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Abstract
This study proposes a hypothesis-testing frame-
work to determine whether large language models
(LLMs) possess genuine reasoning abilities or
rely on token bias. Carefully-controlled synthetic
datasets are generated, and null hypotheses as-
suming LLMs’ reasoning capabilities are tested
with statistical guarantees. Inconsistent behavior
during experiments leads to the rejection of null
hypotheses. Our findings, using the conjunction
fallacy as a quintessential example, suggest that
current LLMs still struggle with probabilistic rea-
soning, with apparent performance improvements
largely attributable to token bias.

1. Introduction
Large language models (LLMs) have achieved remark-
able progress in understanding and generating human-like
text, triggering growing interest in the LLMs’ theory of
mind (Kosinski, 2023; Jamali et al., 2023; Bubeck et al.,
2023) and decision-making abilities (Merrill & Sabharwal,
2023; Lyu et al., 2023; Prasad et al., 2023). However, there
is ongoing debate about whether LLMs possess genuine rea-
soning capabilities, as evidence suggests that performance
of LLMs on reasoning tasks is correlated with how much the
input’s semantic content supports a correct logical inference
(Dasgupta et al., 2022; Li et al., 2023). If true reasoning
has been applied, such a correlation won’t exist, since a gen-
uine reasoner should be able to derive the correct inference
regardless of the semantic content.

In this paper, we formalize this observation and say that an
LLM is subject to token bias in a reasoning task if, for a
given reasoning task prompt, systematic changes to some
or all tokens — while keeping the underlying logic intact —
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Figure 1: An illustration of the overall framework. We gen-
erate synthetic data, perform systematic token perturbations,
and evaluate an LLM for comparative studies. The resulting
contingency table, where A to D are integer values of counts,
allows for statistical tests.

allow us to predict the direction of the shift in the model’s
output. As an example, consider the following reasoning
task: Suppose Taylor Swift embarks on another tour in 2027.
Which outcome do you think is more likely?

(a) Her first show is a flop.
(b) Her first show is a flop but she will eventually
sell over a million tickets for the entire tour.

LLMs tend to prefer option (b), reasoning that despite a
potential initial setback, Taylor Swift’s consistent and im-
mense popularity and success suggest a strong likelihood
of overall tour success.1 This choice, however, exemplifies
the well-known conjunction fallacy, also known as the
Linda Problem (Tversky & Kahneman, 1983; Kahneman,
2011): the probability of a conjunction of two events (e.g.,
Taylor Swift’s first show is a flop and she will eventually
sell over a million tickets for the entire tour) is never higher
than the probability of either event alone. However, when
we change the name “Taylor Swift” to “Nancy”, disentan-
gling the semantic narrative that concerts Taylor Swift’s

1https://chatgpt.com/share/
2ed7b17f-322a-4c6d-b22f-268a96463560
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current success, LLMs recognize that from a probabilistic
standpoint, outcome (a) is more likely than outcome (b).2

Building on this definition of token bias, we reconceptualize
the evaluation of reasoning capabilities into a general, statis-
tically rigorous framework with three critical components:
synthetic data generation, token perturbation, and sta-
tistical hypothesis testing. This framework allows us to
bypass the complications of evaluation set contamination
(Zhou et al., 2023; Ravaut et al., 2024), leverage insights
and tools from controlled experiments, and draw statistically
valid conclusions.

Unlike concurrent works (Mukherjee & Chang, 2024; Wang
et al., 2024; Suri et al., 2024), our objective is not to en-
gineer prompts to yield nearly perfect benchmark results;
rather, we aim to systematically examine and validate our
hypotheses of reasoning behavior through carefully con-
trolled experiments. We only leverage common prompting
techniques that are sufficient to provide robust statistical
evidence of whether LLMs tend to exploit biased tokens as
shortcuts or consistently apply genuine logical reasoning.

2. The General Framework
Our framework is summarized in Figure 1. This general
framework is grounded on the premise that for a given rea-
soning task, a capable reasoning agent will consistently
reach the same conclusion regardless of how the task is
framed, as long as the underlying logic remains the same
(Hastie & Dawes, 2009). This assumption lays the foun-
dation of our null hypothesis, H0. In our setup, a rational
agent should consistently apply reasoning in its decision-
making process. Under this paradigm, the only source of
failure should be the procedural mistakes during the agent’s
abstract reasoning steps, which we assume to come up in an
i.i.d. fashion. Our general framework contains three major
parts as follows.

Synthetic Data Generation Once the underlying logic of
a reasoning task is defined, we create an algorithm to gener-
ate a synthetic dataset with n samples. While it is helpful
to leverage LLMs for linguistic coherence in the process,
the data generation should be carefully controlled, utilizing
information from real-world data or established datasets to
mitigate potential biases from purely AI-generated texts.
The process begins with the creation of a curated list of
entities and a textual template that dictates the structure of
the task description. By sampling from this list, we generate
task descriptions that maintain the integrity and novelty of
the dataset. This method ensures that while the LLM of
interest might be familiar with the individual entities, it has

2https://chatgpt.com/share/
46d025c0-f205-4f4a-972a-55d01a04dad1

never seen the specific combinations of these entities and
narratives, thus bypassing the risk of data contamination.

The synthetic dataset can be dynamically generated, pre-
cluding its prior existence in any training datasets. It also
allows the algorithm designers to control the dataset size, ef-
ficiently scaling their data based on the sample size required
for achieving statistical validity.

Token Perturbation We hypothesize that if the LLM is
not a capable reasoning agent, its performance on reasoning
tasks will consistently improve (or degrade) as we alter
some tokens in a systematic manner. This process of token
perturbation generates n matched pairs of samples, enabling
us to evaluate the LLM on both the original and perturbed
datasets and create a 2× 2 contingency table below, where
n = n11 + n12 + n21 + n22.

Perturbed
Correct Wrong

Original Correct n11 n12

Wrong n21 n22

Table 1: A template for the contingency table.

Statistical Hypothesis Testing for Matched Pairs For
each of n matched pairs, let πab denote the underlying prob-
ability of outcome a for the original dataset and b for the
perturbed dataset. As nab count the number of such pairs,
nab/n is the sample proportion, a consistent estimate of πab.
The null hypothesis assumes the marginal homogeneity for
binary matched pairs, i.e. π12 = π21. For small samples,
we apply an exact test conditioned on n∗ = n21 + n12

(Mosteller, 1952; Agresti, 2012). Under H0, n21 follows
a binomial(n∗, 1/2) distribution, and the corresponding p-
value is the binomial tail probability. As a rule of thumb,
when n∗ > 10, the reference binomial distribution is ap-
proximately normal, and we can compute the standardized
normal test statistics z0 = (n21−n12)/

√
n21 + n12, which

is identical to the McNemar statistic (McNemar, 1947). To
test the same hypotheses for a group of models, we apply the
Benjamini-Hochberg Procedure (Benjamini & Hochberg,
1995) to control the false discovery rate at a predetermined
significance level α.

3. Peek into Token Bias via the Linda Problem
In this section, we use the task of reasoning against conjunc-
tion fallacy as an example of our general framework and
introduce several variants of the token perturbation mecha-
nism to probe whether LLMs are susceptible to token biases.

3.1. Synthetic Data Generation

Given that LLMs likely encounter the original Linda Prob-
lem (see Appendix A) in their training datasets, we con-
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struct conjunction reasoning problems in a narrative similar
to the one about Taylor Swift in Section 1. Specifically,
we curate a set of celebrity names from the Times Per-
son of the Year (Rosenberg, 2021) and Forbes Celebrity
100 (Wikipedia contributors, 2024), and harness the in-
context learning abilities of GPT-4 (Achiam et al., 2023) to
generate new problems of the following form:

Suppose [celebrity is going to do something].
Which is more likely:
(a) [Something unlikely for this person].
(b) [Something unlikely for this person], but
[something extremely likely for this person].

3.2. Token Perturbation and Alternative Hypotheses

Token Perturbation in the Task Description The pres-
ence of a celebrity’s name might trigger irrelevant associ-
ations, such as misleading the model’s attention into the
celebrity’s background. We posit that if we switch the name
of the celebrity to a generic one, an LLM that relies on
semantic shortcuts will observe an increase in its success
rate of identifying the logic of conjunction:

Hypothesis 1 Genuine Reasoning LLMs withstand
irrelevant token changes.

Sub-hypothesis 1.1 (Token Bias on Celebrities): The per-
formance of a reasoning LLM should remain consistent if
we change the name of a celebrity, if any, in the problem
to a generic name.

Assume P is a conjunction fallacy problem that involves a
celebrity name, which may mislead the LLM, while P ′

changes the name to a generic one.
H0: π12 = π21.
Ha: π12 < π21. (π12 > π21 is invalid.)

Token Perturbation in the Task Instruction In this
setup, we study the model behavior under the in-context
learning (Brown et al., 2020) setting, where we present a
single instance of the Linda problem, either in its original
form or a rephrased one, as the one-shot exemplar.

Our token perturbation stems from the intuition that a model
might associate the occurrence of “conjunction fallacy” with
the specific name “Linda” learned from training data. Hence,
if we change the Linda problem into an equivalent one, but
this time about a made-up persona called “Bob” (see Ap-
pendix A), the LLM’s one-shot performance may degrade.

Sub-hypothesis 1.2 (Token Bias on Linda): The perfor-
mance of a reasoning LLM should remain consistent if we
replace the persona “Linda” in the one-shot examplar.

Assume one-shot ICL scenarios. P has the original Linda
Problem as the one-shot exemplar, while P ′ rephrases the
exemplar to a persona called “Bob”.

H0: π12 = π21.

Ha: π12 > π21. (π12 < π21 is invalid.)

3.3. Token Perturbation via Additional Hints

Just as a proficient student doesn’t need hints to excel in a
math exam, a truly rational LLM should solve logical prob-
lems effectively without explicit cues. Besides, even if a
student answers all problems correctly but the examlet pro-
vides all the reasoning steps, we may still question whether
the student really understands the reasoning.

We evaluate the LLM’s dependence on hint tokens that go
beyond a single exemplar, such as the phrase “conjunc-
tion fallacy” or manually crafted chain-of-thought instruc-
tions (Wei et al., 2022) that demonstrate correct reason-
ing, as shown in Appendix A. If injecting these hints into
prompts results in additional performance gains, it implies
that that the model’s reasoning may be superficial, relying
familiar tokens or adhering to language patterns from the
instructions.

Hypothesis 2 Genuine Reasoning LLMs do not rely on hint
tokens to derive correct inferences.

Sub-hypothesis 2.1 (Leaking Hint Tokens): A reasoning
LLM does not rely on the prompt to tell them that the
reasoning task involves “conjunction fallacy.”

Assume one-shot ICL scenarios. P ′ explicitly points out
the “conjunction fallacy” or includes detailed guidance
on how to reason in its given prompts, while P does not.

H0: π12 = π21.
Ha: π12 < π21. (π12 > π21 is invalid.)

4. Experiments
We experiment with a variety of the state-of-the-art LLMs,
including OpenAI gpt-4-turbo (Achiam et al., 2023), Meta
llama-3-70b-instruct (Touvron et al., 2023) and Anthropic
claude-3-opus-20240229 (Anthropic, 2024).

We evaluate the performance of each LLM using appropri-
ate prompting methods with synthetic data of sample size
n = 100. For each sub-hypothesis, we conduct a McNemar
test for every (model, prompting-method) pair and apply
the Benjamini-Hochberg procedure with a fixed α of 0.05
to correct for multiple testing. For Sub-Hypothesis 1.1, we
consistently reject the null hypothesis with predictable per-
formance shifts under irrelevant token perturbations. Under
Sub-Hypothesis 1.2, all tests lead to the rejection of the null,
except for GPT-4 using the “os cot” prompting method,
suggesting models still have a strong tendency to rely on
specific tokens like “linda” rather than the genuine reason-
ing. For Sub-Hypothesis 2.1, we compare the performance
of one-shot ICL with and without additional hint tokens to
evaluate the marginal benefits hints can offer. We reject the
null for GPT-4 and Claude, showing that although an LLM
can achieve almost perfect scores, its performance will be

3



A Peek into Token Bias: Large Language Models Are Not Yet Genuine Reasoners

Figure 2: Experimental results for Sub-Hypothesis 1.1.

Figure 3: Experimental results for Sub-Hypothesis 1.2.

Figure 4: Experimental results for Sub-Hypothesis 2.1.

Figure 5: Experimental results. Our controlled experiments cast doubt on the capability of LLMs to function as rational
thinkers, as we reject most of the null hypotheses. We implement different prompting techniques: “baseline” asks the
model to answer directly, “zs” and “os” refer to zero-shot and one-shot prompting, “cot” means chain-of-thought (“think
step-by-step”), “weak ” and “strong” hints are detailed in Appendix B.

significantly impacted if hints become unavailable. Detailed
testing results are included in Appendix C.

5. Discussion and Future Work
The statistical evidence presented in this paper contributes
to the larger discussion that LLMs do not apply reason-
ing consistently in their decision-making processes. In-
stead, they primarily rely on token bias for response gen-
eration. This suggests that chain-of-thought prompting
(CoT) (Wei et al., 2022; Wang et al., 2022) or in-context
learning (ICL) (Brown et al., 2020; Min et al., 2022) may
not elicit actual reasoning but instead result in semantic
shortcuts for LLMs to imitate desired behavior. In fact,
earlier work on CoT prompting and ICL found that even
with invalid demonstration exemplars, these prompts can im-
prove LLMs’ performance on some tasks (Lyu et al., 2022;
Wang et al., 2022). These findings raise questions about

the extent to which LLMs truly engage in reasoning when
responding to prompts, and further investigations are needed
to uncover the underlying mechanisms and limitations of
LLMs’ reasoning capabilities.

This preliminary work reconceptualizes the evaluation of the
reasoning behavior of LLMs. It combines controlled experi-
ments with statistical hypothesis testing to complement tra-
ditional benchmarking methods. The proposed framework
is general and can be adapted to many logical reasoning
tasks beyond the scope of this study. In future work, we aim
to expand this study by increasing the diversity of the syn-
thetic data and LLMs being tested. Additionally, we intend
to explore a wider range of logical fallacies, mathematical
problems, and set-based reasoning tasks. By broadening the
scope, we aim to uncover and characterize other interesting
token biases that may exist in language models.
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6. Limitations
This hypothesis testing framework is specifically designed
for multiple choice questions and is not applicable to open-
ended responses. It relies on LLMs with strong instruction-
following capabilities to consistently produce responses
that include either (a) or (b), but we find that LLMs can
generally follow these instructions in most cases. Moreover,
we acknowledge that there are likely other hypotheses and
assumptions that a genuine reasoner should satisfy. Our
current study focuses solely on the conjunction fallacy, i.e.,
the Linda problem and its variants, using three commercial
LLMs to demonstrate our framework. This is merely a
quintessential example, and we plan to expand our scope
in the near future to include a broader range of hypotheses,
LLMs, and reasoning tasks
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A. The Original Linda Problem (Tversky & Kahneman, 1983)
The original Linda problem is framed as follows (Tversky & Kahneman, 1983):

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply
concerned with issues of discrimination and social justice, and also participated in antinuclear demonstrations.
Which is more probable?

1. Linda is a bank teller.
2. Linda is a bank teller and is active in the feminist movement.

Here is an example of GPT-4o explaining the Linda Problem: https://chatgpt.com/share/
eff10b9d-d219-4806-9cb9-d2d9104c0e83.

Our “Bob” version of this problem is as follows:

Bob is 29 years old, deeply passionate about environmental conservation, and volunteers his weekends at local
park clean-ups. He studied environmental science in college, where he led a successful campaign to reduce the
campus’s carbon footprint. Bob is also an avid cyclist and promotes sustainable living practices whenever possible.
Based on this information, which is more possible?

1. Bob works for a renewable energy company and is an active member of a local environmental advocacy
group.

2. Bob works for a renewable energy company.

The original form of the problem about Taylor Swift discussed in Section 1 was also introduced in Tversky & Kahneman
(1983):

Suppose Bjorn Borg reaches the Wimbledon finals in 1981. Please rank order the following outcomes from most
to least likely.

1. Borg will win the match
2. Borg will lose the first set
3. Borg will lose the first set but win the match
4. Borg will win the first set but lose the match

B. Prompts in Hypothesis 2
This section includes the detailed prompts we use to evaluate the influences from weak and strong hints. We also include the
original Linda Problem as the one-shot in-context learning exemplar before the following prompts, which is not shown here.

Weak Hint Your task is to answer the following question by explicitly selecting either option (a), (b), etc. Please aware
that this is a Linda Problem designed to explore the concept of the conjunction fallacy. Here is the question and let’s think
step by step.

Strong Hint Your task is to answer the following question by explicitly selecting either option (a), (b), etc. Please aware
that this is a Linda Problem designed to explore the concept of the conjunction fallacy. The conjunction fallacy occurs when
individuals incorrectly judge the conjunction of two events as more probable than one of the events alone. For instance, many
might believe that Linda, who is described as a bright, single woman deeply concerned with discrimination and social justice,
is more likely to be both a bank teller and active in the feminist movement than just a bank teller. This judgment violates
the basic probability rule: the probability of a conjunction, P(A and B), is always less than or equal to the probabilities
of its constituents, P(A) or P(B). This error often stems from the representativeness heuristic, where people estimate the
likelihood of an event by how closely it matches their mental prototype. To correctly solve problems like this, you must
adopt probabilistic thinking: abstract the problem from its narrative context and focus solely on the probabilistic models.
Ignore all extraneous background information and consistently choose the option involving a single event as it statistically
holds a higher likelihood than the conjunction of multiple events. Here is the question and let’s think step by step.
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C. Hypothesis Testing Results

Table 2: Hypothesis Testing Outputs for Sub-Hypothesis 1.1

model prompting method n12 n21 n raw p-value adjusted p-value reject

gpt-4-turbo baseline 7 16 23 0.030284 0.030284 True
gpt-4-turbo zs-cot 3 22 25 0.000072 0.000217 True
meta-llama-3-70b-instruct baseline 5 23 28 0.000335 0.000670 True
meta-llama-3-70b-instruct zs-cot 4 31 35 0.000003 0.000015 True
claude-3-opus-20240229 baseline 7 22 29 0.002673 0.003207 True
claude-3-opus-20240229 zs-cot 6 22 28 0.001248 0.001873 True

Table 3: Hypothesis Testing Outputs for Sub-Hypothesis 1.2

model prompting method n12 n21 n raw p-value adjusted p-value reject

gpt-4-turbo os 9 3 12 0.041632 0.049959 True
gpt-4-turbo os-cot 8 4 12 0.124107 0.124107 False
meta-llama-3-70b-instruct os 38 0 38 0.000000 0.000000 True
meta-llama-3-70b-instruct os-cot 34 0 34 0.000000 0.000000 True
claude-3-opus-20240229 os 21 3 24 0.000119 0.000179 True
claude-3-opus-20240229 os-cot 27 2 29 0.000002 0.000003 True

Table 4: Hypothesis Testing Outputs for Sub-Hypothesis 2.1

model prompting method n12 n21 n raw p-value adjusted p-value reject

gpt-4-turbo weak-hint-os-cot 0 12 12 0.000266 0.000798 True
gpt-4-turbo strong-hint-os-cot 0 13 13 0.000156 0.000798 True
meta-llama-3-70b-instruct weak-hint-os-cot 1 4 5 0.371100 0.371100 False
meta-llama-3-70b-instruct strong-hint-os-cot 0 4 4 0.133600 0.160320 False
claude-3-opus-20240229 weak-hint-os-cot 1 9 10 0.005706 0.008559 True
claude-3-opus-20240229 strong-hint-os-cot 1 10 11 0.003328 0.006656 True
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