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ABSTRACT

One of the major challenges in multi-person pose estimation is instance-aware
keypoint estimation. Previous methods address this problem by leveraging an off-
the-shelf detector, heuristic post-grouping process or explicit instance identification
process, hindering further improvements in inference speed which is an important
factor for practical applications. From the statistical point of view, those additional
processes for identifying instances are necessary to bypass learning the high-
dimensional joint distribution of human keypoints, which is a critical factor for
another major challenge, the occlusion scenario. In this work, we propose a novel
framework of single-stage instance-aware pose estimation by modeling the joint
distribution of human keypoints with a mixture density model, termed as MDPose.
Our MDPose estimates the distribution of human keypoints’ coordinates using a
mixture density model with an instance-aware keypoint head consisting simply
of 8 convolutional layers. It is trained by minimizing the negative log-likelihood
of the ground truth keypoints. Also, we propose a simple yet effective training
strategy, Random Keypoint Grouping (RKG), which significantly alleviates the
underflow problem leading to successful learning of relations between keypoints.
On OCHuman dataset, which consists of images with highly occluded people,
our MDPose achieves state-of-the-art performance by successfully learning the
high-dimensional joint distribution of human keypoints. Furthermore, our MDPose
shows significant improvement in inference speed with a competitive accuracy on
MS COCO, a widely-used human keypoint datasets, thanks to the proposed much
simpler single-stage pipeline.

1 INTRODUCTION

Multi-person pose estimation is a classical computer vision task that aims to localize human keypoints
in an image. As it is a fundamental computer vision problem leading to various practical applications
such as action recognition, human-computer interaction and so on, it has been studied actively since
the development of deep learning.

One of the major challenges in multi-person pose estimation is instance-aware keypoint estimation
and many works have been studied to tackle this problem, which can be categorized into two major
paradigms: top-down (Xiao et al., 2018; Sun et al., 2019; Li et al., 2021; Papandreou et al., 2017;
Chen et al., 2018; Khirodkar et al., 2021) and bottom-up approaches (Varamesh & Tuytelaars, 2020;
Zhou et al., 2019; Cao et al., 2017; Kreiss et al., 2019; Cheng et al., 2020; Geng et al., 2021; Newell
et al., 2017). As shown in Figure. 1(a) and (b), the top-down method exploits an off-the-shelf
detector and the bottom-up method performs a post-grouping process for a common goal of instance
specification. However, there exist some bottlenecks toward the efficient instance-aware keypoint
estimation. Since the top-down method is a two-stage method which detects a person then localizes
its keypoints one by one, the more the number of people in an image, the slower the inference speed.
In the case of the bottom-up method, it depends on a post-grouping process, which is usually heuristic
and takes additional time for keypoint refinement for the instance-aware keypoint estimation.

Recently, there have been approaches to tackle the aforementioned weaknesses for instance-aware
keypoint estimation (Tian et al., 2019a; Mao et al., 2021), as shown in Figure 1(c). Mao et al. (2021)
proposed FCPose, a single-stage instance-aware framework based on FCOS detector (Tian et al.,
2019b), equipped with a dynamic keypoint head consisting of instance-specific weights. Since it
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Figure 1: Illustration of multi-person pose estimation frameworks: (a) Top-down, (b) Bottom-up,
(c) previous Single-stage Instance-aware, (d) Ours and (e) Speed-accuracy trade-off. The colored
boxes indicate the process for identifying instances, which we successfully removed by proposing a
mixture-model-based architecture. Details for (e) are provided in Table 3.

leverages the capacity of FCOS detector and is a one-stage method at the same time, it can achieve a
reasonably high accuracy at a relatively fast inference speed. However, it still relies on the detector’s
performance for generating instance weights and such instance identification process hinders further
improvement in the inference speed.

In this paper, we propose a novel multi-person pose estimation framework using a mixture model.
There has been a line of research utilizing the mixture model in various pose estimation tasks (Li &
Lee, 2019; Prokudin et al., 2018; Ye & Kim, 2018; Varamesh & Tuytelaars, 2020). Among them,
MDN3 (Varamesh & Tuytelaars, 2020) showed the potential in the multi-person pose estimation task
by modeling the mixture model with a person’s viewpoint as a dominant factor. However, it lags
behind other state-of-the-art methods in terms of accuracy and inference speed.

Inspired by MDOD (Yoo et al., 2021), which showed competitive performance with a mixture-model-
based architecture in object detection, we propose a simple architecture modeling joint distribution
of human keypoints with a mixture model, coined as MDPose. From the statistical point of view,
previous methods need to implement an additional instance identification process to bypass learning
high-dimensional joint distribution of human keypoints’ coordinates, since the numerical underflow
problem usually occurs during the training process due to the curse of dimensionality. However,
unless the high-dimensional distribution is considered sufficiently, the performance degradation is
inevitable under the condition of severe occlusion. To tackle this problem, we propose Random
Keypoint Grouping (RKG) which learns the joint distribution of continuously changing subsets
of keypoints at every iteration. It alleviates the underflow problem efficiently and leads to the
successful learning of relations between keypoints in the high-dimensional space, which increases
the capacity for distinguishing multiple occluded persons. Furthermore, since a mixture component
corresponds to a person, we can perform instance-aware keypoint estimation without any additional
instance identification process, as shown in Figure 1(d). As a result, we could achieve competitive
performances with a simple instance-aware keypoint head consisting of only 8-convolutional layer
enabling real-time applications. Additionally, unlike Sun et al. (2019); Xiao et al. (2018); Cheng et al.
(2020); Cao et al. (2017); He et al. (2017); Geng et al. (2021); Newell et al. (2017), MDPose does not
need likelihood heatmap during training which requires burdensome computational cost and storage.
In short, MDPose shows strong potential for practical applications with regard to both training and
inference time as well as an occlusion condition.

Our MDPose performs instance-aware keypoint estimation without bells and whistles through a
mixture model framework. Our RKG makes it possible to learn high-dimensional joint distribution of
human keypoints’ coordinates, eliminating additional instance identification processes. Specifically,
on the OCHuman (Zhang et al., 2019) validation and test set consisting of images with heavily
occluded persons, our MDPose achieves state-of-the-art performance with 43.5 mAPkp and 42.7
mAPkp, respectively, by successfully learning human keypoint representation in a high-dimensional
space. Furthermore, on the COCO keypoint validation set (Lin et al., 2014), our MDPose achieves
64.6 mAPkp at the speed of 29.8 FPS with a ResNet-50 backbone (He et al., 2016), which outperforms
other state-of-the-art methods by a large margin in inference speed (see Figure 1(e)).
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2 RELATED WORKS

Multi-person pose estimation. One of the major challenges in multi-person pose estimation is to
correctly estimate keypoints per each person, i.e. instance-aware keypoint estimation. Many studies
have been done to address this problem which can be classified into two paradigms: top-down and
bottom-up approaches. The top-down approach (Papandreou et al., 2017; Chen et al., 2018; Xiao
et al., 2018; Sun et al., 2019; Li et al., 2021; Khirodkar et al., 2021) leverages an off-the-shelf detector
to localize an instance and performs a single-person pose estimation. While it can achieve high
accuracy, its inference speed is much slower than bottom-up approaches, especially for an image
with a large number of people. On the other hand, the bottom-up approach (Newell et al., 2017; Zhou
et al., 2019; Cao et al., 2017; Kreiss et al., 2019; Cheng et al., 2020; Geng et al., 2021; Xue et al.,
2022) performs instance-agnostic keypoint estimation and assigns them to each instance through a
post-grouping process. It shows more robust and faster inference speed than top-down approaches.
However, the post-grouping process is usually heuristic and complicated with many hyperparameters.

Single-stage instance-aware pose estimation. Recently, there have been single-stage instance-
aware approaches to tackle the aforementioned drawbacks of existing frameworks (Tian et al., 2019a;
Mao et al., 2021). Among them, Mao et al. (2021) proposed end-to-end trainable FCPose which
performs instance-aware keypoint estimation by a dynamic keypoint head consisting of instance-
specific weights generated by FCOS detector (Tian et al., 2019b). As a result, it achieves competitive
accuracy and inference speed while eliminating heuristic post-grouping process. However, it still
depends on the performance of the object detector for identifying instances and the instance-specific
weight generation process remains as a bottleneck for further improvement of inference speed.

Occluded pose estimation. There are various approaches (Jin et al., 2020; Khirodkar et al., 2021;
Li et al., 2019; Qiu et al., 2020; Zhang et al., 2019) to improve performance in occluded human
pose estimation, which is another major challenge. Jin et al. (2020) proposed a hierarchical graph
grouping method to learn relationship between keypoints in the bottom-up style. Among the top-
down methods, Khirodkar et al. (2021) introduced a Multi-Instance Modulation Block which adjusts
feature responses to distinguish multiple instances in a given bounding box. Although they improve
performance in the occlusion condition by specifically devised methods or architectures, they still
lack enough consideration for learning the high-dimensional distribution of keypoints, which is a
fundamental challenge in the multi-person pose estimation.

Mixture model in multi-person pose estimation. There has been a line of research using mixture
models in various computer vision tasks (Li & Lee, 2019; Prokudin et al., 2018; Ye & Kim, 2018;
Varamesh & Tuytelaars, 2020; Yoo et al., 2021). Among them, Varamesh & Tuytelaars (2020)
introduced a mixture density network (Bishop, 1994) to a CenterNet-based (Zhou et al., 2019)
architecture and showed the possibility of using the mixture model in multi-person pose estimation.
However, it ends up in just playing a role as an auxiliary factor while utilizing all the loss terms of
CenterNet for training, and lags behind other state-of-the-art methods. We propose a novel single-
stage instance-aware keypoint estimation framework using a mixture density model, which is coined
as MDPose. It achieves state-of-the-art performance in a heavy occlusion condition and enables
real-time estimation without any explicit instance identification process as shown in Fig. 1(d).

3 METHOD

In this work, we propose a novel framework for learning the joint distribution of human keypoints
using a mixture model, leading to eliminating explicit instance identification processes and boosting
the capacity of distinguishing occluded persons. Our MDPose is modeled with a mixture distribution
so that the mixture component corresponds to a person, i.e. one-to-one matching between mixture
components and persons, resulting in instance-aware keypoint estimation without bells and whistles.
Since it depends on neither an off-the-shelf detector nor a post-grouping process, it can achieve a
much simpler pipeline with an accelerated speed than previous methods.

First, we will describe the mixture model and our problem formulation in Sec. 3.1 and propose
a new architecture and describe it in detail in Sec. 3.2. After that, we will explain the Random
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Figure 2: The overall architecture of MDPose. The parameters of mixture model (µ, γ, o and π) are
obtained from a keypoint head consisting of 8 convolutional layers. The mixture components are
located along the spatial axis, i.e. the number of mixture components in a feature map is Hf ×W f .

Keypoint Grouping (RKG) strategy for learning the high-dimensional joint distribution and our final
loss function in Sec. 3.3. Finally, an inference phase will be described in Sec. 3.4.

3.1 MIXTURE MODEL

In an image X , there exists a ground truth for each of N persons, kgt = {kgt1 , . . . , kgtN }, and i-th
ground truth kgti contains the keypoint coordinates kgti = {ki,1,x, ki,1,y, . . . , ki,K,x, ki,K,y}, where
K denotes the number of keypoints. Our MDPose estimates the distribution of keypoint locations ki
on an image X with a mixture model. Based on the design of the mixture model for object detection
in Yoo et al. (2021), we develop and modify the architecture for the multi-person pose estimation
task. Our mixture model is formed by a weighted combination of component distributions, which we
set as a Laplace distribution. Although the Laplace distribution has a similar shape with the Gaussian
and the Cauchy distribution, its tails fall off more rapidly than the Cauchy but less sharply than the
Gaussian. We empirically found that the Laplace distribution is more suitable for the multi-person
pose estimation task than the Gaussian and Cauchy. Related experimental results are provided in the
appendix. Following Yoo et al. (2021), every element of ki is assumed to be independent1 of each
other to keep the mixture model from being over-complicated. Therefore, the probability density
function (pdf) of Laplace distribution is defined as,

F(ki;µ, γ) =

K∏
j=1

∏
d∈D

F(ki,j,d;µj,d, γj,d) =

K∏
j=1

∏
d∈D

1

2γj,d
exp

(
−|ki,j,d − µj,d|

γj,d

)
(1)

with a set of keypoint coordinates D = {x, y}, where j and F are the keypoint index and the
Laplacian pdf, respectively. As a result, the 2K-dimensional Laplace represents the distribution of
human keypoints coordinates and the pdf of our mixture model is as follows:

p(kgti |X) =

M∑
m=1

πmF(ki;µm, γm), (2)

where the m denotes the index of M mixture components.

3.2 ARCHITECTURE

Figure 2 demonstrates the overall architecture of our MDPose. The feature maps are forwarded into
the keypoint head to obtain intermediate outputs: µ′, γ′, and o′. The final outputs µ, γ, o, and π are
obtained from intermediate outputs as parameters of our mixture model. The mixture components are
represented at each position of the cells on the feature map, i.e. located along the spatial axis.

1Although each element of a mixture component is independent of others, they are jointly dependent in the
overall joint distribution.
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Figure 3: Illustration of RKG at an iteration, with Kg = 3 and Ng = 6. ki,j is a human keypoint,
where i and j denote a person in an image and a keypoint index, respectively. For the simplicity of
grouping, we set the center coordinate of the bounding box as ki,18.

The mean µ is derived from µ′ ∈ RHf×W f×2K , where Hf and W f indicate the height and width of
a feature map in the feature pyramid, respectively, and note that the number of mixture components
in a feature map is Hf × W f . First, following the implementation of Yoo et al. (2021), µ′ is
scaled by a factor of s = 2l−5, where l ∈ {1, · · · , 5} denotes the level of feature map in the
feature pyramid. Then, the scaled µ′ is added to µ̄ ∈ RHf×W f×2K which is the default coordinates
uniformly distributed in a grid pattern over the entire feature map. In short, the final location
parameter µ is obtained as follows: µ = µ̄ + sµ′. We can obtain the positive scale parameter
γ ∈ RHf×W f×2K through softplus (Dugas et al., 2000) activation function from γ′. The foreground
probability o ∈ RHf×W f×1 is calculated by applying the sigmoid function to o′. Following Yoo et al.
(2022), we use the normalized foreground probability as π: πm = om/

∑M
n=1 on. Since the mixture

components in a foreground area are likely to have higher π, we can consider π as the normalized
foreground probability so that

∑M
m πm = 1.

The keypoint head of MDPose consists of eight 3x3 kernel convolutional layers with Swish (Ra-
machandran et al., 2017) activation function except the last layer. The 5-level Feature Pyramid
Network (Lin et al., 2017) is used as our feature extractor. Since we estimate a mixture distribution
from all-level feature maps, the total number of mixture components is equal to the summation of the
number of mixture components in each level of feature map: M =

∑5
l=1(H

f
l ×W f

l ).

3.3 TRAINING

Our MDPose is trained to maximize the likelihood of kgt for an input image X . Therefore, we can
simply define the loss function for minimizing the negative log-likelihood (NLL) of kgt as follows:

LNLL = − log p(kgt|X) = − log

N∏
i=1

p(kgti |X) = −
N∑
i=1

log

M∑
m=1

πmF(ki;µm, γm). (3)

Although the foreground probability o is not used to calculate LNLL, it is trained through the mixture
coefficient π, i.e. the probability of a mixture component (Yoo et al., 2022).

In the training using (3), the curse of dimensionality arises due to the high-dimensional joint distribu-
tion of human keypoints, e.g. 34 dimension in the case of 17 keypoints in COCO keypoint dataset
(Lin et al., 2014), leading to a severe underflow problem. As a result, it is extremely hard to compute
LNLL via a 2K-dimensional joint distribution in the multi-person pose estimation task.

Random keypoint grouping (RKG). To tackle this problem, we propose RKG. As illustrated
in Figure 3, we shuffle and split K keypoints into Ng groups, each consisting of Kg keypoints,
where Ng and Kg denote the number of groups and the number of keypoints in a group, respectively,
i.e. Kg × Ng = K. As a result, we can notate a set of keypoints’ indices in a group g as Ig and
reformulate (1) using a group of keypoints as follows:

F(kgi ;µ
g, γg) =

∏
j∈Ig

∏
d∈D

F(ki,j,d;µj,d, γj,d), (4)
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where the superscript g indicates the index of the group. Therefore, we can alleviate the underflow
problem with 2Kg-dimensional joint distribution, whose dimension is lower than the original 2K
dimension if Kg < K. Our final loss function with RKG is defined as follows:

LGroupNLL =

∑Ng

g=1 L
g
NLL

Ng
= − 1

Ng

N∑
i=1

Ng∑
g=1

log

M∑
m=1

πmF(kgi ;µ
g
m, γg

m). (5)

Note that RKG is used only for the training process and the combination of keypoints for a group
changes at every iteration. As shown in (5), the RKG amounts to factorizing the original joint
distribution of 2K dimension into Ng marginal distributions of 2Kg dimension. Although each
keypoints group is estimated independently at each iteration, the keypoints end up being dependent
on each other through the whole training process due to RKG, which keeps shuffling and grouping
keypoints randomly. As a result, MDPose is able to learn the relations between keypoints without
any heuristic grouping process. To ease the grouping scheme for COCO keypoint dataset (Lin et al.,
2014) labeled with 17 keypoints, we use the coordinates of bounding box center of kgti as an auxiliary
keypoint only for training, which is denoted as ki,18 in Figure 3.

3.4 INFERENCE

In the inference phase, a mixture component of our MDPose corresponds to an instance, i.e. a person
in the multi-person pose estimation task. Therefore, MDPose is able to perform an instance-aware
keypoint estimation without bells and whistles. µ and o are used as the estimated keypoint coordinates
and confidence scores, respectively. Note that we do not use µ of the bbox center coordinates for
inference. Our final predictions are obtained by removing duplicate estimations using non-maximum
suppression (NMS), which is applied to pseudo-bboxes, each of which consists of the minimum
and the maximum coordinates among keypoints as the left-top and the bottom-right coordinates,
respectively.

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Dataset. We evaluate MDPose on the widely-used human keypoint dataset, MS COCO (Lin et al.,
2014), consisting of 200K images including 250K person instances labeled with 17 keypoints.
Following the standard protocol, we split the dataset into 57K images for training, 5K images for
validation, and 20K images for test-dev set. We adopt the average precision (AP) based on the object
keypoint similarity (OKS) as our evaluation metric. We conduct the analysis for our MDPose on the
validation set and compare with other state-of-the-art methods on the test-dev set. Furthermore, we
evaluate MDPose on OCHuman (Zhang et al., 2019), which is a testing-only dataset focusing on the
heavy occlusion scenarios. It consists of 4,731 images with 8,110 person instances labeled with 17
keypoints like MS COCO. While less than 1% of person instances have occlusions with maxIoU
≥ 0.5 in MS COCO, all instances have occlusions with maxIoU ≥ 0.5 and 32% of them are more
challenging with maxIoU ≥ 0.75 in OCHuman. Following Zhang et al. (2019), we use only MS
COCO train set for training and evaluate on OCHuman validation and test set.

Training. As mentioned in 3.1, we represent the distribution of keypoint coordinates as a Laplace
distribution. We set Kg = 3 and Ng = 6 for RKG as our default setting. We conduct experiments
with different backbones including ResNet-50, ResNet-101 (He et al., 2016) and DLA-34 (Yu et al.,
2018), which is especially for further improvement of inference speed. All backbones are pretrained
with ImageNet (Deng et al., 2009) and FPN (Lin et al., 2017) is used as the feature extractor. For data
augmentation, we apply random rotation in [-30◦, 30◦], expand, random crop in [0.3, 1.0] (relative
range) and random flip. Unless specified, the input image is resized to 320×320 for the analysis of
the RKG and mixture distributions or 896×896 for the analysis of inference speed and occluded pose
estimation and comparison with other methods. Following Yoo et al. (2021), MDPose is trained by
SGD with a weight decay of 5e-5 and gradient clipping with an L2 norm of 7.0. The batch size is
32 and the synchronized batch normalization (Peng et al., 2018) is used for a consistent learning
behavior over different numbers of GPUs. The initial learning rate is set to 0.01 which is reduced by
a factor of 10 at the 180K and 240K iteration in the training schedule of total 270K iterations.
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Table 1: The performance according to the num-
ber of keypoints per group. Kg and Ng denote
the number of keypoints per group and the total
number of groups, respectively.

Kg Ng APkp APkp
50 APkp

75 APkp
M APkp

L

1 18 47.7 76.7 50.2 37.6 61.7
2 9 51.2 79.6 54.1 41.3 64.9
3 6 51.5 80.4 55.1 42.0 64.7
6 3 51.0 80.1 54.5 41.2 64.3
9 2 49.8 78.9 53.4 40.5 62.8
18 1 NaN NaN NaN NaN NaN

Kg=1, Ng=18

Kg=2, Ng=9

Kg=3, Ng=6

Kg=6, Ng=3

Kg=9, Ng=2

Kg=18, Ng=1

Underflow Ratio

A
P

47

48
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51

52

0.00 0.25 0.50 0.75 1.00

Figure 4: The trade-off between accuracy and
ratio of underflowed components.

Inference. For inference, we use the same size of an image as in the training phase. The mixture
components with low confidence scores in o are filtered out and NMS is applied for removing
duplicate estimations. We set thresholds of o and NMS as 1e-4 and 0.7, respectively. Note that our
model does not have any explicit process for identifying instance, such as post-grouping, weight
generation and so on.

4.2 ANALYSIS OF RKG Table 2: Randomness of grouping strategy. Non-
random indicates the heuristic grouping method
which predefines the keypoints per group based on
the relations of human body joints.

Randomness APkp APkp
50 APkp

75 APkp
M APkp

L

Non-random 39.5 69.9 40.0 32.4 49.7
Random 51.5 80.4 55.1 42.0 64.7

The number of keypoints per group. We
conducted an analysis for the number of key-
points per group, Kg. Since the number of
groups, Ng, is determined according to Kg, i.e.
Kg × Ng = K, the more the number of key-
points in a group, the higher the joint distribu-
tion’s dimension is.

In Table 1, it shows the best performance of 51.5 APkp with RKG of Kg = 3, which we set as
our default setting. Figure 4 shows the trade-off between the accuracy and the ratio of numerically
underflowed components. When we apply RKG of Kg = 1 or 2, the performance is inferior to RKG
of Kg = 3 despite the lower underflow ratio since our MDPose with RKG of high Kg can learn the
relations of keypoints more efficiently by modeling the joint distribution with more keypoints. In
particular, although there is no underflow problem due to the low dimension of joint distribution with
RKG of Kg = 1, it cannot learn the relations of keypoints sufficiently during the training process,
leading to notably lower APkp than RKG of Kg = 2 and 3 as shown in Table 1.

However, with RKG of more than Kg = 3, our MDPose suffers from the underflow problem as
Kg increases, and the performance is rather lower than that with RKG of Kg = 3. As expected,
with RKG of Kg = 18, i.e. with only one group, the original joint distribution is impossible to
learn, resulting in NaN in Table 1. It is due to the severe underflow problem caused by the curse of
dimensionality, i.e. the underflow ratio is 1.0 as shown in Figure 4.

Randomness in the grouping. Table 2 compares RKG with non-random grouping, which forms a
group heuristically based on the relations of human body joints, i.e. Ng = 6 groups of left arm, left leg,
right arm, right leg, eyes and nose, and ears and bbox center, each consisting of Kg = 3 keypoints. In
comparison to the MDPose with non-random grouping, RKG improves the performance significantly
from 39.5 APkp to 51.5 APkp. While non-random grouping learns only the joint distributions of
pre-defined adjacent keypoint groups, RKG enables learning of the overall joint distributions of every
non-adjacent keypoints through the whole training process by randomly grouping at every iteration.
The comparison through qualitative results is provided in the appendix.

4.3 ANALYSIS OF THE INFERENCE SPEED

Table 3 and Figure 1(e) present the comparison with other methods on COCO validation set. The
FPS is measured on a single NVIDIA TITAN RTX. Our MDPose achieves 64.6 APkp and 29.8 FPS
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Table 3: Inference speed comparison with other
methods on COCO val set.

Method Backbone APkp FPS

CenterNet (Zhou et al., 2019) Hourglass 64.0 6.8
DEKR (Geng et al., 2021) HRNet-W32 68.0 8.1

HRNet-W48 71.0 5.2
FCPose (Mao et al., 2021) ResNet-50 63.0 20.7

SimpleBaseline (Xiao et al., 2018) ResNet-50 72.4 6.8
ResNet-101 73.4 5.3
ResNet-152 74.3 4.0

PifPaf (Kreiss et al., 2019) ResNet-152 67.4 4.7

MDPose (Ours) ResNet-50 64.6 29.8
ResNet-101 65.2 20.8
DLA-34 64.2 58.9

Number of People

F
P

S

0

20

40

60

20 40 60 80 100

SimpleBaseline 
(ResNet-50)
DEKR      
(HRNet-W32)
FCPose 
(ResNet-50)
FCPose 
(ResNet-101)
MDPose 
(ResNet-50)
MDPose 
(ResNet-101)
MDPose      
(DLA-34)

Figure 5: Inference speed by the number of
people in an image.

(a) The highest confidence score (b) The 2nd highest confidence score

Figure 6: Comparison between FC-
Pose and MDPose in the occlusion sce-
nario. FCPose and MDPose are shown
on the 1st and 2nd row, respectively.
The red circles in (b) show the differ-
ences of the estimated results for oc-
cluded keypoints between FCPose and
MDPose.

with ResNet-50 backbone, which is comparable or superior to others especially in inference speed. It
is 44%-faster than FCPose with an identical backbone, which is a single-stage instance-aware method
enabling real-time application. Furthermore, we implement MDPose with DLA-34 as a backbone
to further boost the inference speed. Following Tian et al. (2019b), we adopt the 3-level FPN and a
training schedule of 360K iterations with learning rate decay by a factor of 10 at 300K and 340K
iteration. The input image is resized to 736x736 for both training and inference. We can achieve
about 3x-faster inference speed compared to FCPose (ResNet-50), still showing higher accuracy of
64.2 APkp.

Figure 5 illustrates the inference speed by the number of instances in an image. Our MDPose shows
the robust inference speed, regardless of the number of people, even faster than FCPose. Furthermore,
our MDPose with a heavier backbone ResNet-101 surpasses FCPose with ResNet-50 regarding
the inference speed. It shows a strong potential of MDPose for the practical application enabling
real-time multi-person pose estimation.

4.4 ANALYSIS OF THE OCCLUDED POSE ESTIMATION

Figure 6 shows comparison between FCPose (1st-row), a representative single-stage instance aware
method, and MDPose (2nd-row) under the occlusion scenario. Figure 6(a) and (b) are the estimation
results of person instances with the highest and 2nd highest confidence score, respectively.

As shown in the Figure 6(a), both of FCPose and MDPose estimate the keypoints of a person in
the front successfully. However, for the person occluded by the other one, there exist two major
drawbacks in FCPose. As demonstrated in the red circles in the 1st-row of Figure 6(b), FCPose
misses a keypoint occluded by the other instance or confuses it with that of the other instance. As a
result, it is not able to construct a proper form of human pose. Compared to FCPose, our MDPose
estimates the occluded keypoints much more robustly by successfully learning the high-dimensional
joint distribution of keypoints.

4.5 COMPARISON WITH STATE-OF-THE-ART METHODS

OCHuman. Table 4 compares our MDPose with other state-of-the-art methods on OCHuman
validation and test set. Note that we do not train our MDPose with OCHuman train set, but with
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Table 4: Comparisons with SOTA
methods on OCHuman val/test set.
The evaluation metric is APkp.

Method Backbone Val. Test

Top-down

RMPE (Fang et al., 2017) Hourglass 38.8 30.7
HRNet (Sun et al., 2019) HRNet-W48 37.8 37.2

SimpleBaseline (Xiao et al., 2018) ResNet-50 37.8 30.4
ResNet-152 41.0 33.3

MIPNet (Khirodkar et al., 2021) ResNet-101 32.8 35.0
HRNet-W48 42.0 42.5

Bottom-up

AE (Newell et al., 2017) Hourglass 32.1 29.5
HGG (Jin et al., 2020) Hourglass 35.6 34.8

DEKR (Geng et al., 2021) HRNet-W32 37.9 36.5
HRNet-W48 38.8 38.2

LOGO-CAP (Xue et al., 2022) HRNet-W32 39.0 38.1
HRNet-W48 41.2 40.4

Single-stage Instance-aware

FCPose (Mao et al., 2021) ResNet-50 32.4 31.7
ResNet-101 33.3 33.4

MDPose (Ours) ResNet-50 40.4 39.9
ResNet-101 43.5 42.7

Table 5: Comparisons with SOTA methods on COCO test-
dev set. We measure the inference speed of other methods
on the identical hardware if possible. † denotes flipping in
test time.

Method Backbone APkp APkp
50 APkp

75 APkp
M APkp

L FPS
Top-down

SimpleBaseline† (Xiao et al., 2018) ResNet-152 73.7 91.9 81.1 70.3 80.0 2.3
HRNet† (Sun et al., 2019) HRNet-W32 74.9 92.5 82.8 71.3 80.9 3.0

HRNet-W48 75.5 92.5 83.3 71.9 81.5 2.0
RLE† (Li et al., 2021) ResNet-152 74.2 91.5 81.9 71.2 79.3 -

HRNet-W48 75.7 92.3 82.9 72.3 81.3 -

Bottom-up

CMU-Pose (Cao et al., 2017) VGG-19 61.8 84.9 67.5 57.1 68.2 13.5
MDN†

3 (Varamesh & Tuytelaars, 2020) Hourglass 62.9 85.1 69.4 58.8 71.4 7.0
CenterNet† (Zhou et al., 2019) Hourglass 63.0 86.8 69.6 58.9 70.4 -

PifPaf (Kreiss et al., 2019) ResNet-152 66.7 87.8 73.6 62.4 72.9 -
HigherHRNet† (Cheng et al., 2020) HRNet-W32 66.4 87.5 72.8 61.2 74.2 2.5

HRNet-W48 68.4 88.2 75.1 64.4 74.2 1.7
DEKR† (Geng et al., 2021) HRNet-W32 67.3 87.9 74.1 61.5 76.1 8.5

HRNet-W48 70.0 89.4 77.3 65.7 76.9 5.2

Single-stage Instance-aware

DirectPose (Tian et al., 2019a) ResNet-50 62.2 86.4 68.2 56.7 69.8 13.5
FCPose (Mao et al., 2021) ResNet-50 64.3 87.3 71.0 61.6 70.5 20.3

ResNet-101 65.6 87.9 72.6 62.1 72.3 15.5
MDPose (Ours) ResNet-50 64.0 88.8 71.6 59.7 70.5 28.7

ResNet-101 65.0 88.9 72.8 60.6 71.4 20.5

only MS COCO train set. Our MDPose outperforms other methods without bells and whistles
due to the human keypoint representations successfully learned in the high-dimensional space
by our mixture model with RKG. Compared to FCPose (ResNet-101), a state-of-the-art single-
stage instance-aware method, our MDPose (ResNet-101) shows much better performance by a
significant margin of +10.2%p APkp and +9.3%p APkp on the validation and test set, respectively.
Furthermore, our MDPose (ResNet-101) even outperforms MIPNet (HRNet-W48), which was
devised with more emphasis on the occlusion scenarios, by +1.5%p APkp and +0.2%p APkp without
any delicately designed heuristic components. It shows that our MDPose is good at distinguishing
multiple overlapping instances, which is a challenging real-world occlusion scenario.

MS COCO. Table 5 compares our MDPose with other SOTA methods on COCO test-dev set. The
FPS is measured on the identical hardware if possible. Our MDPose shows the fastest inference
speed with a comparable accuracy among the compared methods. Particularly, it achieves a better
trade-off between the accuracy and speed compared to other single-stage instance-aware methods.
Compared to FCPose, our MDPose speeds up considerably by +8.4 FPS and +5.0 FPS with the
same backbone ResNet-50 and ResNet-101, respectively. Even with ResNet-101 which is heavier
than ResNet-50, our MDPose outperforms FCPose with ResNet-50 in the inference speed by +0.2
FPS. Compared to CMU-Pose, a representative real-time bottom-up method in multi-person pose
estimation, ours achieves better accuracy and speed by a large margin. Furthermore, compared to
MDN3 which leverages a mixture model for multi-person pose estimation like us, our MDPose shows
much improved performance in both the accuracy and inference speed, e.g. +1.1%p APkp and +21.7
FPS with ResNet-50 and +2.1%p APkp and +13.5 FPS with ResNet-101. Our work suggests a way
for a more effective application of the mixture model in multi-person pose estimation with a much
simpler architecture. The qualitative results are provided in the appendix.

5 CONCLUSION

Our MDPose achieves a simple pipeline by eliminating additional instance identification processes
via a mixture model. The high-dimensional joint distribution of human keypoints can be learned
efficiently by a simple yet effective training strategy RKG, which alleviates the underflow problem
caused by the curse of dimensionality and leads to successful learning of relations between keypoints.
As a result, it enables much more robust estimation under the condition of severe occlusion. Further-
more, since a mixture component corresponds to an instance, our MDPose performs instance-aware
keypoint estimation without bells and whistles, enabling real-time applications. Our proposed MD-
Pose achieves the state-of-the-art performance under the occlusion condition and is superior to other
methods in the inference speed while achieving comparable accuracy. Our work shows a strong
potential of a mixture model in the multi-person pose estimation and opens a way toward a much
simpler pipeline for following researches.

9
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6 ETHICS STATEMENT

Our proposed MDPose enables real-time estimation of human pose with competitive accuracy,
especially under the condition of a severe occlusion. Therefore, it has a great potential for a wide
range of application such as a falling detection, sports teaching, customer counting and so on.
Meanwhile, the effort to prevent our work from being used with malicious intention, such as illegal
surveillance, should be made.

7 REPRODUCIBILITY STATEMENT

We describe our training details in the Training paragraph of Section 4.1, and the code will be released
in the near future.
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A APPENDIX

A.1 ANALYSIS OF THE DISTRIBUTION OF MIXTURE COMPONENTS

Figure 7: Visualization of estimation results with different mixture distributions of MDPose.
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Table 6: Mixture model of different exponential distributions. The Laplace is more suitable than the
others for multi-person pose estimation.

Dist. APkp APkp
50 APkp

75 APkp
M APkp

L Underflow R.

Gaussian 50.5 79.7 54.0 41.1 63.8 0.184
Cauchy 50.6 79.6 54.1 41.4 63.5 0.0
Laplace 51.5 80.4 55.1 42.0 64.7 0.086

Table 6 shows the accuracy and underflow ratio of different mixture distributions. The MDPose with
Laplace mixture distribution outperforms the one with either the Gaussian or Cauchy with a noticeable
gap of APkp. Since the tails of Laplace and Cauchy fall off less sharply than the Gaussian, they are
relatively free from the underflow problem. Furthermore, as the tails of Laplace fall off more rapidly
than the Cauchy and it has a sharper peak, it leads to more efficient weighting for good and bad
estimations during the training process. As demonstrated in Figure 7, the Laplace mixture distribution
enables more accurate localization of human keypoints than the respective mixture distributions of
the Gaussian and Cauchy.

A.2 ANALYSIS OF GROUPING RANDOMNESS THROUGH VISUALIZATION

(a)

(b)

Figure 8: Visualization of our MDPose with (a) non-random grouping and (b) RKG.

As mentioned in Section 4.2 in the main paper, our proposed RKG strategy enables learning of
the overall joint distributions of all keypoints while the non-random grouping learns only the joint
distributions of each pre-defined keypoint groups. Figure 8 shows the qualitative results of our
MDPose with (a) non-random grouping and (b) RKG. The results are obtained from the MDPose
(ResNet-50) with Kg = 3, Ng = 6 and 320x320 input size on the COCO validation set. As shown in
Figure 8(a), the model trained by non-random grouping has a difficulty in differentiating the left and
right of limbs, due to lack of learning the overall relationship between every keypoint. On the contrary,
the MDPose trained by RKG (Figure 8(b)) shows superior performance with well-distinguished left
and right of limbs.
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A.3 QUALITATIVE RESULTS

Figure 9: Qualitative results of MDPose (ResNet-101) on OCHuman validation set, with Kg = 3,
Ng = 6 and 896x896 input size.
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Figure 10: Qualitative results of MDPose (ResNet-50) on COCO validation set, with Kg = 3, Ng = 6
and 896x896 input size.
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