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Abstract

Significance testing has played a vital role in001
the development of NLP systems, providing002
confidence that one system is indeed better than003
another one. However, many significance tests004
involve hard computation problems, and so we005
rely on approximation methods such as Monte006
Carlo sampling. In this paper, we provide an ex-007
act dynamic programming algorithm that runs008
in quadratic time in the size of the dataset and009
performs the paired permutation test, a widely010
used test in comparing two systems, for the011
case of comparing accuracies between two clas-012
sification systems. We show that Monte Carlo013
approximations are often too noisy to reliably014
determine whether we can reject the null hy-015
pothesis. We show that Monte Carlo approx-016
imations are often too noisy to reliably deter-017
mine whether we can reject the null hypothesis018
with a significance level of α ≈ 0.05 for any019
number of sentence N . Additionally, we show020
that our exact algorithm is more efficient than021
the approximation algorithm for N ≤ 10K.022

1 Introduction023

Statistical hypothesis testing (Lehmann and Ro-024

mano, 2005) is a fundamental evaluation technique025

in the sciences. Thus, it should come as no sur-026

prise that statistical hypothesis testing is an often027

employed technique in natural language process-028

ing (e.g., Dietterich (1998); Koehn (2004); Ojala029

and Garriga (2010); Clark et al. (2011); Berg-030

Kirkpatrick et al. (2012)) for the comparison of031

competing system, e.g., can we claim that system A032

has lower error than system B with high confidence.033

In this paper, we develop an efficient, exact034

algorithm for the paired permutation test (Good,035

2000), a commonly used method for system com-036

parison in NLP (Yeh, 2000; Dror et al., 2018, 2020;037

Deutsch et al., 2021). An exact paired permutation038

test involves a summation over a specific set of039

permutations. The naïve algorithm to perform this040

summation runs in exponential time as enumerates041

all permutations. Thus, practitioners resort to 042

running a Monte Carlo (MC) approximation to the 043

permutation test. However, as with all stochastic 044

simulation, this process introduces additional 045

error when determining whether or not we may 046

reject the null hypothesis. This paper introduces 047

a new dynamic programming algorithm for the 048

performing the computations required by a paired 049

permutation test exactly. Furthermore, we show 050

that the algorithm is efficient when comparing two 051

systems based on accuracy, the standard metric for 052

evaluation in many NLP tasks, e.g. part-of-speech 053

tagging and dependency parsing. Furthermore, in 054

the appendix (App. B), we give an exact quintic 055

algorithm for comparing F1, but its runtime is too 056

slow to be used on large datasets. 057

We compare the relative accuracy and efficiency 058

of the exact test and the MC approximation for 059

comparing part-of-speech taggers on the English 060

Universal Dependency Dataset (Nivre et al., 2018). 061

We experimented with the number of MC samples 062

K and the number of sentences N . We find that 063

in all settings, the estimation error of MC can be 064

unreliable even when ≥ 20K samples are taken. 065

Additionally, we find that our exact algorithm is 066

faster than using MC with 20K and 40K samples 067

for datasets with ≤ 6K and ≤ 10K sentences. 068

Our Python implementation1 runs the exact permu- 069

tation test in under three seconds for a dataset with 070

10K sentences. Overall, our exact method appears 071

to be a more practical alternative to MC. 072

2 Paired Permutation Test 073

A statistical hypothesis test attempts to reject a null 074

hypothesis H∅ at significance level α. It is common 075

practice to set α = 0.05, but there is a movement 076

to lower the scientific standard (Ioannidis, 2018). 077

We now turn to the paired permutation test (Good, 078

2000), the focus on this work. Suppose we want to 079

1We will release our code publicly upon publication.
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evaluate the performance of System A and System080

B on an input x with N entries that has a set of true081

predictions y. Suppose System A predicts â and082

System B predicts b̂. The type of the prediction083

varies between tasks, e.g., y ∈ {+1,−1}N in the084

simplest case of positive and negative predictions085

while y ∈ {1, . . . , C}N for general classification086

problems. In many NLP tasks, such as part-of-087

speech tagging, dependency parsing, inter alia, a088

sentence-level prediction may be decomposed into089

word-level predictions. Then y ∈ {1, . . . , C}LN090

where L is the maximum sentence length.091

Now, suppose we wish to test the hypothesis092

that â and b̂ are different under a scoring function093

f . We do this by performing a paired permutation094

test on the null-hypothesis, H∅, that there is no095

difference between â and b̂ under f :096

H∅ : effectf

(
â, b̂

)
def
=

∣∣∣f(â)− f
(
b̂
)∣∣∣ ?

= 0 (1)097

We attempt to reject H∅ by considering the prob-098

ability of having seen an effect size as small as099

observed under the null distribution P∅.100

Definition 1. Given two sets of output, â and b̂,101

both of size N , a paired permutation (henceforth102

permutation)
〈
â′, b̂′

〉
is a pair of data that is103

composed by swapping elements between â and104

b̂. Specifically, for entry n ≤ N , we have that105

â′n = ân and b̂′n = b̂n (no swap) or â′n = b̂n and106

b̂′n = ân (swap). The set of all permutations of â107

and b̂ is given by S(â, b̂) and
∣∣∣S(â, b̂)∣∣∣ = 2N .108

Under a paired permutation test, the null-109

distribution, P∅, is defined to be the uniform110

distribution over the paired permutations (i.e.,111

P∅

(〈
â′, b̂′

〉)
=2−N ). Then, if our observed112

effect is o = effectf

(
â, b̂

)
and we have an113

effect random variable drawn from P∅, E =114

effectf

(
â′, b̂′

)
∼ P∅, we reject our null-115

hypothesis if p = P(E ≤ o) < α where α is116

pre-set. More formally, p can be computed as117

p =

∑
⟨â′,b̂′⟩∈S(â,b̂) 1

[
effectf

(
â′, b̂′

)
≤ o

]
∣∣∣S(â, b̂)∣∣∣

(2)118

The paired permutation test, thus, compares the119

difference between each individual set of predic-120

tions. Peyrard et al. (2021) show that this approach121

is important for reliable significance testing in NLP.122

1: def monte_carlo(â, b̂) :
2: o← effect(â, b̂)
3: p← 0
4: for i ∈ 1, . . . ,K :
5:

〈
â′, b̂′

〉
←⟨0,0⟩

6: for n ∈ 1, . . . , N :
7:

〈
â′n, b̂

′
n

〉
← RandomSwap(ân, b̂n)

8: p+= 1
K1

[
effect(â′, b̂′) ≤ o

]
9: return p

Figure 1: Monte Carlo sampling approximation algo-
rithm for the paired permutation test.

Approximating Paired Permutation Test In 123

general, the paired permutation test requires us 124

to compute the sum in (2) The naïve computation 125

clearly runs in exponential time as it requires the 126

enumeration of all
∣∣∣S(â, b̂)∣∣∣ = 2N paired per- 127

mutations. Therefore, most practical implemen- 128

tations of the paired permutation test use a MC 129

approximation, whereby one randomly samples 130

paired permutations to construct an approximate 131

null-distribution. We give this MC algorithm in 132

Fig. 1. Note that the algorithm works for any effect 133

function. In the following section, we provide an 134

exact algorithm for the case where effect measures 135

the absolute difference in accuracy. 136

3 Exact Test for Accuracy 137

We present a dynamic programming (DP) approach 138

for the paired permutation test. In the general case, 139

the runtime of our DP depends on the chosen effect. 140

However, in the case of accuracy, we are able to 141

derive an efficient exact algorithm. 142

A(â)
def
=

t(â)

t(â) + f(â)
=

t(â)

N
(3) 143

where t(â) and f(â) are the number of true predic- 144

tions and false predictions made in â with regards 145

to y, respectively. We can decompose t(â) among 146

each prediction such that t(â) =
∑N

n=1 t(ân) 147

where t(ân) ∈ {0, . . . , L}. 148

The aim of our test is to determine if the p-value 149

150

pA =

∑
⟨â′,b̂′⟩∈S(â,b̂) 1

[
effectA

(
â′, b̂′

)
≤ o

]
∣∣∣S(â, b̂)∣∣∣

(4) 151

is less than the significance level α. 152
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1: def perm_test_acc(â, b̂) :
2: W← 0
3: W[0, 0]← 1
4: for n ∈ 1, . . . , N :
5: vstay ← t(â′n)− t

(
b̂′n

)
6: vswap ← t

(
b̂′n

)
− t(â′n)

7: for v ∈W[n] :
8: W[n, v + vstay]+= 1

2W[n− 1, v]
9: W[n, v + vswap]+= 1

2W[n− 1, v]

10: o←
∣∣∣t(â)− t

(
b̂
)∣∣∣

11: p← 0
12: for v ∈W[N ] :
13: if |v| ≤ o :
14: p+=W[N, v]

15: return p

Figure 2: Dynamic program to find exact p value for the
paired-permutation test for accuracy.

Proposition 1. Given an input x with predictions â153

and b̂ and true predictions y, for any paired permu-154

tation
〈
â′, b̂′

〉
, effectA

(
â′, b̂′

)
≤ effectA

(
â, b̂

)
155

iff
∣∣∣t(â′)− t

(
b̂′
)∣∣∣ ≤ ∣∣∣t(â)− t

(
b̂
)∣∣∣156

Proposition 1 indicates that we only need to care157

about the different in true predictions when per-158

forming the paired permutation test for accuracy.159

We build our DP by constructing a structure W160

such that for any n ∈ {0, . . . , N} and v ∈ L161

where L def
= {−LN, . . . , LN}, W[n, l] is the prob-162

ability that a paired permutation
〈
â′, b̂′

〉
satisfies163

t(â′:n) − t
(
b̂′
:n

)
= v where we define â′:n to be164

the first n predictions of â′. Note that we do not165

consider the absolute value in the DP as we can not166

decompose an absolute difference into the differ-167

ence of individual predictions. Once we have W,168

then the row W[N ] contains the distribution over169

t(â′)−t
(
b̂′
)

and so we can find pA. The algorithm170

is formalized as perm_test_acc in Fig. 2.2171

Theorem 1. Given an input x with pre-172

dictions â and b̂ and true predictions y,173

perm_test_acc(â, b̂) returns pA inO(LN2) time174

and O(LN) space.175

2The correctness of perm_test_acc is given in Theorem 1.
We provide proofs in in App. A.

Metric Mean Standard Dev.

Accuracy 0.9543 0.1116
Sentence length 12.08 10.60

Table 1: Distributions for of accuracy and sentence
length for POS tagging using Stanza (Qi et al., 2020) on
the English UD test dataset (Nivre et al., 2018).

3.1 Practical Implementation 176

Fig. 2 shows a W structure that is a RN×LN matrix 177

which suggests we need O(LN2) space. However, 178

we note that at any iteration n, we only ever need 179

row W[n− 1] and W[n]. Therefore, we only need 180

to maintain two rows of the matrix and so only 181

require O(LN) space for the algorithm. 182

4 Experiments 183

We demonstrate the efficiency of our exact algo- 184

rithms by simulating paired permutation tests be- 185

tween two systems. In order to have some control 186

over the p-value, N , and L, we randomly generate 187

our two system outputs from a measured distribu- 188

tion. Specifically, we will use the Stanza3 (Qi et al., 189

2020) part-of-speech tag statistics when evaluating 190

on the English Universal Dependencies (UD) test 191

set (Nivre et al., 2018). We sample our outputs 192

from the normal distribution where the mean and 193

standard deviation match the rates of Stanza. We 194

further sample the length of each sample sentence 195

according to the distribution of lengths in the test 196

set. The distributions are provided in Tab. 1. 197

Error Rate of Monte Carlo. We first examine 198

the error rate of the monte_carlo as we increase 199

the number of samples used. We sample â and b̂ 200

using the distributions in Tab. 1, however, we mul- 201

tiply the mean of b̂ by a factoring in proportion to 202

N . We do this to obtain p-values roughly between 203

0.001 and 0.1 which is a typical range for α and so 204

a paired permutation test would be required. For 205

each K, we sampled five pairs of systems and run 206

the method five times for each pair, giving 25 data 207

points for each K and N . The reported error rates 208

given in Fig. 3 are the averages of these errors.4 209

The mean multiplication factor as well as the aver- 210

age p-value for each N is given in Tab. 2. We see 211

3The code and pre-trained model are both freely accessible at
https://github.com/stanfordnlp/stanza.

4We discard relative errors > 10. We do this to be able to
see the noise more clearly in a specific range. However, we
note that requiring this additional filter further shows the
unreliability of the MC method.
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N Mean Mean p Standard Dev. p

250 0.95µ 0.0512 0.1351
500 0.96µ 0.0189 0.0656
1000 0.97µ 0.0153 0.0534
2000 0.98µ 0.0202 0.0536
4000 0.985µ 0.0170 0.0538
8000 0.99µ 0.0360 0.1146

Table 2: Means used for b̂ distributions in Fig. 3. We
use µ to reference the mean 0.9543 given in Tab. 1.
The mean and standard deviation of the p-values of the
paired permutation test are also given.
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Figure 3: Relative errors of using monte_carlo for the
paired permutation test. System â is sampled according
to Tab. 1 and system b̂ is sampled according to Tab. 2.

that the MC approximations are not reliable for all212

the values of N . While there is a downwards trend213

as we increase the number of cycles, we observe214

a lot of noise even when taking 25 attempts per215

N and K pair. The trend seems most clear until216

K = 20,000 at which point we see a lot of noise217

as K increases. We therefore suggest that 20,000218

is the minimum number of samples required when219

performing a MC paired permutation test, though220

more is likely better.221

Advantages of the Exact Test. When reporting222

system accuracies in the literature,an exact p-value223

avoids the estimation error associated with Monte224

Carlo, as the results above demonstrate. We now225

show that, empirically, the exact test is more effi-226

cient than the MC approximation when a large num-227

ber of samples is taken; this is evinced in Fig. 4. We228

compare the runtime of perm_test_acc against229

monte_carlo for K = 20,000 and K = 40,000.5230

5The experiment used an Apple M1 Max processor.
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Figure 4: Runtime comparison of perm_test_acc and
monte_carlo as a function of the number of sentences.

We can see that perm_test_acc is more effi- 231

cient than monte_carlo with K = 40,000 and 232

K = 20,000 for N < 10,000 and N < 6,000 233

(respectively). We note that the average test set size 234

of the UD treebanks6 is just over 1,000 sentences, 235

and only three treebanks had more than 6,000 sen- 236

tences.7 Additionally, the standard split of the com- 237

monly used Penn treebank (PTB) (Marcus et al., 238

1993) provides a test set of about 5,500 sentences. 239

Therefore, the perm_test_acc is more efficient 240

than monte_carlo for most of the datasets that are 241

used in NLP token-level classification problems. 242

5 Conclusion 243

We presented a dynamic programming algorithm 244

to compute the exact p-value of a paired permu- 245

tation test for the case of difference in accuracy. 246

Our algorithm runs in O(LN2) time and requires 247

O(LN) space. We empirically show that when 248

using MC approximation techniques, we often re- 249

quire K > LN samples to obtain a “good enough” 250

approximation. Therefore, not only is the MC 251

method imprecise, it is also often slower than our 252

exact algorithm for commonly used datasets. We 253

also note that our dynamic program can be ex- 254

tended to compute exact p-values for the paired 255

permutation test using other metrics such as the dif- 256

ference in F1 scores (see App. B). However, these 257

may by impractical for reasonably sized dataset. 258

6We examined a total of 129 treebanks as some languages
have multiple treebanks.

7These were Czech, Japanese, and Russian which had test set
sizes of roughly 10,000, 8,000, and 6,500 (respectively).
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Jan Hajič jr., Linh Hà Mỹ, Na-Rae Han, Kim Har- 344
ris, Dag Haug, Barbora Hladká, Jaroslava Hlaváčová, 345
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A Proofs for Section §3 (Exact Test for Accuracy) 437

Proposition 1. Given an input x with predictions â and b̂ and true predictions y, for any paired 438

permutation
〈
â′, b̂′

〉
, effectA

(
â′, b̂′

)
≤ effectA

(
â, b̂

)
iff

∣∣∣t(â′)− t
(
b̂′
)∣∣∣ ≤ ∣∣∣t(â)− t

(
b̂
)∣∣∣ 439

Proof.

effectA

(
â′, b̂′

)
≤ effectA

(
â, b̂

)
⇐⇒

∣∣∣A(
â′
)
−A

(
b̂′
)∣∣∣ ≤ ∣∣∣A(â)−A

(
b̂
)∣∣∣ 440

⇐⇒

∣∣∣∣∣∣
t(â′)− t

(
b̂′
)

|y|

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
t(â)− t

(
b̂
)

|y|

∣∣∣∣∣∣ 441

⇐⇒
∣∣∣t(â′)− t

(
b̂′
)∣∣∣ ≤ ∣∣∣t(â)− t

(
b̂
)∣∣∣ 442

■ 443

Theorem 1. Given an input x with predictions â and b̂ and true predictions y, perm_test_acc(â, b̂) 444

returns pA in O(LN2) time and O(LN) space. 445

Proof. We first prove that for all n ∈ {0, , . . . , N}, W[n] is the probability distribution 446

P
(
effectA

(
â′:n, b̂

′
:n

))
. 447

Base case: Then n = 0. We have that W[0, 0] = 1 and W[0, v] = 0 for all v ∈ L∖ {0}. 448

Inductive step: Assume that W[n − 1] is the probability distribution P(effectA(â′:(n−1), b̂
′
:(n−1)). Let 449

v ∈ L be a candidate difference and v′ = t(â′n) − t
(
b̂′n

)
. We know that

〈
â′n, b̂

′
n

〉
is
〈
ân, b̂n

〉
with 450

probability 1
2 or

〈
b̂n, ân

〉
with probability 1

2 . Therefore, v′ = t(ân) − t
(
b̂n

)
with probability 1

2 or 451

v′ = t
(
b̂n

)
− t(ân) with probability 1

2 . Then 452

P
(
effectA

(
â′:n, b̂

′
:n

)
= v

)
=

1

2
P
(
effectA

(
â′:(n−1), b̂

′
:(n−1)

)
= v − v′

)
=

1

2
W[n− 1, v − v′] 453

This is exactly what is done from Line 7 to Line 9 in Fig. 2. Therefore, W[n] is the probability distribution 454

P(effectA
(
â′:n, b̂

′
:n

)
. 455

Line 11 to Line 14 in Fig. 2 construct the p-value using the following equation 456∑
v∈W[N ]

1[|v| ≤ o]W[N, v] =
∑

v∈W[N ]

1[|v| ≤ o]P
(
effectA

(
â′, b̂′

)
= v

)
457

= P
(
effectA

(
â′, b̂′

)
≤ effectA

(
â, b̂

))
= pA 458

where o =
∣∣∣t(â)− t

(
b̂
)∣∣∣ 459

The algorithm runs over two nested for-loops of sizes O(N) and O(LN) respectively. As the inner 460

loop does constant amount of work per iteration, perm_test_acc runs in O(LN2) time. The space 461

complexity is discussed in §3.1. ■ 462

B Exact Paired Permutation Test for F1 463

We now derive a similar DP algorithm for the case of the F1 score which we define as 464

F1(x) =
t+(â)

t+(â) + 1
2f(â)

(5) 465

where t+(â) is the number of true positive predictions made in â with regards to y. 466
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1: def perm_test_F1(â, b̂,K) :
2: W← 0
3: W[0,⟨0, 0, 0, 0⟩]← 1
4: for n ∈ 1, . . . , N :
5: for

〈
t+a , fa, t

+
b , fb

〉
∈W[n] :

6: vstay ←
〈
t+a + t+(â′n), fa + f(â′n), t

+
b + t+

(
b̂′n

)
, fb + f

(
b̂′n

)〉
7: vswap ←

〈
t+a + t+

(
b̂′n

)
, fa + f

(
b̂′n

)
, t+b + t+(â′n), fb + f(â′n)

〉
8: W[n, vstay]+= 1

2W[n− 1,
〈
t+a , fa, t

+
b , fb

〉
]

9: W[n, vswap]+= 1
2W[n− 1,

〈
t+a , fa, t

+
b , fb

〉
]

10: o←
∣∣∣∣ t+(â)

t+(â)+ 1
2
f(â)
− t+(b̂)

t+(b̂)+ 1
2
f(b̂)

∣∣∣∣
11: p← 0
12: for

〈
t+a , fa, t

+
b , fb

〉
∈W[N ] :

13: if
∣∣∣∣ t+a
t+a + 1

2
fa
− t+b

t+b + 1
2
fb

∣∣∣∣ ≤ o :

14: p+=W[N,
〈
t+a , fa, t

+
b , fb

〉
]

15: return p

Figure 5: Dynamic program to find exact p value for the paired-permutation test for F1.

The aim of our significance test is to decide whether the p-value467

pF1 =

∑
⟨â′,b̂′⟩∈S(â,b̂) 1

[
effectF1

(
â′, b̂′

)
≤ o

]
∣∣∣S(â, b̂)∣∣∣ (6)468

is less than the significance level α where effectF1

(
â, b̂

)
def
=

∣∣∣F1(â)− F1

(
b̂
)∣∣∣. Unfortunately, unlike469

accuracy, we cannot decompose the F1 score into a single additive component. We can write effectF1(â, b̂)470

as471

effectF1

(
â, b̂

)
=

∣∣∣∣∣∣ t+(â)

t+(â) + 1
2f(â)

−
t+

(
b̂
)

t+
(
b̂
)
+ 1

2f
(
b̂
)
∣∣∣∣∣∣472

Therefore, we have four variables that we can decompose along the data points, t+(â), f(â), t+
(
b̂
)

,473

and f
(
b̂
)

. We construct a similar DP to perm_test_acc, however instead of maintaining the difference474

in true predictions, we maintain a tuple of the four aforementioned variables. We give this algorithm475

as perm_test_F1 in Fig. 5 As each variable can be any of O(LN) values, this makes our DP have a476

runtime of O(L4N5). Unfortunately, while the algorithm is polynomial in time, the quintic factor makes477

it impractical for common NLP datasets as described in §4478

Theorem 2. Given an input x with predictions â and b̂ and true predictions y, perm_test_F1(â, b̂)479

returns pF1 in O(L4N5) time and O(L4N4) space.480

Proof. For any n ∈ {0, , . . . , N} and
〈
t+a , fa, t

+
b , fb

〉
∈ L4, we define En

(
t+a , fa, t

+
b , fb

)
to be the event481

that t(â′:n) = t+a , f(â′:n) = fa, t
(
b̂′
:n

)
= t+b , and f

(
b̂′
:n

)
= fb. We first prove that W[n] is the482

probability distribution over the tuples such that483

W[n,
〈
t+a , fa, t

+
b , fb

〉
] = P

(
En(t

+
a , fa, t

+
b , fb)

)
(7)484

Base case: Then n = 0. We have that W [0,⟨0, 0, 0, 0⟩] = 1 and W[0, v] = 0 for all v ∈ L∖{⟨0, 0, 0, 0⟩}.485

8



Inductive step: Assume that W[n − 1] is the probability distribution described in (7). We know that 486〈
â′n, b̂

′
n

〉
is
〈
ân, b̂n

〉
with probability 1

2 or
〈
b̂n, ân

〉
with probability 1

2 . Then, if we let
〈
t+a , fa, t

+
b , fb

〉
∈ 487

L4, we can find the following probability 488

P
(
En(t

+
a , fa, t

+
b , fb)

)
=

1

2
P
(
En−1

(
t+a − t

(
â′n

)
, fa − f

(
â′n

)
, t+b − t

(
b̂′n

)
, fb − f

(
b̂′n

)))
489

=
1

2
W

[
n− 1,

〈
t+a − t

(
â′n

)
, fa − f

(
â′n

)
, t+b − t

(
b̂′n

)
, fb − f

(
b̂′n

)〉]
490

This is exactly what is done from Line 8 to Line 9 in Fig. 5. Therefore, W[n] is the probability distribution 491

P
(
En(t

+
a , fa, t

+
b , fb)

)
. 492

Line 11 to Line 14 in Fig. 5 construct the p-value using the following equation 493

∑
⟨t+a ,fa,t

+
b ,fb⟩∈W[N ]

1

[∣∣∣∣∣ t+a
t+a + 1

2fa
−

t+b
t+b + 1

2fb

∣∣∣∣∣ ≤ o

]
W[N,

〈
t+a , fa, t

+
b , fb

〉
] (8) 494

=
∑

⟨t+a ,fa,t
+
b ,fb⟩∈W[N ]

1

[∣∣∣∣∣ t+a
t+a + 1

2fa
−

t+b
t+b + 1

2fb

∣∣∣∣∣ ≤ o

]
P
(
EN (t+a , fa, t

+
b , fb)

)
(9) 495

=
∑

⟨â′,b̂′⟩∈S(â,b̂)
1

[
effectF1(â

′, b̂′) ≤ o
]
P
(
EN

(
t
(
â′
)
, f

(
â′
)
, t
(
b̂′
)
, f

(
b̂′
)))

(10) 496

= P
(
effectF1(â

′, b̂′) ≤ o
)
= pF1 (11) 497

The algorithm runs over two nested for-loops of sizes O(N) and O(L4N4) respectively. As the inner 498

loop does constant amount of work per iteration, perm_test_F1 runs in O(L4N5) time. We need to store 499

two rows of W at any given time. Therefore the space complexity is O(L4N4) ■ 500
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