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Abstract

In real-world reinforcement learning (RL) systems, various forms of impaired
observability can complicate matters. These situations arise when an agent is
unable to observe the most recent state of the system due to latency or lossy
channels, yet the agent must still make real-time decisions. This paper introduces
a theoretical investigation into efficient RL in control systems where agents must
act with delayed and missing state observations. We establish near-optimal regret
bounds, of the form Õ(

√
poly(H)SAK), for RL in both the delayed and missing

observation settings. Despite impaired observability posing significant challenges
to the policy class and planning, our results demonstrate that learning remains
efficient, with the regret bound optimally depending on the state-action size of the
original system. Additionally, we provide a characterization of the performance of
the optimal policy under impaired observability, comparing it to the optimal value
obtained with full observability.

1 Introduction

In Reinforcement Learning (RL), an agent engages with an environment in a sequential manner. In
an ideal setting, at each time step, the agent would observe the current state of the environment, select
an action to perform, and receive a reward Smallwood and Sondik [1973], Bertsekas [2012], Sutton
and Barto [2018], Lattimore and Szepesvári [2020]. However, real-world engineering systems often
introduce impaired observability and latency, where the agent may not have immediate access to the
instant state and reward information. In systems with lossy communication channels, certain state
observations may even be permanently missing, never reaching the agent. Nevertheless, the agent is
still required to make real-time decisions based on the available information.

The presence of impaired observability transforms the system into a complex interactive decision
process (Figure 1), presenting challenges for both learning and planning in RL. With limited knowl-
edge about recent states and rewards, the agent’s policy must extract information from the observed
history and utilize it to make immediate decisions. This introduces significant complexity to the
policy class and poses difficulties for RL. Moreover, the loss of information due to permanently
missing observations further hampers the efficiency of RL methods. Although a naïve approach
would involve augmenting the state and action space to create a fully observable Markov Decision
Process (MDP), such a method would lead to exponential regret growth in the state-action size.

Why existing methods do not work. One may be tempted to cast the problem of impaired
observability into a Partially Observed MDPs (POMDPs). However, this would not solve the problem.
In POMDP, the system does not reveal its instant state to the agent but provides an emission state
observation conditioned on the latent state. POMDPs are known to suffer from the curse of history
Papadimitriou and Tsitsiklis [1987], Bertsekas [2012], Krishnamurthy [2016], unless additional
assumptions are imposed. Existing efficient algorithms focus on subclasses of POMDPs with
decodable or distinguishable partial observations Jin et al. [2020], Uehara et al. [2022], Zhan et al.
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Figure 1: Reinforcement learning with impaired observability. At time h, the agent only observes the
past state sh−d and actions ah−d, . . . , ah−1. The policy depends on the observed information.

[2022], Chen et al. [2022], Liu et al. [2022], Zhong et al. [2022], Chen et al. [2023], where the
unseen instant state can be inferred from recent observations. Unfortunately, MDPs with impaired
observability do not fall into these benign subclasses. The reason behind this is that at each time step,
a new observation, if any, is in fact a past state. Viewing it as an emission state of the current one
leads to a time reversal posterior distribution depending on the underlying transitions, which suffers
from the curse of history and makes the POMDP intractable. The problem becomes even harder if
some observations get missing.

Empirical evidences suggested that efficient RL is possible even with impaired state observability
Lizotte et al. [2008], Liu et al. [2014], Agarwal and Aggarwal [2021]. However, theoretical under-
standing of this problem is very limited. One notable work Walsh et al. [2007] studied learning with
constant-time delayed observations. They identified subclasses of MDPs with nearly deterministic
transitions that can be efficiently learned. Beyond this special case, efficient RL with impaired
observability in MDPs with fully generality remains largely open.

Some recent works studied delayed feedback in MDPs Yang et al. [2023], Howson et al. [2023]. It
is a fundamentally different problem where the agent’s policy can still access real-time states but
learning uses delayed data. Our problem is fundamentally harder because the agent’s policy can only
access the lossy and delayed history. See Section 1 for more discussions.

Our results. In this paper, we provide algorithms and regret analysis for learning the optimal policy
in tabular MDPs with impaired observability. Note that this optimal policy is a different one from the
optimal policy with full observability. To approach this problem, we construct an augmented MDP
reformulation where the original state space is expanded to include available observations of past
state and an action sequence. However, the expanded state space is much larger than the original one
and naïve application of known methods would lead to exponentially large regret bounds. In our
analysis, we exploit structure of the augmented transition model to achieve efficient learning and
sharp regret bounds. The main results are summarized as follows.

• For MDPs with stochastic delays, we prove a sharp Õ(H4
√
SAK) regret bound (Theorem 4.1)

comparing to the best feasible policy, Here S and A are the sizes of the original state and action
spaces, respectively, H is the horizon, and K is the number of episodes. Here we allows the delay to
be stochastic and conditionally independent given on current state and action. Moreover, we quantify
the performance degradation of optimal value due to impaired observability, compared to optimal
value of fully observable MDPs (Proposition B.2). We also showcase in Proposition 4.2 that a short
delay does not reduce the optimal value, but slightly longer delay leads to substantial degradation.

• For MDPs with randomly missing observations, we provide an optimistic RL method that provably
achieves Õ(

√
H3S2AK) regret (Proposition 5.1). We also provide a sharper Õ(H4

√
SAK) regret

in the case when the missing rate is sufficiently small (Theorem 5.2).

To our best knowledge, these results present a first set of theories for RL with delayed and missing
observations. Remarkably, our regret bounds nearly match the minimax-optimal regret of standard
MDP in their dependence on S,A (noting that the target optimal policies are different in the two
cases). It implies that RL with impaired observability are provably as efficient as RL with full
observability (up to poly factors of H).

Related work. Efficient algorithms for learning in the standard setting of tabular MDPs without im-
paired observability has been extensively studied Kearns and Singh [2002], Brafman and Tennenholtz
[2002], Jaksch et al. [2010], Dann and Brunskill [2015], Azar et al. [2017], Agrawal and Jia [2017],
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Jin et al. [2018], Dann et al. [2019], Zanette and Brunskill [2019], Zhang et al. [2020], Domingues
et al. [2021], where the minimax optimal regret is Õ(

√
H3SAK) Azar et al. [2017], Domingues

et al. [2021].

The delayed observation studied in this paper is related to delayed feedback in Howson et al. [2023],
Yang et al. [2023], yet the setup is fundamentally different. In delayed feedback, an agent sends a
policy to the environment for execution. The environment executes the policy on behalf of the agent
for an episode, but the whole trajectory will be returned to the agent after some episodes. The policy
executed by the environment is able to “see" instant state and reward. It is Markov and not played by
the agent. Our setting concerns learning executable policies when delayed or missing states appear
within an episode. The policy is no longer Markov and can only prescribe action based on history.
Therefore, the algorithms and analyses for delayed feedback MDPs are not applicable to our settings.

Despite the distinct settings, there are existing fruitful results in efficiently learning MDPs or bandits
with delayed feedback. Stochastic delayed feedback in bandits is studied in Agarwal and Duchi [2011],
Dudik et al. [2011], Joulani et al. [2013], Vernade et al. [2017, 2020], Gael et al. [2020], Lancewicki
et al. [2021]. In the more challenging setting of reinforcement learning, Howson et al. [2023]
considers tabular MDPs and Yang et al. [2023] generalizes to MDPs with function approximation
and multi-agent settings.

On the other hand, results analyzing MDPs with missing observations are limited in literature,
although missing data is a commonly recognized issue in applications García-Laencina et al. [2010],
Jerez et al. [2010], Little et al. [2012], Emmanuel et al. [2021]. One notable result is Bouneffouf et al.
[2020] for bandits with missing rewards.

Notation: For real numbers a, b, we denote a ∧ b = min{a, b}. In episodic MDPs, we use the
superscript k to denote the index of episodes, and the subscript h to denote the index of time.
We denote ai:j = {ai, . . . , aj} as the collection of actions from time i to j. For two probability
distributions µ and ν, we denote their total variation distance as ∥µ− ν∥TV.

MDP preliminary: An episodic MDP is described by a tuple (S,A, H,R, P ), where S,A are
state and action spaces, respectively, H is the horizon, R = {rh}Hh=1 is the reward function and
P = {ph}Hh=1 is the transition probability. We primarily focus on tabular MDPs, where S = |S| and
A = |A| are both finite. We also assume that the reward is uniformly bounded with ∥rh∥∞ ≤ 1 for
any h. An agent will interact with the environment for K episodes, hoping to find a good policy to
maximize the cumulative reward. Within an episode, at the h-th step, the agent chooses an action
based on the available information of the environment. After taking the action, the underlying
environment produces a reward and transits to the next state. With full state observation, a policy π
maps instant state s to an action a or an action distribution. Given such a policy π, the value function
is V π

h (s1) = Eπ
[∑H

h′=h rh(sh′ , ah′)
∣∣sh] , where Eπ is the policy induced expectation.

2 Problem formulation

In this work, we study MDPs with impaired observability. We focus on two practical settings: 1)
delayed observations and 2) missing observations.

2.1 MDP with delayed observations

In any episode, we denote dh ∈ {0, 1, . . . } as the observational delay of the state and reward at step
h. That is, we receive sh and rh at time h+ dh. The delay time dh can be dependent on the state sh
and action ah at time h. To facilitate analysis, we denote the inter-arrival time between the arrival of
observations for step h and h+ 1 as ∆h = dh+1 − dh. With delays, at time h, the nearest observable
state is denoted as sth , where th = argmax {I :

∑I
i=0 ∆i ≤ h}. Then the executable policy class

Πexec = {πh(·|sth ,ath:h−1) for h = 1, . . . ,H}
chooses actions depending on the nearest visible state and history actions. We impose the following
assumption on the interarrival time.

Assumption 2.1 . The interarrival time ∆h takes value in {0, 1, . . . }. The distribution Dh(sh, ah) of
∆h can depend on (sh, ah), but is conditionally independent of the MDP transitions given (sh, ah).
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Assumption 2.1 does not impose any specific distributional assumption on ∆h, but only requires that
the delayed observations arrive in order and at each time step, there is at most one new visible state
and reward pair (∆h ≥ 0). A widely studied example of delays in literature is that the inter-arrival
time is geometrically distributed Winsten [1959]. Then the observation sequence {h+ dh} is known
as a Bernoulli process, which is understood as the discretized version of a Poisson process.

Our delayed observation setting is newly proposed and substantially generalizes the Constant Delayed
MDPs (CDMDPs) studied in Brooks and Leondes [1972], Bander and White III [1999], Katsikopoulos
and Engelbrecht [2003], Walsh et al. [2007]. When ∆h = 0 being deterministic for all h ≥ 1 and k,
our observation delay coincides with CDMDPs. In CDMDPs, a new past observation is guaranteed
to arrive at each time step. However, our delayed model can result in no new observation at some
time steps.

Observation delay leads to difficulty in planning, as the agent can only infer the current state and then
choose an action. Therefore, the policy is naturally history dependent. We summarize the interaction
protocol of the agent with the environment in Protocol 1. At the end of each episode, we can collect

Protocol 1 Interaction between the agent and the environment with delayed observations
1: for episode k = 1, . . . ,K do
2: for time h = 1, . . . ,H do
3: The agent observes a pair of new, if any, state and reward (skth , a

k
th
). By memory, the agent

also has access to past actions akth:h−1.
4: The agent plays action akh according to some executable policy πk

h ∈ Πexec.
5: The environment transits to next state skh+1 ∼ ph(·|skh, akh), which is unobservable to the

agent. The environment also decides the delay at step h+ 1 as dkh+1 = dkh +∆k
h and tkh+1.

6: end for
7: The environment sends all unobserved pairs of state and reward as well as their corresponding

delay time to the agent.
8: end for

all delayed observations, however, these observations are not used in planning. In reality, the agent
can collect these observations by waiting after time H . Protocol 1 is similar to hindsight observability
in POMDPs studied in Lee et al. [2023]. Yet their analysis for POMDPs is not directly transferable to
our settings as mentioned in the introduction.

2.2 MDP with missing observations

In addition to the stochastic delay in observations, we also consider randomly missing observations.
In applications, an agent interacts with the environment through some communication channel. The
communication channel is often imperfect and thus, observation can be lost during transmission. This
type of missing is permanent and we describe in the following assumption.

Assumption 2.2 . Any pair of observation (state and reward) is independently observable in the
communication channel. The observation rate is λh depending on h, but independent of the MDP
transitions. Moreover, there exists a constant λ0 such that λh ≥ λ0 for any h. The agent will be
informed when an observation is missing.

Equivalently, the missing observation rate in Assumption 2.2 is 1− λh and assumes the upper bound
of 1 − λ0. We will show later that this missing rate directly influences the learning efficiency in
Section 5.

3 Construction of augmented MDPs

To tackle the limited observability, we expand the original state space and define an augmented MDP.
It will serve as the basis for our subsequent theoretical analysis.
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3.1 Augmented MDPs with expected reward

In the remainder of this section, we focus on the delayed observation case and defer the missing case
to Section 5. Define τh = {sth ,ath:h−1, δth} as the augmented state, where δth ∈ [0,∆th ] is the
delayed steps after observing (sth , rth). Let Saug denote the augmented state space of all possible
τ ’s. Then the original MDP with delayed observations can be reformulated into a state-augmented
one MDPaug = (Saug,A, H,Raug, Paug). The reward is defined as

rh,aug(τh, ah) = E [rh(sh, ah)|τh, ah] ,
which is the expected reward given the nearest past state sth and history actions ath:h. We can define
belief distribution bh(s|τh) = P(sh = s|τh). Then rh,aug(τh, ah) = Es∼bh(·|τh)[r(s, ah)]. Belief
distributions are widely adopted in partially observed MDPs Ross et al. [2007], Poupart and Vlassis
[2008]. We will frequently use the belief distribution to study the expressivity of Πexec in Section 4.2.

The transition probabilities Paug are sparse. For any τh = {sth ,ath:h−1, δth} and τh+1 =
{sth+1

,ath+1:h, δth+1
}, we have

ph,aug(τh+1|τh, ah) Condition
Ma(τh, τh+1)θdelay(sth , ath , δth)pth(sth+1

|sth , ath) if δth+1
= 0 and th+1 = th + 1

Ma(τh, τh+1)(1− θdelay(sth , ath , δth)) if δth+1
= δth + 1 and th+1 = th

0 otherwise

where Ma(τh, τh+1) indicates whether the rolling actions are matched, i.e.,

Ma(τh, τh+1) = 1{ath:h−1 = ath+1:h−1},
and θdelay(sth , ath , δth) is defined as

θdelay(sth , ath , δth) = P(∆th = δth |sth , ath , δth) =
P(∆th = δth |sth , ath)

1−∑δ<δth
P(∆th = δ|sth , ath)

.

The factored form of θdelay(sth , ath , δth)pth(sth+1
|sth , ath) follows from the conditional indepen-

dence in Assumption 2.1. We define Q-functions and value functions as follows. For any τh, ah and
policy π ∈ Πexec, we have

Qπ
h,aug(τh, ah) = Eπ

[
H∑

h′=h

rh,aug(τh′ , ah′)
∣∣∣τh, ah] and

V π
h,aug(τh) =

〈
Qπ

h,aug(τh, ·), πh(·|τh)
〉
.

We note that V π
h is equivalent to V π

h,aug for the same executable policy π ∈ Πexec. We also denote
Ph,aug as the transition operator corresponding to Paug. It can be checked that

Qπ
h,aug(τh, ah) = rh,aug(τh, ah) + [Ph,augV

π
h,aug](τh, ah).

MDPaug also appears in makes all the policies in Πexec executable and Markov. Meanwhile, the
reward function keeps track of all the expected reward for H steps. Although the expanded state
space Saug is much more complicated than the original state space S, the sparse structures in the
transition probabilities still allow an efficient exploration. We note that ph,aug only depends on the
delay distribution and one-step Markov transitions. However, there is still one caveat for learning in
MDPaug – the reward function depends belief distributions, which involve multi-step transitions.

3.2 Augmented MDPs with past reward

To tackle the aforementioned challenge, we further define M̃DPaug = (S̃aug,A, H̃, R̃aug, P̃aug) that
shares the optimal policy in MDPaug with an enlonged horizon H̃ = 2H . The state space S̃aug consists
of any τh = {sth ,ath:h∧H , δth}. Comparing to Saug, we cut off the action at horizon H , since ah
for h > H has no influence on the state and reward in time [1, H]. The reward function is defined as

r̃h,aug(τh, ah) = rth(sth , ath)1{δth = 0}1{th ∈ {1, . . . ,H}}.
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By definition, r̃aug(τh, ah) is a past reward. More importantly, r̃h,aug(τh, ah) zeros out rewards
outside the original horizon H . Meanwhile, between the arrival of two consecutive state observations,
the reward only counts once. Lastly, the transition probabilities are

p̃h,aug(τh+1|τh, ah) Condition
Ma(τh, τh+1)θdelay(sth , ath , δth)pth(sth+1

|sth , ath) if δth+1
= 0, th+1 = th + 1 and h < H

Ma(τh, τh+1)(1− θdelay(sth , ath , δth)) if δth+1
= δth + 1, th+1 = th and h < H

Ma(τh, τh+1)pth(sth+1|sth , ath) if δth+1 = 0, th+1 = th + 1 and h > H

0 otherwise

We interpret the transitions as follows. When h ≤ H , the transition is the same as MDPaug. When
h > H , we simply wait for unobserved states and rewards to come. As mentioned, actions taken
beyond time H are irrelevant. We build an equivalence in the expected values of MDPaug and M̃DPaug.

Proposition 3.1. Let MDPaug and M̃DPaug be defined as in the previous paragraphs. Then for any
initial state τ1 and any policy π = {πh}Hh=1 ∈ Πexec, it holds that

Eπ

[
H∑

h=1

rh,aug(τh, ah)
∣∣∣τ1] = Eπ

 H̃∑
h=1

r̃h,aug(τh, ah)
∣∣∣τ1
 ,

where in the right-hand side, the policy for steps H + 1 to H̃ is arbitrary.

The proof is provided in Appendix A.1. Proposition 3.1 implies that learning in MDPaug until time H

is equivalent to that in M̃DPaug for H̃ steps.

4 RL with delayed observations and regret bound

In this section, we provide regret analysis of learning in MDPs with stochastic delays. For the sake of
simplicity, we assume the reward is known, however, extension to unknown reward causes no real
difficulty. Motivated by the augmented MDP reformulation, we introduce our learning algorithm
in Algorithm 2. In Line 5, unobserved states and rewards are returned to the agent as described
in Protocol 1. Using the data set, we construct bonus functions compensating the uncertainty in
one-step transitions of the original MDP. This largely sharpens the confidence region, yet still ensures
a valid optimism. We emphasize that in Line 9, we are planning on M̃DPaug involving the augmented
transitions and expanded states of τ ∈ S̃aug. Only in this way, we can obtain an executable policy in
delayed MDPs. The planning complexity is SAH though.

4.1 Regret bound

We define regret in delayed MDP as

Regret(K) =
∑K

k=1 maxπ∈Πexec
V π
1 (sk1)−

∑K
k=1 V

πk
1 (sk1),

where V π
1 is the value function of the original MDP. Although the regret here is defined on the original

MDP, it is equivalent to the regret of the same policy on MDPaug and further M̃DPaug by Proposition 3.1.
Note that we are comparing with the best executable policy. The performance degradation caused by
observation delay is discussed in Section 4.2. The following theorem bounds the regret.

Theorem 4.1 (Regret bound for Delayed MDP). Suppose Assumption 2.1 holds. Let γ ∈ (0, 1) be
any failure probability. With probaiblity 1− γ, the regret of Algorithm 2 satisfies

Regret(K) ≤ c
(
H4

√
SAKι+H4S2Aι2

)
,

where ι = log SAHK
γ and c is a constant.

The proof is provided in Appendix B.1. We discuss several implications.
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Algorithm 2 Policy learning for delayed MDPs using M̃DPaug

1: Input: Original horizon H , extended horizon H̃ , policy class Πexec, failure probability γ.
2: Init: VH̃+1(τ) = 0 and QH̃(τ, a) = H for any τ and a, data set D0 = ∅, initial policy π0.
3: for episode k = 1, . . . ,K do
4: Execute policy πk−1 for H̃ steps.
5: After the episode ends, collect data Dk = Dk−1 ∪ {(skh, akh, rkh,∆k

h)}Hh=1.
6: On data set Dk, compute counting numbers Nk

h (sh, ah), Nk
h (sh, ah, sh+1) and

Nk
h (sh, ah, δh) =

∑k
j=1 1{s

j
h = sh, a

j
h = ah,∆

j
h = δh}.

7: Estimate transition probabilities and delay distributions via

p̂kh(sh+1|sh, ah) =
Nk

h (sh, ah, sh+1)

Nk
h (sh, ah)

, and θ̂kdelay(sh, ah, δh) =
Nk

h (sh, ah, δh)∑
δ≥δh

Nk
h (sh, ah, δ)

.

Then estimators of p̃h,aug in M̃DPaug is computed using p̂kh and θ̂kdelay.
8: Set bonus function as

bkh(τh, ah) = cH

(√
(H ∧D)ι

Nk
th
(sth , ath , δth)

+

√
(H ∧D)ι

Nk
th
(sth , ath)

)
for ι = log SAKH

γ and c sufficiently large.

9: Run optimistic value iteration in M̃DPaug for H̃ steps and obtain πk ∈ Πexec.
10: end for
11: Return: Learned policy πk

1:H for k = 1, . . . ,K.

Sharp dependence on S and A Theorem 4.1 has a sharp dependence on S and A, although the
expanded state space S̃aug has a cardinality bounded by SAH . Naïvely learning and planning in
M̃DPaug would suffer from the exponential enlargement of AH . However, we identify the sparse
structures in the transition probabilities. As can be seen, p̃h,aug only involves one-step transitions in
the original MDP and some conditionally independent delay distributions. Such structures lead to a
rather easy estimation of p̃h,aug, which can be constructed from the estimators of one-step transitions
in the original MDP. Meanwhile, the sparse structures make exploration in M̃DPaug efficient, due to
many unreachable states.

Effect of the delay distribution and delay length Theorem 4.1 holds for arbitrary conditionally in-
dependent delay distributions, even include heavy-tailed distributions. In the worst case of unbounded
delays, Theorem 4.1 gives rise to a O(H4

√
SAKι) regret. The reason to this is that if the delay is

larger than H , then the corresponding state will only be observed after an episode ends and won’t be
used in planning. Therefore, we can truncate the delay at H , regardless of its tail distributions.

When the maximal length of delay is bounded by D < H , e.g., CDMDPs with dh = D for any h,
Theorem 4.1 implies that the regret is bounded by

Regret(K) ≤ c
(
(D + 1)5/2

√
H3SAKι+H4S2Aι2

)
for a constant c. A proof is provided in Appendix B.2. As can be seen, as the length of delay increases,
the regret bound enlarges, reflecting the increased difficulty of long delays. Moreover, when D = 0,
that is, no observation delays, the regret bound recovers that in standard MDPs.

4.2 Performance degradation of policy class Πexec

This section devotes to quantify the performance degradation caused by delayed observations. In
particular, we bound the value difference between the best executable policy and the best Markov
policy in a no delay environment. Recall that V1 is the value function of the original MDP. We denote

π∗
nodelay = argmaxπ V

π
1 (s1) and π∗

delay = argmaxπ∈Πexec
V π
1 (s1)

7



as the best vanilla optimal policy and executable policy, respectively. The values achieved by π∗
nodelay

and π∗
delay are denoted as V ∗

1,nodelay(s1) and V ∗
1,delay(s1), respectively. The gap between V ∗

1,nodelay
and V ∗

1,delay quantifies the performance degradation, which is denoted as gap(s1) = V ∗
1,nodelay(s1)−

V ∗
1,delay(s1). We bound gap in Proposition B.2 in Appendix due to space limit.

In a nutshell, we show that the performance degradation gap is highly relevant to the belief distribution
bh(·|τ). When bh(·|τ) is evenly spread, meaning that the entropy of bh is high and inferring the
current unseen state is difficult, we potentially suffer from a large gap. On the contrary, when bh(·|τ)
is nearly deterministic, the performance degradation is small. In the special case of deterministic
transitions, we have gap = 0.

4.3 The (mysterious) effect of delay on the optimal value

To further understand the effect of the delay on the optimal value, we provide the following dichotomy.
On the one hand, we show that there exists an MDP instance, such that a constant delay of d steps
does not hurt the performance. On the other hand, in the same MDP instance, a constant delay of
d+ 1 steps suffers from a constant performance drop.
Proposition 4.2. Consider constant delayed MDPs. Fix a positive integer d < H . Then there exists
an MDP instance such that the following two items hold simultaneously.

• When delay is d, it holds that 1
K

∑K
k=1 gap(s

k
1) = 0.

• When delay is d+ 1, it holds that 1
K

∑K
k=1 gap(s

k
1) ≥ 1

2 −
√

1
2K log 1

γ , with probability 1− γ.

The proof is provided in Appendix B.4. We remark that Proposition 4.2 says that observation delay
can be dangerous, even with the slightest possible number of steps. The idea behind Proposition 4.2
is consistent with the analysis on gap. In particular, we construct an MDP instance demonstrated
in Figure 2. The reward vanishes at all times but d + 1. When delay is d, the initial state s1 is
revealed and the policy can choose the best action to receive a reward. When delay is d+ 1, however,
there is always a 1/2 probability of missing the best action for any policy, which leads to a constant
performance degradation.

<latexit sha1_base64="9yONinheavaaCOMHhBjNWJWdgzA=">AAAB/nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XBjcuKthbaoWQymTY0kwxJRihDwR9wq3/gTtz6K/6A32GmnYVtPRA4nHMv9+QECWfauO63U1pZXVvfKG9WtrZ3dveq+wdtLVNFaItILlUnwJpyJmjLMMNpJ1EUxwGnj8HoJvcfn6jSTIoHM06oH+OBYBEj2FjpXve9frXm1t0p0DLxClKDAs1+9acXSpLGVBjCsdZdz02Mn2FlGOF0UumlmiaYjPCAdi0VOKbaz6ZRJ+jEKiGKpLJPGDRV/25kONZ6HAd2MsZmqBe9XPzP66YmuvYzJpLUUEFmh6KUIyNR/m8UMkWJ4WNLMFHMZkVkiBUmxrYzdyXUebRJxRbjLdawTNpnde+yfnF3Xms0iorKcATHcAoeXEEDbqEJLSAwgBd4hTfn2Xl3PpzP2WjJKXYOYQ7O1y8zTJYg</latexit>s1

<latexit sha1_base64="eQ60+R9+k3rnDB7OklSXze3KGLE=">AAAB/nicbVDLSsNAFL2pr1pfVZduBovgqiTF17LgxmVF+4A2lMlk0g6dTMLMRCih4A+41T9wJ279FX/A73CSZmFbDwwczrmXe+Z4MWdK2/a3VVpb39jcKm9Xdnb39g+qh0cdFSWS0DaJeCR7HlaUM0HbmmlOe7GkOPQ47XqT28zvPlGpWCQe9TSmbohHggWMYG2kBzVsDKs1u27nQKvEKUgNCrSG1Z+BH5EkpEITjpXqO3as3RRLzQins8ogUTTGZIJHtG+owCFVbppHnaEzo/goiKR5QqNc/buR4lCpaeiZyRDrsVr2MvE/r5/o4MZNmYgTTQWZHwoSjnSEsn8jn0lKNJ8agolkJisiYywx0aadhSu+yqLNKqYYZ7mGVdJp1J2r+uX9Ra3ZLCoqwwmcwjk4cA1NuIMWtIHACF7gFd6sZ+vd+rA+56Mlq9g5hgVYX7805JYh</latexit>s2

<latexit sha1_base64="dsoBmwqodyCZfdHTk+v9V+RBqak=">AAACCHicbVDLSgMxFM3UV62vqks3wSK4KjPia1lw47KCbYV2KJlMpg3NJGNyRyhDf8AfcKt/4E7c+hf+gN9hpp2FbT0QcjjnXu7hBIngBlz32ymtrK6tb5Q3K1vbO7t71f2DtlGppqxFlVD6ISCGCS5ZCzgI9pBoRuJAsE4wusn9zhPThit5D+OE+TEZSB5xSsBKfo+GCgyeff1qza27U+Bl4hWkhgo0+9WfXqhoGjMJVBBjup6bgJ8RDZwKNqn0UsMSQkdkwLqWShIz42fT0BN8YpUQR0rbJwFP1b8bGYmNGceBnYwJDM2il4v/ed0Uoms/4zJJgUk6OxSlAoPCeQM45JpREGNLCNXcZsV0SDShYHuauxKaPNqkYovxFmtYJu2zundZv7g7rzUaRUVldISO0Sny0BVqoFvURC1E0SN6Qa/ozXl23p0P53M2WnKKnUM0B+frFzpUmpM=</latexit>· · · · · ·

<latexit sha1_base64="dsoBmwqodyCZfdHTk+v9V+RBqak=">AAACCHicbVDLSgMxFM3UV62vqks3wSK4KjPia1lw47KCbYV2KJlMpg3NJGNyRyhDf8AfcKt/4E7c+hf+gN9hpp2FbT0QcjjnXu7hBIngBlz32ymtrK6tb5Q3K1vbO7t71f2DtlGppqxFlVD6ISCGCS5ZCzgI9pBoRuJAsE4wusn9zhPThit5D+OE+TEZSB5xSsBKfo+GCgyeff1qza27U+Bl4hWkhgo0+9WfXqhoGjMJVBBjup6bgJ8RDZwKNqn0UsMSQkdkwLqWShIz42fT0BN8YpUQR0rbJwFP1b8bGYmNGceBnYwJDM2il4v/ed0Uoms/4zJJgUk6OxSlAoPCeQM45JpREGNLCNXcZsV0SDShYHuauxKaPNqkYovxFmtYJu2zundZv7g7rzUaRUVldISO0Sny0BVqoFvURC1E0SN6Qa/ozXl23p0P53M2WnKKnUM0B+frFzpUmpM=</latexit>· · · · · ·

<latexit sha1_base64="9yONinheavaaCOMHhBjNWJWdgzA=">AAAB/nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XBjcuKthbaoWQymTY0kwxJRihDwR9wq3/gTtz6K/6A32GmnYVtPRA4nHMv9+QECWfauO63U1pZXVvfKG9WtrZ3dveq+wdtLVNFaItILlUnwJpyJmjLMMNpJ1EUxwGnj8HoJvcfn6jSTIoHM06oH+OBYBEj2FjpXve9frXm1t0p0DLxClKDAs1+9acXSpLGVBjCsdZdz02Mn2FlGOF0UumlmiaYjPCAdi0VOKbaz6ZRJ+jEKiGKpLJPGDRV/25kONZ6HAd2MsZmqBe9XPzP66YmuvYzJpLUUEFmh6KUIyNR/m8UMkWJ4WNLMFHMZkVkiBUmxrYzdyXUebRJxRbjLdawTNpnde+yfnF3Xms0iorKcATHcAoeXEEDbqEJLSAwgBd4hTfn2Xl3PpzP2WjJKXYOYQ7O1y8zTJYg</latexit>s1

<latexit sha1_base64="eQ60+R9+k3rnDB7OklSXze3KGLE=">AAAB/nicbVDLSsNAFL2pr1pfVZduBovgqiTF17LgxmVF+4A2lMlk0g6dTMLMRCih4A+41T9wJ279FX/A73CSZmFbDwwczrmXe+Z4MWdK2/a3VVpb39jcKm9Xdnb39g+qh0cdFSWS0DaJeCR7HlaUM0HbmmlOe7GkOPQ47XqT28zvPlGpWCQe9TSmbohHggWMYG2kBzVsDKs1u27nQKvEKUgNCrSG1Z+BH5EkpEITjpXqO3as3RRLzQins8ogUTTGZIJHtG+owCFVbppHnaEzo/goiKR5QqNc/buR4lCpaeiZyRDrsVr2MvE/r5/o4MZNmYgTTQWZHwoSjnSEsn8jn0lKNJ8agolkJisiYywx0aadhSu+yqLNKqYYZ7mGVdJp1J2r+uX9Ra3ZLCoqwwmcwjk4cA1NuIMWtIHACF7gFd6sZ+vd+rA+56Mlq9g5hgVYX7805JYh</latexit>s2

<latexit sha1_base64="9yONinheavaaCOMHhBjNWJWdgzA=">AAAB/nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XBjcuKthbaoWQymTY0kwxJRihDwR9wq3/gTtz6K/6A32GmnYVtPRA4nHMv9+QECWfauO63U1pZXVvfKG9WtrZ3dveq+wdtLVNFaItILlUnwJpyJmjLMMNpJ1EUxwGnj8HoJvcfn6jSTIoHM06oH+OBYBEj2FjpXve9frXm1t0p0DLxClKDAs1+9acXSpLGVBjCsdZdz02Mn2FlGOF0UumlmiaYjPCAdi0VOKbaz6ZRJ+jEKiGKpLJPGDRV/25kONZ6HAd2MsZmqBe9XPzP66YmuvYzJpLUUEFmh6KUIyNR/m8UMkWJ4WNLMFHMZkVkiBUmxrYzdyXUebRJxRbjLdawTNpnde+yfnF3Xms0iorKcATHcAoeXEEDbqEJLSAwgBd4hTfn2Xl3PpzP2WjJKXYOYQ7O1y8zTJYg</latexit>s1

<latexit sha1_base64="eQ60+R9+k3rnDB7OklSXze3KGLE=">AAAB/nicbVDLSsNAFL2pr1pfVZduBovgqiTF17LgxmVF+4A2lMlk0g6dTMLMRCih4A+41T9wJ279FX/A73CSZmFbDwwczrmXe+Z4MWdK2/a3VVpb39jcKm9Xdnb39g+qh0cdFSWS0DaJeCR7HlaUM0HbmmlOe7GkOPQ47XqT28zvPlGpWCQe9TSmbohHggWMYG2kBzVsDKs1u27nQKvEKUgNCrSG1Z+BH5EkpEITjpXqO3as3RRLzQins8ogUTTGZIJHtG+owCFVbppHnaEzo/goiKR5QqNc/buR4lCpaeiZyRDrsVr2MvE/r5/o4MZNmYgTTQWZHwoSjnSEsn8jn0lKNJ8agolkJisiYywx0aadhSu+yqLNKqYYZ7mGVdJp1J2r+uX9Ra3ZLCoqwwmcwjk4cA1NuIMWtIHACF7gFd6sZ+vd+rA+56Mlq9g5hgVYX7805JYh</latexit>s2

<latexit sha1_base64="qrsr8UsaTJ014Zi8YiqF6RdDV9s=">AAAB/nicbVDLSsNAFL2pr1pfVZduBosgCCURX8uCG5cVTVtoQ5lMJu3QySTMTIQSCv6AW/0Dd+LWX/EH/A4nbRa29cDA4Zx7uWeOn3CmtG1/W6WV1bX1jfJmZWt7Z3evun/QUnEqCXVJzGPZ8bGinAnqaqY57SSS4sjntO2PbnO//USlYrF41OOEehEeCBYygrWRHoIzp1+t2XV7CrRMnILUoECzX/3pBTFJIyo04ViprmMn2suw1IxwOqn0UkUTTEZ4QLuGChxR5WXTqBN0YpQAhbE0T2g0Vf9uZDhSahz5ZjLCeqgWvVz8z+umOrzxMiaSVFNBZofClCMdo/zfKGCSEs3HhmAimcmKyBBLTLRpZ+5KoPJok4opxlmsYZm0zuvOVf3y/qLWaBQVleEIjuEUHLiGBtxBE1wgMIAXeIU369l6tz6sz9loySp2DmEO1tcvyCOV3Q==</latexit>

d + 1
<latexit sha1_base64="dMkk5Ob0uTsMsg25+HD32q3/ZoI=">AAAB/nicbVDLSsNAFL2pr1pfVZduBosgCCUp9bEsuHFZ0T6gDWUymbRDJ5MwMxFKKPgDbvUP3Ilbf8Uf8DuctFnY1gMDh3Pu5Z45XsyZ0rb9bRXW1jc2t4rbpZ3dvf2D8uFRW0WJJLRFIh7JrocV5UzQlmaa024sKQ49Tjve+DbzO09UKhaJRz2JqRvioWABI1gb6cG/qA3KFbtqz4BWiZOTCuRoDso/fT8iSUiFJhwr1XPsWLsplpoRTqelfqJojMkYD2nPUIFDqtx0FnWKzozioyCS5gmNZurfjRSHSk1Cz0yGWI/UspeJ/3m9RAc3bspEnGgqyPxQkHCkI5T9G/lMUqL5xBBMJDNZERlhiYk27Sxc8VUWbVoyxTjLNaySdq3qXFUv7+uVRiOvqAgncArn4MA1NOAOmtACAkN4gVd4s56td+vD+pyPFqx85xgWYH39Asm7ld4=</latexit>

d + 2
<latexit sha1_base64="9yONinheavaaCOMHhBjNWJWdgzA=">AAAB/nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XBjcuKthbaoWQymTY0kwxJRihDwR9wq3/gTtz6K/6A32GmnYVtPRA4nHMv9+QECWfauO63U1pZXVvfKG9WtrZ3dveq+wdtLVNFaItILlUnwJpyJmjLMMNpJ1EUxwGnj8HoJvcfn6jSTIoHM06oH+OBYBEj2FjpXve9frXm1t0p0DLxClKDAs1+9acXSpLGVBjCsdZdz02Mn2FlGOF0UumlmiaYjPCAdi0VOKbaz6ZRJ+jEKiGKpLJPGDRV/25kONZ6HAd2MsZmqBe9XPzP66YmuvYzJpLUUEFmh6KUIyNR/m8UMkWJ4WNLMFHMZkVkiBUmxrYzdyXUebRJxRbjLdawTNpnde+yfnF3Xms0iorKcATHcAoeXEEDbqEJLSAwgBd4hTfn2Xl3PpzP2WjJKXYOYQ7O1y8zTJYg</latexit>s1

<latexit sha1_base64="eQ60+R9+k3rnDB7OklSXze3KGLE=">AAAB/nicbVDLSsNAFL2pr1pfVZduBovgqiTF17LgxmVF+4A2lMlk0g6dTMLMRCih4A+41T9wJ279FX/A73CSZmFbDwwczrmXe+Z4MWdK2/a3VVpb39jcKm9Xdnb39g+qh0cdFSWS0DaJeCR7HlaUM0HbmmlOe7GkOPQ47XqT28zvPlGpWCQe9TSmbohHggWMYG2kBzVsDKs1u27nQKvEKUgNCrSG1Z+BH5EkpEITjpXqO3as3RRLzQins8ogUTTGZIJHtG+owCFVbppHnaEzo/goiKR5QqNc/buR4lCpaeiZyRDrsVr2MvE/r5/o4MZNmYgTTQWZHwoSjnSEsn8jn0lKNJ8agolkJisiYywx0aadhSu+yqLNKqYYZ7mGVdJp1J2r+uX9Ra3ZLCoqwwmcwjk4cA1NuIMWtIHACF7gFd6sZ+vd+rA+56Mlq9g5hgVYX7805JYh</latexit>s2

<latexit sha1_base64="dsoBmwqodyCZfdHTk+v9V+RBqak=">AAACCHicbVDLSgMxFM3UV62vqks3wSK4KjPia1lw47KCbYV2KJlMpg3NJGNyRyhDf8AfcKt/4E7c+hf+gN9hpp2FbT0QcjjnXu7hBIngBlz32ymtrK6tb5Q3K1vbO7t71f2DtlGppqxFlVD6ISCGCS5ZCzgI9pBoRuJAsE4wusn9zhPThit5D+OE+TEZSB5xSsBKfo+GCgyeff1qza27U+Bl4hWkhgo0+9WfXqhoGjMJVBBjup6bgJ8RDZwKNqn0UsMSQkdkwLqWShIz42fT0BN8YpUQR0rbJwFP1b8bGYmNGceBnYwJDM2il4v/ed0Uoms/4zJJgUk6OxSlAoPCeQM45JpREGNLCNXcZsV0SDShYHuauxKaPNqkYovxFmtYJu2zundZv7g7rzUaRUVldISO0Sny0BVqoFvURC1E0SN6Qa/ozXl23p0P53M2WnKKnUM0B+frFzpUmpM=</latexit>· · · · · ·

<latexit sha1_base64="dsoBmwqodyCZfdHTk+v9V+RBqak=">AAACCHicbVDLSgMxFM3UV62vqks3wSK4KjPia1lw47KCbYV2KJlMpg3NJGNyRyhDf8AfcKt/4E7c+hf+gN9hpp2FbT0QcjjnXu7hBIngBlz32ymtrK6tb5Q3K1vbO7t71f2DtlGppqxFlVD6ISCGCS5ZCzgI9pBoRuJAsE4wusn9zhPThit5D+OE+TEZSB5xSsBKfo+GCgyeff1qza27U+Bl4hWkhgo0+9WfXqhoGjMJVBBjup6bgJ8RDZwKNqn0UsMSQkdkwLqWShIz42fT0BN8YpUQR0rbJwFP1b8bGYmNGceBnYwJDM2il4v/ed0Uoms/4zJJgUk6OxSlAoPCeQM45JpREGNLCNXcZsV0SDShYHuauxKaPNqkYovxFmtYJu2zundZv7g7rzUaRUVldISO0Sny0BVqoFvURC1E0SN6Qa/ozXl23p0P53M2WnKKnUM0B+frFzpUmpM=</latexit>· · · · · ·

<latexit sha1_base64="9yONinheavaaCOMHhBjNWJWdgzA=">AAAB/nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XBjcuKthbaoWQymTY0kwxJRihDwR9wq3/gTtz6K/6A32GmnYVtPRA4nHMv9+QECWfauO63U1pZXVvfKG9WtrZ3dveq+wdtLVNFaItILlUnwJpyJmjLMMNpJ1EUxwGnj8HoJvcfn6jSTIoHM06oH+OBYBEj2FjpXve9frXm1t0p0DLxClKDAs1+9acXSpLGVBjCsdZdz02Mn2FlGOF0UumlmiaYjPCAdi0VOKbaz6ZRJ+jEKiGKpLJPGDRV/25kONZ6HAd2MsZmqBe9XPzP66YmuvYzJpLUUEFmh6KUIyNR/m8UMkWJ4WNLMFHMZkVkiBUmxrYzdyXUebRJxRbjLdawTNpnde+yfnF3Xms0iorKcATHcAoeXEEDbqEJLSAwgBd4hTfn2Xl3PpzP2WjJKXYOYQ7O1y8zTJYg</latexit>s1
<latexit sha1_base64="9yONinheavaaCOMHhBjNWJWdgzA=">AAAB/nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XBjcuKthbaoWQymTY0kwxJRihDwR9wq3/gTtz6K/6A32GmnYVtPRA4nHMv9+QECWfauO63U1pZXVvfKG9WtrZ3dveq+wdtLVNFaItILlUnwJpyJmjLMMNpJ1EUxwGnj8HoJvcfn6jSTIoHM06oH+OBYBEj2FjpXve9frXm1t0p0DLxClKDAs1+9acXSpLGVBjCsdZdz02Mn2FlGOF0UumlmiaYjPCAdi0VOKbaz6ZRJ+jEKiGKpLJPGDRV/25kONZ6HAd2MsZmqBe9XPzP66YmuvYzJpLUUEFmh6KUIyNR/m8UMkWJ4WNLMFHMZkVkiBUmxrYzdyXUebRJxRbjLdawTNpnde+yfnF3Xms0iorKcATHcAoeXEEDbqEJLSAwgBd4hTfn2Xl3PpzP2WjJKXYOYQ7O1y8zTJYg</latexit>s1

<latexit sha1_base64="eQ60+R9+k3rnDB7OklSXze3KGLE=">AAAB/nicbVDLSsNAFL2pr1pfVZduBovgqiTF17LgxmVF+4A2lMlk0g6dTMLMRCih4A+41T9wJ279FX/A73CSZmFbDwwczrmXe+Z4MWdK2/a3VVpb39jcKm9Xdnb39g+qh0cdFSWS0DaJeCR7HlaUM0HbmmlOe7GkOPQ47XqT28zvPlGpWCQe9TSmbohHggWMYG2kBzVsDKs1u27nQKvEKUgNCrSG1Z+BH5EkpEITjpXqO3as3RRLzQins8ogUTTGZIJHtG+owCFVbppHnaEzo/goiKR5QqNc/buR4lCpaeiZyRDrsVr2MvE/r5/o4MZNmYgTTQWZHwoSjnSEsn8jn0lKNJ8agolkJisiYywx0aadhSu+yqLNKqYYZ7mGVdJp1J2r+uX9Ra3ZLCoqwwmcwjk4cA1NuIMWtIHACF7gFd6sZ+vd+rA+56Mlq9g5hgVYX7805JYh</latexit>s2
<latexit sha1_base64="eQ60+R9+k3rnDB7OklSXze3KGLE=">AAAB/nicbVDLSsNAFL2pr1pfVZduBovgqiTF17LgxmVF+4A2lMlk0g6dTMLMRCih4A+41T9wJ279FX/A73CSZmFbDwwczrmXe+Z4MWdK2/a3VVpb39jcKm9Xdnb39g+qh0cdFSWS0DaJeCR7HlaUM0HbmmlOe7GkOPQ47XqT28zvPlGpWCQe9TSmbohHggWMYG2kBzVsDKs1u27nQKvEKUgNCrSG1Z+BH5EkpEITjpXqO3as3RRLzQins8ogUTTGZIJHtG+owCFVbppHnaEzo/goiKR5QqNc/buR4lCpaeiZyRDrsVr2MvE/r5/o4MZNmYgTTQWZHwoSjnSEsn8jn0lKNJ8agolkJisiYywx0aadhSu+yqLNKqYYZ7mGVdJp1J2r+uX9Ra3ZLCoqwwmcwjk4cA1NuIMWtIHACF7gFd6sZ+vd+rA+56Mlq9g5hgVYX7805JYh</latexit>s2

<latexit sha1_base64="0zzZrQJZXc0sKocA4veUmkISeIY=">AAAB/HicbVDJSgNBFHwTtxi3qEcvjUHwFGbE7RjwkmMCZoFkCD2dN0mTnoXuHiEM8Qe86h94E6/+iz/gd9iTzMEkFjQUVe/xqsuLBVfatr+twsbm1vZOcbe0t39weFQ+PmmrKJEMWywSkex6VKHgIbY01wK7sUQaeAI73uQh8ztPKBWPwkc9jdEN6CjkPmdUG6lZH5QrdtWeg6wTJycVyNEYlH/6w4glAYaaCapUz7Fj7aZUas4Ezkr9RGFM2YSOsGdoSANUbjoPOiMXRhkSP5LmhZrM1b8bKQ2UmgaemQyoHqtVLxP/83qJ9u/dlIdxojFki0N+IoiOSPZrMuQSmRZTQyiT3GQlbEwlZdp0s3RlqLJos5IpxlmtYZ20r6rObfWmeV2p1fKKinAG53AJDtxBDerQgBYwQHiBV3iznq1368P6XIwWrHznFJZgff0Cve+VUQ==</latexit>

H

Uniform

<latexit sha1_base64="eKlfYaL0E1+oW5luMS8LupyPCAQ=">AAAB/nicbVDLSsNAFL2pr1pfVZduBovgqiTia1l047KiaQttKJPJpB06mYSZiVBCwR9wq3/gTtz6K/6A3+GkzcK2Hhg4nHMv98zxE86Utu1vq7Syura+Ud6sbG3v7O5V9w9aKk4loS6JeSw7PlaUM0FdzTSnnURSHPmctv3Rbe63n6hULBaPepxQL8IDwUJGsDbSA+47/WrNrttToGXiFKQGBZr96k8viEkaUaEJx0p1HTvRXoalZoTTSaWXKppgMsID2jVU4IgqL5tGnaATowQojKV5QqOp+ncjw5FS48g3kxHWQ7Xo5eJ/XjfV4bWXMZGkmgoyOxSmHOkY5f9GAZOUaD42BBPJTFZEhlhiok07c1cClUebVEwxzmINy6R1Vncu6xf357XGTVFRGY7gGE7BgStowB00wQUCA3iBV3iznq1368P6nI2WrGLnEOZgff0CFxKWEA==</latexit>a1

<latexit sha1_base64="41IAWu8bcoYY+VMEyJECvJ32u4I=">AAAB/nicbVDLSsNAFL2pr1pfVZduBovgqiTFqsuiG5cV7QPaUCaTSTt0MgkzE6GEgj/gVv/Anbj1V/wBv8NJm4VtPTBwOOde7pnjxZwpbdvfVmFtfWNzq7hd2tnd2z8oHx61VZRIQlsk4pHselhRzgRtaaY57caS4tDjtOONbzO/80SlYpF41JOYuiEeChYwgrWRHvCgNihX7Ko9A1olTk4qkKM5KP/0/YgkIRWacKxUz7Fj7aZYakY4nZb6iaIxJmM8pD1DBQ6pctNZ1Ck6M4qPgkiaJzSaqX83UhwqNQk9MxliPVLLXib+5/USHVy7KRNxoqkg80NBwpGOUPZv5DNJieYTQzCRzGRFZIQlJtq0s3DFV1m0ackU4yzXsEratapzWa3fX1QaN3lFRTiBUzgHB66gAXfQhBYQGMILvMKb9Wy9Wx/W53y0YOU7x7AA6+sXGKqWEQ==</latexit>a2

<latexit sha1_base64="IViLGQcKuaz+8cZbqaENJLEF2zA="></latexit>

rd+1(si, ai) = 1 for i = 1, 2

Figure 2: MDP instance on two states with two actions. The transition is lazy until time d. Then the
transition is uniform regardless of actions for time d+ 1. Reward is nonzero only at time d+ 1. This
is an example with a delay of length d causes no degradation and a delay of d+ 1 causes a constant
performance degradation.

5 RL with missing observations and regret analysis

We now switch our study to MDPs with missing observations. In such an environment, executable
policies share the same structures as delayed MDPs, where an action is taken based on available
history information. Compared to delayed observations, learning with missing observations is
more challenging. Since unobserved states and rewards are never revealed, we are suffering from
information loss. Besides, we will frequently deal with multi-step transitions, due to missing
observations between two consecutive visible states.

5.1 Optimistic planning with missing observations

Despite the difficulty, we present here algorithms that are efficient in learning and planning for MDPs
with missing observations. We begin with an optimistic planning algorithm in Algorithm 3. To unify
the notation, we denote skh = ∅ and rkh = ∅ as missing the observation.
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Algorithm 3 Optimistic planning for MDPs with missing observations
1: Input: Horizon H , observable rate λh.
2: Init: B0 = Θ to be all possible tabular MDPs, data set D0 = ∅.
3: for episode k = 1, . . . ,K do
4: Set policy πk = argmaxπ∈Πexec

maxθ∈Bk V π
1,θ(s

k
1).

5: Play policy πk and collect data Dk−1 ∪ {(skh, akh, rkh)}Hh=1.
6: Compute counting number Nk

h (s, a) =
∑k

j=1 1{s
j
h = s, ajh = a, sjh+1 ̸= ∅}.

7: Update confidence set

Bk =
{
θ : ∥p̂kh(·|s, a)− pθh(·|s, a)∥TV ≤ c

√
Sι

Nk
h (s, a)

for all (h, s, a)
}
∩ Bk−1,

where p̂kh(s
′|s, a) = Nk

h (s,a,s′)

Nk
h (s,a)

and c is some constant.
8: end for

The majority of the algorithm resembles the typical optimistic planning Jaksch et al. [2010] but with
some notable differences. In Line 4, the value function V1,θ is for the original MDP with transition
probabilities parameterized by θ. Different from the typical optimistic planning, the underlying MDP
here obeys the stochastic observable model in Assumption 2.2. Therefore, the value V1,θ is the sum
of all possible values under missing observations. When counting Nk

h (s, a) in Line 6, we exclude
data tuples missing the next state, which inevitably slows down the learning curve. Nonetheless, the
effect of missing only contributes as a scaling factor in the regret.
Proposition 5.1. Suppose Assumption 2.2 holds with λh known. Given a failure probability γ, with
probability 1− γ, the regret of Algorithm 4 satisfies

Regret(K) ≤ c

(⌈
1

− log(1− λ2
0)

⌉√
H3S2AKι3 +

√
H4Kι

)
,

where ι = log SAHK
γ and c is a constant.

The proof is provided in Appendix C.1. Proposition 5.1 is optimal in the K dependence and
achieves an S2A dependence on the complexity of the underlying MDP. In the extreme case of
λ0 ≈ 0, which implies that every state and reward are hardly observable, we have Regret(K) =

Õ
(

1
λ2
0

√
H3S2AK

)
. Here λ2

0 is the probability of observing two consecutive states for estimating
the transition probabilities. Proposition 5.1 requires knowledge of observable rate λh. This is not a
restrictive condition, as estimating λh from Bernoulli random variables is much easier than estimating
transition probabilities.

5.2 Model-based planning using augmented MDPs

Proposition 5.1 has a lenient dependence on the missing rate 1− λ2
0, nonetheless, is not sharp on the

dependence of S. We next show that the augmented MDP approach is effective to tackle missing
observations, when the observable rate satisfies additional conditions. Specifically, we assume that
the observable rate λh is independent of (s, a). We utilize the MDPaug reformulation, except that we
redefine the transition probabilities as

ph,aug(τh+1|τh, ah) =


λhph(sh+1|sth ,ath:h) if th+1 = h+ 1

Ma(τh+1, τh)(1− λh) if th+1 = th
0 otherwise

.

The first case in ph,aug corresponds to receiving the state observation at time h+ 1. In contrast to the
delayed MDPs, the transition probabilities here potentially rely on multi-step transitions in the original
MDP. The second case of the transition corresponds to missing the observation. We summarize the
policy learning procedure in Algorithm 4 in Appendix C.2, which is similar to Algorithm 2, but with
a new bonus function. The following theorem shows that Algorithm 4 is asymptotically efficient
when the observable rate is relatively high.

9



Theorem 5.2. Suppose Assumption 2.2 holds with λ0 ≥ 1−A−(1+v) for some positive constant v.
Given a failure probability γ, with probability 1− γ, the regret of Algorithm 4 satisfies

Regret(K) ≤ c

(
H4

√
SAKι3 + S2

√
H9K

1
(1+v) ι6

)
,

where ι = log SAHK
γ and c is a constant.

The proof is provided in Appendix C.2. Some remarks are in order.

SA rate when K is large When the number of episodes K ≥ S3(1+v)/v, the first term
H4

√
SAKι3 in the regret bound dominates and attains a sharp dependence on S and A. How-

ever, when the number of episodes are limited, the regret bound has a worse dependence on the state
space size S. We also observe that as the missing rate λ becomes small (equivalently, v becomes
large), the regret is close to Õ(H4

√
SAKι3).

Observable rate smaller than 1− 1/A Theorem 5.2 holds for an observable rate λ0 > 1− 1/A.
The intuition behind is that to fully explore all the actions when a state observation is missing takes
A trials. Therefore, in expectation, we will encounter a missing observation at least every A episodes
as long as λ0 > 1 − 1/A. Nonetheless, when λ0 ≤ 1 − 1/A, the regret bound remains curiously
underexplored. We conjecture that λ0 = 1− 1/A is a critical point distinguishes unique strategies
for learning and planning in MDPs with missing observations. A detailed analysis goes beyond the
scope of the current paper.

Proof sketch The proof of Theorem 5.2 adapts the analysis of model-based UCBVI algorithms
Azar et al. [2017]. Let m denote the maximal length of consecutive missing observations. We denote
Em as the event when the maximal length of consecutive missing is less than m. On event Em, a naïve
analysis leads to a Õ

(√
poly(H)SAm+1K

)
regret, in observation to the size of the expanded state

space Saug. However, our analysis circumvents the Am dependence by exploiting the occurrence of
consecutive missing observations is rare (Lemma C.3). On the complement of event, the regret is
bounded by KH(1− P(Em)). Summing up the two parts and choosing a proper m yield our result.

6 Conclusion

In this paper, we have studied learning and planning in impaired observability MDPs. We focus
on MDPs with delayed and missing observations. Specifically, for delayed observations, we have
shown an efficient Õ(H4

√
SAK) regret. For missing observations, we have provided an optimistic

planning algorithm achieving an Õ(
√
H3S2AK) regret. If the missing rate is relatively small, we

have shown an efficient Õ(H4
√
SAK) regret bound. Further, we have characterized the performance

drop caused by impaired observability compared to full observability.
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A Omitted proof in Section 3

A.1 Proof of Proposition 3.1

Proof. Consider an arbitrary fixed inter-arrival pattern ∆0,∆1, . . . ,∆H−1. We show that the ex-
pected accumulated rewards under this inter-arrival pattern are identical for MDPaug and M̃DPaug. In
M̃DPaug, we have

Eπ

 H̃∑
h=1

r̃h,aug(τh, ah)
∣∣∣ τ1,∆0, . . . ,∆H−1


(i)
= Eπ

 H̃∑
h=1

r̃th,aug(sth , ath)1{δth = 0}1{th ∈ {1, . . . ,H}}
∣∣∣ τ1,∆0, . . . ,∆H−1


(ii)
= Eπ

[
H∑

h=1

r(sh, ah)
∣∣∣ τ1,∆0, . . . ,∆H−1

]

= Eπ

[
H∑

h=1

rh,aug(τh, ah)
∣∣∣ τ1,∆0, . . . ,∆H−1

]
,

where equality (i) invokes the definition of r̃h,aug and equality (ii) eliminates zero reward terms.
Now taking expectation over all possible inter-arrival patterns, we deduce

Eπ

 H̃∑
h=1

r̃aug(τh, ah)
∣∣∣ τ1
 = Eπ

[
H∑

h=1

rh,aug(sh, ah)
∣∣∣ τ1] .

The proof is complete.

B Omitted proofs in Section 4

B.1 Proof of Theorem 4.1

Proof. We adapt the main steps from Azar et al. [2017] for proving the theorem. The proof consists
of verifying a valid optimism and developing a regret analysis. We denote Q̃∗

h,aug as the optimal

Q-function for M̃DPaug. When analyzing the regret, we also denote Q̃k
h,aug as the optimal Q-function

in the k-th episode.

Valid optimism To begin with, we verify that the choice of the bonus functions leads to a valid
optimism in the following lemma.
Lemma B.1. Given any failure probability γ < 1, we set a bonus as

bkh(τh, ah) = cAH

(√
Hι

Nth(sth , ath , δth)
+

√
Hι

Nth(sth , ath)

)
,

where ι = log
(

SAHK
γ

)
and cA is a constant. Then with probability 1− γ, it holds

Q̃k
h,aug(τh, ah) ≥ Q̃∗

h,aug(τh, ah), Ṽ k
h,aug(τh) ≥ Ṽ ∗

h,aug(τh) for any (k, h, τh, ah).

Proof of Lemma B.1. We compute the cardinality of the expanded state space S̃aug as

|S̃aug|
(i)
=

H∑
i=0

HSAi = HS
AH+1 − 1

A− 1
≤ 2HSAH .

For a fixed episode k, we show by backward induction that the assertion in Lemma B.1 holds. To
ease the presentation, we omit all superscripts k, all subscripts “aug”, as well as the tilde ·̃ notation.
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When h = H̃ + 1, the base assertion holds immediately. Suppose the assertion is true for time h+ 1.
At time h, for any fixed (τh, ah), if Qh(τh, ah) = H , the assertion holds true. Otherwise, we have

Qh(τh, ah)−Q∗
h(τh, ah) = [P̂hVh+1](τh, ah)− [PhV

∗
h+1](τh, ah) + bkh(τh, ah)

≥
(
[P̂h − Ph]V

∗
h+1

)
(τh, ah)︸ ︷︷ ︸

(A)

+ bkh(τh, ah).

We show a lower bound on (A). If h ≥ H , expanding the transition kernel Ph leads to

(A) =
∑
τh+1

V ∗
h+1(τh+1)(p̂h(τh+1|τh, ah)− ph(τh+1|τh, ah))

(i)
=
∑
sth+1

V ∗
h+1(τh+1)(p̂th(sth+1|sth , ath)− pth(sth+1|sth , ath))

(ii)

≥ −cA,1H

√
Hι

Nth(sth , ath)
,

where equality (i) requires τh+1 to take sth+1 as the new state observation, and inequality (ii) follows
from the Hoeffding’s inequality (Lemma D.2) with a constant cA,1. Note that the Hι term in the
numerator comes from a union bound over S̃aug ×A.

On the other hand, if h < H , expanding the transition kernel Ph yields

(A) =
∑
τh+1

V ∗
h+1(τh+1) (p̂h(τh+1|τh, ah)− ph(τh+1|τh, ah))

=
∑
τh+1

V ∗
h+1(τh+1) (p̂h(τh+1|τh, ah)− ph(τh+1|τh, ah))1{δth+1

= 0}1{th+1 = th + 1}︸ ︷︷ ︸
(A1)

+
∑
τh+1

V ∗
h+1(τh+1) (p̂h(τh+1|τh, ah)− ph(τh+1|τh, ah))1{δth+1

= δth + 1}1{th+1 = th}︸ ︷︷ ︸
(A2)

.

Note that (A1) accounts for receiving a new state observation in τh+1, and (A2) accounts for no new
state observation. We tackle these two terms separately. For (A1), we have

(A1)

=
∑
sth+1

V ∗
h+1(τh+1)

(
(1− θ̂th(sth , ath , δth))p̂th(sth+1

|sth , ath)− (1− θth(sth , ath , δth))pth(sth+1
|sth , ath)

)
=
∑
sth+1

V ∗
h+1(τh+1)

((
1− θ̂th(sth , ath , δth)

)
− (1− θth(sth , ath , δth))

)
p̂th(sth+1

|sth , ath)

+
∑
sth+1

V ∗
h+1(τh+1)(1− θth(sth , ath , δth))

(
p̂th(sth+1

|sth , ath)− pth(sth+1
|sth , ath)

)
(i)

≥ −H
∣∣∣θ̂th(sth , ath , δth)− θth(sth , ath , δth)

∣∣∣− cA,2H

√
Hι

Nth(sth , ath)
,

where in (i), the first term is the estimation error of θ̂ using the collected data, the second term follows
from Hoeffding’s inequality, and cA,2 is an absolute constant. For (A2), we have

(A2) ≥ −H
∣∣∣θ̂th(sth , ath , δth)− θth(sth , ath , δth)

∣∣∣ ,
since τh+1 is now uniquely determined. Summing up (A1) and (A2), we obtain

(A) = (A1) + (A2) ≥ −2H
∣∣∣θ̂th(sth , ath , δth)− θth(sth , ath , δth)

∣∣∣− cA,2H

√
Hι

Nth(sth , ath)
.
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It remains to bound the estimation error of θ̂th(sth , ath , δth). Using the Hoeffding’s inequality again,
we obtain ∣∣∣θ̂th(sth , ath , δth)− θth(sth , ath , δth)

∣∣∣ ≤ cθ

√
Hι

Nth(sth , ath , δth)
.

Taking cA = max{cA,1, cA,2, cθ, 2}, we have

(A) ≥ −cAH

(√
Hι

Nth(sth , ath , δth)
+

√
Hι

Nth(sth , ath)

)
.

With the choice of the bonus function, it can be checked that

Q̃k
h,aug(τh, ah)− Q̃∗

h,aug(τh, ah) ≥ (A) + bkh(τh, ah) ≥ 0

with probability 1− γ for any (τh, ah).

Regret analysis In the sequel, we omit subscripts “aug” and tilde ·̃ for simplicity. Thanks to
Lemma B.1, we consider

(
Qk

h −Qπk

h

)
(τkh , a

k
h) as an upper bound of (Q∗

h −Qπk

h ) (τkh , a
k
h). We

bound
(
Qk

h −Qπk

h

)
(τkh , a

k
h) by(

Qk
h −Qπk

h

)
(τkh , a

k
h)

≤
(
[P̂k

hV
k
h+1 − PhV

πk

h+1]
)
(τkh , a

k
h) + bkh(τ

k
h , a

k
h)

≤
(
[P̂k

h − Ph]V
∗
h+1

)
(τkh , a

k
h) +

(
[P̂k

h − Ph][V
k
h+1 − V ∗

h+1]
)
(τkh , a

k
h)

+
(
Ph[V

k
h+1 − V πk

h+1]
)
(τkh , a

k
h) + bkh(τh, a

k
h)

≤
(
[P̂k

h − Ph][V
k
h+1 − V ∗

h+1]
)
(τkh , a

k
h)︸ ︷︷ ︸

(A)

+
(
Ph[V

k
h+1 − V πk

h+1]
)
(τkh , a

k
h) + 2bkh(τ

k
h , a

k
h). (B.1)

Similar to Lemma B.1, for h ≥ H , we expand term (A) into

(A) =
∑
τh+1

(
p̂kh(τh+1|τkh , akh)− ph(τh+1|τkh , akh)

)
[V k

h+1 − V ∗
h+1](τh+1)

=
∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kth(sth+1|skth , akth)− pth(sth+1|skth , akth)

)
. (B.2)

On the other hand, for h ≤ H , the decomposition of term (A) is more complicated. We have

(A) =
∑
τh+1

(
p̂kh(τh+1|τkh , akh)− ph(τh+1|τkh , akh)

)
[V k

h+1 − V ∗
h+1](τh+1)

=
∑
τh+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kh(τh+1|τkh , akh)− ph(τh+1|τkh , akh)

)
1{δth+1

= 0}1{th+1 = tkh + 1}︸ ︷︷ ︸
(A1)

+
∑
τh+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kh(τh+1|τkh , akh)− ph(τh+1|τkh , akh)

)
1{δth+1

= δtkh + 1}1{th+1 = tkh}︸ ︷︷ ︸
(A2)

.

Term (A2) can be directly bounded by

(A2) ≤ H
∣∣∣θ̂kth(skth , akth , δkth)− θth(s

k
th
, akth , δ

k
th
)
∣∣∣

≤ cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

16



with probability 1− γ. To bound (A1), we have

(A1) =
∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)

((
1− θ̂kth(s

k
th
, akth , δ

k
th
)
)
p̂kth(sth+1

|skth , akth)

−
(
1− θth(s

k
th
, akth , δ

k
th
)
)
pth(sth+1

|skth , akth)
)

=
∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)
((

1− θ̂kth(s
k
th
, akth , δ

k
th
)
)
−
(
1− θth(s

k
th
, akth , δ

k
th
)
))

p̂kth(sth+1
|skth , akth)

+
∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)
(
1− θth(s

k
th
, akth , δ

k
th
)
) (

p̂kth(sth+1
|skth , akth)− pth(sth+1

|skth , akth)
)

≤
(
1− θth(s

k
th
, akth , δ

k
th
)
) ∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kth(sth+1

|skth , akth)− pth(sth+1
|skth , akth)

)
+H

∣∣∣θ̂kth(skth , akth , δkth)− θth(s
k
th
, akth , δ

k
th
)
∣∣∣

≤
(
1− θth(s

k
th
, akth , δ

k
th
)
) ∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kth(sth+1

|skth , akth)− pth(sth+1
|skth , akth)

)
+ cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

.

Putting (A1) and (A2) together, we obtain

(A) ≤
(
1− θth(s

k
th
, akth , δ

k
th
)
) ∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kth(sth+1

|skth , akth)− pth(sth+1
|skth , akth)

)
+ 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

. (B.3)

In both (B.2) and (B.3) for different ranges of h, we apply the Bernstein inequality (Lemma D.1) to
derive ∑

sth+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kth(sth+1

|skth , akth)− pth(sth+1
|skth , akth)

)

≤ c ·
∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)

[√
pth(sth+1

|skth , akth)ι
Nk

th
(skth , a

k
th
)

+
ι

Nk
th
(skth , a

k
th
)

]
(i)

≤ c ·
∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)

[
pth(sth+1

|skth , akth)
2cH

+
(2cH + 1)ι

Nk
th
(skth , a

k
th
)

]

≤ c ·

SH(2cH + 1)ι

Nk
th
(skth , a

k
th
)

+
1

2cH

∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)pth(sth+1
|skth , akth)

 , (B.4)

where inequality (i) follows from
√
ab ≤ a+ b. Substituting (B.4) into (B.2), for h ≥ H , we deduce

(A) ≤ 1

2H

∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)pth(sth+1
|skth , akth) +

cSH(2cH + 1)ι

Nk
th
(skth , a

k
th
)

(i)

≤ 1

2H

(
Ph[V

k
h+1 − V πk

h+1]
)
(τkh , a

k
h) + c′

mSH2ι

Nk
th
(skth , a

k
th
)
,

where c′ is a sufficiently large constant. By the same reasoning, substituting (B.4) into (B.3), for
h < H , we have

(A) ≤ 1

2H

(
1− θth(s

k
th
, akth , δ

k
th
)
) ∑
sth+1

[V k
h+1 − V ∗

h+1](τh+1)pth(sth+1
|skth , akth) +

cSH(2cH + 1)ι

Nk
th
(skth , a

k
th
)
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+ 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

(i)

≤ 1

2H

(
Ph[V

k
h+1 − V πk

h+1]
)
(τkh , a

k
h) + c′

SH2ι

Nk
th
(skth , a

k
th
)
+ 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

.

We denote ζkh = c′ SH2ι
Nk

th
(skth

,ak
th

)
. Now we have a unified upper bound on (A) for any h ∈ [1, H̃] as

(A) ≤ 1

2H

(
Ph[V

k
h+1 − V πk

h+1]
)
(τkh , a

k
h) + ζkh + 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

. (B.5)

Substituting (B.5) back into (B.1), we have(
V k
h − V πk

h

)
(τkh ) =

(
Qk

h −Qπk

h

)
(τkh , a

k
h)

≤
(
1 +

1

2H

)(
Ph

[
V k
h − V πk

h

])
(τkh , a

k
h) + ζkh + 2bkh + 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

.

We further denote ξkh =
(
Ph

[
V k
h − V πk

h

])
(τkh , a

k
h) −

[
V k
h+1 − V πk

h+1

]
(τkh+1) and rewrite(

V k
h − V πk

h

)
(τkh ) as

(
V k
h − V πk

h

)
(τkh ) ≤

(
1 +

1

2H

)([
V k
h+1 − V πk

h+1

]
(τkh+1) + ξkh

)
+ ζkh + 2bkh + 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

.

Recall H̃ = 2H . Using a recursive summation argument, we deduce

(
V k
1 − V πk

1

)
(τk1 ) ≤

H̃∑
h=1

(
1 +

1

2H

)h
(
ξkh + ζkh + 2bkh + 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

)

≤ e

2H∑
h=1

(
ξkh + ζkh + 2bkh + 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

)
.

As a consequence, the total regret is bounded by

Regret(K) ≤ e

K∑
k=1

2H∑
h=1

(
ξkh + ζkh + 2bkh + 2cθH

√
Hι

Nk
th
(skth , a

k
th
, δkth)

)
. (B.6)

We need to sum over ζkh , ξ
k
h, b

k
h. Consider ζkh first. We have

K∑
k=1

2H∑
h=1

ζkh = c′
K∑

k=1

2H∑
h=1

SH2ι

Nk
th
(skth , a

k
th
)

(i)

≤ c′H
K∑

k=1

H∑
h=1

SH2ι

Nk
h (s

k
h, a

k
h)

(ii)

≤ cζH
4S2Aι2, (B.7)

where inequality (i) invokes the fact that th only takes value in {1, . . . ,H} and each Nk
th
(skth , a

k
th
)

is repeated at most H times, and inequality (ii) follows from the pigeon-hole argument in Azar et al.
[2017].

Next we bound the summation over ξkh. This is a martingale difference sequence. We apply Azuma-
Hoeffding’s inequality (Lemma D.3) with n = 2H and ci = 4H to obtain

K∑
k=1

2H∑
h=1

ξkh ≤ cξ
√
KH4ι. (B.8)
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The additional H dependence above comes from a union bound over S̃aug ×A. Lastly, we tackle the
summation over bonus functions bkh. We have

K∑
k=1

2H∑
h=1

bkh =

K∑
k=1

2H∑
h=1

cAH

√
Hι

Nk
th
(sth , ath)

≤ cAH

K∑
k=1

H∑
h=1

H

√
Hι

Nk
th
(sth , ath)

≤ cbH
7/2

√
SAKι. (B.9)

Putting (B.7), (B.8) and (B.9) together, we deduce

Regret(K) ≤ c
(
H7/2

√
SAKι+H4S2Aι2 +

√
H4Kι

)
+ 2ecθH

K∑
k=1

2H∑
h=1

√
Hι

Nk
th
(skth , a

k
th
, δkth)

for some constant c. To this end, the only remaining task is to find
∑K

k=1

∑2H
h=1

√
1

Nk
th

(skth
,ak

th
,δkth

)
,

which undergoes a similar argument as the bonus summation. We have

K∑
k=1

2H∑
h=1

√
1

Nk
th
(skth , a

k
th
, δkth)

≤ H

K∑
k=1

H∑
h=1

√
1

Nk
h (s

k
h, a

k
h, δ

k
h)

= H
∑

(h,s,a,δ)

NK
h (s,a,δ)∑
i=1

√
1

i

(i)

≤ 2H
∑
δ

∑
(h,s,a)

√
NK

h (s, a, δ)

(ii)

≤ 2H
∑
δ

√
SAKH

(iii)

≤ 2H2
√
SAKH, (B.10)

where inequality (i) invokes
∑n

i=1 1/
√
i ≤ 2

√
n, inequality (ii) follows from Cauchy-Schwarz, and

inequality (iii) uses the fact that δ is bounded by H . Plugging (B.10) into the regret bound, we obtain
the desired result

Regret(K) ≤ c
(
H4

√
SAKι+H4S2Aι2 +

√
H4Kι

)
with probability 1− γ. Absorbing

√
H4Kι into H4

√
SAKι yields the bound in Theorem 4.1.

B.2 Regret under bounded delay

To obtain the regret bound under bounded delay, we only need to modify several steps in the proof
of Theorem 4.1. Specifically, in Lemma B.1, we replace H by D + 1 in the square root, so that the
bonus function becomes

bkh(τh, ah) = cAH

(√
(D + 1)ι

Nth(sth , ath , δth)
+

√
(D + 1)ι

Nth(sth , ath)

)
.

The optimism still holds, since the expanded state space contains at most D historical actions.

The second modification is to observe that since the delay is bounded by D, each counting number
Nk

h only repeats at most D + 1 times. In this way, (B.7) becomes

K∑
k=1

2H∑
h=1

ζkh ≤ cζ(D + 1)H3S2Aι2.
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(B.8) and (B.9) are replaced by

K∑
k=1

2H∑
h=1

ξkh ≤ cξ(D + 1)
√
K(D + 1)H3ι and

K∑
k=1

2H∑
h=1

bkh ≤ cb(D + 1)3/2
√
H3SAKι,

respectively. Lastly, we also have

K∑
k=1

2H∑
h=1

√
1

Nk
th
(skth , a

k
th
, δkth)

≤ 2(D + 1)2
√
SAKH.

Putting these updated upper bounds together and substituting into Regret(K), we deduce

Regret(K) ≤ c
(
(D + 1)5/2

√
H3SAKι+H4S2Aι2

)
.

B.3 Statement and proof of Proposition B.2

Proposition B.2. In the setup of Section 4.2, we have

gap(s1) ≤
H∑

h=1

[∫
τ

(
Es∼bh(·|τ)[max

a
rh(s, a)]−max

a
Es∼bh(·|τ)[rh(s, a)]

)(
ρ
π∗
delay

h ∧ ρ
π∗
nodelay

h

)
(τ)dτ︸ ︷︷ ︸

E1

+ 2 ∥ρπ
∗
nodelay

h − ρ
π∗
delay

h ∥TV︸ ︷︷ ︸
E2

]
.

where ρ
π∗
nodelay

h and ρ
π∗
delay

h are visitation measures induced by π∗
nodelay and π∗

delay, respectively.

Term E1 is strictly larger than zero due to the convexity of the max operation. Term E2 accounts
for the difference in the visitation measure. When the original MDP has deterministic transitions,
we can check that E1 is zero, since the expectation over s is concentrated on a singleton that
can be inferred from history. Hence, the visitation measures are also identical, which implies
V ∗
1,nodelay(s1) − V ∗

1,delay(s1) = 0. On the contrary, when bh(·|τ) is evenly spread, meaning that
the entropy of bh is high, we potentially suffer from a large performance drop, in that, inferring the
current state is difficult.

Proof of Proposition B.2. Let τ1, . . . , τH denote the states observed in the delayed environment.
Since π∗

nodelay is greedy and Markov, we obtain

V ∗
1,nodelay(s1) = Eπ∗

nodelay

[
H−1∑
h=1

rh(sh, ah)|s1
]
+ Eπ∗

nodelay [E[rH(sH , aH)|τH ]|s1]

= Eπ∗
nodelay

[
H−1∑
h=1

rh(sh, ah)|s1
]
+ Eπ∗

nodelay

[∑
s

bH(s|τH)max
a

rH(s, a)|s1
]
.

Recursively applying the above argument, we deduce

V ∗
1,nodelay(s1) = Eπ∗

nodelay

[
H∑

h=1

∑
s

bh(s|τh)max
a

rh(s, a)|s1
]
.

We also rewrite V ∗
1,delay(s1) as

V ∗
1,delay(s1) = Eπ∗

delay

[
H−1∑
h=1

rh(sh, ah)|s1
]
+ Eπ∗

delay [E[rH(sH , aH)|τH ]|s1]

= Eπ∗
delay

[
H−1∑
h=1

rh(sh, ah)|s1
]
+ Eπ∗

delay

[
max

a

∑
s

bH(s|τH)rH(s, a)|s1
]
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= ...

= Eπ∗
delay

[
H∑

h=1

max
a

∑
s

bh(s|τh)rh(s, a)|s1
]
.

Then we write the difference between V ∗
1,nodelay(s1) and V ∗

1,delay(s1) as

V ∗
1,nodelay(s1)− V ∗

1,delay(s1)

=

H∑
h=1

(∫
τ

∑
s

max
a

bh(s|τ)rh(s, a)ρ
π∗
nodelay

h (τ)dτ −
∫
τ

max
a

∑
s

bh(s|τ)rh(s, a)ρ
π∗
delay

h (τ)dτ

)

=

H∑
h=1

(∫
τ

∑
s

max
a

bh(s|τ)rh(s, a)ρ
π∗
nodelay

h (τ)dτ −
∫
τ

max
a

∑
s

bh(s|τ)rh(s, a)ρ
π∗
nodelay

h (τ)dτ

+

∫
τ

max
a

∑
s

bh(s|τ)rh(s, a)ρ
π∗
nodelay

h (τ)dτ −
∫
τ

max
a

∑
s

bh(s|τ)rh(s, a)ρ
π∗
delay

h (τ)dτ

)

≤
H∑

h=1

[∫
τ

(
Es∼bh(·|τ)[max

a
rh(s, a)]−max

a
Es∼bh(·|τ)[rh(s, a)]

)
ρ
π∗
nodelay

h (τ)dτ + 2∥ρπ
∗
nodelay

h − ρ
π∗
delay

h ∥TV

]
.

We also have

V ∗
1,nodelay(s1)− V ∗

1,delay(s1)

=

H∑
h=1

(∫
τ

∑
s

max
a

bh(s|τ)rh(s, a)ρ
π∗
nodelay

h (τ)dτ −
∫
τ

∑
s

max
a

bh(s|τ)rh(s, a)ρ
π∗
delay

h (τ)dτ

+

∫
τ

∑
s

max
a

bh(s|τ)rh(s, a)ρ
π∗
delay

h (τ)dτ −
∫
τ

max
a

∑
s

bh(s|τ)rh(s, a)ρ
π∗
delay

h (τ)dτ

)

≤
H∑

h=1

[∫
τ

(
Es∼bh(·|τ)[max

a
rh(s, a)]−max

a
Es∼bh(·|τ)[rh(s, a)]

)
ρ
π∗
delay

h (τ)dτ + 2∥ρπ
∗
nodelay

h − ρ
π∗
delay

h ∥TV

]
.

Combining the above two inequalities, we obtain

V ∗
1,nodelay(s1)− V ∗

1,delay(s1)

≤
H∑

h=1

[∫
τ

(
Es∼bh(·|τ)[max

a
rh(s, a)]−max

a
Es∼bh(·|τ)[rh(s, a)]

)(
ρ
π∗
delay

h ∧ ρ
π∗
nodelay

h

)
(τ)dτ

+ 2∥ρπ
∗
nodelay

h − ρ
π∗
delay

h ∥TV

]
.

The proof is complete.

B.4 Proof of Proposition 4.2

Proof. We construct an MDP instance (S,A, H,R, P ) for H > d as follows. Let S = {1, 2} and
A = {a1, a2}. For the reward function, we have

rh(s, a) =

{
1 if a = as and h = d+ 1

0 otherwise
.

The reward is nonzero only at time d+ 1. The transition probabilities are defined as

ph(s
′|s, a) =


1
2 if h = d+ 1

1 if h ̸= d+ 1 and s′ = s

0 otherwise
.
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The transition probability at step d+ 1 says that s′ is uniform regardless of the previous state and
action. Suppose a uniform initial distribution on s1. We first show that if the constant delay equals d,
then there exists a policy π∗,d achieving maximal value. Indeed, the policy is chosen as

π∗,d
h (·|{sh−d,ah−d:h−1}) =

{
ash−d

if h = d+ 1

Uniform(A) if h ̸= d+ 1.

It is straightforward to check that π∗,d is optimal, since at step d+ 1, s1 is revealed and the policy
takes the optimal action as1 to obtain reward 1.

On the other hand, if the constant delay equals d + 1, then any policy suffers from a constant
performance degradation. To see this, in a single trajectory, since the starting state is only revealed at
time d+ 2, the policy at time d+ 1 cannot exploit the information of the initial state. Therefore, any
policy coincides with the best action with probability 1

2 . For K episodes, with probability 1− γ, the
total reward of any policy π ∈ Πexec is bounded by

K∑
k=1

V π
1 (sk1) ≤

1

2
K +

√
K

2
log

1

γ
,

due to Hoeffding’s inequality. As a result, the performance drop is at least

gap(K) ≥ 1

2
−
√

1

2K
log

1

γ
.

C Omitted proofs in Section 5

C.1 Proof of Proposition 5.1

Proof. We first show that the ground-truth transition probabilities pθ
∗

h belongs to Bk with high
probability. By Theorem 2.2 in Weissman et al. [2003] (see also Equation (44) in Jaksch et al. [2010]),
at the k-th episode, for any fixed (s, a, h), we have

P
(
∥p̂kh(·|s, a)− pθ

∗

h (·|s, a)∥TV ≥ t
)
≤ (2S − 2) exp

(
−Nk

h (s, a)t
2

2

)
.

Setting t = c
√

Sι
Nk

h (s,a)
for some constant c ensures that

∥p̂kh(·|s, a)− pθ
∗

h (·|s, a)∥TV ≤ c

√
Sι

Nk
h (s, a)

holds over any (s, a, h, k) with probability 1− γ. As a consequence, the event pθ
∗

h (·|s, a) ∈ Bk holds
with probability 1− γ over all (s, a, h, k).

Conditioned on the high probability event pθ
∗

h ∈ Bk for all (h, s, a), we have by standard performance
difference arguments that

K∑
k=1

max
π∈Πexec

V π
θ⋆(sk1)− V πk

θ⋆ (sk1)
(i)

≤
K∑

k=1

V πk

θk (sk1)− V πk

θ⋆ (sk1)

(ii)
=

K∑
k=1

H∑
h=1

Eπk

θ⋆

[〈
(Pθk

h − Pθ⋆

h )(·|sh, ah), V πk

θk,h+1(·)
〉]

≤
H∑

h=1

K∑
k=1

Eπk

θ⋆

[
c

√
H2Sι

Nk
h (sh, ah)

∧H

]
(iii)

≤
H∑

h=1

K∑
k=1

c′
√

H2Sι

Nk
h (s

k
h, a

k
h)

+H
√
H2Kι
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(iv)

≤ c′
(⌈

log HK
γ

− log(1− λ2
0)

⌉
√
H2Sι · SAHK +

√
H4Kι

)

≤ c′
(⌈

1

− log(1− λ2
0)

⌉√
H3S2AKι3 +

√
H4Kι

)
,

where inequality (i) follows from the valid optimism since Line 4 in Algorithm 3 is taken over double
maximization, equality (ii) recursively expands the value function and ⟨·, ·⟩ denotes the inner product,
inequality (iii) invokes Azuma-Hoeffding’s inequality, and inequality (iv) invokes Lemma C.2.

C.2 Algorithm and proof of Theorem 5.2

Algorithm 4 Policy learning for MDPs with missing observations
1: Input: Horizon H .
2: Init: VH+1(τ) = 0 and QH(τ, a) = H for any τ, a, data set D0 = ∅, initial policy π0.
3: for episode k = 1, . . . ,K do
4: Execute policy πk−1.
5: After the episode ends, collect data Dk = Dk−1 ∪ {(skh, akh, rkh)}Hh=1.
6: On data set Dk, compute counting numbers

Nk
h (τh, ah) =

k∑
j=1

1{τkh = τh, a
k
h = ah, s

k
h+1 ̸= ∅} and Nk

h,λ =

k∑
j=1

1{skh = ∅}.

7: Estimate transition probabilities and delay distributions via

p̂kh(sh+1|τh, ah) =
Nk

h (τh, ah, sh+1)

Nk
h (τh, ah)

and λ̂k
h = Nk

h,λ/k.

8: Set bonus function as

bkh(τh, ah) = cH

(√
Hι

Nk
h (τh, ah)

+

√
ι

k

)
for ι = log SAKH

γ and c sufficiently large.
9: Run optimistic value iteration in MDPaug for H steps and obtain πk ∈ Πexec.

10: end for
11: Return: Learned policy πk for k = 1, . . . ,K.

We remark that similar to delayed MDPs, in Line 9 the planning is on MDPaug and the obtained
policy is executable given any τ ∈ Saug when state observation is missed. Therefore, the planning
complexity is SAH . Different from Algorithm 2, the bonus function here depends on multi-step
transitions, in that missing observations are permanently lost.

Proof of Theorem 5.2. The proof utilizes similar steps as Theorem 4.1, with an extra care on the
summation of bonus functions.

Valid optimism We verify the choice of bonus functions leads to a valid optimism.

Lemma C.1. Given any failure probability γ < 1, we set bonus functions as

bkh(τh, ah) = cH

(√
Hι

Nk
h (τh, ah)

+

√
ι

k

)
with ι = log

(
SAHK

γ

)
.

Then with probability 1− γ, it holds

Qk
h,aug(τh, ah) ≥ Q∗

h,aug(τh, ah), V k
h,aug(τh) ≥ V ∗

h,aug(τh) for any (k, h, τh, ah).
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Proof of Lemma C.1. In the proof, we omit subscript “aug” for simplicity. We use backward induction
on time h again. The base case of H + 1 holds immediately due to the initial value of VH+1,aug.
Suppose at time h + 1, the assertion holds. Then for time h, if Qh,aug = H , the assertion holds
trivially. Otherwise, we have

Qh(τh, ah)−Q∗
h(τh, ah)

= r̂h(τh, ah) + [P̂hVh+1](τh, ah)− rh(τh, ah)− [PhV
∗
h+1](τh, ah) + bkh(τh, ah)

≥
(
[P̂h − Ph]V

∗
h+1

)
(τh, ah)︸ ︷︷ ︸

(A)

+ r̂h(τh, ah)− rh(τh, ah)︸ ︷︷ ︸
(B)

+ bkh(τh, ah).

We lower bound (A) and (B) separately. For term (A), we have

(A) =
∑
τh+1

V ∗
h+1(τh+1) (p̂h(τh+1|τh, ah)− ph(τh+1|τh, ah))

=
∑
τh+1

V ∗
h+1(τh+1) (p̂h(τh+1|τh, ah)− ph(τh+1|τh, ah))1{th+1 = h+ 1}

+
∑
τh+1

V ∗
h+1(τh+1) (p̂h(τh+1|τh, ah)− ph(τh+1|τh, ah))1{th+1 = th}

=
∑
sh+1

V ∗
h+1(τh+1)

(
(1− λ̂h)p̂h(sh+1|sth ,ath:h)− (1− λh)ph(sh+1|sth ,ath:h)

)
︸ ︷︷ ︸

(A1)

+ V ∗
h+1({sth ,ath:h})(λ̂h − λh)︸ ︷︷ ︸

(A2)

.

In (A1), τh+1 is {sh+1}. We bound (A1) as

(A1) =
∑
sh+1

V ∗
h+1(τh+1)

(
(1− λ̂h)p̂h(sh+1|sth ,ath:h)− (1− λh)p̂h(sh+1|sth ,ath:h)

+ (1− λh)p̂h(sh+1|sth ,ath:h)− (1− λh)ph(sh+1|sth ,ath:h)
)

=
∑
sh+1

V ∗
h+1(τh+1)(1− λh) (p̂h(sh+1|sth ,ath:h)− ph(sh+1|sth ,ath:h))

+
∑
sh+1

V ∗
h+1(τh+1)(λh − λ̂h)p̂h(sh+1|sth ,ath:h)

(i)

≥ −cAH

√
Hι

Nh(τh, ah)
−H

∣∣∣λ̂h − λh

∣∣∣ ,
where inequality (i) invokes Hoeffding’s inequality and holds with probability 1− γ for any τh, ah
and some constant cA. Term (A2) is immediately bounded by

(A2) ≥ −H
∣∣∣λ̂h − λh

∣∣∣ .
Putting (A1) and (A2) together, we derive

(A) ≥ −cAH

√
Hι

Nh(τh, ah)
− 2H

∣∣∣λ̂h − λh

∣∣∣
with high probabilty. For term (B), we have

(B) =
∑
sh

r(sh, ah)
(
b̂h(sh|τh)− bh(sh|τh)

)
≥ −cB

√
Hι

Nh(τh, ah)
.
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Taking c = cA + cB and summing up (A) and (B), we have

Qh(τh, ah)−Q∗
h(τh, ah) ≥ −cH

√
Hι

Nh(τh, ah)
− 2H

∣∣∣λ̂h − λh

∣∣∣+ bkh(τh, ah).

We estimate λh by its empirical average. In episode k ≥ 1, we have access to k i.i.d. realizations of
Bernoulli random variable with rate λh (observable or not). Therefore, by Hoeffding’s inequality, we
have

∣∣∣λ̂k
h − λh

∣∣∣ ≤ 2

√
log HK

γ

k
≤ 2

√
ι

k
.

Substituting into Qk
h(τh, ah)−Q∗

h(τh, ah) and reloading constant c give rise to

Qk
h(τh, ah)−Q∗

h(τh, ah) ≥ −cH

(√
Hι

Nk
h (τh, ah)

+

√
ι

k

)
+ bkh(τh, ah) ≥ 0.

The proof is complete.

Regret analysis We omit subscript “aug” to ease the presentation. The same derivation in the proof
of Theorem 4.1 gives rise to

(Q∗
h −Qπk

h ) (τkh , a
k
h) ≤

(
Qk

h −Qπk

h

)
(τkh , a

k
h)

≤
(
[P̂k

h − Ph][V
k
h+1 − V ∗

h+1]
)
(τkh , a

k
h)︸ ︷︷ ︸

(A)

+
(
Ph[V

k
h+1 − V πk

h+1]
)
(τkh , a

k
h) + 2bkh(τ

k
h , a

k
h). (C.1)

Lemma C.1 shows that (A) can be written as

(A) =
∑
sh+1

[V k
h+1 − V ∗

h+1](τh+1)(1− λh)
(
p̂kh(sh+1|skth ,akth:h)− ph(sh+1|skth ,akth:h)

)
+
∑
sh+1

[V k
h+1 − V ∗

h+1](τh+1)(λh − λ̂k
h)p̂

k
h(sh+1|skth ,akth:h)

≤
∑
sh+1

[V k
h+1 − V ∗

h+1](τh+1)(1− λh)
(
p̂kh(sh+1|skth ,akth:h)− ph(sh+1|skth ,akth:h)

)
+H

∣∣∣λ̂k
h − λh

∣∣∣
≤ (1− λh)

∑
sh+1

[V k
h+1 − V ∗

h+1](τh+1)
(
p̂kh(sh+1|skth ,akth:h)− ph(sh+1|skth ,akth:h)

)
+ 2H

√
ι

k
.

Following the derivation in (B.4), (B.5) and (B.6), we have

Regret(K) ≤ e

K∑
k=1

H∑
h=1

(
ξkh + ζkh + 2bkh + 2H

√
ι

k

)

≤ e

K∑
k=1

H∑
h=1

(
ξkh + ζkh + 2bkh

)
+ 2

√
H4Kι.

where ξkh =
(
Ph

[
V k
h − V πk

h

])
(τkh , a

k
h) −

[
V k
h+1 − V πk

h+1

]
(τkh+1) is the martingale difference and

ζkh = c′ SH2ι
Nk

h (τk
h ,ak

h)
.

Counting number summation The summation over ξkh is standard. Using the Azuma-Hoeffding’s
inequality, we have

K∑
k=1

H∑
h=1

ξkh ≤ cξ
√
KH4ι.
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It remains to find the summations involving Nk
h (τ

k
h , a

k
h). First, we show that the event Em =

{h− th − 1 ≤ m}, i.e., the maximal consecutive delay is upper bounded by m > 0, holds with high
probability. We have

P(Em) ≤
(
1−H(1− λ0)

m+1
)K

,

since λ0 is a uniform lower bound of λh. Next, we provide an upper bound on NK
h (τh, ah). For

a given tuple (h, τh, ah, th), the consecutive missing length is h − th − 1. Such a missing pattern
appears with probability at most (1− λ0)

h−th−1. As a consequence, denote CK
h−th−1 as the number

of h− th − 1 consecutive missings in K episodes. With probability 1− γ, we have

CK
h−th−1 ≤ K(1− λ0)

h−th−1 +
√
K(1− λ0)h−th−1Hι+ ι.

by Bernstein’s inequality in Lemma D.1. Furthermore, at a fixed time h, we use Lemma C.3 to
bound the gap between two consecutive appearances of the same missing pattern. We instantiate
Lemma C.3 with θ = (1−λ0)

h−th−1 and obtain that the gap is bounded by
⌈

ι
− log(1−(1−λ0)

h−th−1)

⌉
with probability 1 − γ. Within the gap, the number of consecutive delays of length larger than
h− th − 1 is bounded by

C≥h−th−1

(i)

≤
⌈

ι

− log(1− (1− λ0)h−th−1)

⌉
(1− λ0)

h−th

+

√⌈
ι

− log(1− (1− λ0)h−th−1)

⌉
(1− λ0)h−thHι+ ι

(ii)

≤
√
2(1− λ0)Hι+ 2(1− λ0) + ι,

where inequality (i) follows from Bernstein’s inequality again and inequality (ii) invokes the fact
x+ log(1− x) ≤ 0 for x ∈ [0, 1) and bounds ⌈x⌉ by x+ 1. Now we can bound the summation of
the counting numbers. Conditioned on the event Em, we have

K∑
k=1

H∑
h=1

√
1

Nk
h (τ

k
h , a

k
h)

(i)

≤
∑

(h,τ,a,th)

C≥h−th−1

NK
h (τ,a)∑
i=1

√
1

i

≤ 2
(√

2(1− λ0)Hι+ 2(1− λ0) + ι
) ∑

(h,τ,a,th)

√
NK

h (τ, a)

(ii)

≤ 2
(√

2(1− λ0)Hι+ 2(1− λ0) + ι
)∑

h,th

√
SAh−thCK

h−th−1

≤ 2
(√

2(1− λ0)Hι+ 2(1− λ0) + ι
)

·
∑
h,th

√
SA

(
K((1− λ0)A)h−th−1 +

√
K(A2(1− λ0))h−th−1Hι+Ah−th−1ι

)
(iii)

≤ 2
(√

2(1− λ0)Hι+ 2(1− λ0) + ι
)∑

h,th

√
SA

(
K +

√
KAmHι+Amι

)
≤ 2

(√
2(1− λ0)Hι+ 2(1− λ0) + ι

)
H2

√
SA

(
K +

√
KAmHι+Amι

)
≤ 2

√
H5SAι2

(
K +

√
KAmHι+Amι

)
,

where inequality (i) follows since Nk
h is repeated at most C≥h−th−1 times before getting an up-

date and inequality (ii) follows from Cauchy-Schwarz inequality, and inequality (iii) invokes the
assumption of λA ≤ 1. Moreover, conditioned on the event Em, we also have

K∑
k=1

H∑
h=1

1

Nk
h (τ

k
h , a

k
h)

≤
∑

(h,τ,a,th)

C≥h−th−1

NK
h (τ,a)∑
i=1

1

i
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≤
(√

2(1− λ0)Hι+ 2(1− λ0) + ι
) ∑

(h,τ,a,th)

logNK
h (τ, a)

≤ ιH5/2SAm+1 logK.

Combining the above On event Em, the regret is bounded by

Regret(K)
(i)

≤ c

(
√
H4Kι+

K∑
k=1

H∑
h=1

[
SH2ι

Nk
h (τ

k
h , a

k
h)

+H

√
Hι

Nk
h (τ

k
h , a

k
h)

])

≤ c

H4

√√√√SAι3K

(
1 +

√
AmHι

K
+

Amι

K

)
+ S2Am

√
H9ι6 +

√
H4Kι

 ,

where c is a sufficiently large constant and we substitute the bonus functions into inequality (i).

On the complement of Em, the regret is bounded by H(1−P(Em)) ≤ H2K(1−λ0)
m+1. We choose

m = 1
2

⌊
logK

− log(1−λ0)

⌋
such that H(1− P(Em)) ≤ H2K(1− λ0)

m+1 ≤ H2
√
K. We can now check

that Am+1 = exp
(

logA
− log(1−λ0)

log
√
K
)
≤ K

1
2(1+v) . Therefore, combining the regret on event Em

and the complement event E∁
m leads to

Regret(K) ≤ c

(
H4

√
SAKι3 + S2

√
H9K

1
(1+v) ι6

)
.

The proof is complete.

C.3 Supporting lemmas

Lemma C.2. Suppose Assumption 2.2 holds. With probability 1− γ for some failure probability
γ > 0, we have

K∑
k=1

H∑
h=1

1√
Nk

h (s
k
h, a

k
h)

≤
⌈

log HK
γ

− log(1− λ2
0)

⌉
√
SAKH.

Proof of Lemma C.2. For any time h, we denote Keff(h) as the collection of episodes that the h-th
and (h+ 1)-th step observations are available. It is clear that the cardinality of Keff(h) is bounded
by K for any h. Within each Keff(h), we would like to bound the gap between two observations.
Thanks to Lemma C.3, the gap is bounded by q with probability 1 − K(1 − λ2

0)
q+1. We set

K(1− λ2
0)

q+1 = γ/H , which implies q =

⌈
log HK

γ

− log(1−λ2
0)

⌉
. Therefore, for any time step h, available

observations are at most separated by q episodes.

With these notations, we bound
K∑

k=1

H∑
h=1

1√
Nk

h (s
k
h, a

k
h)

(i)

≤
⌈

log HK
γ

− log(1− λ2
0)

⌉
H∑

h=1

∑
k∈Keff (h)

1√
Nk

h (s
k
h, a

k
h)

(ii)

≤
⌈

log HK
γ

− log(1− λ2
0)

⌉
H∑

h=1

K∑
k=1

1√
Nk

h (s
k
h, a

k
h)

(iii)

≤ 2

⌈
log HK

γ

− log(1− λ2
0)

⌉
√
SAHK,

where inequality (i) follows since Nk
h will only be updated when h ∈ Keff(h) and then repeat at

most
⌈

log HK
γ

− log(1−λ2
0)

⌉
times, inequality (ii) invokes the cardinality bound of Keff(h), and inequality

(iii) follows from the standard pigeon-hole principle.
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Lemma C.3. Let {ui}ki=1 be i.i.d. Bernoulli random variables. Suppose P(ui = 1) = θ. Define the
largest gap between ui’s as

g(k) = sup{j − i : ui = 0 and uj = 0 with uℓ = 1 for ℓ = i+ 1, . . . , j − 1}.
Then for any integer q > 0, the following tail probability bound holds

P(g(k) > q) ≤ kθq+1.

Proof of Lemma C.3. We denote Ineg = {ℓ1, . . . , ℓm} as the index set for uℓi = 0 when i =
1, . . . , |Ineg|. Let vj = ℓj+1 − ℓj , which is a geometric random variable with a success rate θ. Note
that the cardinality of Ineg is at most k. Therefore, we have

P(g(k) > q) ≤ P( max
j=1,...,k

vj > q)

= 1− P (vj ≤ q for j = 1, . . . , k)

= 1−
(
1− θq+1

)k
≤ kθq+1,

where the last inequality follows from 1− kθq+1 ≤ (1− θq+1)k.

D Helper concentration inequalities

Lemma D.1 (Bernstein’s inequality). Let x1, . . . , xn be i.i.d. zero mean random variables. Suppose
|xi| ≤ M for any i = 1, . . . , n. Then for all positive t, it holds

P

(
n∑

i=1

xi > t

)
≤ exp

(
−

1
2 t

2∑n
i=1 Var[xi] +

1
3Mt

)
.

In particular, given a failure probability γ < 1, it holds

P

 n∑
i=1

xi >

√√√√ n∑
i=1

Var[xi] log
1

γ
+M log

1

γ

 ≤ γ.

Proof of Lemma D.1. The proof of Bernstein’s inequality is standard, see for example [Wainwright,
2019, Section 2.1]. Here we verify the second claim. Let exp

(
−

1
2 t

2∑n
i=1 Var[xi]+

1
3Mt

)
≤ γ hold true.

We find a suitable t by

exp

(
−

1
2 t

2∑n
i=1 Var[xi] +

1
3Mt

)
≤ γ

⇐⇒
1
2 t

2∑n
i=1 Var[xi] +

1
3Mt

≥ log
1

γ

⇐⇒ t2 − 2

3
tM log

1

γ
≥

n∑
i=1

Var[xi] log
1

γ

⇐⇒ t ≥

√√√√ n∑
i=1

Var[xi] log
1

γ
+

1

9
M2 log2

1

γ
+

1

3
M log

1

γ
.

It is enough to choose t =
√∑n

i=1 Var[xi] log
1
γ +M log 1

γ .

Lemma D.2 (Hoeffding’s inequality). Let x1, . . . , xn be i.i.d. random variables. Suppose ai ≤ xi ≤
bi for any i = 1, . . . , n. Then for all positive t, it holds

P

(∣∣∣∣∣
n∑

i=1

xi − E

[
n∑

i=1

xi

]∣∣∣∣∣ > t

)
≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.
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In particular, given a failure probability γ < 1, it holds

P

 1

n

∣∣∣∣∣
n∑

i=1

xi − E

[
n∑

i=1

xi

]∣∣∣∣∣ >
√∑n

i=1(bi − ai)2 log
2
γ

2n2

 ≤ γ.

Proof of Lemma D.2. The proof is standard; see [Wainwright, 2019, Section 2.1].

Lemma D.3 (Azuma-Hoeffding’s inequality). Let x1, . . . , xn be a martingale adapted to filtration
F1 ⊂ · · · ⊂ Fn. Suppose E[xi − E[xi]|Fi−1] = 0 and |xi − E[xi]| ≤ ci. Then for all positive t, it
holds

P

(
n∑

i=1

xi − E[xi] > t

)
≤ exp

(
− t2

2
∑n

i=1 c
2
i

)
.

In particular, given a failure probability γ < 1, it holds

P

 n∑
i=1

xi − E[xi] >

√√√√2

n∑
i=1

c2i log
1

γ

 ≤ γ.

Proof of Lemma D.3. The proof is standard and applies Lemma D.2.
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