-ALMA (Ours) 50.2 90.4 82.8 43.3 91.6 90.8 40.0 89.4 83.0

ca→en es→en gl→en it→en

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
Llama-3.1 38.7 78.1 72.7 26.6 76.2 71.4 9.2 53.2 48.5 24.1 71.6 67.3
NLLB-3.3B 37.9 83.7 70.6 27.1 85.3 76.3 34.7 84.0 71.7 28.8 84.4 73.1
LLaMAX2-Alpaca-7B 43.6 88.4 78.4 29.3 86.8 78.4 38.7 88.0 78.2 31.9 87.6 78.9
LLaMAX3-Alpaca-8B 42.9 88.3 78.1 29.0 86.7 78.1 38.6 88.0 78.0 31.3 87.5 78.5
Aya-101 41.1 87.6 75.6 28.8 86.8 78.0 35.5 86.9 72.7 31.2 87.4 78.1
Aya-23-8B 39.5 85.8 75.9 31.3 87.4 78.6 37.3 87.0 76.5 34.1 88.1 79.0
Aya-23-35B 46.3 88.4 77.8 33.1 87.7 78.5 41.7 88.5 78.0 36.0 88.3 78.9
X-ALMA (only SFT) 48.6 89.2 77.8 34.9 87.7 77.8 44.9 89.0 77.9 36.9 88.3 78.5
X-ALMA (Ours) 48.7 89.6 78.7 33.0 87.9 79.0 44.6 89.2 78.4 35.5 88.6 79.3

pt→en ro→en Avg. xx→en
BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET

Llama-3.1 43.9 81.9 74.0 20.1 64.6 61.0 27.1 70.9 65.8
NLLB-3.3B 42.3 86.7 75.1 31.4 83.0 74.1 33.7 84.5 73.5
LLaMAX2-Alpaca-7B 45.7 89.0 79.9 40.0 88.8 88.2 38.2 88.1 80.3
LLaMAX3-Alpaca-8B 46.3 89.1 79.6 40.4 88.9 88.0 38.1 88.1 80.1
Aya-101 43.8 88.7 78.1 37.8 88.4 85.6 36.4 87.6 78.0
Aya-23-8B 49.7 89.7 80.0 43.5 89.5 88.6 39.2 87.9 79.8
Aya-23-35B 51.5 89.9 80.0 46.0 89.7 88.3 42.4 88.8 80.2
X-ALMA (only SFT) 51.0 89.7 79.4 46.8 89.7 88.2 43.8 88.9 79.9
X-ALMA (Ours) 50.3 90.0 80.2 45.7 90.0 88.8 43.0 89.2 80.7

Table 9: Full results for Group 3 in the Flores test data.
Models en→bg en→mk en→ru en→sr

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
Llama-3.1 29.6 87.8 74.2 24.9 85.7 74.3 14.4 63.0 45.1 1.4 75.3 75.4
NLLB-3.3B 40.5 90.9 77.5 34.4 88.8 77.4 32.2 89.2 77.5 33.8 89.0 77.1
LLaMAX2-Alpaca-7B 33.0 89.6 77.1 29.6 87.9 77.5 25.4 87.9 76.3 8.1 79.3 77.4
LLaMAX3-Alpaca-8B 32.2 89.0 76.8 29.3 87.4 77.0 26.4 87.7 76.4 5.8 76.2 73.8
Aya-101 34.3 90.0 78.4 30.7 88.7 79.0 27.2 88.3 77.5 23.3 82.9 73.2
Aya-23-8B 6.7 73.3 60.4 2.9 57.1 42.3 29.9 89.6 79.4 0.9 61.7 55.0
Aya-23-35B 17.0 75.7 56.3 9.6 65.4 51.3 31.2 89.6 79.1 1.1 67.4 65.1
X-ALMA (only SFT) 42.1 91.7 80.9 37.3 90.4 80.9 32.3 90.1 80.2 36.4 90.2 81.4
X-ALMA (Ours) 41.7 91.8 81.1 37.6 90.6 81.4 32.9 90.3 80.5 36.8 90.7 81.6

en→uk Avg. en→xx

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
Llama-3.1 22.9 83.6 69.6 18.6 79.1 67.7
NLLB-3.3B 30.3 89.1 74.4 34.2 89.4 76.8
LLaMAX2-Alpaca-7B 24.3 88.0 74.8 24.1 86.5 76.6
LLaMAX3-Alpaca-8B 25.5 87.9 74.3 23.8 85.7 75.6
Aya-101 25.1 88.7 75.7 28.1 87.7 76.8
Aya-23-8B 29.4 90.2 78.1 13.9 74.4 63.0
Aya-23-35B 30.3 90.0 77.3 17.8 77.6 65.8
X-ALMA (only SFT) 31.8 90.8 78.8 36.0 90.7 80.4
X-ALMA (Ours) 32.0 90.9 78.9 36.2 90.9 80.7

bg→en mk→en ru→en sr→en

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
Llama-3.1 10.8 53.7 46.7 1.5 39.7 43.1 14.4 61.0 48.2 6.0 46.6 48.8
NLLB-3.3B 37.6 86.0 74.1 37.1 84.3 71.6 30.7 84.2 73.1 35.8 83.4 71.1
LLaMAX2-Alpaca-7B 38.1 87.6 77.9 39.6 87.2 77.2 33.1 86.2 76.7 40.5 87.2 78.8
LLaMAX3-Alpaca-8B 38.2 87.5 77.6 39.8 87.2 77.2 33.1 86.4 76.8 40.6 87.3 78.6
Aya-101 32.9 85.4 70.7 33.7 84.3 70.1 32.7 86.1 76.7 35.0 85.0 72.6
Aya-23-8B 32.6 84.4 71.7 25.0 78.4 63.3 36.1 86.7 76.8 27.9 79.9 66.0
Aya-23-35B 38.2 86.7 75.5 36.2 84.6 72.4 38.6 87.1 76.7 37.8 85.3 75.0
X-ALMA (only SFT) 43.4 88.4 77.9 45.6 88.2 77.1 38.7 87.0 76.6 46.2 88.4 78.8
X-ALMA (Ours) 42.9 88.6 78.5 45.6 88.4 77.6 36.7 87.2 77.4 44.7 88.4 79.4

uk→en Avg. xx→en

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
Llama-3.1 6.9 55.0 37.3 7.9 51.2 44.8
NLLB-3.3B 33.7 83.7 70.0 35.0 84.3 72.0
LLaMAX2-Alpaca-7B 36.8 86.7 75.7 37.6 87.0 77.2
LLaMAX3-Alpaca-8B 37.0 86.8 75.7 37.7 87.0 77.2
Aya-101 35.5 86.2 74.9 34.0 85.4 73.0
Aya-23-8B 40.1 87.2 75.7 32.3 83.3 70.7
Aya-23-35B 42.0 87.7 75.8 38.6 86.3 75.1
X-ALMA (only SFT) 42.8 87.7 75.8 43.3 87.9 77.3
X-ALMA (Ours) 41.0 87.9 76.5 42.2 88.1 77.9
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Table 10: Full results for Group 4 in the Flores test data.
Models en→fr en→id en→mg en→ms

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
Llama-3.1 43.5 84.5 73.7 32.7 78.8 64.6 1.6 47.0 11.2 34.0 86.9 75.9
NLLB-3.3B 51.1 88.3 76.9 46.4 91.2 77.9 17.7 81.6 59.9 41.6 89.1 76.8
LLaMAX2-Alpaca-7B 42.0 86.8 75.7 38.0 89.7 77.7 4.4 64.9 33.3 35.0 88.3 76.7
LLaMAX3-Alpaca-8B 41.2 86.4 74.6 35.6 89.0 74.1 2.4 56.8 24.4 32.5 87.4 73.7
Aya-101 38.3 85.3 69.5 38.7 90.0 77.7 16.1 81.1 60.8 30.7 86.3 68.3
Aya-23-8B 48.9 88.3 77.8 42.9 91.2 80.0 0.3 31.0 4.4 22.2 87.3 79.7
Aya-23-35B 49.0 88.0 77.1 43.5 91.1 79.4 0.8 41.4 16.4 26.7 87.2 77.4
X-ALMA (only SFT) 51.8 88.7 78.5 48.0 91.8 80.2 16.8 81.8 61.7 42.0 89.7 78.4
X-ALMA (Ours) 51.9 89.0 78.9 48.2 92.3 81.2 16.1 82.1 62.4 40.9 90.2 79.7

en→th en→vi Avg. en→xx
BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET

Llama-3.1 3.4 73.6 53.2 37.7 87.1 74.5 25.5 76.3 58.9
NLLB-3.3B 5.3 84.3 71.5 41.8 88.0 75.4 34.0 87.1 73.1
LLaMAX2-Alpaca-7B 6.0 82.5 69.7 34.9 86.7 74.6 26.7 83.1 67.9
LLaMAX3-Alpaca-8B 3.7 84.8 72.2 34.9 86.0 71.7 25.0 81.7 65.1
Aya-101 9.8 86.5 74.9 31.9 85.6 71.2 27.6 85.8 70.4
Aya-23-8B 0.7 61.0 54.0 40.3 89.0 78.1 25.9 74.6 62.3
Aya-23-35B 6.1 63.2 39.9 40.4 89.2 77.9 27.7 76.7 61.3
X-ALMA (only SFT) 11.6 87.4 76.1 43.9 89.4 78.5 36.1 88.2 75.8
X-ALMA (Ours) 12.0 88.2 77.4 44.1 89.9 79.3 35.6 88.6 76.5

fr→en id→en mg→en ms→en

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
Llama-3.1 40.1 81.6 71.6 21.9 70.6 53.2 1.8 41.6 17.1 10.8 63.4 35.7
NLLB-3.3B 38.1 86.6 72.7 34.3 84.5 68.5 13.5 63.3 43.5 31.4 82.1 65.3
LLaMAX2-Alpaca-7B 42.1 88.8 77.3 40.4 88.9 78.2 15.4 71.8 56.7 40.2 88.3 77.1
LLaMAX3-Alpaca-8B 41.6 88.7 76.8 40.8 89.0 78.2 19.6 76.0 60.6 41.3 88.6 77.0
Aya-101 41.2 88.6 77.0 38.8 88.4 75.3 27.7 79.8 61.5 39.0 87.8 73.8
Aya-23-8B 45.3 89.4 77.4 44.1 89.5 78.5 1.5 47.0 18.8 40.0 87.3 75.9
Aya-23-35B 47.0 89.5 77.0 45.7 89.8 78.4 5.3 54.1 33.0 43.9 88.7 77.0
X-ALMA (only SFT) 47.8 89.6 77.3 47.3 89.6 78.2 30.1 81.9 63.3 46.9 89.1 77.0
X-ALMA (Ours) 46.0 89.6 77.8 45.8 90.1 78.8 29.2 81.9 63.4 45.4 89.5 77.8

th→en vi→en Avg. xx→en
BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET

Llama-3.1 10.7 65.2 46.0 22.0 71.2 59.0 17.9 65.6 47.1
NLLB-3.3B 26.8 85.9 72.8 31.6 84.1 70.4 29.3 81.1 65.5
LLaMAX2-Alpaca-7B 21.4 81.2 71.1 32.4 86.4 75.3 32.0 84.2 72.6
LLaMAX3-Alpaca-8B 28.2 87.7 75.4 33.7 87.2 75.9 34.2 86.2 74.0
Aya-101 26.9 85.8 72.1 33.6 86.6 75.7 34.5 86.2 72.6
Aya-23-8B 15.2 78.1 62.0 37.2 87.6 76.0 30.5 79.8 64.8
Aya-23-35B 23.5 83.6 70.7 38.9 87.8 76.0 34.1 82.3 68.7
X-ALMA (only SFT) 32.3 88.0 75.0 39.8 87.9 75.6 40.7 87.7 74.4
X-ALMA (Ours) 31.7 88.6 76.2 38.2 88.2 76.5 39.4 88.0 75.1

Table 11: Full results for Group 5 in the Flores test data.
Models en→cs en→el en→hu en→lt

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
Llama-3.1 27.1 88.0 73.5 19.7 82.3 70.4 19.8 82.2 70.4 13.0 77.2 60.6
NLLB-3.3B 32.2 91.0 77.7 27.4 89.0 76.6 26.4 89.3 78.7 25.2 89.3 77.3
LLaMAX2-Alpaca-7B 26.0 89.1 75.3 19.9 86.4 74.5 19.1 87.0 74.9 19.0 87.0 74.0
LLaMAX3-Alpaca-8B 24.6 88.1 73.4 20.4 86.2 74.2 18.2 86.6 73.7 17.0 86.1 72.8
Aya-101 26.7 90.0 77.2 21.4 86.6 74.3 21.4 88.4 78.6 22.5 89.2 78.6
Aya-23-8B 30.5 91.1 79.1 26.1 89.5 80.1 3.6 51.7 21.4 5.4 65.4 42.0
Aya-23-35B 32.2 91.4 79.4 27.0 89.6 80.2 10.8 77.0 57.2 14.0 82.5 68.0
X-ALMA (only SFT) 33.8 91.5 79.4 27.9 89.8 80.3 27.0 90.4 82.2 28.4 91.3 81.9
X-ALMA (Ours) 34.4 92.1 80.3 28.7 90.1 80.6 27.3 90.7 82.7 28.3 91.5 78.9

en→lv en→pl Avg. en→xx
BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET

Llama-3.1 11.4 70.7 41.4 14.2 73.5 57.1 17.5 79.0 62.2
NLLB-3.3B 25.0 87.4 70.9 21.6 88.9 75.5 26.3 89.2 76.1
LLaMAX2-Alpaca-7B 22.3 86.8 70.6 18.3 87.5 73.9 20.8 87.3 73.9
LLaMAX3-Alpaca-8B 21.1 85.8 68.9 17.2 86.7 71.9 19.8 86.6 72.5
Aya-101 25.0 88.6 74.8 18.3 87.6 75.0 22.6 88.4 76.4
Aya-23-8B 1.5 36.5 7.3 20.7 89.2 77.2 14.6 70.6 51.2
Aya-23-35B 7.9 62.7 38.1 22.4 89.8 78.1 19.1 82.1 66.8
X-ALMA (only SFT) 29.3 90.7 78.5 23.3 90.1 78.9 28.3 90.6 80.2
X-ALMA (Ours) 30.8 91.1 79.3 23.2 90.4 79.3 28.8 91.0 80.2

cs→en el→en hu→en lt→en

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
Llama-3.1 22.1 64.9 64.9 10.3 57.4 43.0 8.6 54.8 52.9 3.3 49.2 41.8
NLLB-3.3B 29.4 80.1 59.9 33.0 86.1 75.3 14.0 70.1 43.7 12.6 67.1 38.9
LLaMAX2-Alpaca-7B 37.6 87.9 77.8 24.5 77.2 71.5 32.2 87.5 78.2 29.7 85.1 73.6
LLaMAX3-Alpaca-8B 37.5 88.1 77.8 34.2 87.5 77.5 32.5 87.8 78.6 31.0 86.0 74.4
Aya-101 35.6 87.6 76.4 32.1 86.5 75.3 29.9 86.4 74.6 30.2 85.8 74.2
Aya-23-8B 40.7 88.5 78.1 36.1 87.8 77.8 23.0 81.1 67.2 24.6 80.6 65.6
Aya-23-35B 42.3 88.5 77.9 39.0 88.3 78.0 32.2 86.5 76.6 32.9 85.4 73.5
X-ALMA (only SFT) 43.3 89.0 78.4 38.0 87.9 77.0 37.3 88.7 78.9 35.9 87.1 75.1
X-ALMA (Ours) 42.6 89.2 78.8 37.4 88.3 78.3 37.6 89.1 79.7 36.7 87.4 75.7

lv→en pl→en Avg. xx→en
BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET

Llama-3.1 2.6 41.7 43.2 12.8 61.1 49.6 9.9 54.8 49.2
NLLB-3.3B 10.4 68.1 40.9 20.3 77.8 55.4 20.0 74.9 52.4
LLaMAX2-Alpaca-7B 31.6 86.3 76.2 28.0 85.7 70.4 30.6 85.0 74.6
LLaMAX3-Alpaca-8B 32.7 87.0 77.1 28.3 85.6 70.4 32.7 87.0 76.0
Aya-101 32.0 86.3 74.5 28.0 85.6 70.2 31.3 86.3 74.2
Aya-23-8B 14.1 73.4 51.9 30.5 86.1 70.7 28.1 82.9 68.5
Aya-23-35B 29.1 83.3 70.3 33.4 86.7 70.8 34.8 86.4 74.5
X-ALMA (only SFT) 38.2 87.9 77.2 32.8 86.5 70.5 37.6 87.9 76.2
X-ALMA (Ours) 37.5 88.3 78.1 32.2 86.9 71.3 37.3 88.2 77.0
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Table 12: Full results for Group 6 in the Flores test data.
Models en→et en→fi en→ja en→ka

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
Llama-3.1 9.3 66.3 48.1 16.0 82.0 70.4 10.8 66.0 25.0 7.0 73.1 48.1
NLLB-3.3B 25.0 90.5 79.7 24.1 91.7 81.1 22.6 87.9 75.1 14.8 84.6 70.2
LLaMAX2-Alpaca-7B 19.0 88.4 76.1 18.4 90.2 79.6 28.1 88.9 78.1 10.7 83.0 68.2
LLaMAX3-Alpaca-8B 18.1 87.7 75.1 17.5 89.3 77.6 27.5 89.0 77.3 9.6 78.6 55.9
Aya-101 21.9 90.7 81.3 18.9 90.3 78.9 27.3 89.0 77.4 11.3 85.3 72.1
Aya-23-8B 1.5 40.5 12.9 2.4 51.9 21.8 30.7 90.8 80.3 0.4 43.3 32.8
Aya-23-35B 6.1 57.8 33.0 8.1 70.0 46.3 30.9 91.0 80.3 2.0 47.6 19.0
X-ALMA (only SFT) 26.4 91.6 82.6 25.3 92.7 84.6 34.6 91.2 81.0 14.0 87.6 75.7
X-ALMA (Ours) 27.9 92.2 84.0 26.4 92.9 85.2 36.6 91.7 81.9 15.2 88.5 76.9

en→ko en→zh Avg. en→xx
BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET

Llama-3.1 6.8 71.5 41.7 14.0 67.7 37.6 10.6 71.1 45.1
NLLB-3.3B 12.5 88.4 79.1 32.4 82.0 64.1 21.9 87.5 74.9
LLaMAX2-Alpaca-7B 10.3 86.8 76.7 35.2 85.5 74.0 20.3 87.1 75.4
LLaMAX3-Alpaca-8B 8.8 85.6 74.0 36.3 85.6 73.3 19.6 86.0 72.2
Aya-101 10.2 87.4 77.2 27.3 82.4 64.7 19.5 87.5 75.3
Aya-23-8B 13.1 89.0 79.5 40.2 87.3 76.8 14.7 67.1 50.7
Aya-23-35B 12.8 89.4 80.3 37.3 87.5 77.0 16.2 73.9 56.0
X-ALMA (only SFT) 15.0 89.3 80.7 43.6 88.2 77.4 26.5 90.1 80.3
X-ALMA (Ours) 15.8 89.9 81.6 44.9 88.7 78.4 27.8 90.6 81.3

et→en fi→en ja→en ka→en
BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET

Llama-3.1 4.1 45.9 51.6 5.8 53.3 52.8 17.7 69.4 67.6 0.3 39.2 34.3
NLLB-3.3B 7.2 62.5 29.9 10.2 67.7 39.2 17.2 79.5 61.0 25.6 84.8 70.3
LLaMAX2-Alpaca-7B 32.1 87.4 80.7 31.7 89.0 78.9 23.4 87.1 76.4 18.1 76.7 66.8
LLaMAX3-Alpaca-8B 33.6 88.3 82.2 31.6 89.3 79.4 24.6 87.5 76.9 1.2 50.7 51.5
Aya-101 32.5 87.7 80.2 29.7 88.6 77.8 23.5 86.5 75.5 25.6 84.5 69.7
Aya-23-8B 15.4 74.9 55.9 20.4 81.3 66.3 28.1 87.9 76.8 3.6 60.1 32.9
Aya-23-35B 28.9 84.2 74.5 29.8 87.3 76.2 30.4 88.4 77.1 19.4 79.4 65.0
X-ALMA (only SFT) 38.2 89.2 82.5 36.0 90.0 79.6 28.9 88.1 77.0 28.4 86.8 71.6
X-ALMA (Ours) 38.8 89.6 83.5 36.2 90.5 80.4 28.8 88.5 77.7 29.3 87.1 72.8

ko→en zh→en Avg. xx→en
BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET

Llama-3.1 15.9 66.0 62.4 24.2 78.8 69.9 11.3 58.8 56.4
NLLB-3.3B 26.2 84.9 73.1 16.8 77.1 52.8 17.2 76.1 54.4
LLaMAX2-Alpaca-7B 25.2 86.6 76.4 25.8 86.5 77.2 26.1 85.5 76.1
LLaMAX3-Alpaca-8B 26.3 87.5 77.1 25.9 86.6 77.3 23.9 81.7 74.1
Aya-101 26.5 87.0 76.9 23.1 84.5 71.8 26.8 86.5 75.3
Aya-23-8B 29.4 88.0 77.3 29.4 87.1 77.4 21.0 79.9 64.4
Aya-23-35B 32.2 88.7 77.8 32.2 87.6 77.4 28.8 85.9 74.7
X-ALMA (only SFT) 30.6 88.1 77.0 30.4 87.1 76.8 32.1 88.2 77.4
X-ALMA (Ours) 30.8 88.7 78.1 29.6 87.6 78.1 32.2 88.7 78.4

Table 13: Full results for Group 7 in the Flores test data.
Models en→gu en→hi en→mr en→ne

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
Llama-3.1 11.9 81.7 55.7 21.7 69.6 53.5 7.6 62.4 49.8 4.3 59.6 47.5
NLLB-3.3B 24.3 87.2 66.2 34.4 80.9 67.7 17.1 74.3 65.6 16.4 76.5 76.8
LLaMAX2-Alpaca-7B 11.0 78.9 40.6 24.8 76.9 62.0 11.1 70.7 62.9 13.8 80.8 86.8
LLaMAX3-Alpaca-8B 13.7 82.7 57.3 23.5 76.6 61.9 10.1 69.5 63.1 10.7 78.4 83.0
Aya-101 15.6 83.9 60.8 21.4 75.5 57.7 10.3 69.5 60.2 10.5 77.5 79.1
Aya-23-8B 0.4 65.7 64.2 25.0 79.3 64.9 0.9 66.7 64.5 1.5 69.2 64.4
Aya-23-35B 1.5 62.2 51.1 26.0 79.1 65.6 1.3 61.1 56.3 1.4 68.3 64.0
X-ALMA (only SFT) 25.0 88.2 67.9 34.3 81.4 67.6 18.0 75.9 68.3 21.5 84.0 89.5
X-ALMA (Ours) 24.7 88.9 68.9 34.1 81.9 68.4 17.9 76.5 69.3 21.5 84.7 90.7

en→ur Avg. en→xx

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
Llama-3.1 14.9 77.0 66.2 12.1 70.1 54.5
NLLB-3.3B 22.9 81.3 71.9 23.0 80.1 69.6
LLaMAX2-Alpaca-7B 16.5 77.8 68.3 15.5 77.0 64.1
LLaMAX3-Alpaca-8B 13.4 75.6 64.8 14.3 76.5 66.0
Aya-101 13.9 74.6 58.5 14.3 76.2 63.3
Aya-23-8B 0.3 63.6 64.6 5.6 68.9 64.5
Aya-23-35B 2.4 39.1 21.2 6.5 61.9 51.6
X-ALMA (only SFT) 23.8 83.5 75.0 24.5 82.6 73.6
X-ALMA (Ours) 24.0 84.1 75.8 24.5 83.2 74.6

gu→en hi→en mr→en ne→en

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
Llama-3.1 1.8 46.2 39.2 9.2 53.7 35.8 3.2 45.1 31.1 1.6 45.5 43.4
NLLB-3.3B 42.3 90.2 73.5 38.7 88.9 68.3 34.0 87.0 70.1 38.0 89.7 90.9
LLaMAX2-Alpaca-7B 0.0 42.7 47.9 27.3 81.7 63.4 23.5 79.9 66.0 26.0 83.4 86.6
LLaMAX3-Alpaca-8B 9.9 66.0 60.7 35.4 88.9 67.9 30.6 87.3 70.1 32.9 89.3 90.3
Aya-101 28.0 82.3 65.0 34.6 87.5 66.6 30.1 85.2 68.9 31.2 84.9 86.1
Aya-23-8B 3.4 53.6 38.6 37.6 89.1 67.9 7.5 68.9 46.2 10.0 77.0 68.1
Aya-23-35B 8.8 63.1 53.0 40.1 89.6 68.2 18.4 79.9 59.9 23.3 84.1 81.7
X-ALMA (only SFT) 40.4 90.1 72.3 43.0 89.8 67.7 37.7 88.5 70.4 41.2 90.6 90.9
X-ALMA (Ours) 40.6 90.3 72.7 42.7 90.1 68.4 37.7 88.6 70.8 41.4 90.7 91.1

ur→en Avg. xx→en

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
Llama-3.1 4.9 47.2 38.4 4.1 47.6 37.6
NLLB-3.3B 31.6 86.0 72.6 36.9 88.3 75.1
LLaMAX2-Alpaca-7B 25.0 81.1 69.7 20.4 73.8 66.7
LLaMAX3-Alpaca-8B 30.5 86.5 73.1 27.8 83.6 72.4
Aya-101 28.1 83.9 69.7 30.4 84.8 71.2
Aya-23-8B 9.3 70.2 50.5 13.6 71.8 54.3
Aya-23-35B 21.1 80.2 65.4 22.3 79.4 65.6
X-ALMA (only SFT) 36.4 87.7 73.2 39.7 89.3 74.9
X-ALMA (Ours) 36.4 88.0 74.0 39.8 89.6 75.4
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Table 14: Full results for Group 8 in the Flores test data.
Models en→ar en→az en→fa en→he

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
Llama-3.1 18.9 82.9 70.0 6.6 69.6 50.7 21.4 86.1 77.3 20.8 85.3 73.5
NLLB-3.3B 27.5 86.3 75.2 14.0 86.9 76.6 22.6 86.5 77.5 30.4 87.8 76.1
LLaMAX2-Alpaca-7B 19.7 84.9 73.7 9.4 82.0 68.2 17.8 83.7 73.4 22.0 85.1 72.7
LLaMAX3-Alpaca-8B 14.1 82.2 69.1 7.3 80.0 65.9 17.7 84.5 74.0 23.3 86.2 74.7
Aya-101 17.2 84.1 72.8 11.5 85.6 75.4 19.1 86.4 77.6 20.5 85.4 73.2
Aya-23-8B 26.5 87.3 77.3 2.0 75.5 69.1 23.2 87.7 79.4 27.0 88.3 77.7
Aya-23-35B 27.4 87.1 76.6 3.0 67.2 54.8 23.8 87.6 79.1 28.9 88.2 77.0
X-ALMA (only SFT) 29.1 87.8 77.6 14.0 88.2 79.0 28.4 88.5 80.2 32.7 89.6 79.6
X-ALMA (Ours) 28.3 88.2 78.3 14.0 88.4 79.3 27.1 88.8 80.8 33.6 89.8 79.5

en→kk en→ky en→tr en→uz

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
Llama-3.1 8.2 77.7 61.8 3.7 58.5 39.4 19.1 84.2 69.5 9.3 81.9 66.1
NLLB-3.3B 20.6 90.0 78.9 13.2 88.1 74.7 29.0 89.7 76.1 18.6 89.8 75.6
LLaMAX2-Alpaca-7B 13.0 86.5 74.7 8.2 84.0 71.9 16.2 85.1 69.4 10.1 85.1 69.3
LLaMAX3-Alpaca-8B 12.7 86.0 75.1 7.9 82.9 72.5 13.8 84.2 67.5 6.8 74.5 59.1
Aya-101 17.2 89.0 78.3 10.4 86.6 75.6 21.1 88.3 75.0 12.0 88.6 75.6
Aya-23-8B 1.2 71.0 77.0 1.2 62.9 68.9 23.7 88.9 75.8 0.5 46.5 26.6
Aya-23-35B 0.7 45.0 21.9 0.9 49.6 34.4 23.6 88.7 74.5 0.3 37.1 17.0
X-ALMA (only SFT) 22.2 90.7 80.8 13.2 88.5 78.5 27.7 90.3 78.3 16.8 90.0 77.0
X-ALMA (Ours) 22.0 91.1 81.4 12.8 88.8 78.8 28.4 90.5 78.6 15.5 90.1 77.3

Avg. en→xx
BLEU COMET-22 XCOMET

Llama-3.1 13.5 78.3 63.5
NLLB-3.3B 22.0 88.1 76.3
LLaMAX2-Alpaca-7B 14.5 84.6 71.7
LLaMAX3-Alpaca-8B 12.9 82.6 69.7
Aya-101 16.1 86.8 75.4
Aya-23-8B 13.2 76.0 69.0
Aya-23-35B 13.6 68.8 54.4
X-ALMA (only SFT) 23.0 89.2 78.9
X-ALMA (Ours) 22.7 89.4 79.3

ar→en az→en fa→en he→en

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
Llama-3.1 17.1 59.4 45.2 3.3 46.5 41.9 23.7 72.9 56.6 3.7 48.6 24.5
NLLB-3.3B 38.2 86.1 74.3 15.1 77.5 61.7 29.8 83.5 69.0 39.1 86.0 73.2
LLaMAX2-Alpaca-7B 34.3 84.8 74.3 18.6 84.5 73.2 29.0 84.1 73.7 36.8 85.8 74.3
LLaMAX3-Alpaca-8B 35.1 86.8 75.6 7.9 70.0 44.2 33.1 87.6 76.2 39.5 87.2 75.6
Aya-101 35.0 85.8 74.7 21.5 85.2 74.2 32.8 87.3 76.1 37.9 86.4 73.3
Aya-23-8B 41.5 87.9 76.4 10.6 75.6 57.2 36.8 87.9 76.3 43.2 88.4 76.5
Aya-23-35B 43.4 87.6 75.8 17.9 82.6 69.6 39.6 88.5 76.3 46.6 88.9 76.7
X-ALMA (only SFT) 41.2 87.5 75.4 25.8 86.7 74.6 37.6 88.1 75.5 44.5 88.3 75.8
X-ALMA (Ours) 40.9 88.0 76.5 25.5 87.0 75.6 38.0 88.8 75.6 44.2 88.9 76.8

kk→en ky→en tr→en uz→en

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
Llama-3.1 1.9 41.5 34.3 3.0 45.1 30.6 23.0 70.2 62.3 3.4 45.5 36.0
NLLB-3.3B 30.2 85.0 72.7 20.1 81.6 69.7 16.8 75.3 54.0 5.3 60.7 31.5
LLaMAX2-Alpaca-7B 27.2 85.9 75.0 18.8 83.7 73.4 30.2 87.2 75.4 25.5 84.8 72.0
LLaMAX3-Alpaca-8B 29.0 86.7 75.5 20.4 84.5 74.1 33.4 88.6 76.9 27.9 86.1 73.5
Aya-101 29.2 86.1 74.9 20.4 83.0 72.6 33.2 88.1 76.0 28.1 84.9 71.9
Aya-23-8B 3.5 59.9 39.4 4.2 64.3 45.8 35.8 88.2 76.5 3.9 61.3 30.7
Aya-23-35B 14.2 74.0 59.8 11.3 74.3 60.5 39.3 89.6 77.7 15.3 75.9 59.9
X-ALMA (only SFT) 33.5 87.8 75.8 23.5 85.4 73.9 39.9 89.6 77.5 32.2 86.9 72.8
X-ALMA (Ours) 34.7 88.1 76.6 24.7 85.7 74.7 40.0 89.9 78.2 33.5 87.4 74.1

Avg. xx→en
BLEU COMET-22 XCOMET

Llama-3.1 9.9 53.7 41.4
NLLB-3.3B 24.3 79.5 63.3
LLaMAX2-Alpaca-7B 27.5 85.1 73.9
LLaMAX3-Alpaca-8B 28.3 84.7 71.4
Aya-101 29.7 85.9 74.2
Aya-23-8B 22.4 76.7 59.8
Aya-23-35B 28.4 82.7 69.6
X-ALMA (only SFT) 34.8 87.5 75.1
X-ALMA (Ours) 35.2 88.0 76.0
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Table 15: Full results for all languages in the WMT’23 test data.
Models en→de en→zh en→ja en→ru

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
ALMA-R-13B 30.4 84.0 68.8 32.3 85.0 71.3 - - - 22.8 85.5 74.4
TowerInstruct-7B-v0.2 37.9 83.1 68.1 41.9 85.6 70.2 - - - 29.2 85.3 71.1
NLLB-3.3B 33.5 79.7 61.0 34.8 79.6 55.6 13.8 81.6 65.7 29.1 83.8 69.9
LLaMAX2-Alpaca-7B 18.6 74.1 59.8 39.8 82.6 64.6 15.4 83.4 70.7 22.1 81.6 67.8
LLaMAX3-Alpaca-8B 20.9 73.3 55.2 34.0 81.5 59.9 11.9 81.8 66.7 23.5 81.6 67.6
Aya-101 25.1 75.1 52.9 25.4 78.6 52.0 14.1 84.6 72.0 22.1 83.1 69.9
Aya-23-8B 29.3 80.4 66.2 44.5 85.3 68.8 19.3 86.5 75.1 24.3 84.3 71.8
Aya-23-35B 30.7 80.7 66.6 42.8 84.6 68.1 20.6 86.4 75.1 27.5 84.7 71.7
X-ALMA (only SFT) 40.9 84.1 68.6 47.5 86.1 69.6 22.3 86.8 75.4 31.5 85.9 73.4
X-ALMA (Ours) 39.4 84.4 69.4 47.9 86.7 71.3 22.7 87.5 77.1 31.5 86.3 74.0

en→uk en→he Avg. en→xx
BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET

ALMA-R-13B - - - - - - - - -
TowerInstruct-7B-v0.2 - - - - - - - - -
NLLB-3.3B 25.5 82.8 67.6 31.4 83.6 69.1 28.0 81.8 64.8
LLaMAX2-Alpaca-7B 20.0 80.9 65.0 23.4 81.5 66.6 23.2 80.7 65.8
LLaMAX3-Alpaca-8B 19.8 80.6 64.9 24.4 82.5 68.5 22.4 80.2 63.8
Aya-101 19.7 82.7 67.8 19.8 82.0 67.2 21.0 81.0 63.6
Aya-23-8B 24.3 84.3 70.1 26.5 84.3 71.1 28.0 84.2 70.5
Aya-23-35B 24.9 84.0 69.6 29.3 84.1 70.5 29.3 84.1 70.3
X-ALMA (only SFT) 27.4 85.3 71.6 31.4 86.1 73.7 33.5 85.7 72.0
X-ALMA (Ours) 28.3 85.5 72.2 32.5 86.2 74.1 33.7 86.1 73.0

de→en zh→en ja→en ru→en

BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET
ALMA-R-13B 42.6 85.5 69.1 23.2 80.6 70.6 - - - 33.0 83.3 72.1
TowerInstruct-7B-v0.2 39.8 84.6 69.3 23.9 80.5 70.4 - - - 34.1 83.1 72.1
NLLB-3.3B 20.1 66.6 20.1 11.4 67.8 41.6 6.8 65.8 41.5 24.4 76.7 62.2
LLaMAX2-Alpaca-7B 22.1 78.0 66.3 20.7 78.3 68.1 16.9 79.5 68.5 29.6 81.1 70.3
LLaMAX3-Alpaca-8B 25.6 79.4 66.7 22.3 79.3 69.2 17.6 80.1 69.3 29.4 81.3 70.5
Aya-101 34.9 81.6 65.1 13.8 73.7 55.5 13.9 77.3 63.7 28.4 81.4 70.5
Aya-23-8B 32.3 82.1 67.9 22.6 78.8 68.0 19.8 80.2 68.6 30.9 81.6 70.8
Aya-23-35B 32.7 82.3 68.3 23.5 79.7 69.5 21.3 81.6 69.8 31.7 82.2 71.1
X-ALMA (only SFT) 42.5 85.3 68.9 23.8 80.3 69.9 20.4 81.6 70.2 32.8 82.4 71.5
X-ALMA (Ours) 41.7 85.7 69.1 25.1 80.9 71.2 21.0 82.4 71.2 32.0 83.3 72.3

uk→en he→en Avg. xx→en
BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET BLEU COMET-22 XCOMET

ALMA-R-13B - - - - - - - - -
TowerInstruct-7B-v0.2 - - - - - - - - -
NLLB-3.3B 33.1 79.0 62.7 40.8 79.9 63.2 22.8 72.6 48.5
LLaMAX2-Alpaca-7B 39.1 85.1 72.6 36.9 81.3 68.6 27.6 80.6 69.1
LLaMAX3-Alpaca-8B 37.8 84.9 72.7 40.1 83.0 69.7 28.8 81.3 69.7
Aya-101 34.9 84.5 72.3 33.7 82.9 68.5 26.6 80.2 65.9
Aya-23-8B 39.2 85.0 72.7 46.1 84.9 70.4 31.8 82.1 69.8
Aya-23-35B 39.1 85.7 73.3 49.0 85.9 71.4 32.9 82.9 70.5
X-ALMA (only SFT) 42.5 86.4 73.5 42.2 84.4 70.3 34.0 83.4 70.7
X-ALMA (Ours) 42.9 86.8 74.0 44.2 85.6 71.5 34.5 84.1 71.5
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F EXAMPLES OF OVER-REJECTION

Figure 7 presents examples of over-rejection in translations from Chinese to English. For each
source sentence, we provide translations from the reference, ARPO (implemented on CPO), and
CPO. The words where ARPO and CPO differ from the reference are color-highlighted: green
indicates that the variation does not affect the meaning, while red indicates a potentially negative
impact on translation quality. As shown in Figure 7, CPO exhibits more stylistic variations than
ARPO across all translation examples. Although most of the stylistic changes introduced by CPO
are accurate and do not impair meaning, a small number are detrimental. Excessive changes in style
can result in sub-optimal translations, a phenomenon we refer to as ‘over-rejection’.

Source: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?  200 ? ? ? ? ? ? ? ? ? ? ? ? ?
Reference: All the ships were sunk, except for one British cruiser. Nearly 200 American and German lives were lost.
ARPO: All but one of the British cruisers were sunk, and nearly 200 Americans and Germans lost their lives.
CPO: With the exception of a British cruiser, all other ships were sunk, and nearly 200 Americans and Germans lost their lives.

-----------------------------------------------------------------------------------------------------------------------------------------------------------

Source: 2017 ? ? ? ? ? ? ? ? ? ? ?  QVC ? ? ? ? ? ? ?
Reference: In late 2017, Siminoff appeared on shopping television channel QVC.
ARPO: In late 2017, Siminoff appeared on the QVC television shopping channel.
CPO: At the end of 2017, Zhukovsky appeared on the QVC television shopping channel.

-----------------------------------------------------------------------------------------------------------------------------------------------------------

Source: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
Reference: The smaller the Rossby number, the less active the star with respect to magnetic reversals.
ARPO: The lower  the Rossby number, the less active a star is in flipping its magnetic field.
CPO: The Rossby number is lower , the less active the star is in flipping its magnetic field.

-----------------------------------------------------------------------------------------------------------------------------------------------------------

Source: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ?
Reference: Majorcan cuisine, like that of similar zones in the Mediterranean, is based on bread, vegetables and meat (specially 
pork), and uses olive oil throughout.
ARPO: Mallorca's cuisine, like that of similar Mediterranean regions, is based pr imar ily on bread, vegetables, and meat 
(par ticular ly pork), and uses exclusively olive oil.
CPO: The cuisine of Mallorca is similar to that of other Mediterranean regions, with dishes pr imar ily based on bread, vegetables, 
and meat (par ticular ly pork), and entirely using olive oil.

-----------------------------------------------------------------------------------------------------------------------------------------------------------

Source: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
Reference: As a result, the performers smoke cannabis joints on stage, and the theatre itself is encouraging the audience to join in.
ARPO: As a result, the actor  smoked marijuana on stage, and the theater itself encouraged the audience to join in.
CPO: As a result, the actors smoked cannabis on stage, and the theater itself encouraged the audience to par ticipate in the act.

Example 1

Example  2

Example  3

Example  4

Example  5

Figure 7: Examples of over-rejection in Chinese-to-English translation, comparing translations
from the reference, ARPO, and CPO. Green highlights indicate acceptable variations, while red
highlights show the potentially harmful changes. CPO introduces more stylistic differences than
ARPO, with most being correct but some leading to over-rejection. Although most of variations
are correct, the phenomenon of excessive stylistic changes leading to non-optimal translations is
referred to as ‘over-rejection’.
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