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Abstract001

Automatic post-editing (APE) aims to correct002
errors in machine-translated text, enhancing003
translation quality, while reducing the need for004
human intervention. Despite advances in neural005
machine translation (NMT), the development006
of effective APE systems has been hindered007
by the lack of large-scale multilingual datasets008
specifically tailored to NMT outputs. To ad-009
dress this gap, we present and release Lang-010
Mark, a new human-annotated multilingual011
APE dataset for English translation to seven lan-012
guages: Brazilian Portuguese, French, German,013
Italian, Japanese, Russian, and Spanish. The014
dataset has 206,983 triplets, with each triplet015
consisting of a source segment, its NMT out-016
put, and a human post-edited translation. An-017
notated by expert human linguists, our dataset018
offers both linguistic diversity and scale. Lever-019
aging this dataset, we empirically show that020
Large Language Models (LLMs) with few-shot021
prompting can effectively perform APE, im-022
proving upon leading commercial and even pro-023
prietary machine translation systems. We be-024
lieve that this new resource will facilitate the025
future development and evaluation of APE sys-026
tems.027

1 Introduction028

Machine translation has become increasingly effi-029

cient and effective thanks to the development of030

ever-larger transformer models (Vaswani, 2017).031

Recent advances in Large Language Models032

(LLMs) have significantly influenced the field, en-033

abling more fluent and contextually accurate trans-034

lations (Zhu et al., 2024; Zhang et al., 2023; Li035

et al., 2024; Briakou et al., 2024). Studies have036

shown that LLMs can match or even outperform037

specialized systems in various Natural Language038

Processing (NLP) tasks (Radford et al., 2019; Tou-039

vron et al., 2023; Wang et al., 2022).040

Despite these advances, machine-translated text041

often still contains errors that require correction to042

Launching innovative solutions
Source Text (English)

Lanzando soluciones innovadoras
Machine Translation (Spanish)

Presentando soluciones innovadoras
Post-Edit (Spanish)

Translation is accurate but implies a physical "launch", which doesn't fit the context

Adjusted to reflect the tone of a formal presentation, which aligns better with the intent

Figure 1: Example of a triplet in an automatic post-
editing task.

meet the quality standards expected in professional 043

translations. Automatic Post-Editing (APE) aims 044

to automatically correct these errors in MT output, 045

improving translation quality while reducing the 046

need for human intervention (Knight and Chander, 047

1994). Modern APE models take the source text 048

and machine-translated text as input and produce 049

the post-edited text with the necessary changes as 050

output. We refer to these components as triplets: 051

source, translated, and post-edited segments (see 052

Figure 1). 053

Recently, automatic post-editing has shown great 054

success on Statistical Machine Translation (SMT) 055

outputs (Junczys-Dowmunt and Grundkiewicz, 056

2018; Correia and Martins, 2019), even when 057

trained with a limited number of samples. However, 058

even strong APE models face significant challenges 059

(Chatterjee et al., 2019, 2018; Ive et al., 2020) due 060

to the already high quality of modern NMT sys- 061

tems. Junczys-Dowmunt and Grundkiewicz (2018) 062

concluded that the usefulness of “neural-on-neural 063

APE” was minimal, suggesting that the marginal 064

gains may not justify the effort. 065

However, Chollampatt et al. (2020a) demon- 066

strated that a fine-tuned transformer model has the 067

potential to improve upon the outputs of state-of- 068

the-art NMT systems. Their study introduced the 069
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Table 1: Number of triplets and average source, NMT
and Post Edited tokens (tokenized using tiktoken1) per
triplet for all languages in LangMark.

Locale Triplets Tokens Per Triplet (AVG)

Source NMT PE

EN-DE 33,308 16.12 21.73 21.72
EN-ES 32,799 16.58 20.80 21.16
EN-FR 33,027 16.38 22.16 22.35
EN-IT 32,512 16.42 23.47 23.71
EN-JP 28,170 15.26 26.34 27.30
EN-BR 31,981 16.52 20.36 20.30
EN-RU 8,648 14.90 20.40 21.23

SubEdits dataset, which contains approximately070

160,000 triplets but is limited to the English-071

German language pair. This highlights a gap in072

the availability of large-scale, multilingual datasets073

necessary to advance APE research on NMT out-074

puts.075

In an effort to address this gap, we intro-076

duce LangMark; a new multilingual, human-post-077

edited APE dataset comprising 206,983 triplets078

from English to seven languages: Brazilian Por-079

tuguese (BR), French (FR), German (DE), Italian080

(IT), Japanese (JP), Russian (RU), and Spanish081

(ES) (see Table 1). Each triplet consists of a source082

segment in English, its NMT output, and a human083

post-edited translation. Labeled by expert linguists,084

this dataset offers both linguistic diversity and scale,085

making it, to the best of our knowledge, the largest086

human-post-edited dataset for APE on NMT out-087

puts.088

Leveraging this dataset, we empirically show089

that LLMs with few-shot prompting can effectively090

perform APE, improving upon leading commer-091

cial and proprietary MT systems. Our experiments092

highlight the potential of combining large-scale,093

high-quality datasets with advanced LLMs to en-094

hance translation quality across multiple languages.095

Moreover, this work examines a critical aspect of096

APE: the model’s capability to discern whether a097

segment requires editing, which is often overlooked098

in prior research.099

The contributions of this work can be summa-100

rized as follows:101

1. We present and release LangMark, a new,102

human-annotated, multilingual dataset with103

over 200,000 triplets across seven languages,104

1https://github.com/openai/tiktoken

that serves as a strong benchmark for APE 105

tasks. 106

2. Leveraging this dataset, we show that LLMs 107

with few-shot prompting can effectively per- 108

form APE to improve upon NMT outputs even 109

from proprietary MT systems. 110

3. We provide a comprehensive analysis of the 111

dataset and the performance of LLMs on APE 112

tasks, offering insights for future research. 113

2 Related Work 114

This section reviews previous research on auto- 115

matic post-editing, focusing on recent advance- 116

ments involving Large Language Models. We also 117

examine retrieval methods for few-shot in-context 118

learning and discuss relevant datasets used for post- 119

editing tasks. 120

2.1 Automatic Post-Editing 121

Automatic post-editing aims to automatically cor- 122

rect errors in machine-translated text, improving 123

translation quality without human intervention. A 124

great amount of prior research has focused on the 125

development of neural models for the APE task (Vu 126

and Haffari, 2018; Shterionov et al., 2020; Chatter- 127

jee, 2019; Góis et al., 2020; Correia and Martins, 128

2019; Voita et al., 2019; Chollampatt et al., 2020b; 129

do Carmo et al., 2021). Shterionov et al. (2020) 130

presented a comprehensive roadmap for APE, high- 131

lighting challenges and potential directions for fu- 132

ture research. Chatterjee (2019) explored the use 133

of deep learning techniques for APE while Góis 134

et al. (2020) investigated the use of automatic or- 135

dering techniques to refine translations. Correia 136

and Martins (2019) proposed a simple yet effec- 137

tive neural model for APE using transfer learning, 138

demonstrating promising results. 139

Voita et al. (2019) introduced a context-aware 140

approach to APE, incorporating source context in- 141

formation into the neural model to generate more 142

accurate post-edits. Chollampatt et al. (2020b) ex- 143

amined the use of LLMs for APE to improve over- 144

all translation quality for NMT models, investigat- 145

ing the effects of various factors in the APE task. 146

do Carmo et al. (2021) provided an overview of 147

various techniques and approaches in the field of 148

APE, covering both traditional and neural-based 149

methods. Overall, these studies (and many refer- 150

ences therein) have explored different architectures, 151
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learning strategies, and contextual information in-152

tegration in neural models to improve the quality153

of post-edited translations.154

2.2 Leveraging Large Language Models for155

Post-Editing156

There has been growing interest in leveraging157

LLMs for post-editing. For example, Vidal et al.158

(2022) explored the use of GPT-3 for post-editing159

using glossaries, while Raunak et al. (2023) inves-160

tigated the use of GPT-4 for automatic post-editing161

of neural machine translation outputs. Their work162

focuses on rectifying errors in NMT outputs with-163

out preliminary quality assessment, aiming to en-164

hance translation quality directly.165

Ki and Carpuat (2024) further enhances machine166

translation by guiding large language models to167

post-edit MT outputs using fine-grained feedback168

from error annotations. Their experiments across169

multiple language pairs demonstrate that both zero-170

shot prompted and fine-tuned LLMs benefit from171

this approach, effectively addressing specific trans-172

lation errors and improving translation metrics.173

While these works make significant contribu-174

tions to the exploration of LLMs for post-editing,175

they do not constitute a benchmark for evaluating176

the multilingual post-editing capabilities of LLMs.177

In contrast, we believe that LangMark, coupled178

Dataset Lang. Size Domain

WMT’18 APE
(Chatterjee et al., 2018)

EN-DE 15K IT

WMT’19 APE
(Chatterjee et al., 2019)

EN-RU 17K IT

WMT’23 APE
(Bhattacharyya et al., 2023)

EN-MR 18K Mixed

QT21
(Specia et al., 2017)

EN-LV 21K Life Sciences

APE-QUEST
(Ive et al., 2020)

EN-NL
EN-FR
EN-PT

11K
10K
10K

Legal

SubEdits
(Chollampatt et al., 2020a)

EN-DE 161K Subtitles

eSCAPE (Artificial)
(Negri et al., 2018)

EN-DE
EN-IT
EN-RU

7.2M
3.3M
7.7M

Mixed

LangMark
(this work)

EN-DE
EN-ES
EN-FR
EN-IT
EN-JP
EN-BR
EN-RU

33.3K
32.7K
33.1K
32.5K
28.1K
31.9K
8.6K

Marketing

Table 2: Datasets for automatic post-editing on NMT
outputs. All but eSCAPE offer human labels.

with the experiments presented in this paper, can 179

serve as a robust benchmark for this purpose, en- 180

abling a more comprehensive assessment of LLM 181

performance across multiple languages. 182

2.3 Datasets for Automatic Post-Editing 183

Several datasets have been introduced to support 184

the development and evaluation of post-editing 185

methods. Early efforts in APE focused on sta- 186

tistical machine translation (SMT) outputs (Bojar 187

et al., 2015, 2016, 2017). These tasks provided 188

post-edited data on the order of 10,000 to 25,000 189

triplets. The largest collection of human post-edits 190

on SMT outputs was released by Zhechev (2012), 191

consisting of 30,000 to 410,000 triplets across 192

12 language pairs. While APE showed impres- 193

sive gains on SMT datasets (Junczys-Dowmunt, 194

2017; Tebbifakhr et al., 2018), its performance 195

on neural machine translation (NMT) outputs 196

showed less promising results, with only marginal 197

improvements (Chatterjee et al., 2019). 198

To improve APE performance on NMT outputs, 199

several studies proposed generating artificial APE 200

data (Junczys-Dowmunt and Grundkiewicz, 2016; 201

Freitag et al., 2019; Specia et al., 2017; Negri et al., 202

2018; Li et al., 2024) with moderate success. As 203

Neural Machine Translation (NMT) systems get 204

better the required post-edits become more nuanced 205

and thus harder to mimic using artificial data, mak- 206

ing human-annotated datasets more valuable. 207

The WMT APE shared tasks have provided 208

human-annotated datasets (Chatterjee et al., 2018, 209

2019), but these are relatively small, each compris- 210

ing less than 20,000 instances. Chollampatt et al. 211

(2020a) introduced the SubEdits dataset, which sig- 212

nificantly increased the number of instances to ap- 213

proximately 161,000. However, SubEdits is limited 214

to a single language pair, English to German, lack- 215

ing multilingual diversity. On the other hand, Negri 216

et al. (2018) proposed a dataset with a much larger 217

volume, but the edits are artificially generated and 218

there are no human annotations involved. Table 2 219

summarizes previous datasets and their sizes. 220

These datasets contribute valuable resources for 221

studying post-editing but are limited in linguistic 222

diversity or scale when providing human anno- 223

tations. In contrast, the dataset featured in this 224

work is a multilingual, human-annotated corpus 225

consisting of translations from English to seven 226

languages, with over 200,000 triplets. To the best 227

of our knowledge, LangMark is the largest multi- 228

lingual, human-annotated dataset for APE on NMT 229
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Table 3: Machine translation performance across languages for different NMT engines on all triplets of the
LangMark dataset.

MT Engine EN-DE EN-ES EN-FR EN-IT EN-JP EN-PT EN-RU

Metric CHRF TER↓ CHRF TER↓ CHRF TER↓ CHRF TER↓ CHRF TER↓ CHRF TER↓ CHRF TER↓

Google Translate 73.95 42.16 79.79 27.54 76.57 33.14 79.80 28.98 62.11 78.64 83.70 21.12 64.34 53.46
DeepL 73.03 43.15 75.01 33.70 74.74 36.27 76.96 33.05 55.26 91.52 83.93 22.68 67.74 47.41
Microsoft Translator 75.74 40.35 80.32 27.55 76.07 34.29 82.57 25.29 62.82 84.06 84.97 20.35 64.38 54.39
Amazon Translate 73.70 43.13 79.01 29.78 76.27 34.42 81.66 26.52 60.93 86.62 84.27 21.96 62.65 56.00

Proprietary MT (this dataset) 81.09 31.35 86.04 19.39 81.54 26.99 89.73 14.58 69.77 74.66 89.13 14.64 68.45 45.54

outputs.230

3 LangMark Dataset231

The absence of large-scale, multilingual, human-232

annotated corpora for post-editing NMT outputs233

presents a gap in the resources available for advanc-234

ing APE research. To address this limitation, we235

introduce LangMark, a new dataset comprising236

over 200,000 triplets across seven language pairs:237

English to Japanese (JA), Russian (RU), Brazil-238

ian Portuguese (BR), Spanish (ES), French (FR),239

Italian (IT), and German (DE).240

The LangMark dataset contains a large number241

of segments that require models to make nuanced242

edits, which makes it challenging as a benchmark.243

Neural Machine Translation (NMT) outputs in the244

dataset are often technically correct but fail to align245

with the intended context (see Figure 3). To suc-246

cessfully post-edit these samples the model has to247

demonstrate contextual understanding.248

3.1 Dataset Source249

The LangMark dataset is sourced from various250

Smartsheet2 documents, a platform designed for251

collaborative work management. These documents,252

which are marketing-related, were first segmented253

by a translation management system (TMS) into254

2https://www.smartsheet.com
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Figure 2: Distribution of word counts for the source
segments across languages.

Empowering Our People
Source Text (English)

Empoderando a nuestro pueblo
Machine Translation (Spanish)

Potenciar a nuestro personal
Post-Edit (Spanish)

Pitch
Source Text (English)

Pech
Machine Translation (German)

Verkaufsgespräch
Post-Edit (German)

Figure 3: Two triplets from the LangMark dataset.
These examples illustrate the nuanced nature of the re-
quired corrections. While the translations provided by
the NMT engine are not inherently incorrect, they are
inappropriate given the context of the source material
(official marketing documents). For example, “our peo-
ple” was misinterpreted as “our nation/community” in
Spanish, and “pitch” was translated based on the mean-
ing of “tar” in German instead of its intended meaning
in a business context.

intuitive units (often sentences or short phrases) 255

before translation. This standard industry practice 256

ensures efficient processing, storage, and transla- 257

tion workflows. The triplets were then randomly 258

selected from 967 unique files. 259

To protect sensitive information, we used 260

Google’s dlp3 tool, specifically designed to iden- 261

tify and remove personally identifiable information 262

(PII) and other sensitive data. We also removed 263

duplicate triplets for each language pair; apart from 264

this preprocessing step, the segments are presented 265

in their original form, reflecting the nature of real- 266

world industry data. We consider this characteristic 267

a positive feature, as it allows the evaluation of 268

model performance on authentic, unaltered data, 269

closely mirroring practical use cases in the indus- 270

try. 271

3.2 Neural Machine Translation 272

The dataset features neural machine translation 273

(NMT) outputs generated by a proprietary MT sys- 274

tem tailored to Smartsheet, along with post-edited 275

translations produced by expert linguists. Because 276

3https://cloud.google.com/dlp
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these proprietary machine translation engines are277

trained on in-domain data, they can be particularly278

strong in narrow areas, providing high-quality out-279

puts that set a rigorous baseline. This ensures that280

automatic post-editing (APE) systems are evaluated281

against a robust benchmark, making any improve-282

ments reflective of real-world challenges. Table 3283

shows the difference in performance between the284

NMT comprised in LangMark and commercial285

MT systems.286

3.3 Dataset Statistics287

The dataset comprises a total of 206,983 triplets,288

from English to seven languages. Each triplet in-289

cludes a source segment, its corresponding NMT290

output, and a human post-edited translation.291

Figure 2 illustrates the distribution of word292

counts in the source segments. The frequency distri-293

bution shows a natural balance in segment lengths,294

with most segments being neither excessively short295

nor too long. This ensures that the dataset captures296

a realistic range of text complexities.297

3.4 Linguist Qualifications298

We source and deploy linguists with credentials299

such as degrees in linguistics or translation, native-300

level fluency in the target language, and strong cul-301

tural knowledge—preferably as in-country profes-302

sionals. All linguists are required to have over five303

years of industry experience, advanced proficiency304

in translation tools, and a proactive approach to305

continuous improvement. Additionally, they must306

specialize in translating and post-editing content307

within specific subject matter domains, often with308

more than three years of expertise in these areas.309

Following onboarding, linguists receive ongoing310

support and training to maintain quality, monitored311

through structured Language Quality Assessments312

(LQAs). Based on these evaluations, further train-313

ing or reassignment ensures alignment with project314

needs. For information on linguist compensations315

see A.1.316

3.5 Post-Editing Process317

In constructing the dataset, our human post-editors318

(see Section 3.4), refined the raw NMT output319

within a Translation Management System (TMS).320

They made the necessary edits to ensure accuracy,321

adherence to stylistic and terminology standards,322

and overall readability, rather than rewriting the323

translation. The editors have access to glossaries,324

do-not-translate lists, and any necessary domain- 325

specific materials. Common corrections addressed 326

capitalization, punctuation, spacing, omissions, 327

word order, morphological agreement, locale con- 328

ventions, and terminology consistency. This pro- 329

cess ensures that the final post-edited translations 330

are aligned with client and domain expectations. 331

4 Experimental Setup 332

To evaluate the performance of the models, we split 333

the dataset into “training” and testing sets, with 334

90% of the triplets used as potential examples to 335

be retrieved and the remaining 10% reserved for 336

experiments. The split is performed randomly for 337

each language pair, ensuring a proportional repre- 338

sentation of all languages. 339

We adopt this split and retrieval approach be- 340

cause even top-performing LLMs struggle to sur- 341

pass the proprietary neural machine translation 342

(NMT) engines in this dataset when presented with 343

no context. The nuanced nature of the required ed- 344

its makes zero-shot approaches insufficient, which 345

motivates the inclusion of in-context examples to 346

guide the model’s post-editing decisions. Further- 347

more, by limiting results to the test set, we make 348

benchmarking on this dataset more affordable for 349

future users. We evaluate all models with 20-shot 350

prompts. For completeness, zero-shot results are 351

provided in the Appendix A.2. 352

4.1 Retrieval 353

We constructed the retrieval database by embed- 354

ding the source segments using OpenAI’s “text- 355

embedding-3-small” model.4 Each source segment 356

is stored alongside its corresponding post-edited 357

translation. For retrieval during experiments, the 358

source segment to be post-edited is embedded, and 359

cosine similarity is used to identify the twenty 360

most similar source-human post-edit pairs from 361

the database. Retrieval is conducted within the 362

same language pair, ensuring that no cross-lingual 363

retrieval occurs. 364

4https://platform.openai.com/docs/
models/
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System Prompt

Your input fields are:
1. source: The source segment.
2. pre translation: The translation to be edited.
3. language: The language to translate to.
4. translation pairs: Similar translation pairs reviewed by experts
that MIGHT be relevant. If they are relevant, use them as a reference
to guide your translation.

Your output fields are:
1. reasoning
2. answer: The post-edited translation in JSON format.

All interactions will be structured in the following way:

[[ ## source ## ]]
{source}

[[ ## pre translation ## ]]
{pre translation}

[[ ## language ## ]]
{language}

[[ ## translation pairs ## ]]
{translation pairs}

[[ ## reasoning ## ]]
{reasoning}

[[ ## answer ## ]]
{answer}

[[ ## completed ## ]]

In adhering to this structure, your objective is:
You are an expert linguist and translator. You receive both the source
text and a translation. Make the necessary changes to the transla-
tion. It is possible that the translation doesn’t need any changes at all.

Do not translate:
- Variable names (typically camelCase or snake case)
- Standard technical terms (e.g., “URL”, “API”, “HTML”)
- URLs
- Email addresses

Make sure to preserve the casing (lower, upper case) of the
pre-translation.

Return your translation (or the original segment if no trans-
lation is required) as a JSON string as follows:
{‘‘translation’’: ‘‘translation’’}.

User Prompt

[[ ## source ## ]]
Get clarity

[[ ## pre translation ## ]]
Verschaffen Sie sich Klarheit

[[ ## language ## ]]
de-DE

[[ ## translation pairs ## ]]
Clear contents→ Inhalt löschen
...
Get the big picture → So behalten Sie den Überblick

Respond with the corresponding output fields, starting with the field
‘reasoning’, then ‘answer’, and ending with the marker for
‘completed’.

Figure 4: Structure of the few-shot prompting format
used for LLMs. If the model’s API does not support a
system prompt we simply prepend it to the user prompt.

4.2 Models and Prompting365

We evaluate the performance of both open-source366

and closed-source models in our experiments. To367

facilitate this, we leverage the dspy library (Khat-368

tab et al., 2024, 2022), which integrates with369

LiteLLM5 to manage API requests to the vari-370

ous models. For open-source models, we utilize371

5https://www.litellm.ai/

HuggingFace endpoints6 to set up and manage the 372

necessary infrastructure to process requests. 373

All models are evaluated using the same 20-shot 374

prompting setup. Specifically, for each segment 375

to be post-edited, we include 20 pairs of source 376

segments and their human post-edited version in 377

the prompt. This ensures a uniform evaluation 378

framework across all models. The prompt format 379

used in our experiments is illustrated in Figure 4. 380

5 Results and Discussion 381

We benchmark the performance of various models 382

on the LangMark test set and discuss broader chal- 383

lenges when evaluating performance on automatic 384

post-editing (APE) tasks. While we have chosen 385

CHRF (Popović, 2015) to show performance in the 386

main text, we report other metrics in the Appendix 387

(A.3). 388

5.1 Model Performance 389

Table 4 presents the CHRF scores of various closed- 390

and open-source models performing automatic 391

post-editing on the LangMark test set using n- 392

shot prompting (n = 20). The results indicate that 393

GPT-4o consistently achieves the highest CHRF 394

scores, being the only closed-source model that 395

consistently improves the NMT output (except for 396

Portuguese), especially in languages where more 397

edits are required (i.e., Japanese and Russian). We 398

also benchmark two open-source models of the 399

Qwen and Llama family. We found that the perfor- 400

mance of the Qwen model is impressive for its size, 401

rivaling the best closed-source models and even 402

performing best in Russian. 403

The strong performance of certain models should 404

not overshadow the broader challenge presented by 405

this dataset. Note that all of the models (except 406

GPT-4o) are unable to improve on the NMT base- 407

line, which emphasizes the strength of this dataset 408

as a benchmark for APE. 409

5.2 To Edit or Not to Edit 410

A critical aspect of automatic post-editing (APE) 411

lies in determining when edits are necessary: some 412

segments require changes while others are best left 413

unchanged. This introduces a classification prob- 414

lem that the model must solve. As NMT systems 415

continue to improve, the challenge shifts. High- 416

performing NMT systems produce outputs that are 417

closer to human translations. In this context, a 418

6https://endpoints.huggingface.co/
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Table 4: CHRF scores for different models and languages when performing APE on the test set. Scores are compared
across models, with the proprietary MT serving as the baseline.

Languages

Model EN-RU EN-BR EN-JP EN-IT EN-FR EN-ES EN-DE

Baseline 68.90 89.44 70.22 89.58 81.96 86.07 81.29

Gemini-1.5 Flash 68.92 89.18 71.69 89.40 82.20 86.24 81.01
Gemini-1.5 Pro 67.73 87.65 68.92 85.68 80.46 85.01 77.88
Claude 3.5-Sonnet 68.63 86.47 67.14 85.10 80.31 82.73 78.44
Claude 3.5-Haiku 69.08 88.81 71.64 88.76 82.21 86.08 80.66
GPT-4o mini 68.55 87.73 68.47 87.47 81.45 84.94 79.81
GPT-4o 69.68 89.21 73.94 89.79 82.75 86.62 81.41

Open Source

Llama 3.1-70B 69.55 86.82 68.37 86.80 80.97 83.75 79.12
Qwen2.5-72B 70.13 89.03 72.93 89.10 82.34 86.44 81.16

language model that makes only a few highly accu-419

rate edits can achieve better evaluation scores than420

one that identifies more issues but fails to correct421

them in the exact manner a human would. This422

raises a crucial question for evaluating APE sys-423

tems: “How conservative should models be when424

deciding that an edit is required?”425

Figure 5 illustrates the correlation between the426

edits (i.e., deletion, addition, modification) made427

by the models and those made by human lin-428

guists. We observe that Gemini-1.5 Flash makes429

the fewest edits, while Gemini-1.5 Pro and Claude430

3.5-Sonnet show editing behavior more closely431

aligned with human linguists. Interestingly, even432

models with the highest number of edits still make433

fewer changes than the human baseline, highlight-434

ing the complexity of this task in LangMark.435

In the same fashion, Figure 6 shows the recall436

and precision on the triplets that need correction437

for all models averaged across languages. Note that438

we do not explicitly prompt the model to classify439

each triplet. Thus, in this context:440

Recall =
|{i ∈ D |MT i ̸= Hi ∧MT i ̸= PEi}|

|{i ∈ D |MT i ̸= Hi}|
(1)441

Precision =
|{i ∈ D | MT i ̸= Hi ∧MT i ̸= PEi}|

|{i ∈ D | MT i ̸= PEi}|
(2)442

Where:443

• D is the set of triplets in the dataset.444

• MTi is the machine translation output for seg-445

ment i.446

• Hi is the human post-edit (ground truth) for 447

segment i. 448

• PEi is the model post-edit for segment i. 449

Using this formulation, we can quantify both the 450

frequency with which models detect segments that 451

need edits and their accuracy in determining when 452

a segment needs to be edited. Models with higher 453

precision, such as GPT-4o, tend to achieve better 454

overall performance on machine translation evalua- 455

tion metrics despite having lower recall. We refer 456

to these as “conservative” models. In contrast, “ag- 457

gressive” models like Claude 3.5 Sonnet, perform 458

worse, despite having higher recall. 459

EN-DE

EN-ES

EN-FR

EN-ITEN-JP

EN-BR

EN-RU

0.05

0.10

0.15

0.20

Human Edits
Claude 3.5-Haiku
Claude 3.5-Sonnet

GPT-4o
GPT-4o mini
Gemini-1.5 Flash

Gemini-1.5 Pro
Llama 3.1-70B
Qwen2.5-72B

Figure 5: Normalized number of edits made by each
model on the NMT output. Note that all models made
significantly fewer edits than the human baseline. This
indicates that there is still considerable room for im-
provement

7



Claude 3.5-Haiku

Claude 3.5-Sonnet

GPT-4o

GPT-4o mini

Gemini-1.5 Flash

Gemini-1.5 Pro

Llama 3.1-70B

Qwen2.5-72B

0.0

0.2

0.4

0.6

0.8

1.0

0.34

0.67

0.28

0.53

0.18

0.44

0.53

0.26

0.89
0.85

0.92
0.86

0.90 0.88
0.83

0.90

Recall
Precision

Figure 6: Precision and recall of models when determin-
ing that a segment needs to be edited. We see that the
models with high recall are not the best performing on
machine translation metrics (see Table 4). Instead, the
more “conservative” models (low recall, high precision)
perform best.
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Word Count

60
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90

100

C
H
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F

Qwen2.5-72B
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Word Count

Claude 3.5-Haiku

Edit Required
No Edit Required

Figure 7: Average performance of each model across
segments of varying lengths, separated into those that
require edits (red) and those that do not (green). Models
perform substantially worse on shorter segments that
need editing, due to limited context. More “aggressive”
models (e.g., Claude 3.5 Sonnet, GPT-4-mini) often
modify segments that do not require edits. Only seg-
ments of up to 50 words are shown for visualization
purposes.

Figure 7 reports the CHRF scores for each model,460

averaged across all test-set segments and grouped461

by segment length. For segments requiring no mod-462

ifications, most models maintain high CHRF scores.463

However, performance is consistently lower on seg-464

ments that need correction, hinting at the nuanced465

nature of the required edits. Editing shorter seg-466

ments proves especially challenging, likely due to467

their limited context, which makes it more difficult468

for APE systems to accurately apply the necessary469

modifications.470

Figures 6 and 7 show that models with a higher471

recall often over-detect necessary edits. For in-472

stance, Claude 3.5-Sonnet identifies more segments 473

that require changes but frequently introduces ed- 474

its where none are needed, affecting performance. 475

This shows that the task of determining whether 476

a segment requires editing is a key challenge in 477

APE settings, especially when nuanced edits are 478

required. 479

5.3 Towards Better Evaluation Metrics 480

These findings suggest that relying solely on ma- 481

chine translation evaluation metrics is insufficient 482

to fully evaluate APE systems. An ideal evalua- 483

tion metric should consider both the quality of the 484

final output and the number of edits performed, 485

accounting for the balance between unnecessary 486

conservatism and excessive intervention. Although 487

this work does not propose such a metric, we hope 488

that the dataset introduced here fosters further re- 489

search into the development of comprehensive eval- 490

uation frameworks and promotes the design of APE 491

systems that better align with human post-editing 492

strategies. 493

6 Conclusions 494

This work introduces LangMark, a human- 495

annotated multilingual dataset for automatic post- 496

editing (APE) on neural machine translation 497

(NMT) outputs. The translation is performed from 498

English to seven languages, and the data is com- 499

posed of over 200,000 triplets. The dataset and 500

the results presented in this work constitute a valu- 501

able benchmark for evaluating APE systems and 502

advancing research in the field. 503

Our experiments demonstrate that large language 504

models (LLMs) with few-shot prompting can im- 505

prove translation quality, outperforming proprietary 506

NMT systems. The fact that most state-of-the- 507

art language models fail to improve on the NMT 508

output that comprises our dataset highlights the 509

strength of LangMark as a benchmark for APE 510

systems. Further, we emphasize that machine trans- 511

lation evaluation metrics, while essential to mea- 512

sure performance, fail to account for the classi- 513

fication part of any APE tasks (i.e., determining 514

whether the NMT output needs to be edited). This 515

highlights the need for metrics that better reflect 516

human editing behavior. 517

We hope that this dataset and the accompa- 518

nying analysis provide a foundation for further 519

research and benchmarking of Automatic Post- 520

Editing (APE) systems. 521
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Limitations522

Although LangMark offers a large-scale, multi-523

lingual dataset for automatic post-editing (APE),524

it also comes with some limitations. First, Lang-525

Mark is derived from a single domain—marketing526

content—which may constrain the generalizability527

of APE models trained on it. The dataset’s linguis-528

tic style and error types may not accurately capture529

challenges in other domains such as medical, legal,530

or literary texts.531

Second, the dataset is unidirectional, covering532

only translations from English into seven target lan-533

guages. This scope excludes the reverse direction534

(or translations among non-English languages).535

Lastly, despite efforts to remove sensitive or per-536

sonally identifiable information, the original con-537

tent—drawn from real marketing documents—may538

still carry domain-specific biases or cultural nu-539

ances. Researchers and practitioners should care-540

fully consider these factors when extending or ap-541

plying LangMark to other use cases or domains.542
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann,560
Yvette Graham, Barry Haddow, Shujian Huang,561
Matthias Huck, Philipp Koehn, Qun Liu, Varvara562
Logacheva, Christof Monz, Matteo Negri, Matt Post,563
Raphael Rubino, Lucia Specia, and Marco Turchi.564
2017. Findings of the 2017 conference on machine565
translation (WMT17). In Proceedings of the Second566
Conference on Machine Translation, pages 169–214,567
Copenhagen, Denmark. Association for Computa-568
tional Linguistics.569
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A Appendix800

A.1 Linguist Compensation801

In terms of our freelance supplier pool, we prioritize fair compensation for our linguists based on the802

complexity of their tasks and prevailing market rates. We ensure that our pay rates reflect the market value803

for each language combination and required skill set, guaranteeing equitable remuneration for all services804

provided.805

Beyond fair pay, we are dedicated to supporting local rural communities in India and Africa through our806

impactful sourcing program. This initiative creates valuable opportunities for individuals in marginalized807

communities who might not otherwise have access to such work. Currently, we are running three808

successful programs in collaboration with companies in these regions.809

Additionally, we place great emphasis on engaging with our linguist community. We regularly conduct810

surveys to gather feedback and continuously refine our work practices, ensuring we meet the needs and811

expectations of our talented linguists.812

A.2 Zero-Shot Results813

Table 5: Zero-shot CHRF scores for different models and languages when performing APE on the test set. Scores
are compared across models, with the proprietary MT serving as the baseline.

Languages

Model EN-RU EN-PT EN-JP EN-IT EN-FR EN-ES EN-DE

Baseline 68.90 89.44 70.22 89.58 81.96 86.07 81.29

Gemini-1.5 Flash 68.80 88.97 71.59 88.95 82.26 86.14 80.85
Gemini-1.5 Pro 65.95 86.65 68.01 84.42 79.74 84.45 77.67
Claude 3.5-Sonnet 67.83 87.68 68.00 86.78 80.73 83.43 79.18
Claude 3.5-Haiku 68.62 88.86 71.90 88.99 82.24 86.01 80.57
GPT-4o mini 67.78 87.84 69.73 87.99 81.40 84.91 80.10
GPT-4o 68.99 89.21 73.46 89.29 82.24 86.34 81.06

Open Source

Llama 3.1-70B 66.84 85.41 68.80 85.30 79.88 81.54 77.07
Qwen2.5-72B 68.62 89.21 72.86 89.23 82.27 86.07 81.08

Table 6: Zero-shot TER↓ (Snover et al., 2006) scores for different models and languages when performing APE on
the test set. Scores are compared across models, with the proprietary MT serving as the baseline.

Languages

Model EN-RU EN-PT EN-JP EN-IT EN-FR EN-ES EN-DE

Baseline 45.40 14.27 74.15 14.61 26.67 19.28 31.26

Gemini-1.5 Flash 45.71 14.67 72.87 15.40 25.60 19.28 31.61
Gemini-1.5 Pro 49.51 17.65 74.52 20.94 28.76 21.42 35.77
Claude 3.5-Sonnet 47.16 16.18 79.14 18.24 27.70 22.75 33.74
Claude 3.5-Haiku 45.70 14.66 74.75 15.28 25.56 19.41 31.76
GPT-4o mini 46.66 15.63 76.08 16.52 26.52 20.58 32.47
GPT-4o 45.35 14.67 71.75 14.96 25.87 19.04 31.30

Open Source

Llama 3.1-70B 47.77 18.67 76.20 19.59 28.83 27.85 41.08
Qwen2.5-72B 45.69 14.22 71.25 15.00 25.66 19.34 31.30
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Table 7: Zero-shot BLEU (Papineni et al., 2002) scores for different models and languages when performing APE
on the test set. Scores are compared across models, with the proprietary MT serving as the baseline.

Languages

Model EN-RU EN-PT EN-JP EN-IT EN-FR EN-ES EN-DE

Baseline 49.13 80.16 14.28 79.93 64.91 73.75 64.13

Gemini-1.5 Flash 48.90 79.51 33.61 79.09 66.56 74.28 63.61
Gemini-1.5 Pro 44.31 75.31 32.80 71.28 62.68 71.44 58.34
Claude 3.5-Sonnet 47.44 77.12 30.93 75.34 64.44 69.76 60.82
Claude 3.5-Haiku 48.63 79.37 33.38 79.13 66.73 74.06 63.20
GPT-4o mini 47.62 77.69 27.51 77.47 65.37 72.30 62.40
GPT-4o 48.99 79.58 34.95 79.51 66.02 74.49 63.82

Open Source

Llama 3.1-70B 46.03 73.87 32.31 73.17 63.03 65.58 54.83
Qwen2.5-72B 48.45 79.79 34.24 79.46 66.62 74.20 63.90

A.3 Additional Metrics 814

Table 8: TER↓ scores (Snover et al., 2006) for different models and languages when performing APE on the test set.
Scores are compared across models, with the proprietary MT serving as the baseline. Lower is better.

Languages

Model EN-RU EN-PT EN-JP EN-IT EN-FR EN-ES EN-DE

Baseline 45.40 14.27 74.15 14.61 26.67 19.28 31.26

Gemini-1.5 Flash 45.62 14.42 71.59 14.81 25.83 19.14 31.43
Gemini-1.5 Pro 47.53 16.37 70.84 19.52 27.95 20.76 35.60
Claude 3.5-Sonnet 46.56 17.82 75.66 20.57 28.34 23.67 34.90
Claude 3.5-Haiku 45.60 14.72 72.12 15.59 25.71 19.51 31.78
GPT-4o mini 46.17 16.08 74.68 17.27 26.54 20.56 32.74
GPT-4o 44.49 14.41 69.01 14.25 25.30 18.64 30.91

Open Source

Llama 3.1-70B 45.12 17.44 73.94 18.39 27.80 22.26 33.80
Qwen2.5-72B 43.91 14.45 68.75 15.23 25.71 18.95 30.95

Table 9: BLEU (Papineni et al., 2002) scores for different models and languages when performing APE on the test
set. Scores are compared across models, with the proprietary MT serving as the baseline.

Languages

Model EN-RU EN-PT EN-JP EN-IT EN-FR EN-ES EN-DE

Baseline 49.13 80.16 14.28 79.93 64.91 73.75 64.13

Gemini-1.5 Flash 48.69 79.80 34.17 79.59 66.50 74.37 63.71
Gemini-1.5 Pro 46.35 77.04 36.27 73.23 63.74 72.47 58.16
Claude 3.5-Sonnet 47.53 74.83 33.94 71.92 63.61 68.20 59.08
Claude 3.5-Haiku 48.58 79.17 35.72 78.72 66.61 74.11 63.10
GPT-4o mini 47.92 77.30 27.81 76.17 65.21 72.27 61.89
GPT-4o 49.79 79.86 37.96 80.12 66.91 74.84 64.20

Open Source

Llama 3.1-70B 49.28 75.76 33.01 74.97 64.22 70.27 60.70
Qwen2.5-72B 50.31 79.59 37.43 79.16 66.60 74.79 64.01
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