
Efficient Data Valuation for Weighted Nearest
Neighbor Algorithms

Anonymous Author(s)
Affiliation
Address
email

Abstract

Data Shapley is a principled way to assess the importance of individual training1

data sources for machine learning (ML) applications. However, it often comes with2

computational challenges in calculating exact Data Shapley scores. KNN-Shapley3

[7], which assigns data value leveraging the efficiently computable Data Shapley4

score of K nearest neighbors (KNN), has gained popularity as a viable alternative5

due to its computationally efficient nature. However, [7] only gives a practical6

algorithm for computing Data Shapley for unweighted KNN, but weighted KNN is7

more prevalently used in practice.8

This work addresses the computational challenges of calculating the exact Data9

Shapley for weighted KNN classifiers (WKNN-Shapley). By making small adjust-10

ments to KNN configurations, we recast the computation of WKNN-Shapley into11

a counting problem and introduce an O(K2N2) algorithm, presenting a notable12

improvement from the naive, impractical O(NK) algorithm. We also develop a de-13

terministic approximation algorithm that further improves computational efficiency14

while maintaining the key fairness properties of the Shapley value. These advance-15

ments position WKNN-Shapley as a compelling alternative to KNN-Shapley. In16

particular, WKNN-Shapley can select high-quality data points and improve the17

performance of retrieval-augmented language models.18

1 Introduction19

Data is the backbone of machine learning (ML) models, but not all data is created equally. In real-20

world scenarios, data often carries noise and bias, sourced from diverse origins and data collection and21

labeling processes [19]. Against this backdrop, data valuation emerges as a growing research field,22

aiming to quantify the impact of individual data sources on ML training. Data valuation techniques23

are critical in explainable ML to diagnose influential training instances and in data marketplaces for24

fair compensation. The importance of data valuation is highlighted by legislative efforts such as the25

DASHBOARD Act of 2019 [30], which mandates companies to provide users with an estimate of26

their data’s economic value. Moreover, the vision statements from leading companies like OpenAI27

underscore the importance of distributing AI benefits equitably [20].28

The Shapley value for Data Valuation. Drawing on cooperative game theory, the technique29

of using the Shapley value for data valuation was pioneered by [5, 8]. The Shapley value is a30

renowned solution concept in game theory for fair profit attribution [22]. In the context of data31

valuation, individual data points or sources are regarded as “players” in a cooperative game, and32

Data Shapley refers to the suite of data valuation techniques that use the Shapley value as the33

contribution measure for each data owner. Numerous follow-up works of Data Shapley have been34

conducted [7, 4, 29, 1, 13, 17, 31, 9, 25, 28], underscoring its effectiveness in quantifying the impact35

of individual data sources on model performance.36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



Data Shapley for Unweighted KNN. Despite offering a rigorous approach to data valuation with a37

solid theoretical foundation, the exact calculation of the Shapley value has the time complexity of38

O(2N ) where N refers to the number of players (i.e., the number of data points/sources in the context39

of ML). While various Monte Carlo-based approximation algorithms for Data Shapley have been40

proposed (e.g., [8, 18, 17]), these approaches still require substantial computational resources due to41

model retraining. Fortunately, a breakthrough by [7] showed that computing the exact Data Shapley42

for unweighted K-Nearest Neighbors (KNN), one of the oldest yet still popular ML algorithms,43

is surprisingly easy and efficient. KNN-Shapley refers to the technique of quantifying data value44

based on KNN’s Data Shapley score. Here, KNN can be regarded as a proxy model for the original45

complicated learning algorithm. KNN-Shapley can be applied to large, high-dimensional datasets by46

calculating the value scores on the features extracted from neural network embeddings. Due to its47

superior computational efficiency and adeptness at discerning data quality, KNN-Shapley is currently48

recognized as one of the most practical data valuation techniques [21], and it has found applications49

across various ML domains [6, 23, 15, 14, 2].50

Question left from [7]: efficient computation of weighted KNN-Shapely. The insightful work51

of [7] introduced a highly efficient O(N logN) algorithm to compute the exact Data Shapley for52

unweighted KNN classifiers. However, while they also demonstrated that the exact Data Shapley for53

weighted KNN classifiers can be computed in polynomial time, the associated algorithm proposed in54

their work has the time complexity surges to O(NK)—considerably larger that of its unweighted55

counterpart, and is impractical for actual implementation. Closing this efficiency gap is important,56

especially given the inherent advantages and wider application of weighted KNN. Compared with57

the unweighted counterpart, weighted KNN takes into account the distances between data points,58

attributing different importance levels to neighbors based on proximity. This makes weighted KNN59

provide significantly better performance while maintaining model interpretability. For instance,60

weighted KNN is being used in critical domains like healthcare [32] and anomaly detection [16],61

where both the performance and interpretability of the adopted ML model are important. Recent62

research has also highlighted weighted KNN’s capability to improve language model’s performance63

[11]. Given the broader use cases and advantages of weighted KNN in real-world applications, it is64

important to develop more efficient algorithms for the computation of WKNN-Shapley.65

Settings of Weighted KNN Considered in this Work. Our preliminary investigations indicate66

that improving the computational efficiency of WKNN-Shapley for soft-label KNN classifiers with67

continuous weight values (the setting considered in [7]), poses considerable challenges. Consequently,68

we make necessary modifications to the specific KNN classifiers’ configuration and shift our focus to69

hard-label KNN classifiers with discrete weight values. The justification for these changes and their70

practical relevance is elaborated in Section 3.2. Furthermore, we emphasize that small adjustments to71

the underlying KNN’s configuration are crucial for the development of new data valuation techniques72

with desired properties. For instance, [28] considers a simple variant termed Threshold KNN and73

develops an alternative of KNN-Shapley that is privacy-friendly and more computationally efficient.74

Technical Overview. (1) Binary Classification Setting. Given the configurations of the weighted75

KNN we described, we develop an algorithm with a quadratic runtime for the exact computation76

of WKNN-Shapley using dynamic programming. To further improve the computational efficiency,77

we propose a deterministic approximation algorithm (not based on Monte Carlo), which retains the78

crucial fairness properties of the original Shapley value (i.e., Symmetry and Null player axiom). (2)79

Multi-class Classification Setting. Directly adapting our WKNN-Shapley computation technique80

from binary to multi-class classifiers can significantly increase the overall time complexity. Instead,81

we present an alternative utility function for measuring the performance of WKNN classifiers.82

The Data Shapley calculation for the proposed utility function can be conveniently reduced to the83

WKNN-Shapley computation for binary classifiers, thanks to the linearity axiom of the Shapley84

value. Noteworthily, this approach outperforms its binary classification counterpart in efficiency for85

balanced datasets.86

We showcase the application of WKNN-Shapley in selecting high-quality data points, and in particular87

it can be used for improving the performance of retrieval-augmented language models. In summary,88

our findings indicate that with minor adjustments to the KNN configurations, WKNN-Shapley can89

achieve significant computational efficiency. This makes WKNN-Shapley a viable and effective90

alternative to the original KNN-Shapley, marking a pivotal advancement in the realm of data valuation.91

2



2 Preliminaries92

We review the problem of data valuation for ML, and revisit the techniques of Data Shapley and93

KNN-Shapley.94

Setup & Goal. Given a labeled dataset D := {zi}Ni=1 where each data point zi := (xi, yi), data95

valuation aims to assign a score to each training data point zi, reflecting its importance for the trained96

ML model’s performance. Formally, we seek a score vector (ϕzi)
N
i=1 where each ϕzi denotes the97

value of the data point zi.98

2.1 Data Shapley99

The Shapley value (SV) [22] originates from game theory and is used to fairly attribute the total profit100

among all participated players. We first introduce the concept of utility function, and then state the101

definition of the Shapley value.102

Utility Function. The Shapley value is defined based on the concept of utility function, which maps103

an input dataset to a score indicating the utility of the dataset for model training. Often, this function104

is chosen as the validation accuracy of a model trained on the given dataset. That is, given a training105

set S, the utility function v(S) := ValAcc(A(S)), where A represents a learning algorithm that106

trains a model on dataset S, and ValAcc(·) is a function assessing the model’s performance, such as107

its accuracy on a validation set.108

Definition 1 (Shapley value [22]). Given a utility function v(·) and a training set D of size N , the109

Shapley value of a data point z ∈ D is defined as110

ϕz (v) :=
1

N

N∑
k=1

(
N − 1

k − 1

)−1 ∑
S⊆D−z,|S|=k−1

[v(S ∪ {z})− v(S)] (1)

In simple terms, the Shapley value is a weighted average of the utility changes when the point is111

added to different subsets of the training set. For notation simplicity, when the context is clear, we112

omit the utility function and simply write ϕz . The popularity of the Shapley value is attributable to113

the fact that it is the unique data value notion satisfying four axioms: Dummy player, Symmetry,114

Linearity, and Efficiency. We refer the readers to [5, 8] and the references therein for a detailed115

discussion about the interpretation and necessity of the four axioms in the ML context.116

2.2 KNN-Shapley117

A well-known disadvantage of the Shapley value is that its computation can be infeasible in general,118

as it requires evaluating v(S) for all possible subsets S ⊆ D. A surprising result in [7, 26] showed119

that for unweighted KNN classifier, there exists a highly efficient algorithm for computing its exact120

Data Shapley score. Specifically, [7] considers the utility function for unweighted, soft-label KNN on121

a validation point z(val):122

v(S; z(val)) :=

∑min(K,|S|)
j=1 1[y

α
(S,j)

x(val)

= y(val)]

min(|S|,K)
(2)

where α
(S,j)

x(val) denotes the index (among D) of jth closest data point in S to x(val). The main result123

in [7] shows that we can compute the exact Shapley value ϕzi

(
v(·; z(val))

)
for all zi ∈ D by using124

a recursive formula within a total runtime of O(N logN). After computing the Shapley value125

ϕzi

(
v(·; z(val))

)
for each z(val) ∈ D(val), one can compute the Shapley value corresponding to126

the utility function on the full validation set v(S;D(val)) :=
∑

z(val)∈D(val) v(S; z(val)) by simply127

taking the sum ϕzi

(
v(·;D(val))

)
=
∑

z(val)∈D(val) ϕzi

(
v(·; z(val))

)
due to the linearity property of128

the Shapley value.129

Remark 1. Following the previous literature [7, 28], when we talk about runtime complexity of130

KNN-Shapley, we refer to the total runtime required to compute all data value scores (ϕz1 , . . . , ϕzN ),131

as in practice a typical objective is to compute the data value scores for all data points within the132

training set. Moreover, we state the runtime with respect to a single validation point z(val), and the133

overall runtime can be obtained by multiplying by the size of D(val).134

3



Since its introduction, KNN-Shapley has quickly become a popular technique for data valuation due135

to its efficiency and effectiveness in assessing data quality. KNN-Shapley has been applied across136

various machine learning domains [6, 15, 14, 2]. Notably, recent studies have advocated it as “the137

most practical data valuation technique capable of handling large-scale data effectively” [21, 9].138

3 Baseline Algorithms & Challenges139

For unweighted KNN classifiers, [7] develops an efficient O(N logN) algorithm to calculate the140

exact Data Shapley. However, when it comes to weighted KNN classifiers, the proposed method has141

a time complexity of O(NK). While it is still in polynomial time when K is considered a constant,142

the runtime can be prohibitively large for practical use even when K is very small (e.g., 5). In this143

section, we provide a brief review of the high-level idea of the baseline algorithm from [7] and discuss144

the challenges in improving its computational efficiency.145

3.1 Baseline Algorithm for Computing Data Shapley for Weighted KNN Classifiers146

Given a validation data point z(val) = (x(val), y(val)) and a distance metric d(·, ·), we sort the training147

set D = {zi = (xi, yi)}Ni=1 according to their distance to the validation point d(xi, x
(val)) in non-148

descending order. Throughout the entire paper, we assume that d(xi, x
(val)) ≤ d(xj , x

(val)) for any149

i ≤ j unless otherwise specified. Weight of each data point: in weighted KNN, each data point150

zi is associated with a weight wi := ωx(val)(xi). Such a weight is usually determined based on the151

distance between xi and the queried example x(val). For example, a popular choice of the weight152

function is the RBF kernel ωx(val)(xi) = exp(−d(xi, x
(val))). Without loss of generality, in this153

paper we assume wi ∈ [0, 1].154

Baseline O(NK) algorithm from [7]. [7] considers weighted, soft-label KNN with the following155

utility function:156

v(S; z(val)) :=

∑min(K,|S|)
j=1 w

α
(S,j)

x(val)

1

[
y
α

(S,j)

x(val)

= y(val)
]

∑min(K,|S|)
j=1 w

α
(S,j)

x(val)

(3)

The intuition of the O(NK) algorithm for computing the exact Data Shapley for this utility function157

developed in [7] is as follows: from Definition 1, the Shapley value for zi is a weighted average of the158

marginal contribution (MC) v(S ∪ {zi})− v(S); hence, we only need to study those S whose utility159

might change due to the inclusion of zi. In the context of KNN, those are the subsets S where zi is160

within the K nearest neighbors of x(val) after being added into S. It is critical to notice that the utility161

of any dataset only depends on the K nearest neighbors of x(val) in S. Given that there are only162 ∑K
j=0

(
N
j

)
unique subsets of size ≤ K, we can simply query the value of the MC v(S ∪{zi})− v(S)163

for all S of size ≤ K. For any larger S, the value of MC must be the same as its subset of K nearest164

neighbors. We can then compute the Shapley value as a weighted average of these MC values by165

counting the number of subsets that share the same MC values through simple combinatorial analysis.166

Such an algorithm results in the runtime of
∑K

j=0

(
N
j

)
= O(NK). See Section 4 in [7] for algorithm167

details.168

3.2 Challenges & Solutions169

We point out the major challenges associated with directly improving the computational efficiency170

for the problem setup considered in [7], and propose small but effective changes that enable more171

efficient algorithms for computing WKNN-Shapley.172

Challenge #1: weights normalization term. The key behind the O(N logN) algorithm for un-173

weighted KNN-Shapley from [7] is that, the values of MC are the same for many different Ss174

even when |S| ≤ K. That is, for unweighted, soft-label KNN with utility function in (2), if zi175

is within the K nearest neighbors of x(val) among S ∪ {zi}, we have v(S ∪ {zi}) − v(S) =176

1
K

(
1[yi = y(val)]− 1[yα

x(val) (S,K) = y(val)]
)

. Hence, we can just count the number of subsets177

S ⊆ D \ {zi} where zi is within the K nearest neighbors of x(val) among S ∪ {zi}, and have the178

4



same Kth nearest neighbor to z(val). In this way, one can avoid the burden of evaluating v(S) for179

all S ⊆ D. However, for the utility function in (3), for each |S| ≤ K, there is little chance that180

v(S ∪{zi})− v(S) can have the same value due to the weights normalization term. Therefore, in this181

work, we instead consider the utility function for weighted hard-label KNN classifier. “Hard-label”182

refers to the classifiers that output the predicted class instead of the confidence scores (see the details183

in Section A). Hard-label KNN is arguably used more frequently in practice. More importantly, its184

prediction only depends on the weight comparison between different classes, and hence its utility185

function does not have a normalization term. Challenge #2: continuous weights. If the weights186

are on the continuous space, there are infinitely many possibilities of voting results of the K nearest187

neighbors. Similar to the issue caused by the weights normalization term, this also makes it difficult188

for any S1, S2 of size ≤ K to share the same MC value. Therefore, we consider a more tractable189

setting where the weights lie in a discrete space. Such a change is reasonable since the weights are190

stored in terms of finite bits and hence it is also in the discrete space in practice. Moreover, rounding191

is a deterministic operation and does not change the ranking of the original weights. Hence, the192

Shapley value computed based on the discrete weights has the same ranking order compared with193

the Shapley value computed on the continuous weights (it might create ties but will not reverse the194

original order). While it is difficult to derive the exact error in the computed Shapley value due to195

discretization, we empirically verified in Appendix D.2 that the discretization does not cause a large196

error in the final Shapley value.197

4 Data Shapley for Weighted KNN Classifiers (Overview)198

In this section, we provide a high-level overview of the efficient algorithms for computing and199

approximating the Data Shapley for discrete weighted, hard-label KNN classifiers. The detailed but200

notation-heavy descriptions are deferred to Appendix A (for binary setting) and B (for multi-class201

setting).202

Utility Function for Weighted Hard-Label KNN Classifiers. The utility function of weighted203

hard-label KNN can be written as204

v(S; z(val)) = 1

y(val) ∈ argmax
c∈C

min(K,|S|)∑
j=1

w
α

(S,j)

x(val)

1[y
α

(S,j)

x(val)

= c]


where C = {1, . . . , C} is the space of classes, and C is the number of classes1. We omit the input of205

z(val) and simply write v(S) when the validation point is clear from the context.206

High-level Idea for Exact Data Shapley Calculation. For simplicity, we focus on the techniques for207

binary classification setting here. For binary classification, by taking w̃j := (21[y(val) = yj ]− 1)wj ,208

we can rewrite the utility function in a more compact way: v(S) = 1

[∑min(K,|S|)
j=1 w̃

α
(S,j)

x(val)

≥ 0

]
.209

Given that the Shapley value is a weighted average of the marginal contribution v(S ∪ {zi})− v(S),210

we first study the expression of v(S∪{zi})−v(S) for a fixed subset S ⊆ D \{zi} with such a utility211

function (see Theorem 2 in Appendix A). Since v(S ∪ {zi})− v(S) ∈ {±1, 0}, from the formula of212

the Shapley value (Definition 1), we can reframe the problem of computing the Shapley value for a213

weighted, hard-label KNN-Shapley as a counting problem for the number of S of certain sizes such214

that v(S ∪ {zi})− v(S) = 1 (or −1), and then take the weighted average of the counts for different215

sizes (Theorem 4). We can then solve this counting problem through dynamic programming, and216

we discover mathematical short-cuts (Theorem 8) to further improve the computational efficiency of217

WKNN-Shapley to O(K2N2) (Theorem 9).218

Deterministic approximation. If we only require an approximation of the Shapley value, we show219

that we can further speed up the Shapley value calculation. We derive a deterministic approximation220

algorithm by skipping the counting for those Ss with certain conditions where we believe v(S ∪221

{zi}) − v(S) = 0. We derive the error bound for such an approximation (Theorem 11). We note222

that our approximation algorithm preserves the important Symmetry and Null player axioms for the223

Shapley value. On the contrary, the prevalent Monte Carlo-based approximation techniques give224

randomized solutions and arguably muddy the clarity of Shapley value’s axioms.225

1For the case of multiple classes having the same top counts, we assume the utility is 1 as long as y(val) is
among the majority classes.

5



5 Applications of WKNN-Shapley226

Figure 1: (a) The performance of WKNN on the CIFAR10
subset selected by different data valuation techniques. We
set K = 25 for all methods here. (b) The performance of
KNN-LM on the WNLI dataset [24]’s subset selected by
different data valuation techniques. We set K = 25 for all
methods here. KNN-LM is a popular retrieval-augmented
language model where the output of the original LM is be-
ing interpolated with the output of the KNN classifiers, i.e.,
pKNN−LM (y) := λpKNN (y) + (1− λ)pLM (y). Here, we
set λ = 0.5. We use BERT [10] as the language model here.

With our efficient algorithms to com-227

pute or approximate Data Shapley for228

weighted KNN classifiers, WKNN-229

Shapley now stands as another practi-230

cal data valuation method. In this sec-231

tion, we showcase WKNN-Shapley’s232

potential in identifying high-quality233

data points for weighted KNN. This234

selection method can be further used235

for improving the performance of236

K nearest neighbor language models237

(KNN-LMs) [11], a famous type of238

retrieval-augmented language model239

nowadays. Figure 1 (a) shows240

WKNN’s performance on CIFAR10241

[12] when trained on data points242

that receive the highest data value243

scores (computed based on the asso-244

ciated data valuation techniques). Ev-245

idently, both the exact and approxi-246

mated WKNN-Shapley offer comparable results. Remarkably, the approximation algorithm achieves247

this while being 5 times faster than its exact counterpart. Additionally, both of them outperform248

the original KNN-Shapley considerably. Figure 1 (b) shows KNN-LM’s performance on the WNLI249

dataset [24], where the data store incorporates only those data points that receive the highest value250

scores. Again, both the exact and approximated WKNN-Shapley stand out and outperforms the251

original unweighted KNN-Shapley by a large margin. We note that when leveraging > 55% of the252

entire data store, KNN-LM performs even worse than the original, unaugmented LM due to the253

relatively low quality of the benchmark dataset. This underscores the important role of selecting254

high-quality data points, where WKNN-Shapley proves to be an effective tool.255

6 Conclusion256

In this work, we tackle the problem of computing and approximating Data Shapley for weighted257

KNN classifiers. We first identify the challenges of directly improving the computational efficiency258

for the utility function of weighted soft-label KNN with continuous weights. Instead, we consider259

weighted hard-label KNN with discretized weights, where we derive an O(K2N2) algorithm for260

computing the exact Data Shapley. We demonstrate the applications of WKNN-Shapley on data261

selection for retrieval-augmented language models.262

Future works: Characterizing the class of learning algorithms whose Data Shapley can be263

computed in polynomial-time. The popularity of KNN-Shapley lies in its computational efficiency.264

The polynomial-time algorithm for computing the exact Data Shapley for KNN is a surprising265

result since the Shapley value requires exponential time to compute for general utility functions.266

KNN-Shapley outperforms Monte Carlo-based approximation for the original Data Shapley due to267

its deterministic nature [25]. It is interesting to consider whether there exist other learning algorithms268

whose Data Shapley can be computed in polynomial time, and whether we can characterize the269

properties of those “Shapley-friendly” learning algorithms.270

6



References271

[1] Yatao Bian, Yu Rong, Tingyang Xu, Jiaxiang Wu, Andreas Krause, and Junzhou Huang. Energy-272

based learning for cooperative games, with applications to valuation problems in machine273

learning. arXiv preprint arXiv:2106.02938, 2021.274

[2] Christie Courtnage and Evgueni Smirnov. Shapley-value data valuation for semi-supervised275

learning. In Discovery Science: 24th International Conference, DS 2021, Halifax, NS, Canada,276

October 11–13, 2021, Proceedings 24, pages 94–108. Springer, 2021.277

[3] Andrea Dal Pozzolo, Olivier Caelen, Reid A Johnson, and Gianluca Bontempi. Calibrating278

probability with undersampling for unbalanced classification. In 2015 IEEE Symposium Series279

on Computational Intelligence, pages 159–166. IEEE, 2015.280

[4] Amirata Ghorbani, Michael Kim, and James Zou. A distributional framework for data valuation.281

In International Conference on Machine Learning, pages 3535–3544. PMLR, 2020.282

[5] Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine283

learning. In International Conference on Machine Learning, pages 2242–2251. PMLR, 2019.284

[6] Amirata Ghorbani, James Zou, and Andre Esteva. Data shapley valuation for efficient batch285

active learning. In 2022 56th Asilomar Conference on Signals, Systems, and Computers, pages286

1456–1462. IEEE, 2022.287

[7] Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo Li, Ce Zhang,288

Costas J Spanos, and Dawn Song. Efficient task-specific data valuation for nearest neighbor289

algorithms. Proceedings of the VLDB Endowment, 2019.290

[8] Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel,291

Bo Li, Ce Zhang, Dawn Song, and Costas J Spanos. Towards efficient data valuation based on292

the shapley value. In The 22nd International Conference on Artificial Intelligence and Statistics,293

pages 1167–1176. PMLR, 2019.294

[9] Bojan Karlaš, David Dao, Matteo Interlandi, Bo Li, Sebastian Schelter, Wentao Wu, and295

Ce Zhang. Data debugging with shapley importance over end-to-end machine learning pipelines.296

arXiv preprint arXiv:2204.11131, 2022.297

[10] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep298

bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pages299

4171–4186, 2019.300

[11] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. General-301

ization through memorization: Nearest neighbor language models. In International Conference302

on Learning Representations, 2019.303

[12] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.304

2009.305

[13] Yongchan Kwon and James Zou. Beta shapley: a unified and noise-reduced data valuation306

framework for machine learning. In International Conference on Artificial Intelligence and307

Statistics, pages 8780–8802. PMLR, 2022.308

[14] Weixin Liang, Kai-Hui Liang, and Zhou Yu. Herald: An annotation efficient method to detect309

user disengagement in social conversations. In Proceedings of the 59th Annual Meeting of310

the Association for Computational Linguistics and the 11th International Joint Conference on311

Natural Language Processing (Volume 1: Long Papers), pages 3652–3665, 2021.312

[15] Weixin Liang, James Zou, and Zhou Yu. Beyond user self-reported likert scale ratings: A313

comparison model for automatic dialog evaluation. In Proceedings of the 58th Annual Meeting314

of the Association for Computational Linguistics, pages 1363–1374, 2020.315

[16] Yihua Liao and V Rao Vemuri. Use of k-nearest neighbor classifier for intrusion detection.316

Computers & security, 21(5):439–448, 2002.317

7



[17] Jinkun Lin, Anqi Zhang, Mathias Lécuyer, Jinyang Li, Aurojit Panda, and Siddhartha Sen.318

Measuring the effect of training data on deep learning predictions via randomized experiments.319

In International Conference on Machine Learning, pages 13468–13504. PMLR, 2022.320

[18] Rory Mitchell, Joshua Cooper, Eibe Frank, and Geoffrey Holmes. Sampling permutations for321

shapley value estimation. 2022.322

[19] Curtis G Northcutt, Anish Athalye, and Jonas Mueller. Pervasive label errors in test sets323

destabilize machine learning benchmarks. In Thirty-fifth Conference on Neural Information324

Processing Systems Datasets and Benchmarks Track (Round 1), 2021.325

[20] OpenAI. Planning for agi and beyond. https://openai.com/blog/326

planning-for-agi-and-beyond, 2023.327

[21] Konstantin D Pandl, Fabian Feiland, Scott Thiebes, and Ali Sunyaev. Trustworthy machine328

learning for health care: scalable data valuation with the shapley value. In Proceedings of the329

Conference on Health, Inference, and Learning, pages 47–57, 2021.330

[22] Lloyd S Shapley. A value for n-person games. Contributions to the Theory of Games, 2(28):307–331

317, 1953.332

[23] Dongsub Shim, Zheda Mai, Jihwan Jeong, Scott Sanner, Hyunwoo Kim, and Jongseong Jang.333

Online class-incremental continual learning with adversarial shapley value. In Proceedings of334

the AAAI Conference on Artificial Intelligence, volume 35, pages 9630–9638, 2021.335

[24] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.336

Glue: A multi-task benchmark and analysis platform for natural language understanding. In337

International Conference on Learning Representations, 2018.338

[25] Jiachen T Wang and Ruoxi Jia. Data banzhaf: A robust data valuation framework for machine339

learning. In International Conference on Artificial Intelligence and Statistics, pages 6388–6421.340

PMLR, 2023.341

[26] Jiachen T Wang and Ruoxi Jia. A note on" efficient task-specific data valuation for nearest342

neighbor algorithms". arXiv preprint arXiv:2304.04258, 2023.343

[27] Jiachen T Wang and Ruoxi Jia. A note on" towards efficient data valuation based on the shapley344

value”. arXiv preprint arXiv:2302.11431, 2023.345

[28] Jiachen T Wang, Yuqing Zhu, Yu-Xiang Wang, Ruoxi Jia, and Prateek Mittal. Threshold346

knn-shapley: A linear-time and privacy-friendly approach to data valuation. arXiv preprint347

arXiv:2308.15709, 2023.348

[29] Tianhao Wang, Johannes Rausch, Ce Zhang, Ruoxi Jia, and Dawn Song. A principled approach349

to data valuation for federated learning. In Federated Learning, pages 153–167. Springer, 2020.350

[30] Mark Warner. Warner & hawley introduce bill to force social media companies to disclose how351

they are monetizing user data. Government Document, 2019.352

[31] Zhaoxuan Wu, Yao Shu, and Bryan Kian Hsiang Low. Davinz: Data valuation using deep353

neural networks at initialization. In International Conference on Machine Learning, pages354

24150–24176. PMLR, 2022.355

[32] Wenchao Xing and Yilin Bei. Medical health big data classification based on knn classification356

algorithm. IEEE Access, 8:28808–28819, 2019.357

[33] Tom Yan and Ariel D Procaccia. If you like shapley then you’ll love the core, 2020.358

8

 https://openai.com/blog/planning-for-agi-and-beyond 
 https://openai.com/blog/planning-for-agi-and-beyond 
 https://openai.com/blog/planning-for-agi-and-beyond 


A Data Shapley for Weighted KNN Binary Classifiers359

In this section, we use V to denote the discretized space of [0, 1], where we create 2b equally spaced360

points within the interval when we use b bits for discretization. We denote V := |V| = 2b the size361

of the weight space. Furthermore, we use V(K) to denote the discretized space of [0,K] (where we362

create K2b equally spaced points within the interval). We use NBx(val),K(S) to denote the set of data363

points that is within the K-nearest neighbors of x(val) among S.364

Utility Function for Weighted Hard-Label KNN Classifiers. The utility function of weighted365

hard-label KNN can be written as366

v(S; z(val)) = 1

y(val) ∈ argmax
c∈C

min(K,|S|)∑
j=1

w
α

(S,j)

x(val)

1[y
α

(S,j)

x(val)

= c]

 (4)

where C = {1, . . . , C} is the space of classes, and C is the number of classes2. We omit the input367

of z(val) and simply write v(S) when the validation point is clear from the context. For binary368

classification, by taking w̃j := (21[y(val) = yj ]− 1)wj , we can rewrite the utility function in a more369

compact way:370

v(S) = 1

min(K,|S|)∑
j=1

w̃
α

(S,j)

x(val)

≥ 0

 (5)

A.1 Exact Shapley value Calculation371

A.1.1 Computing SV is a Counting Problem372

Given that the Shapley value is a weighted average of the marginal contribution v(S ∪ {zi})− v(S),373

we first study the expression of v(S ∪ {zi})− v(S) for a fixed subset S ⊆ D \ {zi} with the utility374

function in (5).375

Theorem 2. For any data point zi ∈ D and any subset S ⊆ D \ {zi}, the marginal contribution is376

v(S ∪ {zi})− v(S)

=



1 zi ∈ NBx(val),K(S ∪ {zi}), yi = y(val),
∑

zj∈S w̃j ∈ [−w̃i, 0) if |S| ≤ K − 1∑K−1
j=1 w̃

α
(S,j)

x(val)

∈
[
−wi,−w̃α

x(val) (S,K) ) if |S| ≥ K

−1 zi ∈ NBx(val),K(S ∪ {zi}), yi ̸= y(val),
∑

zj∈S w̃j ∈ [0,−w̃i) if |S| ≤ K − 1∑K−1
j=1 w̃

α
(S,j)

x(val)

∈
[
−w̃α

x(val) (S,K), −wi) if |S| ≥ K

0 Otherwise

From Theorem 2 and the formula of the Shapley value (Definition 1), we can reframe the problem of377

computing the Shapley value for a weighted, hard-label KNN-Shapley. This involves counting the378

following quantity:379

Definition 3. Let Gi,ℓ denote the count of subsets S ⊆ D \ zi of size ℓ that satisfy the conditions380

below:381

1. xi ∈ NBx(val),K(S ∪ {zi}).382

2. For yi = y(val):383

• If |S| = ℓ ≤ K − 1, then
∑

zj∈S w̃j ∈ [−w̃i, 0).384

• If |S| = ℓ ≥ K, then
∑K−1

j=1 w̃
α

(S,j)

x(val)

∈
[
−wi,−w̃α

x(val) (S,K) ).385

3. For yi ̸= y(val):386

2For the case of multiple classes having the same top counts, we assume the utility is 1 as long as y(val) is
among the majority classes.

9



• If |S| = ℓ ≤ K − 1, then
∑

zj∈S w̃j ∈ [0,−w̃i).387

• If |S| = ℓ ≥ K, then
∑K−1

j=1 w̃
α

(S,j)

x(val)

∈
[
−w̃α

x(val) (S,K), −wi).388

Theorem 4. For a weighted, hard-label KNN binary classifier using the utility function given by (5),389

the Shapley value can be expressed as:390

ϕzi =
21[yi = y(val)]− 1

N

N−1∑
ℓ=0

(
N − 1

ℓ

)−1

Gi,ℓ (6)

Proof. This immediately follows from the definition of the Shapley value.391

A.1.2 Computing Gi,ℓ via Dynamic Programming392

In this section, we show how to compute Gi,ℓ with dynamic programming techniques. Before diving393

into the algorithm, we first introduce an intermediary quantity that serves as the crux of our dynamic394

programming formulation.395

Definition 5. Let Fi [m, ℓ, s] denote the count of subsets S ⊆ D \ {zi} of size ℓ that satisfy the396

conditions below:397

1. xi ∈ NBx(val),K(S ∪ {zi}).398

2. Within S, the data point zm is the min(ℓ,K)-th closest to the query example x(val).399

3.
∑min(ℓ,K−1)

j=1 w̃
α

(S,j)

x(val)

= s.400

We can relate this auxiliary quantity to our desired Gi,ℓ as follows:401

Theorem 6 (Relation between Gi,ℓ and Fi). For yi = y(val), we can compute Gi,ℓ from Fi as follows:402

Gi,ℓ =

{∑
m∈[N ]\i

∑
s∈[−w̃i,0)

Fi [m, ℓ, s] for ℓ ≤ K − 1,∑
m∈[N ]\i

∑
s∈[−w̃i,−w̃m) Fi [m, ℓ, s] for ℓ ≥ K.

For yi ̸= y(val), we have:403

Gi,ℓ =

{∑
m∈[N ]\i

∑
s∈[0,−w̃i)

Fi [m, ℓ, s] for ℓ ≤ K − 1,∑
m∈[N ]\i

∑
s∈[−w̃m,−w̃i)

Fi [m, ℓ, s] for ℓ ≥ K.

Proof. This follows immediately from the definition of Gi,ℓ.404

When K > 1,3 it is easy to see that for ℓ = 1 have405

Fi[m, 1, s] =

{
1 s = wm

0 s ̸= wm

We can then compute Fi[m, ℓ, s] for ℓ ≥ 2 with the following theorem:406

Theorem 7. We have the following recursive relation of Fi[m, ℓ, s].407

1. Case of ℓ ≤ K − 1:408

Fi[m, ℓ, s] =

m−1∑
t=1

Fi[t, ℓ− 1, s− wm] (7)

2. Case of ℓ ≥ K:409

3Since [7] has shown that weighted KNN-Shapley can be computed in O(NK) time complexity, we focus
on the setting where K > 1.

10



(a) When m < i: Fi[m, ℓ, s] = 0.410

(b) When m > i: Fi[m, ℓ, s] =
∑m−1

t=1,t̸=i Fi[t,K − 1, s]
(
N−m
ℓ−K

)
.411

So far, it seems that a simple solution would be first use the recursive formula in (7) to compute412

Fi[·, ℓ, ·] for ℓ ≤ K−1, and then use the explicit formula in Theorem 7 to compute Fi[·, ℓ, ·] for ℓ ≥ K.413

This renders an O(N2V ) runtime to compute Fi[m, ℓ, s] for all of m = 1, . . . , N, ℓ = 1, . . . ,K, s ∈414

V. However, it is possible to further improve the computational efficiency by circumventing explicit415

computations for Fi[·, ℓ, ·], ℓ ≥ K. Specifically, after we compute Fi[m,K − 1, s], there is in fact a416

short-cut formula to directly compute the summation of
∑N−1

ℓ=K
Gi,ℓ

(N−1
ℓ )

.417

Theorem 8. For a weighted, hard-label KNN binary classifier using the utility function given by (5),418

the Shapley value can be expressed as:419

ϕzi =
21[yi = y(val)]− 1

N

K−1∑
ℓ=0

(
N − 1

ℓ

)−1

Gi,ℓ +
N∑

m=max(i+1,K+1)

Ri,m

(
m− 1

K

)−1
N

m

 (8)

where Ri,m :=

{∑m−1
t=1

∑
s∈[−w̃i,−w̃m) Fi[t,K − 1, s] for yi = y(val)∑m−1

t=1

∑
s∈[−w̃m,−w̃i)

Fi[t,K − 1, s] for yi ̸= y(val)
.420

Based on the above findings, we develop Algorithm 1 for computing the exact Shapley value for421

weighted KNN binary classifier. While Algorithm 1 itself does not achieve the time complexity422

of O(K2N2), we note that the for-loops for computing Fi and Ri,m can be further optimized, and423

we show the version of pseudocode that optimize for the computational efficiency Algorithm 2 in424

Appendix C. Nevertheless, we put the more readable (but less efficient) version of the pseudocode425

here for the ease of reader’s understanding.426

Theorem 9. Algorithm 2 (in Appendix C) computes the exact Shapley value and achieves O(K2N2V )427

time complexity.428

11



Algorithm 1 Weighted KNN-Shapley for binary classification (reader-friendly version)

1: Input:
• K – hyperparameter of weighted KNN algorithm.
• z(val) = (x(val), y(val)) – the validation point.
• D = {zi = (xi, yi)}Ni=1 – sorted training set where d(xi, x

(val)) ≤ d(xj , x
(val)) for any

i ≤ j.
• M⋆ – hyperparameter for SV approximation (Section A.2). M⋆ = N for exact SV

calculation.
2:
3: Compute the weight wi = ωx(val)(xi) for i ∈ {1, . . . , N}.
4: w̃j = (21[y(val) = yj ]− 1)wj for i ∈ {1, . . . , N}.
5:
6: for i ∈ {1, . . . , N} do
7:
8: // Initialize Fi
9: Initialize Fi[m, ℓ, s] = 0 for m ∈ {1, . . . ,M⋆}, ℓ ∈ {1, . . . ,K − 1}, s ∈ V(K).

10: for m ∈ {1, . . . ,M⋆} \ {i} do
11: Fi[m, 1, w̃m] = 1

12:
13: // Compute Fi (Runtime-optimized version in Appendix C)
14: for ℓ ∈ {2, . . . ,K − 1} do
15: for m ∈ {ℓ, . . . ,M⋆} \ {i} do
16: for s ∈ V(K) do
17: Fi[m, ℓ, s] =

∑m−1
t=1 Fi[t, ℓ− 1, s− w̃m]

18:
19: // Compute Ri,m (Runtime-optimized version in Appendix C)
20: for m ∈ {max(i+ 1,K + 1), . . . ,M⋆} do

21: Ri,m =

{∑m−1
t=1

∑
s∈[−w̃i,−w̃m) Fi[t,K − 1, s] for yi = y(val)∑m−1

t=1

∑
s∈[−w̃m,−w̃i)

Fi[t,K − 1, s] for yi ̸= y(val)

22:
23: // Compute Gi,ℓ
24: Gi,0 = 1[wi < 0].a
25: for ℓ ∈ {1, . . . ,K − 1} do

26: Gi,ℓ =

{∑
m∈[M⋆]\i

∑
s∈[−w̃i,0)

Fi [m, ℓ, s] for yi = y(val)∑
m∈[M⋆]\i

∑
s∈[0,−w̃i)

Fi [m, ℓ, s] for yi ̸= y(val)

27:
28: // Compute the Shapley value for zi

29: ϕzi = sign(wi)

[
1
N

∑K−1
ℓ=0

Gi,ℓ
(N−1

ℓ )
+
∑M⋆

m=max(i+1,K+1)
Ri,m

m(m−1
K )

]
.b

aRecall that we define v(S) = 1

[∑min(K,|S|)
j=1 w̃(j) ≥ 0

]
, hence v({zi})− v(∅) ∈ {−1, 0} and is equal to

−1 if and only if wi < 0.

bsign(w) =


1 w > 0

0 w = 0

−1 w < 0

.

12



A.2 Deterministic Approximation for Weighted KNN-Shapley429

The overall time complexity for computing exact WKNN-Shapley with Algorithm 2 is O(K2N2).430

In this section, we show that if we only require an approximation of the Shapley value, we can431

significantly speed up the Shapley value calculation.432

Intuition of approximation technique. From Theorem 7, we know that in order to compute433

Fi[m, ℓ, s], we only need to know Fi[t, ℓ − 1, s] with t ≤ m − 1. Moreover, observe that the434

building blocks for Gi,ℓ (or Ri,m),
∑

s∈[−w̃i,0)
Fi[t, ℓ, s] (or

∑
s∈[−w̃i,−w̃m) Fi[t,K − 1, s]), can be435

considerably smaller than their counterpart that takes the summation over the entire range of V.436

Hence, we can use F̂i[m, ℓ, s] = 0 as an approximation for Fi[m, ℓ, s] for all m ≥ M⋆ + 1 with437

some prespecified threshold M⋆. Similarly, we can use R̂i,m = 0 as an approximation for Ri,m for all438

m ≥ M⋆ + 1. The resultant simple approximation for the Shapley value ϕzi is stated as follows:439

Definition 10. We define the approximation ϕ̂
(M⋆)
zi as440

ϕ̂(M⋆)
zi := sign(wi)

 1

N

K−1∑
ℓ=0

G̃i,ℓ(
N−1
ℓ

) + M⋆∑
m=max(i+1,K+1)

Ri,m

(
1

m

)(
m− 1

K

)−1
 (9)

where G̃i,ℓ :=

{∑M⋆

m=1

∑
s∈[−w̃i,0)

Fi [m, ℓ, s] for yi = y(val)∑M⋆

m=1

∑
s∈[0,−w̃i)

Fi [m, ℓ, s] for yi ̸= y(val)
.441

Following this approximation methodology, it is only necessary to compute Fi[m, ℓ, s] and Ri,m442

for 1 ≤ m ≤ M⋆, thereby reducing the runtime of Algorithm 1 to O(K2NM⋆V ) with mini-443

mal modification to the original algorithm. In the following, we derive the error bound of this444

approximation.445

Theorem 11. For any i = 1, . . . , N , the approximated Shapley value ϕ̂
(M⋆)
zi has the property of446 ∣∣∣ϕ̂(M⋆)

zi

∣∣∣ ≤ |ϕzi | and the approximation error is bounded by
∣∣∣ϕ̂(M⋆)

zi − ϕi

∣∣∣ ≤ ε(M⋆) where447

ε(M⋆) :=

N∑
m=M⋆+1

(
1

m−K
− 1

m

)
+

1

N

K−1∑
ℓ=1

(
N
ℓ

)
−
(
M⋆

ℓ

)(
N−1
ℓ

) = O

(
K

M⋆

)

Determining the Interval for Exact Shapley Value. Given the nice property that |ϕ̂(M⋆)
zi | ≤ |ϕzi |448

and taking into account that ϕ̂(M⋆)
zi and ϕzi invariably share the same sign, we can pinpoint a449

deterministic interval within which ϕzi always resides based on the error bound in Theorem 11.450

Specifically, when yi = y(val), we have ϕzi ∈
[
ϕ̂
(M⋆)
zi , ϕ̂

(M⋆)
zi + ε(M⋆)

]
, and when yi ̸= y(val), we451

have452

ϕzi ∈
[
ϕ̂(M⋆)
zi − ε(M⋆), ϕ̂(M⋆)

zi

]
(10)

The quality of the approximation of ϕ̂(M⋆)
zi is empirically studied in Section 5 and Appendix D.3.453

Preservation of Shapley Axioms for approximated WKNN-Shapley. The Shapley value’s ax-454

iomatic properties, particularly the Symmetry and Null Player axioms, are of paramount importance455

for upholding fairness when attributing value to individual players. These fundamental axioms456

have fostered widespread adoption of the Shapley value in various domains including data valuation457

and feature attribution. A credible approximation of the Shapley value, therefore, must preserve at458

least the Symmetry and Null Player axioms to ensure that the principal motivations for employing459

the Shapley value—fairness and equity—are not diminished. The prevalent Monte Carlo-based460

approximation techniques give randomized solutions and arguably muddy the clarity of Shapley461

value’s axioms [8]. On the contrary, our deterministic approximation presented in Definition 10462

preserves both pivotal axioms, as we show in the following theorem:463

Theorem 12. The approximated Shapley value {ϕ̂(M⋆)
zi }zi∈D satisfies the Symmetry and Null Player464

axiom.465

Moreover, while acknowledging that our approximation may not explicitly align with or is ill-defined466

in the context of the Efficiency and Linearity axioms, we note both of the two axioms have been467

questioned about their indispensability in the realm of data valuation [33, 13].468

13



B Extension to multi-class classification setting469

B.1 Naive Extension from Binary Classification Setting470

We first discuss a simple, direct extension of our exact WKNN-Shapley algorithm from binary to471

multi-class classification setting. In Algorithm 1, the main idea is to maintain a record of Fi[m, ℓ, s]472

for a singular scalar value s which represents the summation of “signed weights” w̃j . In order to473

extend this approach to the multi-class setting, it is natural to enhance this scalar representation to a474

“histogram” depiction, Fi[m, ℓ, s], where s is the vector sum of weights for each data point, and the475

weights are in the form of one-hot encoding. That is, in the multi-class setting, Fi is augmented to476

record the number of subsets such that the sum of weights of the data points in the one-hot encoding477

is equal to the histogram s (subject to the conditions analog to those in Definition 5). While this direct478

extension can compute the exact Data Shapley for the utility function in (4), it has a time complexity479

of O(K1+CN2V C) as we need to record Fi[m, ℓ, s] for all possible histograms s ∈ VC(K). This is480

manageable for datasets with a modest size of class space. However, for datasets with a large class481

space, this complexity can render the runtime prohibitively large.482

B.2 Utility Function that Enables More Efficient Computation of WKNN-Shapley483

Due to the above-mentioned computational bottleneck, we introduce an alternative utility function for484

weighted KNN classifiers, which not only reflects the KNN classifiers’ performance but also paves485

the way for a more efficient Data Shapley computation analogous to that of the binary setting.486

Alternative Utility Function for Weighted Hard-Label KNN Classifiers. For a class c ̸= y(val),487

we denote488

v(c)(S; z(val)) :=1

min(K,|S(c)|)∑
j=1

w
α

(S(c),j)

x(val)

1[y
α

(S(c),j)

x(val)

= y(val)]

≥
min(K,|S(c)|)∑

j=1

w
α

(S(c),j)

x(val)

1[y
α

(S(c),j)

x(val)

= c]

 (11)

where S(c) := {(x, y) ∈ S : y ∈ {y(val), c}} is the subset of S whose labels are either y(val) and c,489

and we propose an alternative utility function as follows:490

ṽ(S; z(val)) :=
1

C − 1

∑
c∈[C]\y(val)

v(c)(S(c); z(val)) (12)

Note that for binary classifiers, the new utility function ṽ reduces to the original v. Interpretation of491

the Alternative Utility Function: The alternative utility function, ṽ, captures a fine-grained view492

of the classifier’s performance. Instead of just deciding based on whether a prediction is correct as493

the original utility function in (4), it assesses the rank of the prediction confidence for the correct494

class, y(val), among all potential class predictions in the weighted KNN classifier. Hence, ṽ provides495

insight into not just the correctness, but also the relative confidence of a prediction with respect to496

other classes.497

Data Shapley for ṽ. The linearity axiom of the Shapley value provides that498

ϕzi(ṽ) =
1

C − 1

∑
c∈[C]\y(val)

ϕzi(v
(c))

Furthermore, observe that v(c) can be equivalently rewritten in a more compact way:499

v(c)(S) = 1

min(K,|S|)∑
j=1

w̃
α

(S,j)

x(val)

≥ 0

 (13)

where w̃i =


wi yi = y(val)

−wi yi = c

0 otherwise
. This formulation (13) mirrors the structure of (5), differing only in500

the weight definition w̃i. This similarity means that Algorithm 1 can be easily adapted to compute the501

14



Shapley value ϕzi(v
(c)). Hence, we can first compute ϕzi(v

(c)) for each c ∈ [C] \ y(val) individually,502

and then aggregate these values. While this might imply an inevitable factor of C in the computational503

complexity, efficiency gains can be made. Specifically, every data point zi with yi /∈ {y(val), c} has504

a weight wi = 0. Hence it is a null player that yields a Shapley value of ϕzi(v
(c)) = 0. Moreover,505

a simple result from the literature is that excluding null players does not affect the Shapley values506

of other players (see Theorem 5 in [27]). Hence, we can instead compute the Shapley value for a507

more simplified utility function that is the same as (13) but narrow to the subset Dy(val),c ⊆ D that508

comprises only data points labeled y(val) or c. As a result, the computational time to compute the509

Shapley value for v(c) reduces to O(K|Dy(val),c|2V ). This provides a huge runtime saving when the510

dataset is balanced.511

Theorem 13. For a class-balanced training dataset D with C classes, the time complexity is512

{ϕzi(ṽ)}zi∈D is O(K
2N2V
C ).513

Remarkably, this methodology is even more efficient than its binary classification counterpart.514

15



C Detailed Pseudo-code used in Implmentation515

Algorithm 2 Weighted KNN-Shapley for binary classification (reader-friendly version)

1: Input:
• K – hyperparameter of weighted KNN algorithm.
• z(val) = (x(val), y(val)) – the validation point.
• D = {zi = (xi, yi)}Ni=1 – sorted training set where d(xi, x

(val)) ≤ d(xj , x
(val)) for any

i ≤ j.
• M⋆ – hyperparameter for SV approximation (Section A.2). M⋆ = N for exact SV

calculation.
2:
3: Compute the weight wi = ωx(val)(xi) for i ∈ {1, . . . , N}.
4: w̃j = (21[y(val) = yj ]− 1)wj for i ∈ {1, . . . , N}.
5:
6: for i ∈ {1, . . . , N} do
7:
8: // Initialize Fi
9: Initialize Fi[m, ℓ, s] = 0 for m ∈ {1, . . . ,M⋆}, ℓ ∈ {1, . . . ,K − 1}, s ∈ V(K).

10: for m ∈ {1, . . . ,M⋆} \ {i} do
11: Fi[m, 1, w̃m] = 1

12:
13: // Compute Fi (Runtime-optimized version)
14: for ℓ ∈ {2, . . . ,K − 1} do
15: F0[:] =

∑ℓ−1
t=1 Fi[t, ℓ− 1, :]

16: for m ∈ {ℓ, . . . ,M⋆} \ {i} do
17: for s ∈ V(K) do
18: Fi[m, ℓ, s] = F0[s− wm]

19:
20: // Compute Ri,m (Runtime-optimized version)
21: for s ∈ V(K) do
22: R0[s] =

∑max(i+1,K+1)−1
t=1,t̸=i Fi[t,K − 1, s].

23: for m ∈ {max(i+ 1,K + 1), . . . ,M⋆} do

24: Ri,m =

{∑
s∈[−w̃i,−w̃m) R0[s] for yi = y(val)∑
s∈[−w̃m,−w̃i)

R0[s] for yi ̸= y(val)

25: R0 = R0 + Fi[m,K − 1, :]

26:
27: // Compute Gi,ℓ
28: Gi,0 = 1[wi < 0].a
29: for ℓ ∈ {1, . . . ,K − 1} do

30: Gi,ℓ =

{∑
m∈[M⋆]\i

∑
s∈[−w̃i,0)

Fi [m, ℓ, s] for yi = y(val)∑
m∈[M⋆]\i

∑
s∈[0,−w̃i)

Fi [m, ℓ, s] for yi ̸= y(val)

31:
32: // Compute the Shapley value for zi

33: ϕzi = sign(wi)

[
1
N

∑K−1
ℓ=0

Gi,ℓ
(N−1

ℓ )
+
∑M⋆

m=max(i+1,K+1)
Ri,m

m(m−1
K )

]
.b

aRecall that we define v(S) = 1

[∑min(K,|S|)
j=1 w̃(j) ≥ 0

]
, hence v({zi})− v(∅) ∈ {−1, 0} and is equal to

−1 if and only if wi < 0.

bsign(w) =


1 w > 0

0 w = 0

−1 w < 0

.

16



D Evaluation Settings & Additional Experiments516

D.1 Experiment Settings517

In Section 5 in the main text, the weights used in KNN are based on ℓ2 distance between the training518

point and queried example, and then normalize all weights to [0, 1]. That is, the weight function519

ωx(val)(xi) :=

∥∥xN − x(val)
∥∥− ∥∥xi − x(val)

∥∥∥∥xN − x(val)
∥∥− ∥∥x1 − x(val)

∥∥
The weights are then discretized by rounding to the nearest values that can be represented with b bits.520

We set the number of bits b = 3 in all experiments unless explicitly specified.521

D.2 Error From Discretization522

We empirically study the difference between WKNN-Shapley computed based on the original contin-523

uous weights and the discretized weights. However, for continuous weights, it is computationally524

infeasible to compute the exact Data Shapley. Therefore, we instead look at the computed Shapley525

values’ difference when using b bits and b+ 1 bits for b = 1, 2, . . .. Figure 2 shows the results for ℓ2526

and ℓ∞ error. We have two observations here: (1) The error converges quickly as b increases and is527

near zero after b ≥ 5. (2) The larger the dataset size N is, the smaller the error is. This interesting528

phenomenon is because the errors are dominated by the differences in the Shapley value computed529

for influential data points. When the dataset size is small, there are more influential data points since530

the performance of models trained on different data subsets can be significantly different from each531

other. On the other hand, when the dataset size is larger, there will be fewer influential points since532

most of the data subsets have a high utility (see Figure 3 for the visualization of the comparison533

between the distribution of data value scores).534

Figure 2: Convergence of the discretization error with the number of bits growth. The y-axis shows
the ℓ2 or ℓ∞ norm of the difference between the Shapley values computed based on b bits and b+ 1
bits. The lower, the better. We use Fraud dataset from OpenML [3], and we use K = 5 here.

D.3 Error from Approximation535

To visualize the quality of our approximation ϕ̂
(M⋆)
zi , Figure 4 provides a comparison between the536

exact Shapley value ϕzi , and approximation ϕ̂
(M⋆)
zi , as well as the range introduced by Theorem537

11. The figure shows that the true value always lies within the predicted range, which validates the538

correctness of our result. Moreover, we can see that even though the approximation ϕ̂
(M⋆)
zi represents539

one end of the predicted range, the true value often comes with remarkable proximity to ϕ̂
(M⋆)
zi . It540

empirically reinforces our initial intuition: the building blocks for Gi,ℓ (or Ri,m),
∑

s∈[−w̃i,0)
Fi[t, ℓ, s]541

(or
∑

s∈[−w̃i,−w̃m) Fi[t,K − 1, s]), are often substantially more restrained in magnitude compared to542

their counterparts that encompass the entirety of V.543

17



Figure 3: Distributions of WKNN-Shapley on different sizes of the subset of Fraud dataset from
OpenML [3] (the number of bits for discretization b = 5 and K = 5).

Figure 4: Visualization of the comparison between the exact and approximated WKNN-Shapley
value on three OpenML datasets (Fraud, 2DPlanes, and Pol), as well as the interval devised by the
approximation algorithm in (10). The red line corresponds to the exact WKNN-Shapley, and the
orange line corresponds to the approximated WKNN-Shapley in (9), which is also . We adjust the
value of M⋆ so that the error range ε = 0.2 for all three datasets.

E Missing Proofs544

Theorem 14 (Restate of Theorem 2). For any data point zi ∈ D and any subset S ⊆ D \ {zi}, the545

marginal contribution is546

v(S ∪ {zi})− v(S)

=



1 zi ∈ NBx(val),K(S ∪ {zi}), yi = y(val),
∑

zj∈S w̃j ∈ [−w̃i, 0) if |S| ≤ K − 1∑K−1
j=1 w̃α

x(val) (S,j) ∈
[
−wi,−w̃α

x(val) (S,K) ) if |S| ≥ K

−1 zi ∈ NBx(val),K(S ∪ {zi}), yi ̸= y(val),
∑

zj∈S w̃j ∈ [0,−w̃i) if |S| ≤ K − 1∑K−1
j=1 w̃α

x(val) (S,j) ∈
[
−w̃α

x(val) (S,K), −wi) if |S| ≥ K

0 Otherwise

Proof. First of all, we observe that if zi /∈ NBx(val),K(S ∪ {zi}), i.e., if zi is not within the K nearest547

neighbors of the queried example x(val) among the subset S ∪ {zi}, then the prediction of KNN548

classifier does not change, and hence we know that v(S ∪ {zi}) = v(S).549

If zi ∈ NBx(val),K(S∪{zi}), we divide into two cases: 1 If |S| ≤ K−1 we know that adding zi will550

not exclude any other data point from the K nearest neighbors of x(val). Hence v(S∪{zi})−v(S) = 1551

if yi = y(val) and
∑

zj∈S w̃j ∈ [−w̃i, 0), and v(S ∪ {zi}) − v(S) = −1 if yi ̸= y(val) and552 ∑
zj∈S w̃j ∈ [0,−w̃i). 2 If |S| ≥ K we know that adding zi will exclude the original Kth553

nearest neighbors of x(val) among dataset S. Hence, v(S ∪ {zi}) − v(S) = 1 if yi = y(val) and554

18



∑K−1
j=1 w̃α

x(val) (S,j) ∈
[
−wi,−w̃α

x(val) (S,K) ), and v(S ∪ {zi}) − v(S) = −1 if yi ̸= y(val) and555 ∑K−1
j=1 w̃α

x(val) (S,j) ∈
[
−w̃α

x(val) (S,K), −wi).556

Theorem 15 (Restate of Theorem 7). We have the following recursive relation of Fi[m, ℓ, s].557

1. Case of ℓ ≤ K − 1:558

Fi[m, ℓ, s] =

m−1∑
t=1

Fi[t, ℓ− 1, s− wm]

2. Case of ℓ ≥ K:559

(a) When m < i: Fi[m, ℓ, s] = 0.560

(b) When m > i: Fi[m, ℓ, s] =
∑m−1

t=1,t̸=i Fi[t,K − 1, s]
(
N−m
ℓ−K

)
.561

Proof. Case of ℓ ≤ K − 1: This is because the inclusion of xi in NBx(val),K(S ∪ {zi}) is guaranteed562

for this range of ℓ. Case of ℓ ≥ K: Taking into account that xm is the K-th nearest data point to563

x(val) within S and that zi invariably belongs to NBx(val),K(S ∪ {zi}) because i < m.564

Theorem 16 (Restate of Theorem 8). For a weighted, hard-label KNN binary classifier using the565

utility function given by (5), the Shapley value can be expressed as:566

ϕzi =
21[yi = y(val)]− 1

N

K−1∑
ℓ=0

(
N − 1

ℓ

)−1

Gi,ℓ +
N∑

m=max(i+1,K+1)

Ri,m

(
m− 1

K

)−1
N

m


where Ri,m :=

{∑m−1
t=1

∑
s∈[−w̃i,−w̃m) Fi[t,K − 1, s] for yi = y(val)∑m−1

t=1

∑
s∈[−w̃m,−w̃i)

Fi[t,K − 1, s] for yi ̸= y(val)
.567

Proof. We state the proof for the case where yi = y(val), and the proof for the case where yi ̸= y(val)568

is nearly identical. Recall that569

Gi,ℓ =

{∑
m∈[N ]\i

∑
s∈[−w̃i,0)

Fi [m, ℓ, s] ℓ ≤ K − 1∑
m∈[N ]\i

∑
s∈[−w̃i,−w̃m) Fi [m, ℓ, s] ℓ ≥ K

if yi = y(val).570

When ℓ ≥ K, we have571

Gi,ℓ =
∑

m∈[N ]\i

∑
s∈[−w̃i,−w̃m)

Fi [m, ℓ, s]

=

N∑
m=max(i+1,K+1)

∑
s∈[−w̃i,−w̃m)

Fi [m, ℓ, s]

=

N∑
m=max(i+1,K+1)

∑
s∈[−w̃i,−w̃m)

(
N −m

ℓ−K

) m−1∑
t=1,t̸=i

Fi[t,K − 1, s]

=

N∑
m=max(i+1,K+1)

(
N −m

ℓ−K

) ∑
s∈[−w̃i,−w̃m)

m−1∑
t=1,t̸=i

Fi[t,K − 1, s]

=

N∑
m=max(i+1,K+1)

(
N −m

ℓ−K

)
Ri,m

where Ri,m =
∑

s∈[−w̃i,−w̃m)

∑m−1
t=1,t̸=i Fi[t,K − 1, s].572

19



N−1∑
ℓ=K

Gi,ℓ(
N−1
ℓ

) =

N−1∑
ℓ=K

N∑
m=max(i+1,K+1)

(
N−m
ℓ−K

)
Ri,m(

N−1
ℓ

)
=

N∑
m=max(i+1,K+1)

Ri,m
N−1∑
ℓ=K

(
N−m
ℓ−K

)(
N−1
ℓ

)
=

N∑
m=max(i+1,K+1)

Ri,m

(
N−1∑
ℓ=K

(
m−1
K

)(
N−m
ℓ−K

)(
N−1
ℓ

) )(
m− 1

K

)−1

=

N∑
m=max(i+1,K+1)

Ri,m

(
N

m

)(
m− 1

K

)−1

573

Theorem 17 (Restate of Theorem 9). Algorithm 2 (in Appendix C) computes the exact Shapley value574

and achieves O(K2N2V ) time complexity.575

Proof. It is easy to see that the for-loop for computing Fi for ℓ ≤ K requires a runtime of576

O(KN |V(K)|). The for-loop for computing Ri,m requires a runtime of O(N |V(K)|). The for-loop577

for computing Gi,ℓ for ℓ ≤ K requires a runtime of O(KN |V(K)|). All of these subroutines are578

included in the outside for-loop for computing ϕzi for all zi ∈ D. Hence, the overall runtime is579

O(KN2|V(K)|) = O(K2N2V ).580

Theorem 18 (Restate of Theorem 11). For any i = 1, . . . , N , the approximated Shapley value ϕ̂(M⋆)
zi581

has the property of
∣∣∣ϕ̂(M⋆)

zi

∣∣∣ ≤ |ϕzi | and the approximation error is bounded by
∣∣∣ϕ̂(M⋆)

zi − ϕi

∣∣∣ ≤582

ε(M⋆) where583

ε(M⋆) :=

N∑
m=M⋆+1

(
1

m−K
− 1

m

)
+

1

N

K−1∑
ℓ=1

(
N
ℓ

)
−
(
M⋆

ℓ

)(
N−1
ℓ

) = O

(
K

M⋆

)

Proof. In the exact algorithm 1, we have584

ϕi =
1

N

K−1∑
ℓ=0

Gi,ℓ(
N−1
ℓ

)︸ ︷︷ ︸
(A)

+

N∑
m=max(i+1,K+1)

Ri,m

(
1

m

)(
m− 1

K

)−1

︸ ︷︷ ︸
(B)

First of all, note that585 ∑
s∈V

Fi [m, ℓ, s] =

(
m− 1− 1[i < m]

ℓ− 1

)
≤
(
m− 1

ℓ− 1

)
for any ℓ ≤ K since

∑
s∈V Fi [m, ℓ, s] is essentially the total number of subsets S ⊆ D \ zi of size ℓ586

where zm is the farthest data point to the query example x(val).587

Now, denote588

G̃i,ℓ :=
M⋆∑
m=1

∑
s∈[−w̃i,0)

Fi [m, ℓ, s]

20



for 1 ≤ ℓ ≤ K − 1. The gap between Gi,ℓ and G̃i,ℓ can be bounded as follows:589

∣∣G̃i,ℓ − Gi,ℓ
∣∣ = N∑

m=M⋆+1

∑
s∈[−w̃i,0)

Fi [m, ℓ, s]

≤
N∑

m=M⋆+1

∑
s∈V

Fi [m, ℓ, s]

≤
N∑

m=M⋆+1

(
m− 1

ℓ− 1

)

=

N∑
m=ℓ

(
m− 1

ℓ− 1

)
−

M⋆∑
m=ℓ

(
m− 1

ℓ− 1

)
=

(
N

ℓ

)
−
(
M⋆

ℓ

)
Now we bound the error from taking the approximation R̂i,m = 0 for m ≥ M⋆ + 1. Since we have590

Ri,m =

m−1∑
t=1

∑
s∈[−w̃i,−w̃m)

Fi[t,K − 1, s]

≤
m−1∑
t=1

(
t− 1

K − 2

)
=

(
m− 1

K − 1

)
Hence591

N∑
m=max(i+1,K+1,M⋆+1)

Ri,m

(
1

m

)(
m− 1

K

)−1

≤
N∑

m=max(i+1,K+1,M⋆+1)

(
m− 1

K − 1

)(
1

m

)(
m− 1

K

)−1

≤
N∑

m=M⋆+1

(
m− 1

K − 1

)(
1

m

)(
m− 1

K

)−1

=

N∑
m=M⋆+1

K

m(m−K)

=

N∑
m=M⋆+1

(
1

m−K
− 1

m

)

Hence, for any data point zi, we have592 ∣∣∣ϕ̂(M⋆)
zi − ϕi

∣∣∣ = 1

N

K−1∑
ℓ=0

∣∣Gi,ℓ − G̃i,ℓ
∣∣(

N−1
ℓ

) +

N∑
m=max(i+1,K+1,M⋆+1)

Ri,m

(
1

m

)(
m− 1

K

)−1

≤ 1

N

K−1∑
ℓ=1

(
N
ℓ

)
−
(
M⋆

ℓ

)(
N−1
ℓ

) +

N∑
m=M⋆+1

(
1

m−K
− 1

m

)
593

The popularity of the Shapley value is attributable to the fact that it is the unique data value notion594

satisfying the following four axioms [22]:595

• Null player: if v (S ∪ i) = v(S) for all S ⊆ N \ i, then ϕ (i; v) = 0.596

21



• Symmetry: if v(S ∪ i) = v(S ∪ j) for all S ⊆ N \ {i, j}, then ϕ(i; v) = ϕ(j; v).597

• Linearity: For utility functions v1, v2 and any α1, α2 ∈ R, ϕ (i;α1v1 + α2v2) = α1ϕ (i; v1)+598

α2ϕ (i; v2).599

• Efficiency: for every v,
∑

i∈N ϕ(i; v) = v(N).600

Among these axioms, linearity and efficiency are introduced for technical reasons and their necessity601

in machine learning has been questioned in the literature [33, 13]. On the other hand, Null player and602

Symmetry are generally interpreted as “fairness constraints”, which are natural and important for603

data valuation. Here, we show that our approximation algorithm developed in Section A.2604

Theorem 19 (Restate of Theorem 12). The approximated Shapley value {ϕ̂(M⋆)
zi }zi∈D satisfies the605

Symmetry and Null Player axiom.606

Proof. Null Player. If a data point zi is a null player (i.e., v(S ∪ zi) = v(S) for all S ⊆ D \ {zi}),607

then it must have Ri,m = 0 for all 0 ≤ m ≤ N and Gi,ℓ = 0 for all 0 ≤ ℓ ≤ N − 1. Since G̃i,ℓ ≤ Gi,ℓ,608

we know that G̃i,ℓ = 0 for all 0 ≤ ℓ ≤ N − 1. Hence, we have ϕ̂
(M⋆)
zi = 0.609

Symmetry. if two data points z1, z2 are symmetry (i.e., v(S ∪ z1) = v(S ∪ z2) for all S ⊆610

D \ {z1, z2}), then we must have G̃1,ℓ = G̃2,ℓ and R1,m = R2,m. Therefore, we have ϕ̂(M⋆)
z1 = ϕ̂

(M⋆)
z2 .611

612

22


	Introduction
	Preliminaries
	Data Shapley
	KNN-Shapley

	Baseline Algorithms & Challenges
	Baseline Algorithm for Computing Data Shapley for Weighted KNN Classifiers
	Challenges & Solutions

	Data Shapley for Weighted KNN Classifiers (Overview)
	Applications of WKNN-Shapley
	Conclusion
	Data Shapley for Weighted KNN Binary Classifiers
	Exact Shapley value Calculation
	Computing SV is a Counting Problem
	Computing Gi,  via Dynamic Programming

	Deterministic Approximation for Weighted KNN-Shapley

	Extension to multi-class classification setting
	Naive Extension from Binary Classification Setting
	Utility Function that Enables More Efficient Computation of WKNN-Shapley

	Detailed Pseudo-code used in Implmentation
	Evaluation Settings & Additional Experiments
	Experiment Settings
	Error From Discretization
	Error from Approximation

	Missing Proofs

