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Abstract

Automatic post-editing (APE) aims to correct
errors in machine-translated text, enhancing
translation quality, while reducing the need for
human intervention. Despite advances in neural
machine translation (NMT), the development
of effective APE systems has been hindered
by the lack of large-scale multilingual datasets
specifically tailored to NMT outputs. To ad-
dress this gap, we present and release Lang-
Mark, a new human-annotated multilingual
APE dataset for English translation to seven lan-
guages: Brazilian Portuguese, French, German,
Italian, Japanese, Russian, and Spanish. The
dataset has 206,983 triplets, with each triplet
consisting of a source segment, its NMT out-
put, and a human post-edited translation. An-
notated by expert human linguists, our dataset
offers both linguistic diversity and scale. Lever-
aging this dataset, we empirically show that
Large Language Models (LLMs) with few-shot
prompting can effectively perform APE, im-
proving upon leading commercial and even pro-
prietary machine translation systems. We be-
lieve that this new resource will facilitate the
future development and evaluation of APE sys-
tems.

1 Introduction

Machine translation has become increasingly effi-
cient and effective thanks to the development of
ever-larger transformer models (Vaswani, 2017).
Recent advances in Large Language Models
(LLMs) have significantly influenced the field, en-
abling more fluent and contextually accurate trans-
lations (Zhu et al., 2024; Zhang et al., 2023; Li
et al., 2024; Briakou et al., 2024). Studies have
shown that LLMs can match or even outperform
specialized systems in various Natural Language
Processing (NLP) tasks (Radford et al., 2019; Tou-
vron et al., 2023; Wang et al., 2022).

Despite these advances, machine-translated text
often still contains errors that require correction to

Source Text (English)
Launching innovative solutions

Machine Translation (Spanish)

Lanzando soluciones innovadoras

Translation is accurate but implies a physical “launch’, which doesn't fit the context

Post-Edit (Spanish)

Presentando soluciones innovadoras

Adjusted to reflect the tone of a formal presentation, which aligns better with the intent

Figure 1: Example of a triplet in an automatic post-
editing task.

meet the quality standards expected in professional
translations. Automatic Post-Editing (APE) aims
to automatically correct these errors in MT output,
improving translation quality while reducing the
need for human intervention (Knight and Chander,
1994). Modern APE models take the source text
and machine-translated text as input and produce
the post-edited text with the necessary changes as
output. We refer to these components as triplets:
source, translated, and post-edited segments (see
Figure 1).

Recently, automatic post-editing has shown great
success on Statistical Machine Translation (SMT)
outputs (Junczys-Dowmunt and Grundkiewicz,
2018; Correia and Martins, 2019), even when
trained with a limited number of samples. However,
even strong APE models face significant challenges
(Chatterjee et al., 2019, 2018; Ive et al., 2020) due
to the already high quality of modern NMT sys-
tems. Junczys-Dowmunt and Grundkiewicz (2018)
concluded that the usefulness of “neural-on-neural
APE” was minimal, suggesting that the marginal
gains may not justify the effort.

However, Chollampatt et al. (2020a) demon-
strated that a fine-tuned transformer model has the
potential to improve upon the outputs of state-of-
the-art NMT systems. Their study introduced the



Table 1: Number of triplets and average source, NMT
and Post Edited tokens (tokenized using tiktoken') per
triplet for all languages in LangMark.

Locale Triplets Tokens Per Triplet (AVG)

Source ‘ NMT ‘ PE
EN-DE 33,308 16.12 | 21.73 21.72
EN-ES 32,799 16.58 | 20.80 21.16
EN-FR 33,027 16.38 | 22.16 22.35
EN-IT 32,512 16.42 | 23.47 23.71
EN-JP 28,170 15.26 | 26.34 27.30
EN-BR 31,981 16.52 | 20.36 20.30
EN-RU 8,648 14.90 | 20.40 21.23

SubEdits dataset, which contains approximately
160,000 triplets but is limited to the English-
German language pair. This highlights a gap in
the availability of large-scale, multilingual datasets
necessary to advance APE research on NMT out-
puts.

In an effort to address this gap, we intro-
duce LangMark; a new multilingual, human-post-
edited APE dataset comprising 206,983 triplets
from English to seven languages: Brazilian Por-
tuguese (BR), French (FR), German (DE), Italian
(IT), Japanese (JP), Russian (RU), and Spanish
(ES) (see Table 1). Each triplet consists of a source
segment in English, its NMT output, and a human
post-edited translation. Labeled by expert linguists,
this dataset offers both linguistic diversity and scale,
making it, to the best of our knowledge, the largest
human-post-edited dataset for APE on NMT out-
puts.

Leveraging this dataset, we empirically show
that LLMs with few-shot prompting can effectively
perform APE, improving upon leading commer-
cial and proprietary MT systems. Our experiments
highlight the potential of combining large-scale,
high-quality datasets with advanced LLMs to en-
hance translation quality across multiple languages.
Moreover, this work examines a critical aspect of
APE: the model’s capability to discern whether a
segment requires editing, which is often overlooked
in prior research.

The contributions of this work can be summa-
rized as follows:

1. We present and release LangMark, a new,
human-annotated, multilingual dataset with
over 200,000 triplets across seven languages,

"https://github.com/openai/tiktoken

that serves as a strong benchmark for APE
tasks.

2. Leveraging this dataset, we show that LLMs
with few-shot prompting can effectively per-
form APE to improve upon NMT outputs even
from proprietary MT systems.

3. We provide a comprehensive analysis of the
dataset and the performance of LLMs on APE
tasks, offering insights for future research.

2 Related Work

This section reviews previous research on auto-
matic post-editing, focusing on recent advance-
ments involving Large Language Models. We also
examine retrieval methods for few-shot in-context
learning and discuss relevant datasets used for post-
editing tasks.

2.1 Automatic Post-Editing

Automatic post-editing aims to automatically cor-
rect errors in machine-translated text, improving
translation quality without human intervention. A
great amount of prior research has focused on the
development of neural models for the APE task (Vu
and Haffari, 2018; Shterionov et al., 2020; Chatter-
jee, 2019; Gois et al., 2020; Correia and Martins,
2019; Voita et al., 2019; Chollampatt et al., 2020b;
do Carmo et al., 2021). Shterionov et al. (2020)
presented a comprehensive roadmap for APE, high-
lighting challenges and potential directions for fu-
ture research. Chatterjee (2019) explored the use
of deep learning techniques for APE while Gois
et al. (2020) investigated the use of automatic or-
dering techniques to refine translations. Correia
and Martins (2019) proposed a simple yet effec-
tive neural model for APE using transfer learning,
demonstrating promising results.

Voita et al. (2019) introduced a context-aware
approach to APE, incorporating source context in-
formation into the neural model to generate more
accurate post-edits. Chollampatt et al. (2020b) ex-
amined the use of LLMs for APE to improve over-
all translation quality for NMT models, investigat-
ing the effects of various factors in the APE task.
do Carmo et al. (2021) provided an overview of
various techniques and approaches in the field of
APE, covering both traditional and neural-based
methods. Overall, these studies (and many refer-
ences therein) have explored different architectures,
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learning strategies, and contextual information in-
tegration in neural models to improve the quality
of post-edited translations.

2.2 Leveraging Large Language Models for
Post-Editing

There has been growing interest in leveraging
LLMs for post-editing. For example, Vidal et al.
(2022) explored the use of GPT-3 for post-editing
using glossaries, while Raunak et al. (2023) inves-
tigated the use of GPT-4 for automatic post-editing
of neural machine translation outputs. Their work
focuses on rectifying errors in NMT outputs with-
out preliminary quality assessment, aiming to en-
hance translation quality directly.

Ki and Carpuat (2024) further enhances machine
translation by guiding large language models to
post-edit MT outputs using fine-grained feedback
from error annotations. Their experiments across
multiple language pairs demonstrate that both zero-
shot prompted and fine-tuned LL.Ms benefit from
this approach, effectively addressing specific trans-
lation errors and improving translation metrics.

While these works make significant contribu-
tions to the exploration of LLMs for post-editing,
they do not constitute a benchmark for evaluating
the multilingual post-editing capabilities of LLMs.
In contrast, we believe that LangMark, coupled

Dataset Lang. Size Domain
WMT’18 APE
(Chatterjee et al., 2018) EN-DE 15K IT
WMT’19 APE
(Chatterjee et al., 2019) EN-RU 17K IT
WMT’23 APE .
(Bhattacharyya et al., 2023) EN-MR 18K Mixed
QT21 e
(Specia et al., 2017) EN-LV 21K Life Sciences

EN-NL 11K
SPE'?[{EggZ 0 EN-FR 10K  Legal

veetal, EN-PT 10K
SubEdits .
(Chollampatt et al., 2020a) T VDE 161K Subtitles
. EN-DE 7.M
f;g’?lp i i?"zlg?;)l) EN-IT  33M  Mixed
& N EN-RU 7.7M

EN-DE 33.3K

EN-ES 327K

EN-FR 33.1K
ﬁ;‘l‘.’?Mai‘) EN-IT 325K  Marketing

15 wor EN-JP  28.1K
EN-BR 319K
EN-RU 8.6K

Table 2: Datasets for automatic post-editing on NMT
outputs. All but eSCAPE offer human labels.

with the experiments presented in this paper, can
serve as a robust benchmark for this purpose, en-
abling a more comprehensive assessment of LLM
performance across multiple languages.

2.3 Datasets for Automatic Post-Editing

Several datasets have been introduced to support
the development and evaluation of post-editing
methods. Early efforts in APE focused on sta-
tistical machine translation (SMT) outputs (Bojar
et al., 2015, 2016, 2017). These tasks provided
post-edited data on the order of 10,000 to 25,000
triplets. The largest collection of human post-edits
on SMT outputs was released by Zhechev (2012),
consisting of 30,000 to 410,000 triplets across
12 language pairs. While APE showed impres-
sive gains on SMT datasets (Junczys-Dowmunt,
2017; Tebbifakhr et al., 2018), its performance
on neural machine translation (NMT) outputs
showed less promising results, with only marginal
improvements (Chatterjee et al., 2019).

To improve APE performance on NMT outputs,
several studies proposed generating artificial APE
data (Junczys-Dowmunt and Grundkiewicz, 2016;
Freitag et al., 2019; Specia et al., 2017; Negri et al.,
2018; Li et al., 2024) with moderate success. As
Neural Machine Translation (NMT) systems get
better the required post-edits become more nuanced
and thus harder to mimic using artificial data, mak-
ing human-annotated datasets more valuable.

The WMT APE shared tasks have provided
human-annotated datasets (Chatterjee et al., 2018,
2019), but these are relatively small, each compris-
ing less than 20,000 instances. Chollampatt et al.
(2020a) introduced the SubEdits dataset, which sig-
nificantly increased the number of instances to ap-
proximately 161,000. However, SubEdits is limited
to a single language pair, English to German, lack-
ing multilingual diversity. On the other hand, Negri
et al. (2018) proposed a dataset with a much larger
volume, but the edits are artificially generated and
there are no human annotations involved. Table 2
summarizes previous datasets and their sizes.

These datasets contribute valuable resources for
studying post-editing but are limited in linguistic
diversity or scale when providing human anno-
tations. In contrast, the dataset featured in this
work is a multilingual, human-annotated corpus
consisting of translations from English to seven
languages, with over 200,000 triplets. To the best
of our knowledge, LangMark is the largest multi-
lingual, human-annotated dataset for APE on NMT



Table 3: Machine translation performance across languages for different NMT engines on all triplets of the

LangMark dataset.
MT Engine | EN-DE | ENES | ENFR | ENIT | ENJP | ENPT | ENRU
Metric | CHRF TER| | CHRF TER| | CHRF TER| | CHRF TER| | CHRF TER| | CHRF TER| | CHRF TER]|
Google Translate 73.95 42.16 | 79.79 27.54 | 76.57 33.14 | 79.80 2898 | 62.11 78.64 | 83.70 21.12 | 6434 53.46
DeepL 73.03  43.15 | 75.01 3370 | 74.74 3627 | 76.96 33.05 | 5526 91.52 | 83.93 22.68 | 67.74 47.41
Microsoft Translator 7574 4035 | 80.32 27.55 | 76.07 3429 | 82.57 2529 | 62.82 84.06 | 84.97 2035 | 64.38 54.39
Amazon Translate 7370  43.13 | 79.01 29.78 | 76.27 34.42 | 81.66 26.52 | 60.93 86.62 | 84.27 21.96 | 62.65 56.00
Proprietary MT (this dataset) | 81.09 3135 | 86.04 19.39 | 81.54 26.99 | 89.73 14.58 | 69.77 74.66 | 89.13 14.64 | 68.45 45.54
outputs.
p Source Text (English) Source Text (English)
Empowering Our People Pitch
3 LangMark Dataset e R S
Machine Translation (Spanish Machine Translation (German)
e Empoderando a nuestro pueblo Pech
The absence of large-scale, multilingual, human- Tt e
annotated corpora for pOSt'edltlng NMT OutPUtS Potenciar a nuestro personal Verkaufsgesprich

presents a gap in the resources available for advanc-
ing APE research. To address this limitation, we
introduce LangMark, a new dataset comprising
over 200,000 triplets across seven language pairs:
English to Japanese (JA), Russian (RU), Brazil-
ian Portuguese (BR), Spanish (ES), French (FR),
Italian (IT), and German (DE).

The LangMark dataset contains a large number
of segments that require models to make nuanced
edits, which makes it challenging as a benchmark.
Neural Machine Translation (NMT) outputs in the
dataset are often technically correct but fail to align
with the intended context (see Figure 3). To suc-
cessfully post-edit these samples the model has to
demonstrate contextual understanding.

3.1 Dataset Source

The LangMark dataset is sourced from various
Smartsheet’ documents, a platform designed for
collaborative work management. These documents,
which are marketing-related, were first segmented
by a translation management system (TMS) into

https://www.smartsheet .com

Frequency (Log Scale)
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50
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Figure 2: Distribution of word counts for the source
segments across languages.

Figure 3: Two triplets from the LangMark dataset.
These examples illustrate the nuanced nature of the re-
quired corrections. While the translations provided by
the NMT engine are not inherently incorrect, they are
inappropriate given the context of the source material
(official marketing documents). For example, “our peo-
ple” was misinterpreted as “our nation/community” in
Spanish, and “pitch” was translated based on the mean-
ing of “tar” in German instead of its intended meaning
in a business context.

intuitive units (often sentences or short phrases)
before translation. This standard industry practice
ensures efficient processing, storage, and transla-
tion workflows. The triplets were then randomly
selected from 967 unique files.

To protect sensitive information, we used
Google’s dlp? tool, specifically designed to iden-
tify and remove personally identifiable information
(PII) and other sensitive data. We also removed
duplicate triplets for each language pair; apart from
this preprocessing step, the segments are presented
in their original form, reflecting the nature of real-
world industry data. We consider this characteristic
a positive feature, as it allows the evaluation of
model performance on authentic, unaltered data,
closely mirroring practical use cases in the indus-

try.

3.2 Neural Machine Translation

The dataset features neural machine translation
(NMT) outputs generated by a proprietary MT sys-
tem tailored to Smartsheet, along with post-edited
translations produced by expert linguists. Because

*https://cloud.google.com/dlp
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these proprietary machine translation engines are
trained on in-domain data, they can be particularly
strong in narrow areas, providing high-quality out-
puts that set a rigorous baseline. This ensures that
automatic post-editing (APE) systems are evaluated
against a robust benchmark, making any improve-
ments reflective of real-world challenges. Table 3
shows the difference in performance between the
NMT comprised in LangMark and commercial
MT systems.

3.3 Dataset Statistics

The dataset comprises a total of 206,983 triplets,
from English to seven languages. Each triplet in-
cludes a source segment, its corresponding NMT
output, and a human post-edited translation.

Figure 2 illustrates the distribution of word
counts in the source segments. The frequency distri-
bution shows a natural balance in segment lengths,
with most segments being neither excessively short
nor too long. This ensures that the dataset captures
a realistic range of text complexities.

3.4 Linguist Qualifications

We source and deploy linguists with credentials
such as degrees in linguistics or translation, native-
level fluency in the target language, and strong cul-
tural knowledge—preferably as in-country profes-
sionals. All linguists are required to have over five
years of industry experience, advanced proficiency
in translation tools, and a proactive approach to
continuous improvement. Additionally, they must
specialize in translating and post-editing content
within specific subject matter domains, often with
more than three years of expertise in these areas.
Following onboarding, linguists receive ongoing
support and training to maintain quality, monitored
through structured Language Quality Assessments
(LQAs). Based on these evaluations, further train-
ing or reassignment ensures alignment with project
needs. For information on linguist compensations
see A.1.

3.5 Post-Editing Process

In constructing the dataset, our human post-editors
(see Section 3.4), refined the raw NMT output
within a Translation Management System (TMS).
They made the necessary edits to ensure accuracy,
adherence to stylistic and terminology standards,
and overall readability, rather than rewriting the
translation. The editors have access to glossaries,

do-not-translate lists, and any necessary domain-
specific materials. Common corrections addressed
capitalization, punctuation, spacing, omissions,
word order, morphological agreement, locale con-
ventions, and terminology consistency. This pro-
cess ensures that the final post-edited translations
are aligned with client and domain expectations.

4 Experimental Setup

To evaluate the performance of the models, we split
the dataset into “training” and testing sets, with
90% of the triplets used as potential examples to
be retrieved and the remaining 10% reserved for
experiments. The split is performed randomly for
each language pair, ensuring a proportional repre-
sentation of all languages.

We adopt this split and retrieval approach be-
cause even top-performing LL.Ms struggle to sur-
pass the proprietary neural machine translation
(NMT) engines in this dataset when presented with
no context. The nuanced nature of the required ed-
its makes zero-shot approaches insufficient, which
motivates the inclusion of in-context examples to
guide the model’s post-editing decisions. Further-
more, by limiting results to the test set, we make
benchmarking on this dataset more affordable for
future users. We evaluate all models with 20-shot
prompts. For completeness, zero-shot results are
provided in the Appendix A.2.

4.1 Retrieval

We constructed the retrieval database by embed-
ding the source segments using OpenAl’s “text-
embedding-3-small” model.* Each source segment
is stored alongside its corresponding post-edited
translation. For retrieval during experiments, the
source segment to be post-edited is embedded, and
cosine similarity is used to identify the twenty
most similar source-human post-edit pairs from
the database. Retrieval is conducted within the
same language pair, ensuring that no cross-lingual
retrieval occurs.

*https://platform.openai.com/docs/
models/
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System Prompt

Your input fields are:

1. source: The source segment.

2. pre_translation: The translation to be edited.

3. language: The language to translate to.

4. translation_pairs: Similar translation pairs reviewed by experts
that MIGHT be relevant. If they are relevant, use them as a reference
to guide your translation.

Your output fields are:

1. reasoning

2. answer: The post-edited translation in JSON format.

All interactions will be structured in the following way:

[[ ## source ## 1]
{source}

[[ ## pre-translation ## ]]
{pre_translation’}

[[ ## language ## 11
{language}

[[ ## translation_pairs ## 1]
{translation_pairs}

[[ ## reasoning ## 1]
{reasoning}

[[ ## answer ## ]]
{answer}

[[ ## completed ## 1]

In adhering to this structure, your objective is:

You are an expert linguist and translator. You receive both the source
text and a translation. Make the necessary changes to the transla-
tion. Itis possible that the translation doesn’t need any changes at all.
Do not translate:
- Variable names (typically camelCase or snake_case)
- Standard technical terms (e.g., “URL”, “API”, “HTML”)
- URLs
- Email addresses

Make sure to preserve the casing (lower, upper case) of the
pre-translation.

Return your translation (or the original segment if no trans-

lation is required) as a JSON string as follows:
{*‘translation’’: ‘‘translation’’}.

User Prompt

[[ ## source ## 1]
Get clarity

[[ ## pre-translation ## ]]
Verschaffen Sie sich Klarheit

[[ ## language ## 1]
de-DE

[[ ## translation_pairs ## 1]

Clear contents— Inhalt 16schen

Gel the big picture — So behalten Sie den Uberblick

Respond with the corresponding output fields, starting with the field

‘reasoning’, then ‘answer’, and ending with the marker for
‘completed’.

Figure 4: Structure of the few-shot prompting format
used for LLMs. If the model’s API does not support a
system prompt we simply prepend it to the user prompt.

4.2 Models and Prompting

We evaluate the performance of both open-source
and closed-source models in our experiments. To
facilitate this, we leverage the dspy library (Khat-
tab et al., 2024, 2022), which integrates with
LiteLLM® to manage API requests to the vari-
ous models. For open-source models, we utilize

Shttps://www.litellm.ai/

HuggingFace endpoints® to set up and manage the
necessary infrastructure to process requests.

All models are evaluated using the same 20-shot
prompting setup. Specifically, for each segment
to be post-edited, we include 20 pairs of source
segments and their human post-edited version in
the prompt. This ensures a uniform evaluation
framework across all models. The prompt format
used in our experiments is illustrated in Figure 4.

5 Results and Discussion

We benchmark the performance of various models
on the LangMark test set and discuss broader chal-
lenges when evaluating performance on automatic
post-editing (APE) tasks. While we have chosen
CHRF (Popovi¢, 2015) to show performance in the
main text, we report other metrics in the Appendix
(A.3).

5.1 Model Performance

Table 4 presents the CHRF scores of various closed-
and open-source models performing automatic
post-editing on the LangMark test set using n-
shot prompting (n = 20). The results indicate that
GPT-4o consistently achieves the highest CHRF
scores, being the only closed-source model that
consistently improves the NMT output (except for
Portuguese), especially in languages where more
edits are required (i.e., Japanese and Russian). We
also benchmark two open-source models of the
Qwen and Llama family. We found that the perfor-
mance of the Qwen model is impressive for its size,
rivaling the best closed-source models and even
performing best in Russian.

The strong performance of certain models should
not overshadow the broader challenge presented by
this dataset. Note that all of the models (except
GPT-40) are unable to improve on the NMT base-
line, which emphasizes the strength of this dataset
as a benchmark for APE.

5.2 To Edit or Not to Edit

A critical aspect of automatic post-editing (APE)
lies in determining when edits are necessary: some
segments require changes while others are best left
unchanged. This introduces a classification prob-
lem that the model must solve. As NMT systems
continue to improve, the challenge shifts. High-
performing NMT systems produce outputs that are
closer to human translations. In this context, a

®https://endpoints.huggingface.co/
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Table 4: CHREF scores for different models and languages when performing APE on the test set. Scores are compared
across models, with the proprietary MT serving as the baseline.

Languages
Model EN-RU EN-BR EN-JP EN-IT EN-FR EN-ES EN-DE
Baseline 68.90 89.44 70.22 89.58 81.96 86.07 81.29
Gemini-1.5 Flash 68.92 89.18 71.69 89.40 82.20 86.24 81.01
Gemini-1.5 Pro 67.73 87.65 68.92 85.68 80.46 85.01 77.88
Claude 3.5-Sonnet 68.63 86.47 67.14 85.10 80.31 82.73 78.44
Claude 3.5-Haiku 69.08 88.81 71.64 88.76 82.21 86.08 80.66
GPT-40 mini 68.55 87.73 68.47 87.47 81.45 84.94 79.81
GPT-40 69.68 89.21 73.94 89.79 82.75 86.62 81.41
Open Source
Llama 3.1-70B 69.55 86.82 68.37 86.80 80.97 83.75 79.12
Qwen2.5-72B 70.13 89.03 72.93 89.10 82.34 86.44 81.16

language model that makes only a few highly accu-
rate edits can achieve better evaluation scores than
one that identifies more issues but fails to correct
them in the exact manner a human would. This
raises a crucial question for evaluating APE sys-
tems: “How conservative should models be when
deciding that an edit is required?”

Figure 5 illustrates the correlation between the
edits (i.e., deletion, addition, modification) made
by the models and those made by human lin-
guists. We observe that Gemini-1.5 Flash makes
the fewest edits, while Gemini-1.5 Pro and Claude
3.5-Sonnet show editing behavior more closely
aligned with human linguists. Interestingly, even
models with the highest number of edits still make
fewer changes than the human baseline, highlight-
ing the complexity of this task in LangMark.

In the same fashion, Figure 6 shows the recall
and precision on the triplets that need correction
for all models averaged across languages. Note that
we do not explicitly prompt the model to classify
each triplet. Thus, in this context:

{i e D|MT; # H; N MT; # PE;}|

Recall =
eca (i € D|MT; £ H;}|
(D
Precision = -
{i € D | MT, £ PE,}]
(2
Where:

* D is the set of triplets in the dataset.
* MT; is the machine translation output for seg-
ment ¢.

H; is the human post-edit (ground truth) for
segment 4.
* PE; is the model post-edit for segment .

Using this formulation, we can quantify both the
frequency with which models detect segments that
need edits and their accuracy in determining when
a segment needs to be edited. Models with higher
precision, such as GPT-4o, tend to achieve better
overall performance on machine translation evalua-
tion metrics despite having lower recall. We refer
to these as “conservative” models. In contrast, “ag-
gressive” models like Claude 3.5 Sonnet, perform
worse, despite having higher recall.

—--- Human Edits —— GPT-40 —— Gemini-1.5 Pro
—— Claude 3.5-Haiku —— GPT-40 mini Llama 3.1-70B

Claude 3.5-Sonnet —— Gemini-1.5 Flash Qwen2.5-72B

EN-DE
0.20
EN-RU
EN-ES

EN-BR EN-FR

EN-JP EN-IT

Figure 5: Normalized number of edits made by each
model on the NMT output. Note that all models made
significantly fewer edits than the human baseline. This
indicates that there is still considerable room for im-
provement
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Figure 6: Precision and recall of models when determin-
ing that a segment needs to be edited. We see that the
models with high recall are not the best performing on
machine translation metrics (see Table 4). Instead, the
more “conservative” models (low recall, high precision)

perform best.
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Figure 7: Average performance of each model across
segments of varying lengths, separated into those that
require edits (red) and those that do not (green). Models
perform substantially worse on shorter segments that
need editing, due to limited context. More “aggressive”
models (e.g., Claude 3.5 Sonnet, GPT-4-mini) often
modify segments that do not require edits. Only seg-
ments of up to 50 words are shown for visualization
purposes.

Figure 7 reports the CHRF scores for each model,
averaged across all test-set segments and grouped
by segment length. For segments requiring no mod-
ifications, most models maintain high CHRF scores.
However, performance is consistently lower on seg-
ments that need correction, hinting at the nuanced
nature of the required edits. Editing shorter seg-
ments proves especially challenging, likely due to
their limited context, which makes it more difficult
for APE systems to accurately apply the necessary
modifications.

Figures 6 and 7 show that models with a higher
recall often over-detect necessary edits. For in-

stance, Claude 3.5-Sonnet identifies more segments
that require changes but frequently introduces ed-
its where none are needed, affecting performance.
This shows that the task of determining whether
a segment requires editing is a key challenge in
APE settings, especially when nuanced edits are
required.

5.3 Towards Better Evaluation Metrics

These findings suggest that relying solely on ma-
chine translation evaluation metrics is insufficient
to fully evaluate APE systems. An ideal evalua-
tion metric should consider both the quality of the
final output and the number of edits performed,
accounting for the balance between unnecessary
conservatism and excessive intervention. Although
this work does not propose such a metric, we hope
that the dataset introduced here fosters further re-
search into the development of comprehensive eval-
uation frameworks and promotes the design of APE
systems that better align with human post-editing
strategies.

6 Conclusions

This work introduces LangMark, a human-
annotated multilingual dataset for automatic post-
editing (APE) on neural machine translation
(NMT) outputs. The translation is performed from
English to seven languages, and the data is com-
posed of over 200,000 triplets. The dataset and
the results presented in this work constitute a valu-
able benchmark for evaluating APE systems and
advancing research in the field.

Our experiments demonstrate that large language
models (LLMs) with few-shot prompting can im-
prove translation quality, outperforming proprietary
NMT systems. The fact that most state-of-the-
art language models fail to improve on the NMT
output that comprises our dataset highlights the
strength of LangMark as a benchmark for APE
systems. Further, we emphasize that machine trans-
lation evaluation metrics, while essential to mea-
sure performance, fail to account for the classi-
fication part of any APE tasks (i.e., determining
whether the NMT output needs to be edited). This
highlights the need for metrics that better reflect
human editing behavior.

We hope that this dataset and the accompa-
nying analysis provide a foundation for further
research and benchmarking of Automatic Post-
Editing (APE) systems.



Limitations

Although LangMark offers a large-scale, multi-
lingual dataset for automatic post-editing (APE),
it also comes with some limitations. First, Lang-
Mark is derived from a single domain—marketing
content—which may constrain the generalizability
of APE models trained on it. The dataset’s linguis-
tic style and error types may not accurately capture
challenges in other domains such as medical, legal,
or literary texts.

Second, the dataset is unidirectional, covering
only translations from English into seven target lan-
guages. This scope excludes the reverse direction
(or translations among non-English languages).

Lastly, despite efforts to remove sensitive or per-
sonally identifiable information, the original con-
tent—drawn from real marketing documents—may
still carry domain-specific biases or cultural nu-
ances. Researchers and practitioners should care-
fully consider these factors when extending or ap-
plying LangMark to other use cases or domains.
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A Appendix

A.1 Linguist Compensation

In terms of our freelance supplier pool, we prioritize fair compensation for our linguists based on the
complexity of their tasks and prevailing market rates. We ensure that our pay rates reflect the market value
for each language combination and required skill set, guaranteeing equitable remuneration for all services
provided.

Beyond fair pay, we are dedicated to supporting local rural communities in India and Africa through our
impactful sourcing program. This initiative creates valuable opportunities for individuals in marginalized
communities who might not otherwise have access to such work. Currently, we are running three
successful programs in collaboration with companies in these regions.

Additionally, we place great emphasis on engaging with our linguist community. We regularly conduct
surveys to gather feedback and continuously refine our work practices, ensuring we meet the needs and
expectations of our talented linguists.

A.2 Zero-Shot Results

Table 5: Zero-shot CHRF scores for different models and languages when performing APE on the test set. Scores
are compared across models, with the proprietary MT serving as the baseline.

Languages
Model EN-RU EN-PT EN-JP EN-IT EN-FR EN-ES EN-DE
Baseline 68.90 89.44 7022 89.58 81.96 86.07 81.29

Gemini-1.5 Flash 68.80 88.97 7159  88.95 82.26 86.14 80.85
Gemini-1.5 Pro 65.95 86.65 68.01 8442  79.74 84.45 77.67
Claude 3.5-Sonnet  67.83 87.68  68.00 86.78  80.73 83.43 79.18
Claude 3.5-Haiku 68.62 88.86 7190 8899  82.24 86.01 80.57

GPT-40 mini 67.78 87.84  69.73 8799 8140 8491 80.10

GPT-40 68.99 89.21 7346 89.29 8224  86.34 81.06
Open Source

Llama 3.1-70B 66.84 85.41 68.80 8530  79.88 81.54 77.07

Qwen2.5-72B 68.62 89.21  72.86 89.23  82.27 86.07 81.08

Table 6: Zero-shot TER| (Snover et al., 2006) scores for different models and languages when performing APE on
the test set. Scores are compared across models, with the proprietary MT serving as the baseline.

Languages
Model EN-RU EN-PT EN-JP EN-IT EN-FR EN-ES EN-DE
Baseline 45.40 14.27 74.15 14.61 26.67 19.28 31.26
Gemini-1.5 Flash 45.71 14.67 72.87 15.40 25.60 19.28 31.61
Gemini-1.5 Pro 49.51 17.65 74.52 20.94 28.76 21.42 35.77

Claude 3.5-Sonnet 47.16 16.18 79.14 18.24 27.70 22.75 33.74
Claude 3.5-Haiku 45.70 14.66 74.75 15.28 25.56 19.41 31.76
GPT-40 mini 46.66 15.63 76.08 16.52 26.52 20.58 32.47
GPT-40 45.35 14.67 71.75 14.96 25.87 19.04 31.30

Open Source

Llama 3.1-70B 47.77 18.67 76.20 19.59 28.83 27.85 41.08
Qwen2.5-72B 45.69 14.22 71.25 15.00 25.66 19.34 31.30
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Table 7: Zero-shot BLEU (Papineni et al., 2002) scores for different models and languages when performing APE
on the test set. Scores are compared across models, with the proprietary MT serving as the baseline.

Languages
Model EN-RU EN-PT EN-JP EN-IT EN-FR EN-ES EN-DE
Baseline 49.13 80.16 1428 7993 6491 73.75 64.13

Gemini-1.5 Flash 48.90 79.51 33.61  79.09  66.56 74.28 63.61
Gemini-1.5 Pro 44.31 75.31 3280 71.28  62.68 71.44 58.34
Claude 3.5-Sonnet ~ 47.44 7712 3093 7534  64.44 69.76 60.82
Claude 3.5-Haiku 48.63 79.37 3338 79.13 66.73 74.06 63.20
GPT-40 mini 47.62 77.69 2751 7747 6537 72.30 62.40
GPT-40 48.99 79.58 3495 79.51 66.02 74.49 63.82

Open Source

Llama 3.1-70B 46.03 73.87 3231 7317  63.03 65.58 54.83
Qwen2.5-72B 48.45 7979 3424 7946  66.62 74.20 63.90

A.3 Additional Metrics

Table 8: TER| scores (Snover et al., 2006) for different models and languages when performing APE on the test set.
Scores are compared across models, with the proprietary MT serving as the baseline. Lower is better.

Languages
Model EN-RU EN-PT EN-JP EN-IT EN-FR EN-ES EN-DE
Baseline 45.40 14.27 74.15 14.61 26.67 19.28 31.26

Gemini-1.5 Flash 45.62 14.42 71.59 14.81 25.83 19.14 31.43
Gemini-1.5 Pro 47.53 16.37 70.84 19.52 27.95 20.76 35.60
Claude 3.5-Sonnet 46.56 17.82 75.66 20.57 28.34 23.67 34.90
Claude 3.5-Haiku 45.60 14.72 72.12 15.59 25.71 19.51 31.78
GPT-40 mini 46.17 16.08 74.68 17.27 26.54 20.56 32.74
GPT-40 44.49 14.41 69.01 14.25 25.30 18.64 30.91

Open Source

Llama 3.1-70B 45.12 17.44 73.94 18.39 27.80 22.26 33.80
Qwen2.5-72B 43.91 14.45 68.75 15.23 25.71 18.95 30.95

Table 9: BLEU (Papineni et al., 2002) scores for different models and languages when performing APE on the test
set. Scores are compared across models, with the proprietary MT serving as the baseline.

Languages
Model EN-RU EN-PT EN-JP EN-IT EN-FR EN-ES EN-DE
Baseline 49.13 80.16 14.28 79.93 64.91 73.75 64.13
Gemini-1.5 Flash 48.69 79.80 34.17 79.59 66.50 74.37 63.71
Gemini-1.5 Pro 46.35 77.04 36.27 73.23 63.74 72.47 58.16
Claude 3.5-Sonnet 47.53 74.83 33.94 71.92 63.61 68.20 59.08
Claude 3.5-Haiku 48.58 79.17 35.72 78.72 66.61 74.11 63.10
GPT-40 mini 47.92 77.30 27.81 76.17 65.21 72.27 61.89
GPT-40 49.79 79.86 37.96 80.12 66.91 74.84 64.20

Open Source

Llama 3.1-70B 49.28 75.76 33.01 74.97 64.22 70.27 60.70
Qwen2.5-72B 50.31 79.59 37.43 79.16 66.60 74.79 64.01
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