Exact Paired Permutation Testing Algorithms for NLP Systems

Anonymous ACL submission

Abstract

Significance testing has played a vital role in
the development of NLP systems, providing
confidence that one system is indeed better than
another one. However, many significance tests
involve hard computation problems, and so we
rely on approximation methods such as Monte
Carlo sampling. In this paper, we provide an ex-
act dynamic programming algorithm that runs
in quadratic time in the size of the dataset and
performs the paired permutation test, a widely
used test in comparing two systems, for the
case of comparing accuracies between two clas-
sification systems. We show that Monte Carlo
approximations are often too noisy to reliably
determine whether we can reject the null hy-
pothesis. We show that Monte Carlo approx-
imations are often too noisy to reliably deter-
mine whether we can reject the null hypothesis
with a significance level of a ~ 0.05 for any
number of sentence N. Additionally, we show
that our exact algorithm is more efficient than
the approximation algorithm for N < 10K.

1 Introduction

Statistical hypothesis testing (Lehmann and Ro-
mano, 2005) is a fundamental evaluation technique
in the sciences. Thus, it should come as no sur-
prise that statistical hypothesis testing is an often
employed technique in natural language process-
ing (e.g., Dietterich (1998); Koehn (2004); Ojala
and Garriga (2010); Clark et al. (2011); Berg-
Kirkpatrick et al. (2012)) for the comparison of
competing system, e.g., can we claim that system A
has lower error than system B with high confidence.

In this paper, we develop an efficient, exact
algorithm for the paired permutation test (Good,
2000), a commonly used method for system com-
parison in NLP (Yeh, 2000; Dror et al., 2018, 2020;
Deutsch et al., 2021). An exact paired permutation
test involves a summation over a specific set of
permutations. The naive algorithm to perform this
summation runs in exponential time as enumerates

all permutations. Thus, practitioners resort to
running a Monte Carlo (MC) approximation to the
permutation test. However, as with all stochastic
simulation, this process introduces additional
error when determining whether or not we may
reject the null hypothesis. This paper introduces
a new dynamic programming algorithm for the
performing the computations required by a paired
permutation test exactly. Furthermore, we show
that the algorithm is efficient when comparing two
systems based on accuracy, the standard metric for
evaluation in many NLP tasks, e.g. part-of-speech
tagging and dependency parsing. Furthermore, in
the appendix (App. B), we give an exact quintic
algorithm for comparing F, but its runtime is too
slow to be used on large datasets.

We compare the relative accuracy and efficiency
of the exact test and the MC approximation for
comparing part-of-speech taggers on the English
Universal Dependency Dataset (Nivre et al., 2018).
We experimented with the number of MC samples
K and the number of sentences N. We find that
in all settings, the estimation error of MC can be
unreliable even when > 20K samples are taken.
Additionally, we find that our exact algorithm is
faster than using MC with 20K and 40K samples
for datasets with < 6K and < 10K sentences.
Our Python implementation' runs the exact permu-
tation test in under three seconds for a dataset with
10K sentences. Overall, our exact method appears
to be a more practical alternative to MC.

2 Paired Permutation Test

A statistical hypothesis test attempts to reject a null
hypothesis Hg at significance level a.. It is common
practice to set a = (.05, but there is a movement
to lower the scientific standard (Ioannidis, 2018).
We now turn to the paired permutation test (Good,
2000), the focus on this work. Suppose we want to

"We will release our code publicly upon publication.

evaluate the performance of System A and System
B on an input x with NV entries that has a set of true
predictions y. Suppose System A predicts a and
System B predicts b. The type of the prediction
varies between tasks, e.g., y € {+1,—1}" in the
simplest case of positive and negative predictions
while y € {1,...,C} for general classification
problems. In many NLP tasks, such as part-of-
speech tagging, dependency parsing, inter alia, a
sentence-level prediction may be decomposed into
word-level predictions. Theny € {1,...,C}V
where L is the maximum sentence length.

Now, suppose we wish to test the hypothesis
that @ and b are different under a scoring function
f. We do this by performing a paired permutation
test on the null-hypothesis, Hg, that there is no
difference between a and b under f:

Hg : effecty (ﬁ, B) o

@~ f(B)| L0 M)

We attempt to reject Hy by considering the prob-
ability of having seen an effect size as small as
observed under the null distribution Py.

Definition 1. Given two sets of output, & and b,
both of size N, a paired permutation (henceforth
permutation) (8.0’ is a pair of data that is
composed by swapping elements between a and
b. Specifically, for entry n < N, we have that
/(Ai’n = a, and b}, = b, (no swap) or a,, = b, and
bl, = ay, (swap). The set of all permutations of a

and b is given by S(a, IA)) and ‘S(ﬁ, B)‘ — 2N,
Under a paired permutation test, the null-

distribution, P, is defined to be the uniform
distribution over the paired permutations (i.e.,

Py (<5’ b/ >> =2"N). Then, if our observed

effect is 0 = effecty (ﬁ, B) and we have an
effect random variable drawn from Py, F =
effect ¢ (ﬁ’ ,B’) ~
hypothesis if p = P(F < 0) < a where « is
pre-set. More formally, p can be computed as

Py, we reject our null-

Z(@,B/)eS(ﬁ,B) 1 [eﬁectf (ﬁ’, B’) < 0}
s(ab)]
(2)

The paired permutation test, thus, compares the
difference between each individual set of predic-
tions. Peyrard et al. (2021) show that this approach
is important for reliable significance testing in NLP.

p:

1: defmonte_carlo(a, B) :

2: o+« effect(a, b)

3 p<+0

4. foriel,... K:

5 <369>%%Q0>

6 fornel,... N:

7 <6’ Y > — RandomSwap(&n,gn)

n’-n

o

p+=+1 [effect(ﬁ’, b') < 0]
9: returnp

Figure 1: Monte Carlo sampling approximation algo-
rithm for the paired permutation test.

Approximating Paired Permutation Test In
general, the paired permutation test requires us
to compute the sum in (2) The naive computation
clearly runs in exponential time as it requires the
enumeration of all ’S (a, B)) = 2V paired per-
mutations. Therefore, most practical implemen-
tations of the paired permutation test use a MC
approximation, whereby one randomly samples
paired permutations to construct an approximate
null-distribution. We give this MC algorithm in
Fig. 1. Note that the algorithm works for any effect
function. In the following section, we provide an
exact algorithm for the case where effect measures
the absolute difference in accuracy.

3 Exact Test for Accuracy

We present a dynamic programming (DP) approach
for the paired permutation test. In the general case,
the runtime of our DP depends on the chosen effect.
However, in the case of accuracy, we are able to
derive an efficient exact algorithm.

W @@
AB = @i N

3)

where ¢(a) and f(a) are the number of true predic-
tions and false predictions made in a with regards
to y, respectively. We can decompose ¢(a) among
each prediction such that t(a) = 25:1 t(ay)
where t(ay) € {0,...,L}.

The aim of our test is to determine if the p-value

Z<5,£,>€S(a’g) 1 [effectA (5’, B’) < 0}
pa= —
s(ab)]

“
is less than the significance level o.

1: def perm_test_acc(a, lA)) :

22 W<«0

3 WI[0,0] 1

4. fornel,... N:

5 ey @) — ()

6 vap t(B) — (@)

7: for v € Win|:

8 W(n, v+ vstay) += s Wn — 1, 0]
9: Wn, v + Vswap) += s Wn — 1, 1]
100 0+ ‘t(a) - t(B)

11: p<+0

12 forv e W[N]J:
13: if|v] <o:

14: p+=WIN,]

15: returnp

Figure 2: Dynamic program to find exact p value for the
paired-permutation test for accuracy.

Proposition 1. Given an input x with predictions a
and b and true predictions 'y, for any paired permu-

tation (@', b > effect 4 (ﬁ’ b/) < effect 4 (ﬁ, B)
iff|t@) — t(B’)‘ < ‘t(ﬁ) - t(B)‘

Proposition 1 indicates that we only need to care
about the different in true predictions when per-
forming the paired permutation test for accuracy.
We build our DP by constructing a structure W
such that for any n € {0,...,N}and v € L
where £ < {—LN,..., LN}, W|n,] is the prob-
ability that a paired permutation <ﬁ’ b’ > satisfies

t@l,) — t(B’n> = v where we define @, to be
the first nn predictions of a@’. Note that we do not
consider the absolute value in the DP as we can not
decompose an absolute difference into the differ-
ence of individual predictions. Once we have W,
then the row W[N] contains the distribution over

t@)—t (B') and so we can find p 4. The algorithm
is formalized as perm_test_acc in Fig. 2.2

Theorem 1. Given an input x with pre-
dictions a and b and true predictions 'y,
perm_test_acc(a, b) returns p4 in O(LN?) time
and O(LN) space.

“The correctness of perm_test_acc is given in Theorem 1.
We provide proofs in in App. A.

Metric Mean Standard Dev.
Accuracy 0.9543 0.1116
Sentence length 12.08 10.60

Table 1: Distributions for of accuracy and sentence
length for POS tagging using Stanza (Qi et al., 2020) on
the English UD test dataset (Nivre et al., 2018).

3.1 Practical Implementation

Fig. 2 shows a W structure that is a R <Y matrix
which suggests we need O(LN?) space. However,
we note that at any iteration n, we only ever need
row W n — 1] and Wn]. Therefore, we only need
to maintain two rows of the matrix and so only
require O(LN) space for the algorithm.

4 Experiments

We demonstrate the efficiency of our exact algo-
rithms by simulating paired permutation tests be-
tween two systems. In order to have some control
over the p-value, N, and L, we randomly generate
our two system outputs from a measured distribu-
tion. Specifically, we will use the Stanza® (Qi et al.,
2020) part-of-speech tag statistics when evaluating
on the English Universal Dependencies (UD) test
set (Nivre et al., 2018). We sample our outputs
from the normal distribution where the mean and
standard deviation match the rates of Stanza. We
further sample the length of each sample sentence
according to the distribution of lengths in the test
set. The distributions are provided in Tab. 1.

Error Rate of Monte Carlo. We first examine
the error rate of the monte_carlo as we increase
the number of samples used. We sample a and b
using the distribut/i\ons in Tab. 1, however, we mul-
tiply the mean of b by a factoring in proportion to
N. We do this to obtain p-values roughly between
0.001 and 0.1 which is a typical range for o and so
a paired permutation test would be required. For
each K, we sampled five pairs of systems and run
the method five times for each pair, giving 25 data
points for each K and V. The reported error rates
given in Fig. 3 are the averages of these errors.*
The mean multiplication factor as well as the aver-
age p-value for each N is given in Tab. 2. We see

3The code and pre-trained model are both freely accessible at
https://github.com/stanfordnlp/stanza.

*We discard relative errors > 10. We do this to be able to
see the noise more clearly in a specific range. However, we
note that requiring this additional filter further shows the
unreliability of the MC method.

https://github.com/stanfordnlp/stanza

N Mean Mean p Standard Dev. p
250 0.95u 0.0512 0.1351

500 0.96u 0.0189 0.0656
1000 0.97u 0.0153 0.0534
2000 0.98u 0.0202 0.0536
4000 0.985p 0.0170 0.0538
8000 0.99u 0.0360 0.1146

Table 2: Means used for b distributions in Fig. 3. We
use u to reference the mean 0.9543 given in Tab. 1.
The mean and standard deviation of the p-values of the
paired permutation test are also given.

124 —— N =28000 N = 1000
] N=4000 —— N=500
107 —— N=2000 —— N=250

Relative Error
(=]
(=)}
1

0.2

0.0+

—T— —T— —T— —T
40000 60000 80000 100000

Number of Samples (K)

o
]
=)
=4
i=3
(=1

Figure 3: Relative errors of using monte_carlo for the
paired permutation test. System a is sampled according
to Tab. 1 and system b is sampled according to Tab. 2.

that the MC approximations are not reliable for all
the values of V. While there is a downwards trend
as we increase the number of cycles, we observe
a lot of noise even when taking 25 attempts per
N and K pair. The trend seems most clear until
K = 20,000 at which point we see a lot of noise
as K increases. We therefore suggest that 20,000
is the minimum number of samples required when
performing a MC paired permutation test, though
more is likely better.

Advantages of the Exact Test. When reporting
system accuracies in the literature,an exact p-value
avoids the estimation error associated with Monte
Carlo, as the results above demonstrate. We now
show that, empirically, the exact test is more effi-
cient than the MC approximation when a large num-
ber of samples is taken; this is evinced in Fig. 4. We
compare the runtime of perm_test_acc against
monte_carlo for K = 20,000 and K = 40,000.

>The experiment used an Apple M1 Max processor.

1 —— monte_carlo (K = 40000)
] monte_carlo (K = 20000)
{ —— perm_test_acc

= = g g bed
o n =} % o
1 IR B | |

Runtime (seconds)

=3
n
1

0.0

— T — T — T T
4000 6000 8000 10000

Number of Sentences (N)

T
0 2000

Figure 4: Runtime comparison of perm_test_acc and
monte_carlo as a function of the number of sentences.

We can see that perm_test_acc is more effi-
cient than monte_carlo with K = 40,000 and
K = 20,000 for N < 10,000 and N < 6,000
(respectively). We note that the average test set size
of the UD treebanks® is just over 1,000 sentences,
and only three treebanks had more than 6,000 sen-
tences.” Additionally, the standard split of the com-
monly used Penn treebank (PTB) (Marcus et al.,
1993) provides a test set of about 5,500 sentences.
Therefore, the perm_test_acc is more efficient
than monte_carlo for most of the datasets that are
used in NLP token-level classification problems.

5 Conclusion

We presented a dynamic programming algorithm
to compute the exact p-value of a paired permu-
tation test for the case of difference in accuracy.
Our algorithm runs in O(LN?) time and requires
O(LN) space. We empirically show that when
using MC approximation techniques, we often re-
quire K > LN samples to obtain a “good enough”
approximation. Therefore, not only is the MC
method imprecise, it is also often slower than our
exact algorithm for commonly used datasets. We
also note that our dynamic program can be ex-
tended to compute exact p-values for the paired
permutation test using other metrics such as the dif-
ference in F} scores (see App. B). However, these
may by impractical for reasonably sized dataset.

®We examined a total of 129 treebanks as some languages
have multiple treebanks.

"These were Czech, Japanese, and Russian which had test set
sizes of roughly 10,000, 8,000, and 6,500 (respectively).

References

Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein.
2012. An empirical investigation of statistical sig-
nificance in NLP. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, EMNLP-CoNLL 2012, July 12-14,
2012, Jeju Island, Korea, pages 995-1005. ACL.

Jonathan H. Clark, Chris Dyer, Alon Lavie, and Noah A.
Smith. 2011. Better hypothesis testing for statisti-
cal machine translation: Controlling for optimizer
instability. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies, pages 176-181, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Daniel Deutsch, Rotem Dror, and Dan Roth. 2021. A
statistical analysis of summarization evaluation met-
rics using resampling methods. Transactions of the
Association for Computational Linguistics, 9:1132—
1146.

Thomas G. Dietterich. 1998. Approximate statistical
tests for comparing supervised classification learning
algorithms. Neural computation, 10(7):1895-1923.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi
Reichart. 2018. The hitchhiker’s guide to testing sta-
tistical significance in natural language processing.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1383—-1392, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Rotem Dror, Lotem Peled-Cohen, Segev Shlomov, and
Roi Reichart. 2020. Statistical Significance Testing
for Natural Language Processing. Synthesis Lec-
tures on Human Language Technologies. Morgan &
Claypool Publishers.

Phillip Good. 2000. Permutation Tests A Practical
Guide to Resampling Methods for Testing Hypothe-
ses. Springer.

John P. A. Toannidis. 2018. The Proposal to Lower
P Value Thresholds to .005. JAMA, 319(14):1429—
1430.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of the
2004 Conference on Empirical Methods in Natural
Language Processing, pages 388-395, Barcelona,
Spain. Association for Computational Linguistics.

Erich Leo Lehmann and Joseph P. Romano. 2005. Test-
ing Statistical Hypotheses. Springer.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Comput.
Linguistics, 19(2):313-330.

Joakim Nivre, Mitchell Abrams, Zeljko Agié, Lars
Ahrenberg, Lene Antonsen, Katya Aplonova,
Maria Jesus Aranzabe, Gashaw Arutie, Masayuki
Asahara, Luma Ateyah, Mohammed Attia, Aitz-
iber Atutxa, Liesbeth Augustinus, Elena Badmaeva,
Miguel Ballesteros, Esha Banerjee, Sebastian Bank,
Verginica Barbu Mititelu, Victoria Basmov, John
Bauer, Sandra Bellato, Kepa Bengoetxea, Yevgeni
Berzak, Irshad Ahmad Bhat, Riyaz Ahmad Bhat, Er-
ica Biagetti, Eckhard Bick, Rogier Blokland, Vic-
toria Bobicev, Carl Borstell, Cristina Bosco, Gosse
Bouma, Sam Bowman, Adriane Boyd, Aljoscha Bur-
chardt, Marie Candito, Bernard Caron, Gauthier
Caron, Giilsen Cebiroglu Eryigit, Flavio Massim-
iliano Cecchini, Giuseppe G. A. Celano, Slavomir
Céplb, Savas Cetin, Fabricio Chalub, Jinho Choi,
Yongseok Cho, Jayeol Chun, Silvie Cinkova, Au-
rélie Collomb, Cagr1 Coltekin, Miriam Connor, Ma-
rine Courtin, Elizabeth Davidson, Marie-Catherine
de Marneffe, Valeria de Paiva, Arantza Diaz de
Ilarraza, Carly Dickerson, Peter Dirix, Kaja Do-
brovoljc, Timothy Dozat, Kira Droganova, Puneet
Dwivedi, Marhaba Eli, Ali Elkahky, Binyam Ephrem,
Tomaz Erjavec, Aline Etienne, Richard Farkas, Hec-
tor Fernandez Alcalde, Jennifer Foster, Claudia Fre-
itas, Katarina GajdoSovd, Daniel Galbraith, Mar-
cos Garcia, Moa Girdenfors, Sebastian Garza, Kim
Gerdes, Filip Ginter, lakes Goenaga, Koldo Go-
jenola, Memduh Gokirmak, Yoav Goldberg, Xavier
Gomez Guinovart, Berta Gonzales Saavedra, Ma-
tias Grioni, Normunds Griizitis, Bruno Guillaume,
Céline Guillot-Barbance, Nizar Habash, Jan Hajic,
Jan Haji¢ jr., Linh Ha M§, Na-Rae Han, Kim Har-
ris, Dag Haug, Barbora Hladka, Jaroslava Hlavacova,
Florinel Hociung, Petter Hohle, Jena Hwang, Radu
Ion, Elena Irimia, Ol4jidé Ishola, Tom4s Jelinek, An-
ders Johannsen, Fredrik Jgrgensen, Hiiner Kagikara,
Sylvain Kahane, Hiroshi Kanayama, Jenna Kan-
erva, Boris Katz, Tolga Kayadelen, Jessica Ken-
ney, Viclava Kettnerovd, Jesse Kirchner, Kamil
Kopacewicz, Natalia Kotsyba, Simon Krek, Sooky-
oung Kwak, Veronika Laippala, Lorenzo Lambertino,
Lucia Lam, Tatiana Lando, Septina Dian Larasati,
Alexei Lavrentiev, John Lee, Phuong Lé Hong,
Alessandro Lenci, Saran Lertpradit, Herman Le-
ung, Cheuk Ying Li, Josie Li, Keying Li, Kyung-
Tae Lim, Nikola Ljubesié, Olga Loginova, Olga Lya-
shevskaya, Teresa Lynn, Vivien Macketanz, Aibek
Makazhanov, Michael Mandl, Christopher Manning,
Ruli Manurung, Catdlina Maranduc, David Marecek,
Katrin Marheinecke, Héctor Martinez Alonso, An-
dré Martins, Jan Masek, Yuji Matsumoto, Ryan
McDonald, Gustavo Mendongca, Niko Miekka,
Margarita Misirpashayeva, Anna Missild, Céitilin
Mititelu, Yusuke Miyao, Simonetta Montemagni,
Amir More, Laura Moreno Romero, Keiko So-
phie Mori, Shinsuke Mori, Bjartur Mortensen, Bo-
hdan Moskalevskyi, Kadri Muischnek, Yugo Mu-
rawaki, Kaili Miitirisep, Pinkey Nainwani, Juan Igna-
cio Navarro Horniacek, Anna Nedoluzhko, Guqta
Nespore-Bérzkalne, Luong Nguyén Thi, Huyén
Nguyén Thi Minh, Vitaly Nikolaev, Rattima Niti-
saroj, Hanna Nurmi, Stina Ojala, Adédayo Oliokun,

https://aclanthology.org/D12-1091/
https://aclanthology.org/D12-1091/
https://aclanthology.org/D12-1091/
https://www.aclweb.org/anthology/P11-2031
https://www.aclweb.org/anthology/P11-2031
https://www.aclweb.org/anthology/P11-2031
https://www.aclweb.org/anthology/P11-2031
https://www.aclweb.org/anthology/P11-2031
https://doi.org/10.1162/tacl_a_00417
https://doi.org/10.1162/tacl_a_00417
https://doi.org/10.1162/tacl_a_00417
https://doi.org/10.1162/tacl_a_00417
https://doi.org/10.1162/tacl_a_00417
https://direct.mit.edu/neco/article/10/7/1895/6224/Approximate-Statistical-Tests-for-Comparing
https://direct.mit.edu/neco/article/10/7/1895/6224/Approximate-Statistical-Tests-for-Comparing
https://direct.mit.edu/neco/article/10/7/1895/6224/Approximate-Statistical-Tests-for-Comparing
https://direct.mit.edu/neco/article/10/7/1895/6224/Approximate-Statistical-Tests-for-Comparing
https://direct.mit.edu/neco/article/10/7/1895/6224/Approximate-Statistical-Tests-for-Comparing
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.2200/S00994ED1V01Y202002HLT045
https://doi.org/10.2200/S00994ED1V01Y202002HLT045
https://doi.org/10.2200/S00994ED1V01Y202002HLT045
https://link.springer.com/book/10.1007/978-1-4757-3235-1
https://link.springer.com/book/10.1007/978-1-4757-3235-1
https://link.springer.com/book/10.1007/978-1-4757-3235-1
https://link.springer.com/book/10.1007/978-1-4757-3235-1
https://link.springer.com/book/10.1007/978-1-4757-3235-1
https://doi.org/10.1001/jama.2018.1536
https://doi.org/10.1001/jama.2018.1536
https://doi.org/10.1001/jama.2018.1536
https://www.aclweb.org/anthology/W04-3250
https://www.aclweb.org/anthology/W04-3250
https://www.aclweb.org/anthology/W04-3250
https://sites.stat.washington.edu/jaw/COURSES/580s/582/HO/Lehmann_and_Romano-TestingStatisticalHypotheses.pdf
https://sites.stat.washington.edu/jaw/COURSES/580s/582/HO/Lehmann_and_Romano-TestingStatisticalHypotheses.pdf
https://sites.stat.washington.edu/jaw/COURSES/580s/582/HO/Lehmann_and_Romano-TestingStatisticalHypotheses.pdf
https://dl.acm.org/doi/10.5555/972470.972475
https://dl.acm.org/doi/10.5555/972470.972475
https://dl.acm.org/doi/10.5555/972470.972475

Mai Omura, Petya Osenova, Robert Ostling, Lilja 2000 Volume 2: The 18th International Conference
@vrelid, Niko Partanen, Elena Pascual, Marco on Computational Linguistics.
Passarotti, Agnieszka Patejuk, Guilherme Paulino-
Passos, Siyao Peng, Cenel-Augusto Perez, Guy Per-
rier, Slav Petrov, Jussi Piitulainen, Emily Pitler, Bar-
bara Plank, Thierry Poibeau, Martin Popel, Lauma
Pretkalnina, Sophie Prévost, Prokopis Prokopidis,
Adam Przepidérkowski, Tiina Puolakainen, Sampo
Pyysalo, Andriela Réébis, Alexandre Rademaker, Lo-
ganathan Ramasamy, Taraka Rama, Carlos Ramisch,
Vinit Ravishankar, Livy Real, Siva Reddy, Georg
Rehm, Michael RieBler, Larissa Rinaldi, Laura Rit-
uma, Luisa Rocha, Mykhailo Romanenko, Rudolf
Rosa, Davide Rovati, Valentin Rosca, Olga Rud-
ina, Jack Rueter, Shoval Sadde, Benoit Sagot, Shadi
Saleh, Tanja Samardzi¢, Stephanie Samson, Manuela
Sanguinetti, Baiba Saulite, Yanin Sawanakunanon,
Nathan Schneider, Sebastian Schuster, Djamé Sed-
dah, Wolfgang Seeker, Mojgan Seraji, Mo Shen,
Atsuko Shimada, Muh Shohibussirri, Dmitry Sichi-
nava, Natalia Silveira, Maria Simi, Radu Simionescu,
Katalin Simké, Méria Simkova, Kiril Simov, Aaron
Smith, Isabela Soares-Bastos, Carolyn Spadine, An-
tonio Stella, Milan Straka, Jana Strnadova, Alane
Suhr, Umut Sulubacak, Zsolt Szant6, Dima Taji,
Yuta Takahashi, Takaaki Tanaka, Isabelle Tellier,
Trond Trosterud, Anna Trukhina, Reut Tsarfaty, Fran-
cis Tyers, Sumire Uematsu, Zderika UreSova, Lar-
raitz Uria, Hans Uszkoreit, Sowmya Vajjala, Daniel
van Niekerk, Gertjan van Noord, Viktor Varga, Eric
Villemonte de la Clergerie, Veronika Vincze, Lars
Wallin, Jing Xian Wang, Jonathan North Washing-
ton, Seyi Williams, Mats Wirén, Tsegay Wolde-
mariam, Tak-sum Wong, Chunxiao Yan, Marat M.
Yavrumyan, Zhuoran Yu, Zdenék Zabokrtsky, Amir
Zeldes, Daniel Zeman, Manying Zhang, and Hanzhi
Zhu. 2018. Universal dependencies 2.3. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics (UFAL), Faculty of
Mathematics and Physics, Charles University.

Markus Ojala and Gemma C. Garriga. 2010. Permuta-
tion tests for studying classifier performance. The
Journal of Machine Learning Research, 11:1833—
1863.

Maxime Peyrard, Wei Zhao, Steffen Eger, and Robert
West. 2021. Better than average: Paired evaluation
of NLP systems. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing, ACL/IJCNLP 2021,
(Volume 1: Long Papers), Virtual Event, August 1-6,
2021, pages 2301-2315. Association for Computa-
tional Linguistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many human
languages. In Proceedings of the Association for
Computational Linguistics: System Demonstrations.

Alexander Yeh. 2000. More accurate tests for the statis-
tical significance of result differences. In COLING

http://hdl.handle.net/11234/1-2895
http://portal.acm.org/citation.cfm?id=1859913
http://portal.acm.org/citation.cfm?id=1859913
http://portal.acm.org/citation.cfm?id=1859913
https://doi.org/10.18653/v1/2021.acl-long.179
https://doi.org/10.18653/v1/2021.acl-long.179
https://doi.org/10.18653/v1/2021.acl-long.179
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://aclanthology.org/C00-2137
https://aclanthology.org/C00-2137
https://aclanthology.org/C00-2137

A Proofs for Section §3 (Exact Test for Accuracy)

Proposition 1. Given an input x with predictions a and b and true predictions 'y, for any paired
permutation <§’, b’>, effect 4 <§’, b’> < effect 4 (ﬁ, b) iﬁ”‘t(ﬁ’) — t(b’) < ‘t(ﬁ) — t(b)‘

Proof.

effect 4 (5/,5/) < effect 4 (57 B) = |a@)-a IA)’)

—

~
oy
»2
|

~
/N

o)
N—

Theorem 1. Given an input x with predictions a and b and true predictions y, perm_test_acc(a, B)
returns p 4 in O(LN?) time and O(LN) space.

Proof. We first prove that for all n € {0,,...,N}, Win| is the probability distribution
P(effectA (ﬁfn, B’n>) .

Base case: Then n = 0. We have that W[0,0] = 1 and W[0,v] = O forallv € £\ {0}.

Inductive step: Assume that W[n — 1] is the probability distribution IP(effect o (2 (n—1)" b’ (n—l))‘ Let

v € L be a candidate difference and v' = t(a),) — t(@;) We know that <6;1,3§L> is <?in,3n> with

probability 3 or <3n,an> with probability . Therefore, v/ = t(d,) — t(@l) with probability 1 or
W = t@) — #(@y) with probability 1. Then

IP’(effectA (ﬁfn, B/n) = v) = %P(effecm (ﬁf(n_l),gf(n_l)) =v— v’) = %W[n —1,v—1]

This is exactly what is done from Line 7 to Line 9 in Fig. 2. Therefore, W n] is the probability distribution
P(effect 4 (ﬁfn, B/n) :
Line 11 to Line 14 in Fig. 2 construct the p-value using the following equation

Z 1|v| < o] W[N,v] = Z 1| < o]IP’(effectA<ﬁ',lA)’) = v)
VEW[N] VEW[N]

= P(effectA (?1’, B') < effect 4 (ﬁ, B)) =pa

where 0 = ‘t(ﬁ) - t ‘

The algorithm runs over two nested for-loops of sizes O(N) and O(LN) respectively. As the inner
loop does constant amount of work per iteration, perm_test_acc runs in O(LN?) time. The space
complexity is discussed in §3.1. |

B Exact Paired Permutation Test for
We now derive a similar DP algorithm for the case of the F7 score which we define as
(@)

ORI

)

where ¢ (@) is the number of true positive predictions made in a with regards to y.

~

1: def perm_test_F1(a,b, K):

22 W«+0

3 WI[0,(0,0,0,0)] + 1

4. fornel,...,N:

5 for<tf{,fa,t;r, fb> € Winj:
6

Vstay (b + 15 @), fa+ F@,), 6 + 17 (8,) S+ £ (0))

7 v () S £ (0) 8 @) S+ £(@))
8: W[n7vStay] += %W[n_ 17<t;r7ftzat2_afb>]
: W[nyvswap] += %W[n_ 17<t2_ufa>t2_7fb>]
. @ __ tH(b)
10 O E@ L@ T () LA(D)
11: p+0
12: f0r<tj, fa,t;_, fb> € W[N] :
. | et .
13 if tatsfa t LS so:
14: p+=W[N7<tj7fa>t;_7fb>]

15 return p

Figure 5: Dynamic program to find exact p value for the paired-permutation test for F;.

The aim of our significance test is to decide whether the p-value

 Siyenni it (5.5) <4
e js(a, B)‘

(6)

is less than the significance level o where effect g (5, B) o

Fi(a)— F, (B) ’ Unfortunately, unlike

accuracy, we cannot decompose the F score into a single additive component. We can write effect , (a, b)
as

@ (p)
D+ 3@ o (5) + 17(P)

effect p, (a, b) = P~

Therefore, we have four variables that we can decompose along the data points, ¢t*(a), f(a), t*

and f (B) . We construct a similar DP to perm_test_acc, however instead of maintaining the difference

in true predictions, we maintain a tuple of the four aforementioned variables. We give this algorithm
as perm_test_F1 in Fig. 5 As each variable can be any of O(LN) values, this makes our DP have a
runtime of O(L*N?). Unfortunately, while the algorithm is polynomial in time, the quintic factor makes
it impractical for common NLP datasets as described in §4

Theorem 2. Given an input x with predictions & and b and true predictions y, perm_test_F1 (a, B)
returns pr, in O(L*N®) time and O(L*N*) space.

Proof. Forany n € {0,,..., N} and(t], fo,t;, fo) € L*, we define E,, (t}, fa, t;, f5) to be the event
that t(al,,) = ¢}, f(@,) = fa t(B’n> = t;, and f(B’n> = fp. We first prove that Wn] is the
probability distribution over the tuples such that

W[n7<tj7faut;_7fb>} :P(E’n(tjafa7t2—7fb)) (7)

Base case: Thenn = 0. We have that W [0,(0,0,0,0)] = 1 and W[0,v] = Oforallv € £x{(0,0,0,0)}.

Inductive step: Assume that W[n — 1] is the probability distribution described in (7). We know that
<EZ;1,3;L> is <Zin,/l;n> with probability % or <Bn,an> with probability % Then, if we let<ta+, fa, t;, fb> IS
L%, we can find the following probability

P (Batf furtis 1)) = 5P (Bur (6 — 16, fu— £(@). 15 —1(5,). 56— £(8,)))
= W [0 17— t(@). S~ @) 1~ 1(8) fo— 7 (5))]

This is exactly what is done from Line 8 to Line 9 in Fig. 5. Therefore, W n] is the probability distribution
P (En(tj{a fa7 t2—7 fb))
Line 11 to Line 14 in Fig. 5 construct the p-value using the following equation

2.

(td farty f5) EW[N]
(td . farty fo) EW[N]

= Y feftectr @) < o] P (By (@), £@).1(5), £(B))) (10)

(a',b')eS(@b)

th ty
tf +3fa H+ih

‘ SO] W[N7<t2_,fa7t;rafb>] (8)

ta ty
ta +3fa th+ 35

o]PJ(EN(t;_afa7t;)fb)) (9)

=P (eﬂ?ectp1 @,b) < 0) =DpR (11)

The algorithm runs over two nested for-loops of sizes O(N) and O(L*N?) respectively. As the inner
loop does constant amount of work per iteration, perm_test_F1 runs in O(L*N?) time. We need to store
two rows of W at any given time. Therefore the space complexity is O(L*N?) |

