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ABSTRACT

We give a principled method for decomposing the predictive uncertainty of a
model into aleatoric and epistemic components with explicit semantics relating
them to the real-world data distribution. While many works in the literature have
proposed such decompositions, they lack the type of formal guarantees we pro-
vide. Our method is based on the new notion of higher-order calibration, which
generalizes ordinary calibration to the setting of higher-order predictors that pre-
dict mixtures over label distributions at every point. We show how to measure
as well as achieve higher-order calibration using access to k-snapshots, namely
examples where each point has k independent conditional labels. Under higher-
order calibration, the estimated aleatoric uncertainty at a point is guaranteed to
match the real-world aleatoric uncertainty averaged over all points where the pre-
diction is made. To our knowledge, this is the first formal guarantee of this type
that places no assumptions whatsoever on the real-world data distribution. Im-
portantly, higher-order calibration is also applicable to existing higher-order pre-
dictors such as Bayesian and ensemble models and provides a natural evaluation
metric for such models. We demonstrate through experiments that our method
produces meaningful uncertainty decompositions for image classification.

1 INTRODUCTION

Decomposing predictive uncertainty into aleatoric and epistemic components is of fundamental im-
portance in machine learning and statistical prediction (Hüllermeier & Waegeman, 2021; Abdar
et al., 2021). Aleatoric (or data) uncertainty is the inherent uncertainty in the prediction task at hand,
arising from randomness present in nature’s data generating process, while epistemic (or model) un-
certainty arises from a model’s lack of perfect knowledge about nature. Accurate measurements
of these quantities are of great use to practitioners, as they allow them to understand whether the
difficulty of their prediction task arises primarily from the data or their model.

As a running example, consider the task of predicting based on an X-ray scan whether a bone will
require a cast. Suppose our model issues a 50% prediction for a scan. This could occur because the
scan is genuinely ambiguous. A very different scenario is one where the model is unable to decide
between two diagnoses: one where a cast is unambiguously necessary and one where it is not. In
both scenarios, the total predictive uncertainty is the same. However, the nature of this uncertainty
differs; in the first scenario, it is purely aleatoric, while in the second, it is entirely epistemic.

For any such explanation of a model’s uncertainty to be trusted, it must be accompanied by some
meaningful semantics telling us what it means about the real world. The canonical example of such
a notion in the prediction literature is calibration, which requires that whenever our model predicts
a certain distribution of outcomes, we actually observe that distribution of outcomes on average.
In our X-ray example, a 50% prediction would be calibrated if exactly half of all scans with the
same prediction did ultimately require casts. But this would be true regardless of which of the two
scenarios above we were in. Standard calibration is purely a guarantee regarding total predictive
uncertainty, and does not account for the source of uncertainty. Accordingly, we ask:

Can we build a theory of calibration that allows us to meaningfully decompose
our overall predictive uncertainty into epistemic and aleatoric components and
give explicit semantics for these components?

1
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Figure 1: An illustration of higher-order calibration using the X-ray classification example. We
depict scenarios 1 and 2 on the top and bottom respectively. On the left, we have instances grouped
together into one level set [x] by the predictor. By learning from snapshots drawn from the level set
in either case, we are able to predict mixtures that match the true Bayes mixture f∗([x]).

In this work we answer this question by proposing a theory of higher-order calibration, a general-
ization of ordinary (first-order) calibration. This theory pertains to higher-order predictors, which
predict mixtures of distributions over outcomes rather than just single distributions. Thus in the first
scenario of the X-ray example, we might predict a mixture concentrated on the 50% distribution,
while in the second we might predict an equal mixture of 100% and 0% (see Figure 1). As we shall
discuss, higher-order predictors arise in many settings, including in Bayesian and ensemble meth-
ods. In a nutshell, a higher-order predictor is higher-order calibrated if its predicted mixtures are
actually observed in aggregate over outcomes. The main contributions of our work are as follows:

1. We propose the notion of higher-order calibration, motivated by the question of rigorously
decomposing predictive uncertainty into aleatoric and epistemic components. We consider
standard uncertainty decompositions from the Bayesian literature (Houlsby et al., 2011;
Kotelevskii & Panov, 2024; Hofman et al., 2024) and prove that under higher-order cali-
bration, a predictor’s estimate of its aleatoric uncertainty matches the real-world aleatoric
uncertainty averaged over all points with the same prediction. Similarly, the epistemic
uncertainty matches the true “variance” in real-world label distributions over such points.

2. We propose a tractable relaxation termed kth-order calibration, which approaches higher-
order calibration for large k. Our theory builds on and generalizes recent work by Johnson
et al. (2024), which studied the k = 2 case. We show that for certain entropy functions,
even small values of k (like 2) yield provable uncertainty decomposition.

3. We give practical methods for achieving higher-order calibration using access to k-
snapshots, namely examples with k independent conditional labels per instance, by lever-
aging connections to the problem of mixture learning (Li et al., 2015).

4. We verify that when these methods are applied to real-world image classification tasks,
they lead to useful uncertainty decompositions.

Main result: provable uncertainty decomposition. Suppose nature generates random labeled
data (x,y) ∈ X × Y , where X is the instance space and Y the label space, which in this paper we
assume is discrete. Let ∆Y be the space of probability distributions over Y . Let f∗ : X → ∆Y
map each instance x to the conditional distribution of y | (x = x). We make no assumptions about
the marginal distribution or the form of f∗. Thus each x has true aleatoric uncertainty AU∗(x) =
H(f∗(x)), where H is a measure of variability or entropy. Epistemic uncertainty, by contrast, will
emerge as a property of our predictor. We denote random variables using boldface throughout. See
Appendix A for an extended discussion of notation.
Definition 1.1 (Higher-order predictors and calibration). A higher-order predictor f : X → ∆∆Y
is a function that maps each instance to a distribution over ∆Y (the space of such mixtures is denoted
∆∆Y). Let [x] = {x′ ∈ X : f(x′) = f(x)} denote the level set of f that x lies in. Let f∗([x]) :=
{f∗(x) | x ∼ [x]} be the Bayes mixture over [x], where x ∼ [x] denotes a draw from the marginal
distribution DX restricted to [x]. A higher-order predictor f is higher-order calibrated if for every
x, f(x) = f∗([x]).
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Higher-order calibration guarantees that our prediction f(x) is a proxy for the true “Bayes mixture”
of ground truth distributions f∗(x) as we range over x ∼ [x]. This implies that any quantity defined
in terms of the predicted mixture has a “real-world” interpretation as the corresponding quantity
defined in terms of the Bayes mixture: this turns out to be a powerful guarantee.

We now consider the well-studied “mutual information decomposition” of predictive uncertainty
(see e.g. Houlsby et al. (2011); Gal (2016)), and see what semantics it has under higher-order
calibration. We state it in terms of the Shannon entropy H : ∆Y → R, given by H(p) =
−
∑

y∈Y py log py . Let π = f(x) ∈ ∆∆Y be the predicted mixture at an instance x. The in-
duced marginal distribution of y when we draw p ∼ π at random and then draw y ∼ p is given by
p = E[p], the centroid of π. The mutual information decomposition is as follows1:

H(p)︸ ︷︷ ︸
Predictive uncertainty PU(f :x)

= E
p∼π

[H(p)]︸ ︷︷ ︸
Aleatoric uncertainty estimate AU(f :x)

+ H(p)− E
p∼π

[H(p)]︸ ︷︷ ︸
Epistemic uncertainty EU(f :x)

(1.1)

Theorem 1.2 (Uncertainty decomposition under higher-order calibration). Suppose f is higher-
order calibrated. Let π∗ = f∗([x]) be the Bayes mixture over the level set [x], and let p∗ =
Ep∗∼π∗ [p∗]. Then

• The aleatoric uncertainty estimate is accurate on average:

AU(f : x) = E
p∼π

[H(p)] = E
p∗∼π∗

[H(p∗)] = E
x∼[x]

[AU∗(x)].

• The epistemic uncertainty is exactly the average divergence of p∗ ∼ π∗ to the mean p∗:

EU(f : x) = E
p∼π

[DKL(p ∥ p)] = E
p∗∼π∗

[DKL(p
∗ ∥ p∗)].

This theorem highlights the power of higher-order calibration. But how do we achieve it or even
check if a predictor satisfies it? The key difficulty is that for any x, we never see f∗(x) explicitly,
but only get samples drawn from it. It turns out that this requires going beyond the standard learning
model. To see why, returning to our X-ray example, let x be the given scan, and let [x] be all
scans that also get a similar 50% prediction. In scenario 1, the set [x] consists entirely of genuinely
ambiguous scans. In scenario 2, [x] consists of an equal balance of unambiguously positive and
negative cases. In either scenario, say the predictor cannot distinguish scans within [x] from one
another. Then we cannot distinguish scenario 1 from scenario 2 if all we receive are ordinary labeled
examples with a single label per image — we see a 50-50 distribution of labels in both scenarios.
This can be formalized using the outcome indistinguishability framework (Dwork et al., 2021).

Techniques: learning from snapshots and kth-order calibration. We can get beyond this
indistinguishability barrier if we have access to k-snapshots: independent conditional samples
y1, . . . ,yk ∼ f∗(x) for each sample x. In scenario 1, we would see snapshots that are quite
balanced, while in scenario 2 we would see imbalanced snapshots.

There are many learning settings where one can expect to have access to k-snapshots. In crowd-
sourcing settings each x can be shown to multiple experts, each of whom answers with their own
label yi. We can model these yis as independent draws from the true conditional distribution f∗(x).
Here k is decided by the number of experts we can call upon. A different setting is one where we
want to distill a large teacher model into a smaller student model. In this case we have oracle access
to the teacher and can ask for k-snapshots for large k. Of course not every setting admits such
access, for instance health outcomes which by definition occur only once per patient.2

A k-snapshot of labels from Y can be seen as a coarse representation of a distribution in ∆Y by con-
sidering its normalized histogram. A distribution over k-snapshots is thus a coarse representation of
a mixture in ∆∆Y . By framing our goal as that of learning a k-snapshot predictor from k-snapshot
examples, we obtain an effective way of learning an (approximate) higher-order predictor. This nat-
urally defines a hierarchy of calibration notions, which we term kth-order calibration, that ranges

1To avoid confusion, note that we always view H as taking in an object of type ∆Y . When p is itself a
random variable, i.e. a random distribution, H(p) is also a random variable.

2While this is a limitation of our method, it is inherent to the task — as just noted, if a predictor is unable to
separate instances in a set [x], it cannot distinguish between scenarios like those in the X-ray example.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

from ordinary first-order calibration when k = 1 to (full) higher-order calibration as k → ∞. More-
over, kth-order calibration essentially reduces to ordinary first-order calibration over the extended
label space of k-snapshots; the only subtlety is in the choice of metric over this space. This leads
to a simple and general recipe: we can leverage any general-purpose procedure guaranteeing first-
order calibration over this extended label space to achieve kth-order calibration. We prove formally
that kth-order calibration converges to higher-order calibration at a 1/

√
k rate (see Lemma 2.5). Our

work builds on and generalizes the elegant recent work of Johnson et al. (2024), who consider the
case of k = 2; we discuss this further in related work.

We also provide a different way of achieving higher-order calibration using a purely post-hoc rou-
tine, analogous to first-order calibration procedures such as Platt scaling. Suppose we start from an
ordinary first-order calibrated model. We can consider its level set partition [·] (or more generally
any desired partition [·] of the space, with [x] denoting the equivalence class of x). Now, higher-order
calibration with respect to [·] entails exactly the following: for any given equivalence class [x], we
need to learn the true Bayes mixture f∗([x]). Thus we have reduced our problem to a collection of
pure mixture learning problems. This problem has been studied before in the theoretical computer
science literature (Li et al., 2015). We leverage these ideas to provide a simple post-hoc kth-order
calibration procedure whose sample complexity scales as |Y|k (see Theorem 2.8).

Importantly, for common choices of entropy functions (like Brier entropy), we show in Theorem
3.3 that kth-order calibration for small k (k = 2 for Brier) suffices to approximate the uncertainty
decomposition guarantees from Theorem 1.2. This relies on a key property of kth-order calibration
that we prove: it gives good estimates of the first k moments of the Bayes mixture over the level sets
(Theorem 2.7). kth-order calibration is thus a natural goal in itself for uncertainty decomposition.

1.1 RELATED WORK

Mixture-based uncertainty decompositions. The predominant modern approach to uncertainty
decomposition has been the Bayesian one (see e.g. Gal (2016); Mena et al. (2021)), wherein one
uses Bayesian inference to obtain a full posterior distribution over a family of models. For any
given instance we now have not just a single predicted distribution over outcomes but rather a full
“posterior predictive distribution” over such distributions. In this way every Bayesian model is a
higher-order predictor. A similar logic holds for ensemble models as well (Gal & Ghahramani,
2016; Lakshminarayanan et al., 2017).

A number of works in the Bayesian literature have studied uncertainty decompositions based on
predicted mixtures (sometimes termed a second-order or higher-order distribution) (Houlsby et al.,
2011; Depeweg et al., 2018; Hüllermeier & Waegeman, 2021; Malinin & Gales, 2021; Wimmer
et al., 2023; Schweighofer et al., 2023; Sale et al., 2023c;a; Kotelevskii & Panov, 2024; Hofman
et al., 2024). We build on these works, and in particular on Kotelevskii & Panov (2024) and Hof-
man et al. (2024), for our analysis of uncertainty decompositions. The works on Bayesian neural
networks (Lampinen & Vehtari, 2001) and variants (Malinin & Gales, 2018; Sensoy et al., 2018;
Osband et al., 2023) all explicitly construct certain types of parameterized higher-order predictors.

While the idea of predicting mixtures is already present in these works, they do not consider any
formal semantics such as calibration. The real-world semantics of Bayesian methods typically arise
from the following type of asymptotic consistency guarantee (see e.g. Doob’s theorem (Miller,
2018)): if the model class is well-specified (i.e. the unknown f∗ is realizable by the class), and
Bayesian inference is computationally feasible (at least in some approximate sense), then in the
limit as the sample size grows large, the posterior becomes tightly concentrated around the true f∗.
In practice, however, it is often very difficult (or impossible) to test that the model class is indeed
well-specified, as well as to perform true Bayesian inference over expressive classes. In such cases,
it is not clear what semantics (if any) hold for the resulting uncertainty decomposition. This is the
key gap we address with higher-order calibration. We note that higher-order calibration can treated
as an evaluation metric for any higher-order predictor, even if it is misspecified or poorly fit.

Pair prediction and second-order calibration. The k = 2 case of kth-order calibration was in-
troduced and studied by Johnson et al. (2024). Our work builds on theirs and greatly extends their
notion of second-order calibration by defining the limiting notion of higher-order calibration that is
implicit in their work. This allows us to view kth-order calibration more generally as defining a natu-
ral hierarchy between first-order and higher-order calibration. We believe this considerably clarifies
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the conceptual principles at play and also provides a bridge to the Bayesian literature. We draw on
recent work on calibration (Błasiok et al., 2023; Gopalan et al., 2024b;a) to provide a full-fledged
theory of higher-order calibration error and more. The idea of joint prediction has separately been
studied by Wen et al. (2021); Osband et al. (2023); Durasov et al. (2024); Lee et al. (2024).

Please see Appendix B for additional related work.

2 HIGHER-ORDER CALIBRATION

In this section we define higher-order and kth-order calibration in full generality, and describe meth-
ods for achieving them. Recall that a partition of the space X is a collection of disjoint subsets, or
equivalence classes, whose union is the entire space. For any x ∈ X , we use [x] ⊆ X to refer to
its equivalence class, and we use [·] as shorthand for the entire partition. The Bayes mixture over an
equivalence class [x], denoted f∗([x]), is the mixture obtained by drawing x ∼ [x] (according to the
marginal distribution DX restricted to [x]) and considering f∗(x).

We define approximate higher-order calibration to allow for some error between the predicted dis-
tribution and the Bayes mixture, where we measure closeness between mixtures in ∆∆Y using the
Wasserstein distance with respect to the ℓ1 (or statistical) distance between distributions in ∆Y .
Recall that for us Y is discrete.
Definition 2.1 (Approximate higher-order calibration). We say a higher-order predictor f : X →
∆∆Y is ϵ-higher-order calibrated to f∗ wrt a partition [·] if for all x ∈ X ,3

W1(f(x), f
∗([x])) = inf

µ∈Γ(f(x),f∗([x]))
E(p,p∗)∼µ[∥p− p∗∥1] ≤ ϵ,

where we use Γ(π, π′) to denote the set of all couplings of π and π′.

Even with this relaxation, it is unclear how to measure higher-order calibration error, since we never
get access to f∗ itself. As a tractable path towards this goal, we will introduce the model of learning
from k-snapshots and kth-order calibration.
Definition 2.2 (k-snapshot). A k-snapshot for x ∈ X is a tuple s = (y1, . . . ,yk) ∈ Yk where each
label yi is drawn independently as yi ∼ f∗(x).

In the model of learning with k-snapshots, we receive pairs (x, s) where x ∼ DX and s ∈ Yk is
a k-snapshot for x, and the goal is to learn a “k-snapshot predictor” that predicts what a snapshot
drawn from a given x ∈ X might look like, i.e. a distribution over possible k-snapshots. While this
distribution could be represented directly over Yk, we can simplify our approach by leveraging a
key property of k-snapshots: the yis are each drawn iid. Consequently, the order of the tuple does
not matter. Thus, instead of viewing a k-snapshot as a tuple (y1, ..., yk) ∈ Yk, we will view it as
the distribution Unif(y1, ..., yk) ∈ ∆Y . We denote the space of such uniform distributions over
snapshots as Y(k) ⊆ ∆Y , a coarsened version (with granularity 1/k) of the space ∆Y .
Definition 2.3 (kth-order projection). Given a mixture π ∈ ∆∆Y , we denote its kth-order projection
to be a k-snapshot distribution projk(π) ∈ ∆Y(k) defined as follows:

• We draw p ∼ π and a k-snapshot s = (y1, ...,yk) by sampling k times iid from p.
• We output Unif(y1, . . . ,yk).

The goal of k-snapshot prediction is to learn a predictor g : X → ∆Y(k) such that for each x ∈ X ,
g(x) is close to projk(f

∗(x)), the true distribution of k-snapshots for x.

Viewing the space Y(k) as a subset of ∆Y , and hence the space ∆Y(k) as a subset of ∆∆Y , is an
important conceptual simplification. Firstly, because g(x) ∈ ∆Y(k) ⊆ ∆∆Y , a k-snapshot predic-
tor can be directly viewed as a higher-order predictor with no extra effort. Secondly, it suggests a
non-obvious error metric for k-snapshot prediction which turns out to be the right one: we simply
use the Wasserstein distance on ∆∆Y as our distance measure between two distributions over snap-
shots. (This is a better measure than obvious choices like viewing Y(k) as a discrete space and using
statistical distance. See Appendix A for some more discussion of alternative representations.) We
define calibration for k-snapshot prediction analogously to the higher-order setting:

3Throughout this paper, for simplicity we require closeness for all equivalence classes [x]. A more relaxed
notion would only require it to hold with high probability over equivalence classes.
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Definition 2.4 (Approximate kth-order calibration). We say a k-snapshot predictor g : X → ∆Y(k)

is ϵ-kth-order calibrated wrt f∗ and a partition [·] if for all x ∈ X , W1(g(x),projkf
∗([x])) ≤ ϵ.

As one might expect, kth-order calibration for large k is closely related to higher-order calibration.
Formally, we show that given any f∗([x]), its kth-order projection approaches the true higher-order
mixture f∗([x]) in Wasserstein distance as k → ∞. The proof (see Appendix D.2) relies on a
concentration argument.
Lemma 2.5. Given any mixture π ∈ ∆∆Y (and in particular for π = f∗([x])) and k > 0, we have
W1(π,projkπ) ≤ |Y|/(2

√
k).

As a corollary, we can precisely characterize the rate at which kth-order calibration approaches
higher-order calibration as k → ∞. The proof can be found in Appendix D.4:

Theorem 2.6 (kth-order calibration implies higher-order calibration.4). If g : X → ∆Y(k) be ϵ-
kth-order calibrated with respect to a partition [·], then it is also (ϵ + |Y|/(2

√
k))-higher-order

calibrated with respect to the same partition [·].

This shows the convergence of approximate kth-order calibration to approximate higher-order cali-
bration in a way that preserves the approximation error.

Another key property of a kth-order calibrated predictor is that it gives good estimates of the first
k moments of f∗([x]). This should be contrasted with higher-order calibration, which tells us the
full distribution of f∗([x]). In settings where we only care about the first k moments of f∗([x]),
this tells us that kth-order calibration can serve as a good substitute for higher-order calibration. For
simplicity, we restrict to the binary case, where ∆∆Y can be identified with ∆[0, 1].

Theorem 2.7 (Moment estimates from kth-order calibration). Let Y = {0, 1}, and let g : X →
∆Y(k) be ϵ-kth-order calibrated with respect to a partition [·]. Then for each x ∈ X , we can use
g(x) to generate a vector of moment estimates (m1, . . . ,mk) ∈ Rn such that for each i ∈ [k],∣∣∣∣mi − E

x∼[x]
[f∗(x)i]

∣∣∣∣ ≤ iϵ/2.

This is proved in Appendix D.5 by showing that the first k moments of a mixture can be exactly
recovered from the mixture’s kth-order projection. This allows us to get a calibrated vector of pre-
dictions for the first k moments from a kth-order calibrated predictor. It implies that we can make
calibrated predictions for the expectation of any low-degree polynomial with bounded coefficients
evaluated on f∗(x). This property will be useful for estimating aleatoric uncertainty using kth order
calibration (Theorems 3.3, E.7) and giving prediction sets with coverage guarantees (Appendix F).

2.1 ACHIEVING kTH-ORDER CALIBRATION

We present two simple methods for kth-order calibration based on common approaches for first-order
calibration: minimizing a proper loss, or post-processing the level sets of a learned predictor.

Learning directly from snapshots. Our definition of kth-order calibration is immediately accom-
panied by a natural method for achieving it: view the learning problem as a multiclass classification
problem over the extended label space Y(k) of k-snapshots, and use any off-the-shelf procedure that
tries to achieve ordinary first-order calibration over this space when we draw true k-snapshots from
nature. Perfect first-order calibration over Y(k) means exactly that g(x) = projkf

∗([x]) for all x,
which is equivalent to kth-order calibration.

A simple concrete method is to minimize a proper multiclass classification loss over the label space
Y(k) (such as cross entropy) over an expressive function class. This is the method followed in
Johnson et al. (2024) for achieving second-order calibration.

Post-hoc calibration using snapshots. Here we describe a simple alternative way of achieving
kth-order calibration using a pure post-processing routine which allows us to turn any ordinary first-

4We present this theorem in a simplified manner to emphasize the connections between kth- and higher-
order calibration error. See Appendix D.3 for additional guarantees that both lower- and upper- bound the
higher-order calibration error within a partition in terms of the kth-order error.
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order predictor into a higher-order calibrated predictor, thereby “eliciting” its epistemic uncertainty.
This method requires only a calibration set of k-snapshots rather than a full training set.

Let us briefly recall the standard post-processing procedure for achieving first-order calibration.5
For a partition [·], first-order calibration requires that for every x, f(x) = Ex∼[x][f

∗(x)]. If this is
not the case, then we “patch” the prediction at x to be the centroid of the Bayes mixture within its
partition, Ex∼[x][f

∗(x)]. That is, we have reduced the problem to that of learning the mean label
distribution over a given set [x]. We implement this by drawing a sufficiently large sample from
each set [x] in the partition and use the empirical distribution as an estimate of the true mean.

Our procedure for post-hoc kth-order calibration is a very natural extension of this algorithm. Let
a partition [·] be given (perhaps arising from an initial first-order predictor). For each equivalence
class [x] in the partition, instead of simply trying to estimate the centroid of the Bayes mixture, we
will now try to learn the entire Bayes mixture (or technically its kth-order projection projkf

∗([x])).
That is, we reduce to mixture learning instead of mere distribution learning. Mixture learning has
been previously explored in the literature; e.g. Li et al. (2015) give algorithms for learning mixtures
given access to snapshots. While their methods could be applied for post-processing for higher-order
calibration, their focus on learning complete mixtures rather than their kth-order projections (as is
sufficient for kth-order calibration) leads to different guarantees and snapshot size requirements.

We present a simple post-processing algorithm for achieving kth-order calibration using a calibration
set of k-snapshots from each [x]. Our algorithm is as follows: given N k-snapshots — viewed as
distributions p1, ...,pN ∈ Y(k) ⊆ ∆Y — drawn from projkf

∗([x]), output the empirical mixture,
i.e. Unif(p1, ...,pN ). We can use standard concentration arguments to show that for sufficiently
large N , this will give a good estimate of projkf

∗([x]) and hence a kth-order calibrated predictor.
Theorem 2.8 (Empirical estimate of kth-order projection guarantee). Consider any x ∈ X , and
a sample p1, ...,pN ∈ Y(k) where each pi is drawn i.i.d. from projkf

∗([x]). Given ϵ > 0 and
0 ≤ δ ≤ 1, if N ≥ (2(|Y(k)| log(2) + log(1/δ)))/ϵ2, then we can guarantee that with probability
at least 1− δ over the randomness of the sample we will have

W1(projkf
∗([x]),Unif(p1, ...,pN )) ≤ ϵ.

The proof of this theorem can be found in Appendix D.6. We note that |Y(k)| is exactly the number of
multisets of size k that can be chosen from ℓ items, with repeats. Thus, |Y(k)| =

(
k+ℓ−1
ℓ−1

)
≤ ℓk and

so replacing |Y(k)| with ℓk also gives the desired guarantee. In the special case of binary prediction,
|Y(k)| simplifies to just k + 1, resulting in a bound that is linear in the size of the snapshot.

3 UNCERTAINTY DECOMPOSITIONS

Having defined higher-order and kth-order calibration, we show how these notions can be leveraged
to provide meaningful semantics for decomposing predictive uncertainty.

Let any concave generalized entropy function G : ∆Y → R be given (e.g., the Shannon entropy;
see Appendix C.1 for more details). Fix a point x ∈ X , and let the predicted mixture at x be
f(x) ∈ ∆∆Y . Consider a random distribution p ∼ f(x) drawn from this mixture, viewed as
a random vector on the simplex in Rℓ. The induced marginal distribution of y when we draw
p ∼ f(x) at random and then draw y ∼ p is given by p = E[p], the centroid of f(x).6 Perhaps the
most commonly studied decomposition is the “mutual information decomposition” (Houlsby et al.,
2011; Gal, 2016) mentioned in the introduction, which we restate here. Our formulation in terms of
generalized entropy follows that of Kotelevskii & Panov (2024) and Hofman et al. (2024).7

G(p)︸︷︷︸
Predictive uncertainty

= E[G(p)]︸ ︷︷ ︸
Aleatoric uncertainty estimate

+ G(p)− E[G(p)]︸ ︷︷ ︸
Epistemic uncertainty

(3.1)

5Here we mean distribution calibration with respect to distributions in ∆Y for any discrete space Y , but the
reader can consider the binary case for simplicity. There, distribution learning reduces to mean estimation.

6In the context of Bayesian models, f(x) is often called the posterior predictive distribution, and p is often
called the Bayesian model average (BMA).

7In general there are multiple approaches to uncertainty decomposition given a predicted mixture. Here we
focus on the mutual information decomposition. In Appendix C we discuss other natural decompositions and
show how they can also be endowed with meaningful semantics via higher-order calibration.
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The predictive uncertainty is the total entropy in a random outcome y drawn marginally from π.
The aleatoric uncertainty estimate is the conditional entropy in y given the mixture component p.
The epistemic uncertainty is precisely the mutual information between y and p; it is non-negative
by Jensen’s inequality. It can be equivalently written as a variance-like quantity, Ep∼π[D(p ∥ p)],
where D is the divergence associated with G (e.g., the KL divergence for the Shannon entropy).
Accordingly we define the following estimates for uncertainty.

Definition 3.1. Let G : ∆Y → R be a concave generalized entropy function. For a higher-order
predictor f : X → ∆∆Y , we define the predictive, aleatoric, and epistemic uncertainties of f at x
with respect to G as

PUG(f : x) = G

(
E

p∼f(x)
[p]

)
AUG(f : x) = E

p∼f(x)
[G(p)]

EUG(f : x) = PUG(f : x)−AUG(f : x).

These quantities are meaningful mainly for higher-order predictors. Nature itself only associates a
pure distribution f∗(x) with every x, and has only true aleatoric uncertainty: AU∗

G(x) = G(f∗(x)).

The mutual information decomposition (Eq. (3.1)) is purely a function of our prediction and inde-
pendent of nature. Under what conditions does it tell us something meaningful about true aleatoric
uncertainty? We show that higher-order calibration is a sufficient condition: it guarantees that our
estimate of aleatoric uncertainty at a point x equals the average true aleatoric uncertainty over [x].

Lemma 3.2. If f : X → ∆∆Y is perfectly higher-order calibrated, then for all x ∈ X ,

AUG(f : x) = E
x∼[x]

[AU∗
G(x)].

Proof. Since f(x) = f∗([x]) as a mixture,

AUG(f : x) = E
p∼f(x)

[G(p)] = E
p∗∼f∗([x])

[G(p∗)] = E
x∼[x]

[G(f∗(x))] = E
x∼[x]

[AU∗
G(x)].

This proves the first part of Theorem 1.2, and a similar argument establishes the second part (see
Lemma C.1). At first glance, higher-order calibration may seem like a very strong condition that
happens to provide calibrated uncertainty estimates as a byproduct. In fact, Theorem E.1 in Ap-
pendix E.1 will show that higher-order calibration is a necessary condition for a predictor to produce
calibrated estimates of aleatoric uncertainty with respect to all concave entropy functions.

In this way we see that higher-order calibration locates the source of a predictor’s epistemic un-
certainty in bucketing multiple potentially different points into a single equivalence class [x]. Our
estimate of aleatoric uncertainty captures the average true aleatoric uncertainty in f∗(x) as x ∼ [x],
and our epistemic uncertainty can be thought of as the true “variance”8 in f∗(x) as x ∼ [x]. Aver-
aging over [x] in a sense inevitable since the predictor does not distinguish points in [x].

Uncertainty decomposition from kth-order calibration. While Lemma 3.2 draws an important
connection between higher-order calibration and uncertainty estimation, it does not allow for cal-
ibration error. Even assuming a robust analogue can be established, achieving sufficiently small
higher-order calibration error might require kth-order calibration for large k by Theorem 2.6. What
if we can only guarantee kth-order calibration for reasonably small k. Is this of any use towards the
goal of rigorous uncertainty decomposition?

We show that for the two most commonly used entropy functions, the binary Brier and Shannon
entropies, the answer is yes. In fact the former only requires k = 2. We prove a general result which
applies to any uniformly continuous entropy function. The key insight is that kth-order calibration
provides us with good estimates of the first k moments of the Bayes mixture (Theorem 2.7). The

8In particular, it is the divergence of f∗(x) for x ∼ [x] from the centroid Ex∼[x][f
∗(x)], as formalized in

Theorem 1.2 and more generally in Lemma C.1.
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Brier entropy is a degree 2 polynomial, whereas we show that the Shannon entropy has good ap-
proximations by low-degree polynomials. A similar guarantee applies to all uniformly continuous
functions via Jackson’s theorem. Taken together, these results show that kth-order calibration is a
natural and tractable goal in itself for uncertainty decomposition. We state the following theorem
informally; formal statements and proofs (with sample complexity) may be found in Appendix E.2.

Theorem 3.3 (Estimating common entropy functions; informal). We can obtain ÂUG satisfying∣∣∣ÂUG − E
x∼[x]

[AU∗
G(x)]

∣∣∣ ≤ ϵ

using only kth-order calibration for the following common entropy functions G:

• For Brier entropy GBrier(p) = 4p(1− p) using (ϵ/8)-second-order calibration;

• For Shannon entropy GShannon(p) = −p log p− (1− p) log(1− p) using ϵ′-kth-order cali-
bration, where ϵ′ ≤ ϵ/ exp(Θ(k)) and k ≥ Θ((1/ϵ)ln 4);

• For any uniformly continuous G with modulus of continuity ωG (see Definition E.2) using
ϵ′-kth-order calibration where ϵ′ satisfies ωG(ϵ

′ + |Y|/(2
√
k)) ≤ ϵ.

4 EXPERIMENTS

In this section, we describe experiments on training higher-order calibrated models using k-
snapshots. We focus on the task of classifying ambiguous images using CIFAR-10H (Peterson
et al., 2019), a relabeling of the test set of CIFAR-10 (Krizhevsky, 2009). For additional experi-
ments, including comparisons with other uncertainty decomposition methods, see Appendix G.

CIFAR-10H is an image recognition dataset of 10,000 32×32 color images with 10 possible classes
(entities like truck, deer, and airplane) and with at least 50 independent human annotations
per image. Thus Y is the space of 10 possible entities, and for each image x ∈ X , f∗(x) is the
uniform distribution over its ≥50 independent annotations. While the classes are fairly distinct, there
is nevertheless nontrivial disagreement among annotators. We treat the normalized histogram of
ground-truth labels as a distribution over Y; all entropy computations are done over this distribution.
The mean true aleatoric uncertainty E[AU∗

H(x)] is 0.17 (STD 1.2), where H is the Shannon entropy.

We first train a regular 1-snapshot ResNet (Zagoruyko & Komodakis, 2016) on 45,000 images from
the CIFAR training set, setting aside the remaining 5,000 for validation. We then apply our post-hoc
calibration algorithm (see Section 2.1) to CIFAR-10H, using half as a calibration set and the other
half as a test set. For more details, see Appendix G. In this way we obtain a kth-order predictor
g : X → ∆Y(k). The induced marginal first-order predictor g : X → ∆Y is g(x) = Ep∼g(x)[p].

In this high-dimensional setting, it is infeasible to compute the true level set partition of g. We
instead use a more coarse-grained partition defined in terms of g. Specifically, for each possible
class (e.g. truck), we bin together all images x where g(x) takes its maximum value at that class
(truck), and moreover that maximum value lies in one of 10 slices of [0, 1] (e.g. [0.8, 0.9]). Thus
we obtain a partition with 100 bins in total.

In Appendix G we report higher-order calibration error as measured by Wasserstein error ϵ in Defi-
nition 2.4. As a more easily interpretable measure, we also compute the aleatoric estimation error:

EAU(x) =
∣∣AUH(g : x)− E

x∼[x]
[AU∗

H(x)]
∣∣ (4.1)

In Figure 2, we report the mean aleatoric estimation error over all images, Ex[EAU(x)]. As ex-
pected, predictions of aleatoric uncertainty grow more accurate as the size of the snapshots used to
calibrate the model is increased, and there is a significant benefit to going beyond k = 2.

To illustrate the advantages of accurate estimates of aleatoric uncertainty, we include in Figure 3
examples of images skewed most towards pure “epistemic” or “aleatoric” uncertainty. The former
category mainly consists of images that are unusual in some way, e.g. images of objects at unusual
angles, or closely cropped images. Nevertheless, all are relatively easy for humans to identify, and
thus point to cases where the model could be improved. The “aleatoric” images, on the other hand,

9
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Figure 2: Calibrating models with k-snapshots yields increasingly accurate estimates of aleatoric uncer-
tainty. Top: Average aleatoric uncertainty estimation error (Eq. (4.1)) of CIFAR-10 models calibrated using
snapshots of increasing size. Bottom: For three of the highest-entropy equivalence classes, we depict the dis-
tribution of entropies ranging over components of the predicted mixture (gray) and the Bayes mixture (green).
We see that the distributions and in particular the means are similar.

Figure 3: Qualitatively, accurate estimates of aleatoric uncertainty help separate unusual, poorly learned
images (mostly epistemic) from genuinely ambiguous ones (mostly aleatoric). Top: CIFAR-10H images
with the highest ratio of epistemic uncertainty to aleatoric uncertainty (depicted by colored bars), as estimated
by a well-higher-order-calibrated model. Bottom: The most aleatoric images according to the same model.

include mostly low-quality or otherwise ambiguous pictures on which the annotators do in fact
disagree. Interestingly, this section also includes a few images (e.g. the fifth image, of a cat being
held by a human) that do not seem ambiguous per se but did in fact divide annotators. This indicates
that the mixture model has learned something about aleatoric uncertainty in the label distribution not
obvious to the naked eye. Such insights can help practitioners fine-tune their data collection efforts.

5 CONCLUSION

This work introduces higher-order calibration as a rigorous framework for decomposing predictive
uncertainty with clear semantics, guaranteeing that our predictor’s aleatoric uncertainty estimate
matches the true average aleatoric uncertainty over points where the prediction is made. We also
propose kth-order calibration as a tractable relaxation, showing that even small values of k can yield
meaningful uncertainty decompositions. We demonstrate both training-time and post-hoc methods
for achieving kth-order calibration using k-snapshots. Our method offers significant advantages over
existing methods in that it is distribution-free, tractable, and comes with strong provable conditional
guarantees.

The main limitation of our work is that achieving kth-order calibration for any k > 1 fundamentally
requires access to data with multiple independent labels per instance. While this requirement is
satisfied in many reasonable scenarios, such as crowd-sourcing or model distillation, it is not always
satisfiable. Additionally, our sample complexity scales with |Y|k, which could become prohibitive
for large label spaces or larger k. Open questions for future research include: (a) techniques for
reducing our dependence on label size and k, (b) applications to active learning and (c) out-of-
distribution detection, and (d) formally studying the tradeoff between collecting more conditional
labels versus more labeled data.
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A REVIEW OF NOTATION AND TERMINOLOGY

Notation. We denote our instance space, or domain, by X , and our outcome space by Y . We will
focus on discrete or categorical spaces Y = {0, . . . , ℓ − 1}. We denote the space of probability
distributions on Y by ∆Y , and the space of (higher-order) distributions on ∆Y , or mixtures, by
∆∆Y . The space ∆Y can be identified with the (ℓ − 1)-dimensional simplex, denoted ∆ℓ and
viewed as a subset of Rℓ. We will often think of an element of ∆Y as a vector in ∆ℓ ⊂ Rℓ (namely
with ℓ nonnegative entries summing to one). It will often be illustrative to consider the binary case
Y = {0, 1}, where we can identify ∆Y with a single parameter in [0, 1], namely the bias, or the
probability placed on 1. A distribution, i.e. an element of ∆Y , will typically be denoted by p. A
mixture, i.e. an element of ∆∆Y , will typically be denoted by π.

We follow the convention of denoting random variables using boldface. Thus given a distribution
p ∈ ∆Y , a random outcome from this distribution will be denoted by y ∼ p. Similarly, given a
mixture π ∈ ∆∆Y , a random distribution drawn from the mixture (i.e. a random mixture component
drawn according to the mixture weights) will be denoted by p ∼ π.
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We refer to a k-tuple of labels (y1, . . . ,yk) drawn iid from a distribution p ∈ ∆Y as a k-snapshot.
Since the yi are drawn iid, the order of the tuple does not matter, and we generally symmetrize
the snapshot and identify it with the distribution Unif(y1, . . . ,yk). We denote the space of all
such distributions or symmetrized k-snapshots by Y(k).9 Note that Y(k) ⊆ ∆Y . The space of
distributions over symmetrized k-snapshots will be denoted ∆Y(k).

Learning setup. We model nature’s data generating process as a marginal distribution DX on X
paired with a conditional distribution function f∗ : X → ∆Y , where f∗(x) describes the distribu-
tion of y | x = x. We make no assumptions about DX or the form of f∗. Recall that we define
a higher-order predictor as a mapping f : X → ∆∆Y . Even though nature is a pointwise pure
distribution f∗ : X → ∆Y , we model f as predicting mixtures to allow it to express epistemic
uncertainty.

A partition of the space X is a collection of disjoint subsets, or equivalence classes, whose union
is the entire space. For any x ∈ X , we use [x] ⊂ X to refer to its equivalence class, and we use
[·] as shorthand for the entire partition. The Bayes mixture over an equivalence class [x], denoted
f∗([x]) ∈ ∆∆Y by a slight abuse of notation, is the mixture obtained by drawing x ∼ [x] (according
to the marginal distribution DX restricted to [x]) and considering f∗(x).

A note on the role of partitions. Partitions play an essential role in any formulation of calibration
for supervised learning. Consider an ordinary first-order predictor f : X → ∆Y learned from the
data. We view this predictor as a complete summary of all the information the algorithm has learnt.
In particular, all instances x that receive the same value of f(x) (i.e., lie in the same level set) are
de facto not being distinguished from one another by f . This may be because they are in fact highly
similar, or because f simply has not learnt enough to distinguish between them. In fact, in this view
a predictor f is exactly the same as specifying a level set partition (and values for each level set) —
i.e. a predictor and a partition are in exact one-to-one correspondence. First-order calibration states
precisely that over all instances that receive the same prediction, the predicted outcome distribution
matches the true marginal outcome distribution (over all such instances).

In practice, we naturally relax the level set partition to merely be an approximate level set partition,
or in general an even coarser partition [·] of our choice (for reasons of tractability). Nevertheless, a
partition should always be thought of as expressing that points in an equivalence class are “similar”
to each other from the point of view of the predictor. Any formulation of calibration for supervised
learning thus has the following form: in aggregate over all points that are treated similarly by the
predictor, the prediction is faithful to nature. Our definition of higher-order calibration takes this
form as well.

Alternative kth-order representations of mixtures. In this paper we have chosen to represent the
kth-order projection of a mixtures as a distribution over k-snapshots, treating each snapshot as a
uniform distribution over its elements. More generally one can work with other representations.
The following are three natural ways to define the kth-order projection of a mixture that will all all
turn out to be equivalent for us:

1. As a k-snapshot distribution, an object in ∆Yk: The k-snapshot projection of a mixture π is
the k-tuple distribution arising from drawing a random p ∼ π, and drawing y1, . . . ,yk ∼ p
iid.

2. As a kth-moment tensor, an object in (Rℓ)⊗k: The kth-moment tensor of a mixture π is
exactly the object E[p⊗k], where p ∼ π.10

3. As a symmetrized k-snapshot distribution, an object in ∆Y(k): The symmetrized k-
snapshot projection of a mixture π is the distribution arising from drawing p ∼ π, then
drawing (y1, . . . ,yk) ∼ p, and considering Unif(y1, . . . ,yk). This is how we originally
defined projkπ (see Definition 2.3).

Observe that the pmf of the k-snapshot projection of π is given exactly by the kth-moment tensor
of π: that is, for any tuple (y1, . . . , yk) ∈ Yk, the probability mass placed on it by the k-snapshot

9It is equivalent to the space Yk modulo permutations.
10To avoid confusion, note that here we view p as a random vector on the simplex, and thus these are

moments of probability masses, not of the labels in Y themselves. The latter is in any case not well-defined for
us since Y is a categorical space.
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projection is

E[py1 · · ·pyk
] = E[p⊗k](y1,...,yk).

Moreover, this quantity is clearly invariant to permutations of the tuple. Thus it is clear that the sym-
metrized k-snapshot projection of π contains exactly the same information as the (unsymmetrized)
k-snapshot projection, just more compactly represented. To be explicit, we can pass from a k-
snapshot distribution to a symmetrized k-snapshot distribution by summing the probability mass
over all permutations of a given tuple, and we can similarly pass from the latter to the former by
distributing the weight of a given symmetrized snapshot evenly over all tuples that are equivalent to
it up to permutation.

In this sense the three kth-order representations above of a true higher-order mixture π are all for-
mally equivalent, and we can in principle refer simply to the kth-order projection projkπ of π with-
out specifying a particular representation. Notice that from projkπ we can also form projjπ for all
j ≤ k, simply by appropriate marginalization (e.g., take the marginal distribution over the first j
elements of each tuple).

We could formally define kth-order calibration in terms of any of these representations. But for the
purposes of this paper the symmetrized representation is by far the most convenient since it allows
us to view Y(k) as a subset of ∆Y .

Note that in general an arbitrary distribution over Yk need not be the k-snapshot projection of any
mixture, and similarly an arbitrary tensor in (Rℓ)⊗k need not be the kth-moment tensor of any
mixture. However when these objects do arise from snapshots of some mixture π, then they are
equivalent to each other.

Worked X-ray example: For illustrative purposes, we’ll reiterate our running X-ray example us-
ing fully elaborated notation. Our instance space X is the space of plausible X-ray scans; Y , our
outcome space, is binary: possible values are “not broken” (0) and “broken” (1). Note that Y does
not need to be binary in general, but that binary outcome spaces are convenient in some ways. For
example, in this case, a distribution over Y can be represented by a single float: the probability
of “broken”. We assume there exists a natural distribution DX as well as an idealized conditional
distribution function f∗ : X → ∆Y . Given an image x ∈ X , it outputs the probability that a
ground-truth labeler—in our case, a doctor—would say x depicts a broken bone.

First-order predictors are unable to express epistemic uncertainty; since they just output one distri-
bution for each scan, there’s (provably) no way to tell whether an uncertain prediction means that the
predictor itself is uncertain (its uncertainty is mostly epistemic) or that the predictor is perfect and
the doctors who labeled the scan disagreed with each other (its uncertainty is mostly aleatoric). We
illustrate this problem in Figure 1. Therefore, our goal is to learn f : X → ∆∆Y , a second-order
predictor. Given an input x ∈ X , it outputs not just a single distribution over Y , but a mixture of
distributions in ∆Y . In this case, it outputs a distribution over the interval [0, 1] rather than a single
float.

To obtain a calibrated second-order predictor, we can apply one of the algorithms in Section 2.1.
We will opt for the second one, which calibrates a first-order predictor post hoc. First, we train a
first-order predictor f̂ in the usual fashion on a training set of tuples {(xi, yi)}Ni , where for each
i, xi is sampled independently from DX and yi is sampled from f∗(xi) (simulating an individual
doctor). We use the finished predictor and use it to compute a partition [·] over the input space: for
any given X-ray x, we put it in the equivalence class [x] along with all other inputs that f̂ assigns the
same prediction (at some desired coarseness). For example, one equivalence class might correspond
to all images for which the predictor says there’s a 60 – 65% chance that the bone is broken. Next,
we sample a calibration set {(xj , y

1
j , ..., y

k
j }Cj of k-snapshots. Each label is sampled completely

independently of the others; this time, we’re asking multiple different doctors for their opinion on
the scan. Each k-snapshot can be turned into a distribution in ∆Y: we just count the occurrences of
each discrete label, turn them into a histogram, and normalize it. The larger the value of k, the more
closely this distribution will resemble the ground-truth distribution f∗(xj). Finally, we calibrate
the model by replacing the model’s shared prediction for each equivalence class with the uniform
mixture of the k-snapshot distributions for each of the calibration set inputs that fall into that class.
The resulting predictor is our second-order predictor f . Technically, for finite k, f outputs discrete
distributions in ∆Y(k), not ∆∆Y , but this approximation also improves as k grows.
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Our theory shows that, for large enough N , C, and k, this predictor will be k-th order calibrated,
meaning that its estimates of epistemic and aleatoric uncertainty are guaranteed to be good approx-
imations of their actual values. For a given input x, aleatoric uncertainty is estimated by measuring
the average entropy of all of the k-snapshot distributions in the prediction for [x], and approaches the
true aleatoric uncertainty: the value E[G(f∗(z))|z ∈ [x]], or the expected entropy (G) of the ground-
truth label distributions for all inputs in the same equivalence class as x. Epistemic uncertainty is,
loosely speaking, what’s left over.

B FURTHER RELATED WORK

Related notions of calibration. Our notion of first-order calibration over a general discrete label
space Y is the same as the notion of canonical or distribution calibration due to Kull & Flach (2015);
Widmann et al. (2019) (see also Silva Filho et al. (2023) for a broad survey). This was extended
to the regression setting (Y = R) by Song et al. (2019); Jung et al. (2021). While the latter works
are related to ours (especially in the binary case where ∆Y can be identified with [0, 1]), the key
difference is that we only ever observe labels in the discrete space Y and never in the continuous
space ∆Y . In the limit as snapshot size k → ∞ (so that we effectively observe f∗(x) with each
example), higher-order calibration over Y can be thought of as reducing to distribution calibration
for (high-dimensional) regression over the space ∆Y . However, no provable guarantees are known
for the latter problem, whereas we actually provide provable algorithms using only finite-length
snapshots.

Distribution-free uncertainty quantification and conformal prediction. Our techniques share
a common spirit with the literature on distribution-free uncertainty quantification and especially
conformal prediction (Vovk et al., 2005; Angelopoulos & Bates, 2021; Cella & Martin, 2022). This
literature also makes minimal assumptions about the data-generating process and provides formal
frequentist guarantees, typically prioritizing prediction intervals (or sets) for the labels. Our work
provides “higher-order prediction sets” for entire probability vectors conditional on an equivalence
class (see Appendix F). See Jung et al. (2021); Gibbs et al. (2023) for related work on conditional
coverage guarantees. A key common theme in all these works as well as in ours is the use of post-
hoc calibration as a way of imbuing ordinary predictors with formal coverage-like guarantees; see
Roth (2022) for lecture notes on the topic and Johnson et al. (2024) for an extended discussion of
the relationship between second-order calibration and conformal prediction.

Other notions of epistemic uncertainty. In recent years one popular alternative approach to defin-
ing epistemic uncertainty is to view it as a measure of whether an instance is “out of distribution”
(see e.g. Liu et al. (2020); Van Amersfoort et al. (2020)). While sometimes reasonable, we believe
this is not always justifiable. We instead define our epistemic uncertainty measure based on first
principles, and allow for epistemic uncertainty to occur even in-distribution.

Another formulation of epistemic uncertainty studied in Lahlou et al. (2021) is as a kind of excess
risk measure, assuming an oracle estimator for aleatoric uncertainty. See also Kull & Flach (2015)
for similar decompositions.

Pitfalls of uncertainty quantification via mixtures and credal sets. Mixtures (also termed second-
order or higher-order probability distributions) are common tools for modeling uncertainty (e.g. in
Bayesian methods). However, they have been critiqued (see e.g. Bengs et al. (2022); Pandey & Yu
(2023); Jürgens et al. (2024)) on the grounds that it is unsound to learn a mixture (a “Level-2” object
in ∆∆Y) using ordinary labeled examples (“Level-0” objects in Y). We agree with this critique
and it is why we instead learn a Level-2 predictor from k-snapshots, i.e. multilabeled examples
(which are approximations of Level-1 objects in ∆Y). Without k-snapshots, existing approaches to
using higher-order distributions fall short in various ways. Our work arguably identifies how these
approaches fall short, and proposes (a) learning from k-snapshots as a principled way of learning
mixtures, and (b) higher-order calibration as a principled way of ensuring that these mixtures have
clear frequentist semantics.

Such concerns have also spurred research into alternative approaches that avoid mixtures, such
as credal sets (see e.g. Sale et al. (2023b); Chau et al. (2024)). Credal sets are incomparable to
mixtures, although for many purposes a nonempty credal set of distributions functions similarly to
the uniform mixture over that set, and insofar as they do, they can be miscalibrated in the sense
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that we propose. In concurrent work, Caprio et al. (2024) introduces a notion of calibration for
credal sets similar in flavor to our own. Ultimately, these and other alternative representations make
different tradeoffs, and we work with mixtures as they are natural, expressive, and, importantly,
allow proving formal semantics of the type we show in this work.

The area of uncertainty quantification and decomposition is vast, and here we have only mentioned
works most related to ours (to the best of our knowledge). We refer the reader to the surveys by
Hüllermeier & Waegeman (2021); Abdar et al. (2021) as well as the related work sections of Lahlou
et al. (2021); Johnson et al. (2024) for much more.

C ALTERNATIVE UNCERTAINTY DECOMPOSITIONS AND SEMANTICS

Many uncertainty decompositions have been considered in the literature (Houlsby et al., 2011; Kull
& Flach, 2015; Malinin & Gales, 2021; Wimmer et al., 2023; Schweighofer et al., 2023; Sale et al.,
2023a;c; Kotelevskii & Panov, 2024; Hofman et al., 2024), each making different tradeoffs (see e.g.
Wimmer et al. (2023) for an explicit axiomatic formulation of desiderata for such decompositions).
Using the unified language of generalized entropy functions and proper losses, we provide a discus-
sion of some of these alternative uncertainty decompositions. We also discuss further interpretations
of the components of the mutual information decomposition.

We first begin with an overview of proper losses and their associated generalized entropy functions.

C.1 PROPER LOSSES AND GENERALIZED ENTROPY FUNCTIONS

Generalized entropy functions are closely associated with proper loss functions L : Y ×∆Y → R,
where L(y ∥ p) is to be interpreted as the loss incurred when we predict the distribution p and
observe the outcome y. We can extend these to functions L : ∆Y × ∆Y → R expressing the
overall expected loss of p with respect to a true outcome distribution p∗ by letting L(p∗ ∥ p) =
Ey∼p∗ [L(y ∥ p)].11 We call the loss (strictly) proper if for all p∗, it is (strictly) minimized when
p = p∗, and strictly proper if this is the unique minimizer. Define the generalized entropy function
and the generalized (Bregman) divergence respectively as

G(p∗) = L(p∗ ∥ p∗), D(p∗ ∥ p) = L(p∗ ∥ p)−G(p∗)

Note that in all of these expressions, the expectation is always taken wrt the first argument. The first
argument is usually (although not always) interpreted as the truth, and the second as the estimate or
prediction.

A basic and important characterization of proper losses (under mild regularity assumptions; bound-
edness suffices) is the following (see (Gneiting & Raftery, 2007, Theorems 1-2 and Figure 1)): the
loss L is (strictly) proper iff its associated generalized entropy function G is (strictly) concave, and
for all p, L(· ∥ p) is the gradient of G at p.12 In effect, this means that to specify a proper loss it is
sufficient to specify a concave generalized entropy function G; the loss and divergence can then be
obtained in terms of its gradient.

The most important examples of entropy functions are:

1. Shannon entropy, GShannon(p) =
∑

y∈Y py log
1
py

. The associated loss LShannon(p ∥ p′) =∑
y∈Y py log

1
p′
y

is the cross-entropy loss, and the associated divergence DShannon(p ∥ p′) =∑
y∈Y py log

py

p′
y

is precisely the KL divergence. The associated pointwise loss function is

the log loss, LShannon(y ∥ p) = log 1
py

. In the binary case, GShannon : [0, 1] → [0, 1] is just
the binary entropy function p 7→ p log 1

p + (1 − p) log 1
1−p . Note that our log always has

base 2 by convention.

11The extension is natural and consistent if we view y ∈ Y as a point distribution 1[y] ∈ ∆Y .
12Here L(· ∥ p) denotes the vector (L(0 ∥ p), . . . , L(ℓ− 1 ∥ p)) ∈ Rℓ. Moreover, technically the concave

analog of a subgradient (a “supergradient”, or equivalently an actual subgradient of −G) suffices. In any case
we mainly work with strictly concave functions, where this distinction does not arise.
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2. Brier entropy GBrier(p) = 1 − ∥p∥2 (also known by many other names, including Gini
impurity). The associated loss turns out to be LBrier(p ∥ p′) = ∥p − p′∥2 + 1 − ∥p∥2,
and the associated divergence DBrier(p ∥ p′) = ∥p − p′∥2 is precisely the squared Eu-
clidean distance. The associated pointwise loss function is (the negation of) the Brier score,
LBrier(y ∥ p) = ∥p − 1[y]∥2, where 1[y] denotes the indicator vector of y. In the binary
case, GBrier : [0, 1] → [0, 1] is given by p 7→ 2p(1− p).13

Bregman divergences satisfy the following cosine law, a generalization of the cosine law for Eu-
clidean distances:

D(p ∥ p′′) = D(p ∥ p′) +D(p′ ∥ p′′) + ⟨p− p′,∇G(p′′)−∇G(p′)⟩, (C.1)

where ∇G(p) is the gradient of G at p, viewed as a vector in Rℓ.14

A note on Shannon vs Brier entropy. It is worth noting that in the binary case, the Shannon
entropy GShannon(p) = p log 1

p + (1 − p) log 1
1−p and the Brier entropy GBrier(p) = 4p(1 − p)

are very similar as functions (where for better comparison we scale GBrier by a factor of 2 so that
GBrier(

1
2 ) = GShannon(

1
2 ) = 1). They match at p = 0, 1

2 and 1, follow a very similar shape, and differ
by no more than 0.15 at any point. For most practical purposes, we recommend that practitioners
consider using Brier instead of Shannon, as the benefits afforded by its simplicity largely outweigh
the minor differences. In particular, the simple exact quadratic formula for GBrier means that second-
order calibration already suffices to approximate true Brier entropy and with a much better sample
complexity (and simpler estimator) than for Shannon (compare Corollaries E.8 and E.9). Unless one
specifically needs to approximate Shannon entropy with very small approximation error ϵ and can
afford large snapshot size k, Brier will typically be the more pragmatic choice.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

p

G(p)
GShannon(p)

GBrier(p)

Figure 4: Comparison of Shannon and Brier binary entropy functions. Here we use the scaled
version of Brier entropy, namely GBrier(p) = 4p(1− p), for a better comparison.

C.2 LOSS-BASED SEMANTICS OF THE MUTUAL UNCERTAINTY DECOMPOSITION

Throughout this section, we fix a proper loss L : ∆Y × ∆Y → R and its associated generalized
entropy function G : ∆Y → R and generalized Bregman divergence D : ∆Y × ∆Y → R. As a
reminder, for p, p∗ ∈ ∆Y , these are defined as follows:

G(p∗) = L(p∗ ∥ p∗), D(p∗ ∥ p) = L(p∗ ∥ p)−G(p∗)

13In the binary case, a further scaling factor of 2 can be used so that GBrier(
1
2
) equals GShannon(

1
2
) = 1, but

this is not an essential part of the definition.
14For the Brier score, ∇G(p) = −2p, and this equation is exactly the result of expanding ∥p − p′′∥2 as

∥(p− p′) + (p′ − p′′)∥2.
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Lemma C.1. Given a generalized concave entropy function G : ∆Y → R and its associated
proper loss L : ∆Y × ∆Y → R and divergence D : ∆Y × ∆Y → R, the following equalities
hold true for any higher-order predictor f : X → ∆∆Y , and moreover the equalities marked with
HOC
= hold whenever f is perfectly higher-order calibrated wrt the partition [·]. Let p = Ep∼f(x)[p],
p∗ = Ep∗∼f∗([x])[p

∗]. Then,

PUG(f : x) = E
p∼f(x)

[L(p ∥ p)]
HOC
= E

p∗∼f∗([x])
[L(p∗ ∥ p∗)]

EUG(f : x) = E
p∼f(x)

[D(p ∥ p)]
HOC
= E

p∗∼f∗([x])
[D(p∗ ∥ p∗)].

Note that the characterization of EU implies the second statement of Theorem 1.2 when G is the
Shannon entropy function and thus its associated divergence is the KL-divergence. We give some
intution on these quantities before providing the proof. The restatement of predictive uncertainty
tells us that it can be equivalently thought of as the average loss of the centroid wrt a random mixture
component, Ep∼f(x)[L(p ∥ p)], while epistemic uncertainty is the loss in entropy of y upon learning
the mixture component p, and is precisely the (generalized) mutual information between y and p.
Thus, EUG(f : x) can be directly interpreted as a (one-sided) variance-like quantity, reflecting the
level of disagreement or dispersion among the various mixture components.

Proof. We first prove the predictive uncertainty portion:

PUG(f : x) = G(p)

= L(p ∥ p)

= E
y∼p

[L(y ∥ p)]

= E
p∼f(x)

E
y∼p

[L(y ∥ p)] (since p ∼ π,y ∼ p is the same as y ∼ p)

= E
p∼f(x)

[L(p ∥ p)]. (C.2)

Under higher-order calibration, we are guaranteed that f(x) is identical to f∗([x]), which also im-
plies p = p∗. Thus, when f is perfectly higher-order calibrated, we additionally have

E
p∼f(x)

[L(p ∥ p)] = E
p∗∼f∗([x])

[L(p∗ ∥ p∗)].

We now move on to epistemic uncertainty. In this case, we have

EUG(f : x) = G(p)− E
p∼f(x)

[G(p)]

= E
p∼f(x)

[L(p ∥ p)]− E
p∼f(x)

[G(p)] (by Eq. (C.2))

= E
p∼f(x)

[D(p ∥ p)].

Once again, if f is perfectly higher-order calibrated, it immediately follows that f(x) = f∗([x]) and
p = p∗, implying

E
p∼f(x)

[D(p ∥ p)] = E
p∗∼f∗([x])

[D(p∗ ∥ p∗)].

C.3 THE TOTAL MUTUAL INFORMATION DECOMPOSITION

An alternative natural expression for EU, studied by Malinin & Gales (2021); Schweighofer et al.
(2023), is obtained by replacing the divergence between a random mixture component and the cen-
troid with the divergence between two random mixture components:

EUTMI
G (f : x) := E

p,p′∼f(x)
[D(p ∥ p′)]
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We refer to this as the “total mutual information” formulation of EU, as it turns out to be the sum of
the mutual information between y and p (i.e. EU(f : x)) and the “reverse mutual information”, a
notion studied by Malinin & Gales (2021) where the roles of p and p are reversed compared to the
usual mutual information form of EU (recall Lemma C.1):

EURMI
G (f : x) := E

p∼f(x)
[D(p ∥ p)].

The fact that EUTMI = EU+EURMI follows from an application of the cosine law, Eq. (C.1):

EUG(f : x) + EURMI
G (f : x) = E

p∼f(x)
[D(p ∥ p)] + E

p∼f(x)
[D(p ∥ p)]

= E
p,p′∼π

[D(p ∥ p′)]

= EUTMI
G (f : x)

One can use the new notion of EUTMI in place of our original notion of epistemic uncertainty in
the mutual information decomposition to get a new notion of predictive uncertainty and a new “total
mutual information decomposition”:

E
p,p′∼f(x)

[L(p ∥ p′)]︸ ︷︷ ︸
Predictive uncertainty PUTMI

G (f :x)

= E
p∼f(x)

[G(p)]︸ ︷︷ ︸
Aleatoric uncertainty estimate AUG(f :x)

+ E
p,p′∼f(x)

[D(p ∥ p′)]︸ ︷︷ ︸
Epistemic uncertainty (TMI) EUTMI

G (f :x)

(C.3)
The new PUTMI

G (f : x) is the average pairwise loss of the mixture components wrt each other (by
comparison, recall that by Eq. (C.2), our original PUG(f : x), was the average loss of the centroid
wrt a mixture component). The AUG(f : x) term remains the same.

C.4 LOSS DECOMPOSITIONS AND HIGHER-ORDER CALIBRATION

Higher-order calibration also provides information about the loss incurred by a particular prediction.
We consider two potential ways of measuring the loss of a higher-order prediction f(x) with respect
to f∗. The first is to predict the centroid of a higher-order prediction, i.e. p = Ep∼f(x)[p]. The
expected loss over a partition [x] incurred when predicting the centroid p is exactly

E
p∗∼f∗([x])

[L(p∗ ∥ p)] = E
p∗∼f∗([x])

[G(p∗)]︸ ︷︷ ︸
avg AU

+ E
p∗∼f∗([x])

[D(p∗ ∥ p)]︸ ︷︷ ︸
avg bias

. (C.4)

When f is higher-order calibrated, this loss decomposition becomes exactly the mutual-information
decomposition as by Lemma C.1, we have

E
p∗∼f∗([x])

[L(p∗ ∥ p)] = PUG(f : x),

E
p∗
[G(p∗)] = AUG(f : x),

and

E
p∗
[D(p∗ ∥ p)] = EUG(f : x).

Thus, higher-order calibration not only provides meaningful semantics for predictive, epistemic, and
aleatoric uncertainty in the mutual information decomposition, but also ties them to the expected loss
incurred when making predictions using the centroid of f(x).

A second, slightly less natural, choice of loss measurement is the loss incurred when we predict at
random according to p ∼ f(x):

E
p,p∗

[L(p∗ ∥ p)] = E
p∗
[G(p∗)] + E

p,p∗
[D(p∗ ∥ p)]
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When f is perfectly higher-order calibrated, these terms are exactly recovered by PUTMI
G (f :

x),AUG(f : x),EUTMI
G (f : x), respectively, in the total mutual information decomposition.

We can also break down Eq. (C.4) even further by making use of the notion of the “grouping loss”
from Kull & Flach (2015). Let p∗ = Ep∗∼f∗([x])[p

∗]. Then our “average bias” term (which they
term “epistemic loss”) can be decomposed further as follows:

E
p∗∼f∗([x])

[D(p∗ ∥ p)]︸ ︷︷ ︸
avg bias

= E
p∗∼f∗([x])

[D(p∗ ∥ p∗)]︸ ︷︷ ︸
grouping loss

+D(p∗ ∥ p)︸ ︷︷ ︸
FOC error

.

The FOC error measures how far our mean prediction p over the set [x] is from the Bayes mean
p∗, and the grouping loss measures the inherent spread in f∗(x) over [x]. If we have first-order
calibration, then the FOC error is zero. If we also have higher-order calibration, then the grouping
loss is exactly EUG(f : x).

D PROOFS FROM SECTION 2

D.1 USEFUL LEMMAS ABOUT WASSERSTEIN DISTANCE

We present two lemmas relating Wasserstein distance and total variation distance that will be useful
in the proofs for this section.

Lemma D.1 (Gibbs & Su (2002), Theorem 4). Let p1, p2 ∈ ∆Y be any two distributions in ∆Y .
Then, we have

W1(p1, p2) ≤ diam(∆Y)dTV (p1, p2) = 2dTV (p1,p2)

where dTV (p1, p2) =
1
2∥p1 − p2∥1 is the total variation distance.

The last equality of the lemma follows as a special case due to the standard fact that the maximum
ℓ1 distance between any two points in the simplex ∆Y = ∆ℓ is at most two.

Lemma D.2 (Gibbs & Su (2002), remarks in definition of total variation distance). Let p1, p2 ∈ ∆Y
be any two distributions and Γ(p1, p2) be the space of couplings between these two distributions.
Then,

dTV (p1, p2) = inf
γ∈Γ(p1,p2)

Pr
(y1,y2)∼γ

[y1 ̸= y2].

D.2 PROOF OF LEMMA 2.5

We restate the lemma for readability:

Lemma D.3 (Restatement of Lemma 2.5). Given any mixture π ∈ ∆∆Y and k > 0, we have

W1(π,projkπ) ≤
|Y|
2
√
k
.

Proof. We consider the coupling µ ∈ Γ(π,projkπ) defined by first drawing p ∼ π, then drawing a
k-snapshot from p by taking k i.i.d. draws y1, ...,yk ∼ p, and outputting (p,Unif(y1, ...,yk)).

By definition of the Wasserstein distance as the infinum over all possible couplings, we have

W1(π,projkπ) ≤ E
(p,Unif(y1,...,yk))∼µ

[∥p−Unif(y1, ...,yk)∥1].

Expanding out our definition of µ, we have that
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W1(π,projkπ) ≤ E
p∼π

[
E

y1,...,yk∼p,i.i.d.
[∥p−Unif(y1, ...,yk)∥1]

]

= E
p∼π

 E
y1,...,yk∼p,i.i.d.

 |Y|∑
j=1

∣∣∣∣∣pj −
1

k

k∑
i=1

1[yi = j]

∣∣∣∣∣


= E
p∼π

 |Y|∑
j=1

E
y1,...,yk∼p,i.i.d.

[∣∣∣∣∣pj −
1

k

k∑
i=1

1[yi = j]

∣∣∣∣∣
]

= E
p∼π

1
k

|Y|∑
j=1

E
y1,...,yk∼p,i.i.d.

[∣∣∣∣∣kpj −
k∑

i=1

1[yi = j]

∣∣∣∣∣
]

≤ E
p∼π

1
k

|Y|∑
j=1

√√√√√ E
y1,...,yk∼p,i.i.d.

(kpj −
k∑

i=1

1[yi = j]

)2



(Jensen’s Inequality)

Note that for any j,
∑k

i=1 1[yi = j] is distributed as a Binomial random variable outputting the
number of 1s out of k draws from a Bernoulli random variable with mean pj . This Binomial random
variable has mean kpj , and so we can re-interpret the quantity under the square root as its variance:

E
y1,...,yk∼p,i.i.d.

(kpj −
k∑

i=1

1[yi = j]

)2
 = Var(Bin(k,pj)) = kpj(1− pj) ≤ k/4.

Plugging this upper bound back into the expectation, we get

W1(π,projkπ) ≤ E
p∼π

1
k

|Y|∑
j=1

√
k/4

 =
1

k

|Y|∑
j=1

√
k/4 =

|Y|
2
√
k

This gives us the desired upper bound on W1(π,projkπ), completing the proof.

D.3 SANDWICH BOUNDS FOR k-SNAPSHOT AND HIGHER-ORDER PREDICTORS

Using the result of Lemma 2.5, we get the following corollary:

Corollary D.4 (Corollary to Lemma 2.5). Consider any k-snapshot predictor g : X → ∆Y(k) and
higher-order predictor f : X → ∆∆Y . For any x, we have

|W1(g(x),projkf(x))−W1(g(x), f(x))| ≤
|Y|
2
√
k
.

Proof. By the triangle inequality,

W1(g(x),projkf(x)) ≤ W1(g(x), f(x)) +W1(f(x),projkf(x))

≤ W1(g(x), f(x)) +
|Y|
2
√
k

(Lemma 2.5)

The other direction follows similarly:

W1(g(x), f(x)) ≤ W1(g(x),projkf(x)) +W1(projkf(x), f(x)) (triangle inequality)

≤ W1(g(x),projkf(x)) +
|Y|
2
√
k

(Lemma 2.5)
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Thus far, we’ve considered cases where we have a fixed k-snapshot predictor and compare it to a
higher-order predictor or its projection.

We might also wish to compare the kth-order projections of two higher-order predictors. We present
bounds for this setting below. The upper bound follows from Lemma 2.5, while the lower bound
requires some additional proof.
Lemma D.5. Consider any higher-order predictors f, h : X → ∆∆Y . For any k > 0 and x ∈ X ,
we have

W1(projkf(x),projkh(x)) ≤ W1(f(x), h(x)) ≤ W1(projkf(x),projkh(x)) +
|Y|√
k
.

Proof. Fix any x ∈ X and k > 0. We begin with the upper bound, as the proof is very short (it
follows almost immediately from Lemma 2.5), and then continue to the lower bound.

By the triangle inequality, we have that

W1(f(x), h(x)) ≤ W1(f(x),projkf(x)) +W1(projkf(x),projkh(x)) +W1(projkh(x), h(x)).

By Lemma 2.5, we are guaranteed that W1(f(x),projkf(x)) and W1(projkh(x), h(x)) are both
upper-bounded by |Y|/(2

√
k). It follows that

W1(f(x), h(x)) ≤ W1(f(x),projkf(x)) +W1(projkf(x),projkh(x)) +W1(projkh(x), h(x))

≤ W1(projkf(x),projkh(x)) +
|Y|√
k

(Lemma 2.5)

This completes the upper bound. We proceed to the lower bound, and show that
W1(projkf(x),projkh(x)) ≤ W1(f(x), h(x)).

Let µ = argminµ∈Γ(f(x),h(x)) E(p,p′)∼µ[∥p − p′∥1], i.e. the optimal coupling of f(x) and h(x)

in the context of Wasserstein distance. We use µ to construct a coupling µk of projkf(x) and
projkh(x) as follows. We first draw (p,p′) ∼ µ, and then sample k pairs of y-values, i.i.d.,
(y1,y

′
1), ..., (yk,y

′
k) ∼ γ(p,p′), where γ(p,p′) is the optimal coupling of p and p′ defined as

γ(p,p′) = argmin
γ∈Γ(p,p′)

Pr
(y,y′)∼γ

[y ̸= y′].

We then aggregate these k y’s as k-snapshots, and output the pair of distributions q =
Unif(y1, . . . ,yk) and q′ = Unif(y′

1, . . . ,y
′
k). This defines our coupling µk. Since q ∼ projkf(x)

and q′ ∼ projkh(x), this is a valid coupling of projkf(x) and projkh(x), so it upper bounds the
Wasserstein distance between these two mixtures:

W1(projkf(x),projkh(x)) ≤ E
(q,q′)∼µk

[∥q − q′∥1]

We will now show that

E
(q,q′)∼µk

[∥q − q′∥1] ≤ E
(p,p′)∼µ

[∥p− p′∥1]

i.e. the expected distance under pairs of distributions drawn from µk is smaller than the expected
distance under pairs drawn from µ and thus lower-bounds W1(f(x), h(x)) by definition.

Expanding the definition of µk, we have

E
(q,q′)∼µk

[∥q − q′∥1] = E
(p,p′)∼µ

(y1,y
′
1),...,(yk,y

′
k)∼γ(p,p′),i.i.d.

[∥Unif(y1, ...,yk)−Unif(y′
1, ...y

′
k)∥1]

= E
(p,p′)∼µ

(y1,y
′
1),...,(yk,y

′
k)∼γ(p,p′),i.i.d.

[2 inf
γ∈Γ(Unif(y1,...,yk),Unif(y′

1,...y
′
k))

Pr
(y,y′)∼γ

[y ̸= y′]]
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Where the second step follows from Lemma D.2 (note that dTV (p1, p2) = ∥p1 − p2∥1/2).

Among the possible couplings of Unif(y1, ...,yk) and Unif(y′
1, ...y

′
k), one such coupling is to draw

an index i ∼ [k] uniformly, and then output the two yi and y′
i corresponding to this index. This

gives an upper bound of

E
(q,q′)∼µk

[∥q − q′∥1] = E
(p,p′)∼µ

(y1,y
′
1),...,(yk,y

′
k)∼γ(p,p′),i.i.d.

[2 inf
γ∈Γ(Unif(y1,...,yk),Unif(y′

1,...y
′
k))

Pr
(y,y′)∼γ

[y ̸= y′]]

≤ E
(p,p′)∼µ

(y1,y
′
1),...,(yk,y

′
k)∼γ(p,p′),i.i.d.

[2 Pr
i∼Unif([k])

[yi ̸= y′
i]]

= E
(p,p′)∼µ

(y1,y
′
1),...,(yk,y

′
k)∼γ(p,p′),i.i.d.

[
2

k

k∑
i=1

Pr[yi ̸= y′
i]

]

= E
(p,p′)∼µ

[
2

k

k∑
i=1

Pr
(y,y′)∼γ(p,p′)

[y ̸= y′]

]

where the last step uses the definition of µk as obtaining yi,y
′
i as independent draws from the

optimal coupling of p and p′. Further simplifying, we get

E
(q,q′)∼µk

[∥q − q′∥1] ≤ E
(p,p′)∼µ

[
2

k

k∑
i=1

Pr
(y,y′)∼γ(p,p′)

[y ̸= y′]

]

= E
(p,p′)∼µ

[
2 Pr
(y,y′)∼γ(p,p′)

[y ̸= y′]

]
= E

(p,p′)∼µ
[∥p− p′∥1] (Lemma D.2)

= W1(f(x), h(x))

(Recall in the application of Lemma D.2 that γ was defined as the optimal coupling of p and p′ in
terms of the cost d(y, y′) = 1[y ̸= y′]). The last step applies the definition of µ as the optimal cou-
pling for ℓ1-Wasserstein distance. We conclude that W1(projkf(x),projkh(x)) ≤ W1(f(x), h(x)),
completing the lower bound.

D.4 PROOF OF THEOREM 2.6

We restate the theorem for readability:

Theorem D.6 (Restatement of Theorem 2.6, Corollary to Lemma 2.5: kth-order calibration implies
higher-order calibration.). Let g : X → ∆Y(k) be ϵ-kth-order calibrated with respect to a partition
[·]. Then, we can guarantee that g is also (ϵ+ |Y|

2
√
k
)-higher-order calibrated with respect to the same

partition [·].

Proof. The theorem follows immediately from Corollary D.4, which tells us that for any x ∈ X ,

W1(g(x), f
∗([x])) ≤ W1(g(x),projkf

∗([x])) +
|Y|
2
√
k
.

kth-order calibration tells us that W1(g(x),projkf
∗([x])) ≤ ϵ, and thus the higher-order calibration

error W1(g(x), f
∗([x])) is bounded by ϵ+ |Y|

2
√
k
.
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D.5 PROOF OF LEMMA 2.7

We restate the lemma for readability:

Lemma D.7 (Restatement of Lemma 2.7). Let Y = {0, 1}, and let g : X → ∆Y(k) be ϵ-kth-order
calibrated with respect to a partition [·]. Then for each x ∈ X , we can use g(x) to generate a vector
of moment estimates (m1, . . . ,mk) ∈ Rn

≥0 such that for each i ∈ [k],∣∣∣∣mi − E
x∼[x]

[f∗(x)i]

∣∣∣∣ ≤ iϵ/2.

The proof will make use of an intermediate lemma, which tells us that the first k-moments of a
mixture π ∈ ∆∆Y can be exactly reconstructed using only its kth-order projection:
Lemma D.8. Consider any mixture π ∈ ∆[0, 1] and its kth-order projection projkπ ∈
∆{0, 1/k, ..., 1}. For m ∈ [k], let Mk,m : {0, 1/k, 2/k, ..., 1} → [0, 1] be a function defined as
follows:

Mk,m(p) =


(pkm)
(k
m)

p ≥ m/k

0 otherwise
.

Then,
E

p∼projkπ
[Mk,m(p)] = E

p∼π
[pm].

Proof. Consider the expectation of Mk,m under projkπ.

E
p̂∼projkπ

[Mk,m(p̂)] = E
p∼π

y1,...,yk∼p,i.i.d.

[
Mk,m

(
k∑

i=1

yi

k

)]

One way to view Mk,m(p) is to view p = i/k as a snapshot with i 1s and k − i 0s. Mk,m(p) gives
the probability that a random permutation of this snapshot starts with m consecutive 1s. Because
the distribution over possible permutations of snapshots is symmetric, we can equivalently express
the above expectation as just the probability that a random k-snapshot starts with m 1s:

E
p̂∼projkπ

[Mk,m(p̂)] = E
p∼π

y1,...,yk∼p,i.i.d.

[1[y1, ...,ym = 1]]

= E
p∼π

y1,...,yk∼p,i.i.d.

[

m∏
i=1

yi]

= E
p∼π

[

m∏
i=1

E
y∼p

[y]] (independence of yis)

= E
p∼π

[

m∏
i=1

p]

= E
p∼π

[pm].

Thus, the expectation of Mk,m over the mixture projkπ is guaranteed to be exactly the m-th moment
of the higher-order mixture π.

Additionally, we show that each Mj,k satisfies a Lipschitz condition, which will imply that evalu-
ating the expectation of Mj,k on a distribution close in Wasserstein distance to projkf

∗([x]) will
closely approximate the true moment.
Lemma D.9. Let Mk,m be defined as in Lemma D.8. Then, for any p1, p2 ∈ {0, 1/k, ..., 1}, we are
guaranteed that

|Mk,m(p1)−Mk,m(p2)| ≤ m|p1 − p2|.
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Proof. We note that if for any consecutive p1 and p2 = p1 − 1/k, we have

|Mk,m(p1)−Mk,m(p2)| ≤ m/k,

then it follows that for any p1, p2 ∈ {0, 1/k, ..., 1}, assuming without loss of generality that p1 ≥ p2,
we have

|Mk,m(p1)−Mk,m(p2)|
≤ |Mk,m(p2)−Mk,m(p2 + 1/k)|+ · · ·+ |Mk,m(p1 − 1/k)−Mk,m(p1)|

=

(p1−p2)k−1∑
i=0

|Mk,m(p2 + i/k)−Mk,m(p2 + (i+ 1)/k)|

≤
(p1−p2)k−1∑

i=0

m/k

= (p1 − p2)k(m/k)

= m|p1 − p2|.

Giving the desired bound. Thus, it suffices to focus on bounding the difference between consecutive
ps satisfying p2 = p1 − 1/k.

There are three potential cases: either (1) Mk,m(p1),Mk,m(p2) > 0, (2) Mk,m(p1) =
0,Mk,m(p2) > 0 (wlog), or (3) Mk,m(p1) = Mk,m(p2) = 0.

In the last case, we trivially have |Mk,m(p1)−Mk,m(p2)| = 0− 0 = 0. We focus on the other two
cases.

Case 1: Mk,m(p1),Mk,m(p2) > 0. By assumption, there is some i > m such that p1k = i,
p2k = i− 1. We use this to simplify the difference between Mk,m values:

|Mk,m(p1)−Mk,m(p2)| =
(
i
m

)(
k
m

) − (
i−1
m

)(
k
m

) =

(
i−1
m−1

)(
k
m

)
We observe that for a fixed m, and k, this quantity is increasing in i for i ≥ m because the denom-
inator is constant, and

(
i−1
m−1

)
is increasing in i ≥ m. Thus, we can upper bound the difference by

the difference achieved by the largest possible value of i, which is i = k:

|Mk,m(p1)−Mk,m(p2)| ≤
(
k−1
m−1

)(
k
m

) =
m

k
.

Finally, we consider the last case:

Case 2: Mk,m(p1) > 0, Mk,m(p2) = 0. Because p1 = p2 + 1/k, and Mk,m(p) is always positive
for any p ≥ m/k, this case can only happen when p1 = m/k, and p2 = (m − 1)/k. We calculate
the difference for these values:

|Mk,m(p1)−Mk,m(p2)| =
(
m
m

)(
k
m

) − 0 =
1(
k
m

) =
m!(k −m)!

k!
=

m

k

1(
k−1
m−1

) ≤ m

k
.

Thus, all consecutive differences are bounded by m/k, completing the proof.

We are now ready to prove Lemma 2.7 in full.

Proof of Lemma 2.7. At a high-level, to calculate an approximation of Ex∼[x][f
∗(x)i] using g(x),

we will calculate Ep∼g(x)[Mk,i(p)] and show that it is a iϵ/2 approximation of the ith moment,
Ex∼[x][f

∗(x)i].
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Consider any x ∈ X and i ∈ [k]. Using the triangle inequality, we upper bound the difference
between our estimate and the true moment value by:

∣∣∣∣ E
p̂∼g(x)

[Mk,i(p̂)]− E
p∗∼f∗([x])

[pi
∗]

∣∣∣∣
≤
∣∣∣∣ E
p̂∼g(x)

[Mk,i(p̂)]− E
p∼projkf

∗([x])
[Mk,i(p)]

∣∣∣∣+ ∣∣∣∣ E
p∼projkf

∗(x)
[Mk,i(p)]− E

p∗∼f∗([x])
[pi

∗]

∣∣∣∣
=

∣∣∣∣ E
p̂∼g(x)

[Mk,i(p̂)]− E
p∼projkf

∗([x])
[Mk,i(p)]

∣∣∣∣+ 0 (Lemma D.8)

We will now use Lemma D.9 to show that the remaining term is bounded by mϵ/2.

Let Γ(g(x),projkf
∗([x])) be the space of couplings of g(x) and projkf

∗([x]). We can re-express
the difference in expectations as

∣∣∣∣ E
p̂∼g(x)

[Mk,i(p̂)]− E
p∗∼f∗([x])

[pi
∗]

∣∣∣∣ = ∣∣∣∣ E
p̂∼g(x)

[Mk,i(p̂)]− E
p∼projkf

∗([x])
[Mk,i(p)]

∣∣∣∣
= min

γ∈Γ(g(x),projkf
∗([x]))

∣∣∣∣ E
(p̂,p)∼γ

[Mk,i(p̂)−Mk,i(p)]

∣∣∣∣
≤ min

γ∈Γ(g(x),projkf
∗([x]))

E
(p̂,p)∼γ

[i|p̂− p|] (Lemma D.9)

= iW1(g(x),projkf
∗([x]))/2

≤ iϵ/2 (kth-order calibration)

we note that the factor of 1/2 comes in because |p̂ − p| is 1/2 of the ℓ1 distance when p̂ and p are
viewed as distributions over {0, 1}.

Thus, we’ve shown an additive error of iϵ/2 for estimating any moment i ∈ [k], and thus can
construct a vector of such moments for each i ∈ [k] satisfying the desired guarantee.

D.6 PROOF OF THEOREM 2.8

We restate the theorem for readability:
Theorem D.10 (Restatement of Theorem 2.8, Empirical estimate of kth-order projection guaran-
tee). Consider any x ∈ X , and a sample p1, · · · ,pN ∈ Y(k) where each pi is drawn i.i.d. from
projkf

∗([x]). Given ϵ > 0 and 0 ≤ δ ≤ 1, if N ≥ (2(|Y(k)| log(2) + log(1/δ)))/ϵ2, then we can
guarantee that with probability at least 1− δ over the randomness of the sample we will have

W1(projkf
∗([x]),Unif(p1, ...,pN )) ≤ ϵ.

As some discussion before the proof, we note that this sample complexity guarantee is obtained via
bounding the total variation distance between projkf

∗([x]) and Unif(p1, ...pN ), which provides
an upper bound on the Wasserstein distance. This approach is reasonable for small values of k,
which we consider to be the most realistic setting where k-snapshots might be obtained. When k
is large compared to ℓ, we can alternatively obtain sample complexity bounds depending only on
the dimensionality ℓ (roughly of the form (1/ϵ)O(ℓ)) by directly exploiting known results on the
convergence of empirical measures to true measures in Wasserstein distance (Yukich, 1989).

Proof. For ease of notation, we will denote π̂ := Unif(p1, ...,pN ) and π∗ := projkf
∗([x]).

We first observe that by Lemma D.1, we are guaranteed that

W1(π̂, π
∗) ≤ 2dTV (π̂, π∗).

Thus, we conclude that whenever dTV (π
∗, π̂) ≤ ϵ/2, then we are also guaranteed that

W1(π
∗, π̂) ≤ ϵ.
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This reduces our problem to bounding the total variation distance of the empirical estimate of the
discrete distribution π∗ = projkf

∗([x]), which we observe is supported on |Y(k)| points.

We now use a standard argument for bounding the total variation distance (see Canonne (2020) for
a discussion of various approaches to this argument).

Note that the total variation distance can be alternatively expressed as

dTV (π
∗, π̂) = sup

S⊆Y(k)

∣∣∣∣ Prp∼π∗
[p ∈ S]− Pr

p∼π̂
[p ∈ S]

∣∣∣∣ .
Thus, dTV (π

∗, π̂) > ϵ/2 iff there exists some S ⊆ Y(k) such that Prp∼π̂[p ∈ S] > Prp∼π∗ [p ∈
S] + ϵ/2.

We bound the probability that this happens for any S via a union bound. Select any S ⊆ Y(k), and
note that Prp∼π̂[p ∈ S] can be written as a sum of N i.i.d. Bernoulli random variables X1, ...,XN ,
all with mean Prp∼π∗ [p ∈ S]. This allows us to apply Hoeffding’s Inequality to conclude that

Pr

[
Pr
p∼π̂

[p ∈ S] > Pr
p∼π∗

[p ∈ S] + ϵ/2

]
= Pr

[
1

N

N∑
i=1

Xi > E[
1

N

N∑
i=1

Xi] + ϵ/2

]
≤ exp(−Nϵ2/2) (Hoeffding’s Inequality)

Thus, for any N ≥ 2(|Y(k)| log(2) + log(1/δ))/ϵ2, we are guaranteed that

Pr

[
Pr
p∼π̂

[p ∈ S] ≥ Pr
p∼π∗

[p ∈ S] + ϵ/2

]
≤ δ/2|Y

(k)|.

Union bounding over all 2|Y
(k)| possible S, we get that

Pr[dTV (π
∗, π̂) > ϵ/2] = Pr

[
∃S ⊆ Y(k)s.t. Pr

p∼π̂
[p ∈ S] > Pr

p∼π∗
[p ∈ S] + ϵ/2

]
≤ 2|Y

(k)| δ

2Y(k)
= δ.

Thus, we have shown thatn N ≥ 2(|Y(k)| log(2)+log(1/δ))
ϵ2 samples are sufficient to guarantee that with

probability at least 1− δ,

W1(projkf
∗([x]),Unif(p1, ...,pN )) ≤ ϵ

E PROOFS AND DISCUSSION FROM SECTION 3

E.1 EQUIVALENCE BETWEEN PERFECT HIGHER-ORDER CALIBRATION AND CALIBRATED
UNCERTAINTY ESTIMATES

At first sight, the ability to produce calibrated estimates of aleatoric uncertainty may appear to be
merely one small consequence of higher-order calibration. But somewhat remarkably, it turns out
that having accurate estimates of AU wrt all concave generalized entropy functions is equivalent to
higher-order calibration.

Such a statement requires a definition of what entails a “concave generalized entropy function.” We
take the most general view possible, building on the work of Gneiting & Raftery (2007), who show
that every proper loss has an associated generalized concave entropy function, and in particular every
concave function G : ∆Y → R is associated with some proper loss (see Section C.1 for a more in-
depth discussion of proper losses and their associated entropy functions). From this point of view,
the class of generalized concave entropy functions is exactly the set of all concave functions. Under
this definition, we get an equivalence between calibrated estimates of concave entropy functions and
higher-order calibration.
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Theorem E.1. A higher-order predictor f : X → ∆∆Y is perfectly higher-order calibrated to
f∗ wrt a partition [·] if and only if AUG(f : x) = Ex∼[x][AU

∗
G(x)] wrt all concave functions

G : ∆Y → R.

Proof. The higher-order calibration implies AUG(f : x) = Ex∼[x][AU
∗
G(x)] direction is proved in

Lemma 3.2. We focus on the reverse direction.

We will leverage the notion of moment generating functions. The moment generating function of
a random variable X ∈ Rℓ is a function MX : Rℓ → R defined by MX(t) = EX [et

TX ]. An
important property of the moment generating function is that if MX(t) is finite for all t ∈ [−c, c]ℓ

for some c > 0, then its values uniquely determine the distribution of X (DasGupta (2010), Theorem
11.8). In other words, if we have two random variables X and Y such that MX(t) = MY (t) < ∞
for all t ∈ [−c, c]ℓ, then X and Y must be the same distribution.

We will use this line of reasoning to show that the predicted and true mixture for some partition [x]
must be the same if their estimates of all concave functions are identical.

Fix some x ∈ X , and consider the predicted mixture p ∼ f(x) as well as the true mixture p∗ ∼
f∗([x]).

We consider the set of functions G = {Gt}t∈[−1,1]ℓ where each Gt : ∆Y → R is defined as
Gt(p) := −et

T p.15

Note that by definition, for any t ∈ [−1, 1]ℓ,

AUGt
(f : x) = E

p∼f(x)
[Gt(p)] = E

p∼f(x)
[−et

Tp] = −Mp(t) (E.1)

and similarly

E
x∼[x]

[AU∗
Gt

(x)] = E
p∗∼f∗([x])

[Gt(p
∗)] = E

p∗∼f∗([x])
[−et

Tp∗
] = −Mp∗(t) (E.2)

We make two assumptions which we will prove later:

1. Every Gt ∈ G is concave.

2. AUGt
(f : x) and Ex∼[x][AU

∗
Gt

(x)] are finite for all Gt ∈ G.

With these two assumptions, the proof is quickly complete. In particular, if all Gt are concave, then
by the main assumption of our theorem, we have

AUGt
(f : x) = E

x∼[x]
[AU∗

Gt
(x)]

for all Gt ∈ G. The equivalences shown in E.1 and E.2 imply that we also have

Mp(t) = Mp∗(t)

for all t ∈ [−1, 1]ℓ. Our additional finiteness assumption implies that these moment generating
functions are finite for all t ∈ [−1, 1]ℓ, and thus by the uniqueness of moment generating functions,
we conclude that the distributions f(x) and f∗([x]) are identical. Because this holds for any x ∈ X ,
we conclude that f(x) is perfectly higher-order calibrated.

It remains to prove our assumptions of concavity and finiteness.

We first show finiteness, which follows almost immediately because ∆Y is bounded, and thus for
any p ∈ ∆Y and t ∈ [−c, c]ℓ, we have tT p ∈ [−c, c] and thus −et

T p ∈ [e−c, ec]. Thus the
expectation of et

Tp for any random variable p over ∆Y is guaranteed to be finite.

15Note that scaling by an additive constant can ensure this function is non-negative on ∆Y if we would like
to require that entropy functions are non-negative, without changing the result of the proof.
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We finally show concavity. Consider any Gt ∈ G and p1, p2 ∈ ∆Y , λ ∈ [0, 1]. We have

Gt(λp1 + (1− λ)p2) = −et
T (λp1+(1−λ)p2)

= −eλt
T p1+(1−λ)tT p2

because −eX is a concave function, we have that

−eλt
T p1+(1−λ)tT p2 ≥ −λet

T p1 − (1− λ)et
T p2

= λGt(p1) + (1− λ)Gt(p2)

Thus, we conclude that Gt(λp1 + (1− λ)p2) ≥ λGt(p1) + (1− λ)Gt(p2), and so each Gt ∈ G is
concave.

We add some additional discussion of more stringent definitions of what qualifies as a generalized
entropy function. Above, our only requirement was concavity, though we note that the nature of
the proof suggests that this class could be further restricted to the set of continuous, concave, non-
negative functions on ∆Y .

Another potential requirement for entropy functions is symmetry—invariance to permutations of
the class probabilities. We highlight that requiring symmetry would break the equivalence between
calibrated entropy estimates and higher-order calibration. To illustrate this, consider a simple coun-
terexample:

Assume f∗(x) has no aleatoric uncertainty for each x, and thus assigns probability 1 to some class
i ∈ [ℓ]. Now, consider a higher-order predictor that, for each x, predicts a point mixture concentrated
on a distribution that gives 100% probability to some class j ∈ [ℓ]. Under any symmetric entropy
function, this predictor would appear to have perfect aleatoric uncertainty estimates. Both f∗ and
the predictor assign 100% probability to a single class for each x. However, this predictor is far from
being higher-order calibrated, as it may consistently predict the wrong class for every x ∈ X .

E.2 PROOFS ASSOCIATED WITH THEOREM 3.3

In this section, we present proofs associated with the statement of Theorem 3.3. We first prove the
last statement of the theorem, which follows from a general guarantee in terms of a concave entropy
function’s modulus of continuity.

Definition E.2 (Uniform continuity and modulus of continuity). Consider a function G : ∆Y → R,
where we view ∆Y as a subset of Rℓ equipped with the ℓ1 distance metric. We say that G is
uniformly continuous if there exists a function ωG : R≥0 → R≥0 vanishing at 0 such that for all
p, p′ ∈ ∆Y , we have

|G(p)−G(p′)| ≤ ωG(∥p− p′∥1).
The function ωG is called the modulus of continuity of G.

Remark E.3. Uniform continuity can be usefully thought of as a relaxation of Lipschitzness. The
latter is the special case where ωG(δ) ≤ O(δ). We will always be concerned with the behavior of
ωG for small values of δ ≪ 1, and in this regime we may assume without loss of generality that
ωG(δ) ≤ O(δα) for some α. Moreover, we may assume that α ≤ 1, simply because if α > 1 then
δα ≤ δ (for small δ). In particular, ωG can be assumed WLOG to be a concave, non-decreasing
function for small δ.

With this notation in hand, we are now ready to present the statement in full. The proof is provided
in the following section (E.2.1).

Theorem E.4 (Informally stated in last point of Theorem 3.3). Consider a kth-order predictor g :
X → ∆Y(k) that satisfies ϵ-kth-order calibration with respect to a partition [·]. Let G be any
concave entropy function that satisfies uniform continuity with modulus of continuity ωG : R≥0 →
R≥0. Then, g’s estimate of aleatoric uncertainty with respect to G satisfies the following guarantee
for all x ∈ X : ∣∣∣∣AUG(g : x)− E

x∼[x]
[AU∗

G(x)]

∣∣∣∣ ≤ ωG(ϵ+
|Y|
2
√
k
).
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We now move on to the first two statements of Theorem 3.3, both of which follow from an alterna-
tive means of estimating the true aleatoric uncertainty under kth-order calibration using polynomial
approximation.

In the rest of this section we specialize to binary labels Y = {0, 1}, where ∆Y may be identified
with [0, 1], and G : [0, 1] → R becomes a simple real-valued function on the unit interval. We now
state Jackson’s well-known theorem from approximation theory on approximating such functions
using polynomials.

Definition E.5. We say that G : [0, 1] → R admits a (d, α,B)-polynomial approximation if there
exists a degree d polynomial p(t) =

∑d
i=0 βit

i such that |βi| ≤ B for all i and

sup
t∈[0,1]

|p(t)−G(t)| ≤ α.

Theorem E.6 (Jackson’s theorem; see e.g. (Rivlin, 1981, Thm 1.4)). Let G : [0, 1] → R be a
uniformly continuous function with modulus of continuity ωG. Then for any d > 0, G admits a
(d,O(ωG(

1
d )), exp(Θ(d)))-polynomial approximation.

The bound on the coefficients can be shown using standard bounds on the coefficients of the Cheby-
shev polynomials, but also holds more generally for any polynomial F that is bounded on the interval
(see e.g. (Natanson, 1964, Cor 2, p56)).

We now give an alternative to Theorem E.4 that can provide better error guarantees for particular
choices of G in regimes where k is quite small, and thus the |Y|

2
√
k

term arising in that theorem
could dominate the overall error. Recall that we are working with the binary case (Y = {0, 1}) for
simplicity. In this case our mixture gives us a random variable on [0, 1], and we have the following
theorem:

Theorem E.7. Let Y = {0, 1} and let G : [0, 1] → R be a concave generalized entropy function
that has a (d, α,B)-polynomial approximation. Then, if g : X → ∆Y(k) is an ϵ-kth-order calibrated
predictor for any k ≥ d, then for each x ∈ X , we can use g to estimate Ex∼[x][AU

∗
G(x)] to within

an additive error δ = α+ d2ϵB/2.

The full proof can be found in Section E.2.2. To apply this theorem, we need to show that commonly
used entropy functions have good polynomial approximations. We show that this is indeed the case
for the examples considered earlier. The Brier entropy or Gini impurity GBrier(p) = 4p(1 − p) is
trivial since it is itself a quadratic. Hence we get the following corollary (informally stated as the
first bullet point in Theorem 3.3):

Corollary E.8 (Corollary to Theorems E.7 and 2.8, Estimating Brier Entropy). Let ϵ > 0. Let
g : X → ∆Y(2) be an (ϵ/8)-second-order calibrated predictor. Let GBrier(p) = 4p(1 − p) denote
the Brier entropy. Then we can use g to obtain an estimate ÂUBrier such that with high probability∣∣∣∣ÂUBrier − E

x∼[x]
[AU∗

GBrier
(x)]

∣∣∣∣ ≤ ϵ.

In particular, we require only N ≥ 128(4 log(2) + log(1/δ))/ϵ2 2-snapshot examples from [x] for
this guarantee to hold with probability at least 1− δ.

Proof. The Brier entropy presents a particularly easy case of Theorem E.7 because GBrier(p) =
4p(1− p) is itself a polynomial of degree 2 with coefficients bounded in absolute value by 4.

Theorem E.7 thus guarantees that an (ϵ/8)-second-order calibrated predictor can estimate
Ex∼[x][AU

∗
GBrier

(f∗(x))] to within an additive error of ϵ.

Theorem 2.8 tells us that N ≥ 128(4 log(2) + log(1/δ))/ϵ2 samples from [x] are sufficient to
guarantee an ϵ/8-second-order-calibrated prediction for [x] with probability at least 1 − δ, thus
giving an additive error of ϵ when estimating the aleatoric uncertainty.

In the case of the Shannon entropy, we get the following corollary, captured in the second statement
of Theorem 3.3:
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Corollary E.9 (Corollary to Theorems E.7 and 2.7, Estimating Shannon Entropy). Let ϵ > 0. Let
g : X → ∆Y(k) be an ϵ′-kth-order calibrated predictor where k ≥ Θ(

(
1
ϵ

)ln 4
), and ϵ′ ≤ ϵ

exp(Θ(k)) .
Let GShannon(p) = −p log p− (1− p) log(1− p) denote the Shannon entropy. Then we can use g to
obtain an estimate ÂUShannon such that with high probability,∣∣∣∣ÂUShannon − E

x∼[x]
[AU∗

GShannon
(x)]

∣∣∣∣ ≤ ϵ.

In particular, we require only N ≥ O(log(1/δ) exp(O((1/ϵ)ln 4))) k-snapshot examples from [x]
for this guarantee to hold with probability at least 1− δ.

Proof. The Shannon entropy GShannon(p) = −p log p − (1 − p) log(1 − p) can be dealt with us-
ing Jackson’s theorem (Theorem E.6), which tells us that for any d ≥ 1, there exists a degree-d
polynomial F and constant C1 such that

sup
x∈[0,1]

|F (x)−GShannon(x)| ≤ C1ωG(1/d),

and the coefficients of F are bounded by exp(C2d) for some constant C2. Here ωG is the modulus
of continuity of GShannon (Definition E.2), defined by

ωG(x) = sup{|GShannon(p)−GShannon(p
′)| | p, p′ ∈ [0, 1], |p− p′| ≤ x}.

In the case of the binary entropy function, it is easy to see that the supremum is achieved at the
endpoints, e.g. at p = 0, p′ = x, and so ωG(x) = GShannon(x). Now, it turns out that the binary
entropy function satisfies the following useful bound (Topsøe, 2001):

GShannon(x) ≤ (4x(1− x))1/ ln 4 ≤ (4x)1/ ln 4.

Thus, to ensure C1ωG(1/d) ≤ ϵ/2, it suffices to take k ≥ d ≥ 1
4

(
2C1

ϵ

)ln 4
. We choose the minimal

snapshot size that can achieve this, and take k = 1
4

(
2C1

ϵ

)ln 4
.

By Theorem E.7, for this value of k we are guaranteed that an ϵ′-kth-order calibrated predictor will
give estimates of the aleatoric uncertainty with additive error at most ϵ/2 + k2ϵ′eC2k/2.

Thus, there exists a constant C3 such that it suffices to have ϵ′ ≤ ϵ
eC3k to guarantee an error of at

most ϵ. Plugging this bound into Theorem 2.8 tells us that there exists a constant C4 such that N ≥
exp(C4(1/ϵ)

ln 4) log(1/δ) samples from [x] are enough to guarantee that the kth-order calibration
error in that partition is at most ϵ

eC3k with probability at least 1 − δ, thus guaranteeing that the
overall additive approximation error of estimating the Shannon entropy on [x] will be at most ϵ with
probability at least 1− δ.

We complete the proof by noting that exp(C4(1/ϵ)
ln 4) log(1/δ) = O(log(1/δ) exp(O((1/ϵ)ln 4))).

E.2.1 PROOF OF THEOREM E.4

We restate the theorem for readability:

Theorem E.10 (Restatement of Theorem E.4). Consider a kth-order predictor g : X → ∆Y(k) that
satisfies ϵ-kth-order calibration with respect to a partition [·]. Let G be any concave entropy function
that satisfies uniform continuity with modulus of continuity ωG : R≥0 → R≥0. Then, g’s estimate of
aleatoric uncertainty with respect to G satisfies the following guarantee for all x ∈ X :∣∣∣∣AUG(g : x)− E

x∼[x]
[AU∗

G(x)]

∣∣∣∣ ≤ ωG(ϵ+
|Y|
2
√
k
).

Proof of Theorem E.4. Consider any x ∈ X . Using the definition of aleatoric uncertainty with
respect to G, we can rewrite the distance between the true and estimated AU as∣∣∣∣AUG(g : x)− E

x∼[x]
[AU∗

G(x)]

∣∣∣∣ = ∣∣∣∣ E
p∼g(x)

[G(p)]− E
p∗∼f∗([x])

[G(p∗)]

∣∣∣∣
34
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Let µ be the optimal coupling of g(x) and f∗([x]), i.e.,

µ := argmin
µ′∈Γ(g(x),f∗([x]))

E
(p,p∗)∼µ′

[∥p− p∗∥1].

We can rewrite the above expression in terms of µ as

∣∣∣∣AUG(g : x)− E
x∼[x]

[AU∗
G(x)]

∣∣∣∣
=

∣∣∣∣ E
(p,p∗)∼µ

[G(p)−G(p∗)]

∣∣∣∣
≤ E

(p,p∗)∼µ
[|G(p)−G(p∗)|]

≤ E
(p,p∗)∼µ

[ωG(∥p− p∗∥1)] (uniform continuity of G)

≤ ωG( E
(p,p∗)∼µ

[∥p− p∗∥1]) (Jensen’s Inequality + Concavity of ωG)

See Remark E.3 for a discussion of why we can assume that ωG is concave.

Because g is ϵ-kth-order calibrated, by Theorem 2.6, we can guarantee that it is also (ϵ + |Y|
2
√
k
)-

higher-order calibrated, and thus we are guaranteed that W1(g(x), f
∗([x])) ≤ ϵ+ |Y|

2
√
k

.

Expanding out the definition of ℓ1-Wasserstein distance, because µ was defined as the optimal cou-
pling of g(x) and f∗([x]), we have

W1(g(x), f
∗([x])) = argmin

µ′∈Γ(g(x),f∗([x]))

E
(p,p∗)∼µ′

[∥p− p∗∥1] = E
(p,p∗)∼µ

[∥p− p∗∥1] ≤ ϵ+
|Y|
2
√
k
.

We can use this upper bound to further simplify our above inequality as∣∣∣∣AUG(g : x)− E
x∼[x]

[AU∗
G(x)]

∣∣∣∣ ≤ ωG( E
(p,p∗)∼µ

[∥p− p∗∥1])

≤ ωG(ϵ+
|Y|
2
√
k
),

giving us the desired upper bound on the error of our aleatoric uncertainty estimate. Note that the
final step assumes ωG is non-decreasing. We refer to Remark E.3 for a discussion of why this is a
reasonable assumption.

E.2.2 PROOF OF THEOREM E.7

Theorem E.11 (Restatement of Theorem E.7). Let Y = {0, 1} and let G : [0, 1] → R be a concave
generalized entropy function that has (d, α,B)-polynomial approximations. Then, if g : X →
∆Y(k) is an ϵ-kth-order calibrated predictor for any k ≥ d, then for each x ∈ X , we can use g to
estimate Ex∼[x][AU

∗
G(x)] to within an additive error δ = α+ d2ϵB/2.

At a high-level, the proof will leverage Lemma 2.7, which tells us that kth-order calibrated predictors
can be used to obtain good estimates for the first k moments of the true bayes mixture. Because a
degree-d polynomial of a random variable p can be computed using only the first d moments of p,
we can use our moment estimates to compute any degree d ≤ k polynomial, which will provide a
good estimate of aleatoric uncertainty when that polynomial closely approximates G.

Proof of Theorem E.7. Fix some x ∈ X . By assumption of the theorem, G has (d, α,B)-polynomial
approximations. This means that there exists a degree-d polynomial c(t) =

∑d
i=0 βit

i such that for
all i ∈ {0, ..., d}, |βi| ≤ B, and for all t ∈ [0, 1], |c(t)−G(t)| ≤ α.
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The polynomial c can thus be used to approximate Ex∼[x][AU
∗
G(x)] to within an additive error of

α: ∣∣∣∣ E
x∼[x]

[c(f∗(x))]− E
x∼[x]

[AU∗
G(x)]

∣∣∣∣ = ∣∣∣∣ E
x∼[x]

[c(f∗(x))]− E
x∼[x]

[G(f∗(x))]

∣∣∣∣
≤ E

x∼[x]
[|c(f∗(x))−G(f∗(x))|]

≤ E
x∼[x]

[α]

= α

We now want to show that we can obtain a good estimate of Ex∼[x][c(f
∗(x))] only with access to

g. We expand out the definition of c to have

E
x∼[x]

[c(f∗(x))] = E
x∼[x]

[

d∑
i=0

βi(f
∗(x))i]

=

d∑
i=0

βi E
x∼[x]

[f∗(x)i]

Let m1, ...,md ∈ R≥0 be the moment estimates of Ex∼[x][f
∗(x)1], ...,Ex∼[x][f

∗(x)d], respectively
that are obtained from g via Lemma 2.7. Because d ≤ k, for each i ∈ [d], the lemma guarantees that

|mi − E
x∼[x]

[f∗(x)i]| ≤ iϵ/2 ≤ dϵ/2. (E.3)

Substituting in each of these moment estimates for Ex∼[x][f
∗(x)i] in the computation of c will give

a d2ϵB/2-additive approximation of Ex∼[x][c(f
∗(x))]:

∣∣∣∣∣ E
x∼[x]

[c(f∗(x))]−

(
β0 +

d∑
i=1

βimi

)∣∣∣∣∣ =
∣∣∣∣∣

d∑
i=0

βi E
x∼[x]

[f∗(x)i]−

(
β0 +

d∑
i=1

βimi

)∣∣∣∣∣
≤

d∑
i=1

|βi|
∣∣∣∣ E
x∼[x]

[f∗(x)i]−mi

∣∣∣∣
≤ B

d∑
i=1

∣∣∣∣ E
x∼[x]

[f∗(x)i]−mi

∣∣∣∣ (|βi| ≤ B for all i ∈ [d])

≤ B

d∑
i=1

dϵ/2 (E.3)

= Bd2ϵ/2.

Putting all our pieces together, we show that β0 +
∑d

i=1 βimi, which is computed only using g,
gives an additive α+ d2Bϵ/2-approximation to Ex∼[x][AU

∗
G(x)]. By the triangle inequality,

∣∣∣∣∣ E
x∼[x]

[AU∗
G(x)]−

(
β0 +

d∑
i=1

βimi

)∣∣∣∣∣
≤
∣∣∣∣ E
x∼[x]

[AU∗
G(x)]− E

x∼[x]
[c(f∗(x))]

∣∣∣∣+
∣∣∣∣∣ E
x∼[x]

[c(f∗(x))]−

(
β0 +

d∑
i=1

βimi

)∣∣∣∣∣
≤ α+Bd2ϵ/2

giving the desired additive approximation.
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F HIGHER-ORDER PREDICTION SETS

In this section we describe how to obtain prediction intervals, or more generally prediction sets, from
higher-order calibration. These prediction sets have the property that they capture the true f∗(x)
with a certain prescribed probability when x is drawn conditionally at random from an equivalence
class. We stress that these are not prediction sets for outcomes at a particular instance, but rather
higher-order prediction sets for entire ground truth probability vectors ranging over a group of in-
stances; they are subsets of the simplex ∆Y and not of Y . In this way they provide an operational
way of expressing and using our epistemic (rather than merely predictive) uncertainty.16

Definition F.1 (Higher-order prediction set). A set S ⊆ ∆Y is said to be a higher-order prediction
set for the Bayes mixture f∗([x]) with coverage 1− α if the following holds:

P
x∼[x]

[f∗(x) ∈ S] = 1− α.

The main idea is simple. If f is perfectly higher-order calibrated for a certain partition [·], then for
every x, f(x) matches f∗([x]) exactly as a mixture. Thus any set S that captures 1− α mass under
f(x) also captures 1− α mass under f∗([x]):

P
x∼[x]

[f∗(x) ∈ S] = P
p∗∼f∗([x])

[p∗ ∈ S] = P
p∼f(x)

[p ∈ S] = 1− α. (F.1)

In this way we can take our prediction f(x) (which in principle we have a complete description of),
take any set S that captures 1 − α of its mass (there are many natural ways of doing so), and use it
directly as a 1− α prediction set for f∗(x) when x ∼ [x].

This argument becomes slightly more technically involved when we have only approximate higher-
order or kth-order calibration. Essentially, if we only have Wasserstein closeness between f(x) and
f∗([x]), then we need to enlarge the set S slightly in order to account for the fact that a typical draw
from f(x) is slightly far from a corresponding (coupled) draw from f∗([x]). For intuition, consider
the binary labels setting, where f(x) and f∗([x]) both reduce to distributions on [0, 1]. Suppose that
the density of f(x) is exactly that of f∗([x]) but just shifted by ϵ (this is a particularly simple case
of ϵ-Wasserstein closeness). In this case we simply need to consider an ϵ-neighborhood of a 1 − α
set under f(x) to obtain 1− α coverage under f∗([x]).

We now formalize this idea. As in the rest of the paper, we specialize to the ℓ1-Wasserstein distance.
Definition F.2 (Neighborhood of a set). Let S ⊆ ∆Y be a subset of the simplex, regarded as
probability vectors in Rℓ. Then for any δ > 0, the δ-neighborhood of S is all vectors with ℓ1-
distance at most δ from S:

Sδ = {p ∈ ∆Y | ∃p′ ∈ S : ∥p− p′∥1 ≤ δ}.

Theorem F.3 (Higher-order prediction sets from higher-order calibration). Let f : X → ∆∆Y be
ϵ-higher-order calibrated wrt a partition [·]. Fix any x ∈ X and let π = f(x), π∗ = f∗([x]). Then
for any set S ⊆ ∆Y and any δ > 0, we have

P
p∼π

[p ∈ S]− ϵ

δ
≤ P

p∗∼π∗
[p∗ ∈ Sδ] ≤ P

p∼π
[p ∈ S2δ] +

ϵ

δ
. (F.2)

In particular, if S contains 1−α of the mass under f(x), then Sδ is a prediction set for f∗([x]) with
coverage at least 1− α− ϵ

δ .

Proof. Since f is ϵ-higher-order calibrated, we know that W1(π, π
∗) ≤ ϵ. Let µ be the correspond-

ing optimal coupling of p,p∗, with marginals being π, π∗ respectively, and guaranteeing that

E
(p,p∗)∼µ

[∥p− p∗∥1] ≤ ϵ.

Letting η = p− p∗ under this coupling, we see that E[∥η∥1] ≤ ϵ. By Markov’s inequality, we have
P[∥η∥1 > δ] ≤ ϵ/δ.

16It is worth noting that this type of coverage guarantee can only be directly evaluated when we have access to
the true f∗(x) values, or at least approximately as k-snapshots. Of course, even when we do not, the guarantee
still holds mathematically.
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We now prove the left-hand inequality. We have

P[p ∈ S] = P[p∗ + η ∈ S]

= P[(p∗ + η ∈ S) ∧ (∥η∥1 ≤ δ)] + P[(p∗ + η ∈ S) ∧ (∥η∥1 > δ)]

≤ P[p∗ ∈ Sδ] +
ϵ

δ
.

Here the second term is bounded by Markov’s inequality, and the first term is bounded because the
event (p∗ + η ∈ S) ∧ (∥η∥1 ≤ δ) is a subset of the event p∗ ∈ S + δ. Rearranging gives the
left-hand inequality.

The right-hand inequality is very similar:

P[p∗ ∈ Sδ] = P[p− η ∈ Sδ]

= P[(p− η ∈ Sδ) ∧ (∥η∥1 ≤ δ)] + P[(p− η ∈ Sδ) ∧ (∥η∥1 > δ)]

≤ P[p ∈ S2δ] +
ϵ

δ
.

In practical situations, we expect that the ϵ parameter is the one that is fixed first. In this case a
reasonable choice is to take α = δ =

√
ϵ in the theorem above and obtain prediction sets with

coverage at least 1− 2
√
ϵ.

Note that this theorem is also applicable if we only have kth-order calibration, as we can leverage
Theorem 2.6 to obtain approximate higher-order calibration from approximate kth-order calibration.

F.1 MOMENT-BASED PREDICTION SETS FROM kTH-ORDER CALIBRATION

We now describe a slightly different way of obtaining prediction sets directly using kth-order cali-
bration, instead of passing through higher-order calibration and using Theorem F.3 as a black box.
The idea is to use Theorem 2.7 to approximate the moments of the Bayes mixture, and directly apply
a moment-based concentration inequality to the true Bayes mixture. Throughout this subsection we
specialize to the binary case.

We will need to slightly adapt Theorem 2.7 to approximate the central moments E[(p − E[p])k]
of the Bayes mixture as opposed to the moments about 0. In fact, for the purposes of generating
prediction sets it will be more convenient to directly bound the moments around our estimate m1 of
the mean.

Corollary F.4. Let Y = {0, 1}, and let g : X → ∆Y(k) be ϵ-kth-order calibrated with respect to a
partition [·]. Fix any x ∈ X . Let (m1, . . . ,mk) ∈ Rn

≥0 be a vector of moment estimates obtained
from Theorem 2.7 such that for each i ∈ [k],∣∣∣∣mi − E

x∼[x]
[f∗(x)i]

∣∣∣∣ ≤ iϵ/2.

Then we can obtain a kth central moment estimate ck such that∣∣∣∣ck − E
x∼[x]

[(f∗(x)−m1)
k]

∣∣∣∣ ≤ kϵ(1 +m1)
k/2.

Proof. For brevity, let p ∼ f∗([x]) denote a random draw from the Bayes mixture. Observe that

E[(p−m1)
k] =

k∑
i=0

(
k

i

)
E[pi]mk−i

1 .

Our estimate ck is naturally formed by replacing each E[pi] term by mi (taking m0 = 1):

ck :=

k∑
i=0

(
k

i

)
mim

k−i
1 .

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

The error in this estimate can be bounded as follows:∣∣ck − E[(p−m1)
k]
∣∣ ≤ k∑

i=0

(
k

i

) ∣∣mi − E[pi]
∣∣mk−i

1

≤
k∑

i=0

(
k

i

)
iϵ

2
mk−i

1

≤ kϵ

2

k∑
i=0

(
k

i

)
mk−i

1

=
kϵ

2
(1 +m1)

k.

We can now obtain prediction sets using a simple moment-based concentration inequality.
Theorem F.5. Let Y = {0, 1}, and let g : X → ∆Y(k) be ϵ-kth-order calibrated with respect to a
partition [·]. Fix any x ∈ X . Let ϵ, α > 0 be given. Let (m1, . . . ,mk) and ck be as in the previous
lemma (Corollary F.4). Let ϵ′ = kϵ(1 +m1)

k/2. Suppose that δ > 0 is chosen such that

δ ≥
(
ck + ϵ′

α

)1/k

.

Then the interval [m1 − δ,m1 + δ] is a prediction set for f∗([x]) with coverage at least 1− α.

Proof. Again for brevity let p ∼ f∗([x]) denote a random draw from the Bayes mixture. Let
ϵ′ = kϵ

2 (1 +m1)
k. Assume for simplicity k is even (otherwise take k− 1). By Markov’s inequality

and the previous lemma, we have

P[|p−m1| ≥ δ] ≤ E[(p−m1)
k]

δk

≤ ck + ϵ′

δk

≤ α,

by our choice of δ.

For context, it is helpful to consider the ideal case when ϵ = 0 and we have exact values for all the
moments up to degree k. In this case ck is exactly E[(p− E[p])k] and δ can be set to

E[(p− E[p])k]1/k

α1/k
,

which is the best one can hope for using only moment-based concentration.

G ADDITIONAL EXPERIMENTS

G.1 EXPERIMENTAL DETAILS

We configure our wide ResNets on CIFAR-10 using the “Naive NN” formula from Ta-
ble 2 of Johnson et al. (2024) and the Python implementation of the network from the
uncertainty baselines package17 (Nado et al., 2021). We use a learning rate of 3.799e−3
and relatively large weight decay of 3.656e−1. We train the model for 50 epochs with the
AdamW optimizer (Kingma & Ba, 2014; Loshchilov & Hutter, 2017). For the first epoch, we
warm up the learning rate and apply cosine decay thereafter. All models are trained using Aug-
Mix data augmentation (Hendrycks et al., 2020) with the standard hyperparameters used in the
uncertainty baselines package.

To calibrate the model for each value of k, we create k-snapshots by sampling k labels at random
once for each image in the calibration set. We do not sample multiple snapshots per image.

17https://github.com/google/uncertainty-baselines
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METHOD ALEATORIC ERROR ACC
ENSEMBLE 0.308± 0.018 0.932± 0.004

EPINET 0.307± 0.006 0.900± 0.008
1-SNAPSHOT MODEL 0.501± 0.006 0.912± 0.004
2-SNAPSHOT MODEL 0.307± 0.010 0.912± 0.004
5-SNAPSHOT MODEL 0.158± 0.010 0.912± 0.006

10-SNAPSHOT MODEL 0.088± 0.010 0.912± 0.004
50-SNAPSHOT MODEL 0.026± 0.006 0.912± 0.004

Table 1: Expected pointwise aleatoric error (Eq. 4.1) of various methods for uncertainty estimation.
95% confidence intervals are computed across 50 random resamplings of the test and calibration
sets, where applicable.

G.2 EVALUATING OTHER UNCERTAINTY ESTIMATION METHODS IN TERMS OF
HIGHER-ORDER CALIBRATION

While the snapshot algorithms we present in Section 2.1 provably tend towards higher-order cali-
bration, they are not a requirement for higher-order calibration. It can in principle be achieved by
any mixture model or higher-order predictor, even one trained without explicit access to snapshots
at all. In this section, we measure how well-calibrated other methods for uncertainty estimation are
on the CIFAR-10 image classification task.

In addition to higher-order calibrated snapshot models from our work, we evaluate the following
methods:

Naive decomposition: As a sanity check, we train a 1-snapshot predictor and treat it as a naive
mixture model (i.e., one that places all of its probability mass on the lone distribution output by the
predictor).

Ensemble: One simple way to obtain a mixture model is to train N independent 1-snapshot predic-
tors (let’s call them f1, ..., fN : X → ∆Y) and output the uniform mixture over their predicted label
distributions: g(x) = Unif(f1(x), ..., fN (x)). Concretely, we use the same network architecture we
calibrated in Section 4 and, as in Johnson et al. (2024), we use N = 8.

Epinet: A popular method for uncertainty estimation is the Epinet (Osband et al., 2023). In addition
to regular inputs, Epinets are conditioned on an additional random vector z. By integrating over
possible values of z, it is possible to elicit joint predictions from the network (or, in the terminology
of this paper, snapshot distributions). Epinets are usually instantiated with a pair of MLPs affixed
to the end of a network, trained in tandem with or after the main trunk. One MLP is frozen at
initialization; the other is not. Both are conditioned on z and the penultimate hidden state of the main
network. Loosely speaking, the Epinet learns to mitigate noise introduced by the frozen MLP with
the trainable one, and it learns to do this best in regions of the input space encountered most often
during training (that is to say, regions of the input space where there is least epistemic uncertainty).

We attach such MLPs to a regular 1-snapshot CIFAR-10 model and train both in tandem for about
20 additional epochs, using the default hyperparameters in the enn Python library18 (Osband et al.,
2023) (notably, 50-dimensional hidden layers, 20-dimensional index vectors, and 5 index vectors
per training input) and stopping early based on loss on our validation set. Index vectors are sampled
from N (0, Id), where d = 20 is the dimension of the index vectors, and then normalized. At
evaluation time, we use 50 index vectors per input and treat the resulting cloud of predictions as
the predicted mixture at that point. If f(x, z) is our finished epinet, then our final model is g(x) =
Unif(f(x, z1), ..., f(x, z50)) for some z1, . . . ,z50 ∼ N (0, Id).

Results are given in Table 1. We see that calibration with large snapshots is a simple and effective
path to strong higher-order calibration.

G.3 EVALUATING MULTIPLE HIGHER-ORDER CALIBRATION ALGORITHMS

In this section we compare our two algorithms for achieving higher-order calibration (namely learn-
ing directly from snapshots and post-hoc calibration; see Section 2.1) on the FER+ (Barsoum et al.,

18https://github.com/google-deepmind/enn
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METHOD NO. SNAPSHOTS ALEATORIC ERROR ACC
LEARNING FROM SNAPSHOTS 1 0.615 0.802

POST-HOC 1 0.615 0.802
LEARNING FROM SNAPSHOTS 2 0.418 0.818

POST-HOC 2 0.349 0.802
LEARNING FROM SNAPSHOTS 3 0.369 0.823

POST-HOC 3 0.217 0.802
LEARNING FROM SNAPSHOTS 4 0.355 0.819

POST-HOC 4 0.139 0.802
POST-HOC 10 0.041 0.802

Table 2: Expected pointwise aleatoric error (Eq. 4.1) of two higher-order calibration algorithms (see
Section 2.1 for details) evaluated on FER+.

2016) dataset. We use this rather than CIFAR-10H for a fairer comparison since the learning from
snapshots algorithm requires more multi-label data to be effective, and FER+ is a larger dataset than
CIFAR-10H.

FER+ is a facial recognition dataset of approx. 36,000 48 × 48 grayscale images with 10 possible
classes (emotions such as happy, neutral, sad, etc.), and with 10 independent human label annota-
tions per image. Thus Y is the space of 10 possible emotions, and for each image x ∈ X , f∗(x)
is the uniform distribution over its 10 independent annotations. There is substantial disagreement
among annotators; each image in the training set has an average of 2.6 unique labels (STD 1.3).
Converted to a distribution, the labels have a mean entropy of 0.6 natural units (STD 0.5). In this
paper’s terminology, this means that the mean aleatoric uncertainty E[AU∗

H(x)] = 0.6, where H is
the Shannon entropy. Note that for training and evaluation we use a further 80/10/10 train/val/test
split of the dataset. For the post-hoc calibration algorithm, the calibration set is composed of half of
the test set.

Results are given in Table 2. In general, at least at this model scale, it appears that the post-hoc
algorithm achieves strictly better calibration on FER+ for a given number of snapshots than learning
from snapshots directly. While the latter has shown promise in Johnson et al. (2024) and achieves
nontrivial calibration, it has clear disadvantages even in principle compared to the former: unlike the
post-hoc calibration scheme, it requires modifying the parameters of the predictor and also training
an output layer of size that grows exponentially with the number of snapshots. It is also not as
well-supported by our theory.

G.4 BINARY REGRESSION

As a sanity check, we verify that it is possible to create higher-order calibrated models on the syn-
thetic 1D binary regression task from Johnson et al. (2024), which fixes a specific distribution of
coins p(x) and a bias distribution p(y|x) with both high- and low-frequency variation. Specifically,
we train the neural network defined in their Algorithm 2 to predict 1-snapshots from a training set
sampled from the synthetic distribution. We then sample a separate calibration set of 5000 snap-
shots, apply the algorithm from Section 2.1 to the predictor, and finally measure ϵ (as specified in
Definition 2.4) on a third test set.

We find that, indeed, a predictor calibrated in this fashion achieves calibration error ϵ lower than
naive predictors that output uniform distributions over snapshots or the snapshot distribution that
results from fair coins. A 1-snapshot predictor pretrained for 10,000 batches and calibrated with
5,000 10-snapshots reaches ϵ = 0.400 ± 0.23; both naive baselines achieve 0.959 ± 0.014, close
to the maximum value of 1. If we relax the condition in Definition 2.4 somewhat and exclude
the noisiest 5% of the equivalence classes, the 95% percentile of error, the same model reaches
0.212 ± 0.089. All 95% confidence intervals are taken over 50 resamplings of the calibration and
test sets.

For a more easily interpretable measure of higher-order calibration, we also compute the mean
aleatoric estimation error, as defined in Equation 4.1. See Figure 6 for results. As previously,
increasing the size of the snapshots used for calibration does indeed improve estimates of aleatoric
uncertainty.
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Figure 5: The simple binary regression task from Johnson et al. (2024). (Positive) inputs are drawn from a
normal distribution (left), and outputs are determined by a fixed function p(y|x) (right) with low- and high-
frequency components, the latter of which our simple predictor (k = 1) fails to learn completely.
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Figure 6: Top: Average aleatoric uncertainty estimation error (Eq. (4.1)) of binary regression models calibrated
using snapshots of increasing size. Bottom: For three of the highest-entropy equivalence classes, we depict
the distribution of entropies ranging over components of the predicted mixture (gray) and the Bayes mixture
(green). We see that the distributions and in particular the means are similar.
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