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ABSTRACT

Dropout has been demonstrated as a simple and effective module to not only regu-
larize the training process of deep neural networks, but also provide the uncertainty
estimation for prediction. However, the quality of uncertainty estimation is highly
dependent on the dropout probabilities. Most current models use the same dropout
distributions across all data samples due to its simplicity. Despite the potential
gains in the flexibility of modeling uncertainty, sample-dependent dropout, on the
other hand, is less explored as it often encounters scalability issues or involves
non-trivial model changes. In this paper, we propose contextual dropout with an
efficient structural design as a simple and scalable sample-dependent dropout mod-
ule, which can be applied to a wide range of models at the expense of only slightly
increased memory and computational cost. We learn the dropout probabilities
with a variational objective, compatible with both Bernoulli dropout and Gaussian
dropout. We apply the contextual dropout module to various models with applica-
tions to image classification and visual question answering and demonstrate the
scalability of the method with large-scale datasets, such as ImageNet and VQA 2.0.
Our experimental results show that the proposed method outperforms baseline
methods in terms of both accuracy and quality of uncertainty estimation.

1 INTRODUCTION

Deep neural networks (NNs) have become ubiquitous and achieved state-of-the-art results in a wide
variety of research problems (LeCun et al., 2015). To prevent over-parameterized NNs from overfit-
ting, we often need to appropriately regularize their training. One way to do so is to use Bayesian NNs
that treat the NN weights as random variables and regularize them with appropriate prior distributions
(MacKay, 1992; Neal, 2012). More importantly, we can obtain the model’s confidence on its predic-
tions by evaluating the consistency between the predictions that are conditioned on different posterior
samples of the NN weights. However, despite significant recent efforts in developing various types
of approximate inference for Bayesian NNs (Graves, 2011; Welling & Teh, 2011; Li et al., 2016;
Blundell et al., 2015; Louizos & Welling, 2017; Shi et al., 2018), the large number of NN weights
makes it difficult to scale to real-world applications.

Dropout has been demonstrated as another effective regularization strategy, which can be viewed
as imposing a distribution over the NN weights (Gal & Ghahramani, 2016). Relating dropout to
Bayesian inference provides a much simpler and more efficient way than using vanilla Bayesian NNs
to provide uncertainty estimation (Gal & Ghahramani, 2016), as there is no more need to explicitly
instantiate multiple sets of NN weights. For example, Bernoulli dropout randomly shuts down
neurons during training (Hinton et al., 2012; Srivastava et al., 2014). Gaussian dropout multiplies the
neurons with independent, and identically distributed (iid) Gaussian random variables drawn from
N (1, α), where the variance α is a tuning parameter (Srivastava et al., 2014). Variational dropout
generalizes Gaussian dropout by reformulating it under a Bayesian setting and allowing α to be
learned under a variational objective (Kingma et al., 2015; Molchanov et al., 2017).
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However, the quality of uncertainty estimation depends heavily on the dropout probabilities (Gal
et al., 2017). To avoid grid-search over the dropout probabilities, Gal et al. (2017) and Boluki et al.
(2020) propose to automatically learn the dropout probabilities, which not only leads to a faster
experiment cycle but also enables the model to have different dropout probabilities for each layer,
bringing greater flexibility into uncertainty modeling. But, these methods still impose the restrictive
assumption that dropout probabilities are global parameters shared across all data samples. By
contrast, we consider parameterizing dropout probabilities as a function of input covariates, treating
them as data-dependent local variables. Applying covariate-dependent dropouts allows different data
to have different distributions over the NN weights. This generalization has the potential to greatly
enhance the expressiveness of a Bayesian NN. However, learning covariate-dependent dropout rates
is challenging. Ba & Frey (2013) propose standout, where a binary belief network is laid over the
original network, and develop a heuristic approximation to optimize free energy. But, as pointed out
by Gal et al. (2017), it is not scalable due to its need to significantly increase the model size.

In this paper, we propose a simple and scalable contextual dropout module, whose dropout rates
depend on the covariates x, as a new approximate Bayesian inference method for NNs. With a novel
design that reuses the main network to define how the covariate-dependent dropout rates are produced,
it boosts the performance while only slightly increases the memory and computational cost. Our
method greatly enhances the flexibility of modeling, maintains the inherent advantages of dropout
over conventional Bayesian NNs, and is generally simple to implement and scalable to the large-scale
applications. We plug the contextual dropout module into various types of NN layers, including fully
connected, convolutional, and attention layers. On a variety of supervised learning tasks, contextual
dropout achieves good performance in terms of accuracy and quality of uncertainty estimation.

2 CONTEXTUAL DROPOUT

We introduce an efficient solution for data-dependent dropout: (1) treat the dropout probabilities
as sample-dependent local random variables, (2) propose an efficient parameterization of dropout
probabilities by sharing parameters between the encoder and decoder, and (3) learn the dropout
distribution with a variational objective.

2.1 BACKGROUND ON DROPOUT MODULES

Consider a supervised learning problem with training data D := {xi, yi}Ni=1, where we model the
conditional probability pθ(yi |xi) using a NN parameterized by θ. Applying dropout to a NN often
means element-wisely reweighing each layer with a data-specific Bernoulli/Gaussian distributed
random mask zi, which are iid drawn from a prior pη(z) parameterized by η (Hinton et al., 2012;
Srivastava et al., 2014). This implies dropout training can be viewed as approximate Bayesian
inference (Gal & Ghahramani, 2016). More specifically, one may view the learning objective of a
supervised learning model with dropout as a log-marginal-likelihood: log

∫ ∏N
i=1 p(yi |xi, z)p(z)dz.

To maximize this often intractable log-marginal, it is common to resort to variational inference
(Hoffman et al., 2013; Blei et al., 2017) that introduces a variational distribution q(z) on the random
mask z and optimizes an evidence lower bound (ELBO):

L(D) = Eq(z)
[
log

∏N
i=1 pθ(yi |xi,z)pη(z)

q(z)

]
=
(∑N

i=1 Ezi∼q(z) [log pθ(yi |xi, zi)]
)
− KL(q(z)||pη(z)), (1)

where KL(q(z)||pη(z)) = Eq(z)[log q(z)− log p(z)] is a Kullback–Leibler (KL) divergence based
regularization term. Whether the KL term is explicitly imposed is a key distinction between regular
dropout (Hinton et al., 2012; Srivastava et al., 2014) and their Bayesian generalizations (Gal &
Ghahramani, 2016; Gal et al., 2017; Kingma et al., 2015; Molchanov et al., 2017; Boluki et al., 2020).

2.2 COVARIATE-DEPENDENT WEIGHT UNCERTAINTY

In regular dropout, as shown in (1), while we make the dropout masks data specific during opti-
mization, we keep their distributions the same. This implies that while the NN weights can vary
from data to data, their distribution is kept data invariant. In this paper, we propose contextual
dropout, in which the distributions of dropout masks zi depend on covariates xi for each sample
(xi, yi). Specifically, we define the variational distribution as qφ(zi |xi), where φ denotes its NN
parameters. In the framework of amortized variational Bayes (Kingma & Welling, 2013; Rezende
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et al., 2014), we can view qφ as an inference network (encoder) trying to approximate the posterior
p(zi | yi,xi) ∝ p(yi |xi, zi)p(zi). Note as we have no access to yi during testing, we parameterize
our encoder in a way that it depends on xi but not yi. From the optimization point of view, what
we propose corresponds to the ELBO of log

∏N
i=1

∫
p(yi |xi, zi)p(zi)dzi given qφ(zi |xi) as the

encoder, which can be expressed as

L(D) =
∑N
i=1 L(xi, yi), L(xi, yi) = Ezi∼qφ(· |xi)[log pθ(yi |xi,zi)]− KL(qφ(zi |xi)||pη(zi)). (2)

This ELBO differs from that of regular dropout in (1) in that the dropout distributions for zi are
now parameterized by xi and a single KL regularization term is replaced with the aggregation of N
data-dependent KL terms. Unlike conventional Bayesian NNs, as zi is now a local random variable,
the impact of the KL terms will not diminish as N increases, and from the viewpoint of uncertainty
quantification, contextual dropout relies only on aleatoric uncertainty to model its uncertainty on yi
given xi. Like conventional BNNs, we may add epistemic uncertainty by imposing a prior distribution
on θ and/or φ, and infer their posterior given D. As contextual dropout with a point estimate on both
θ and φ is already achieving state-of-the-art performance, we leave that extension for future research.
In what follows, we omit the data index i for simplification and formally define its model structure.

Cross-layer dependence: For a NN with L layers, we denote z = {z1, . . . ,zL}, with zl represent-
ing the dropout masks at layer l. As we expect zl to be dependent on the dropout masks in previous
layers {zj}j<l, we introduce an autoregressive distribution as qφ(z |x) =

∏L
l=1 qφ(zl |xl−1),

where xl−1, the output of layer l − 1, is a function of {z1, . . . ,zl−1,x}.
Parameter sharing between encoder and decoder: We aim to build an encoder by model-
ing qφ(zl |xl−1), where x may come from complex and highly structured data such as images
and natural languages. Thus, extracting useful features from x to learn the encoder distribu-
tion qφ itself becomes a problem as challenging as the original one, i.e., extracting discrimi-
native features from x to predict y. As intermediate layers in the decoder network pθ are al-
ready learning useful features from the input, we choose to reuse them in the encoder, instead
of extracting the features from scratch. If we denote layer l of the decoder network by glθ,
then the output of layer l, given its input xl−1, would be Ul = glθ(xl−1). Considering this
as a learned feature for x, as illustrated in Figure 1, we build the encoder on this output as

Figure 1: A contextual dropout module.

αl = hlϕ(Ul), draw zl conditioning on αl, and
element-wisely multiply zl with Ul (with broad-
cast if needed) to produce the output of layer l as
xl. In this way, we use {θ,ϕ} to parameterize
the encoder, which reuses parameters θ of the
decoder. To produce the dropout rates of the
encoder, we only need extra parameters ϕ, the
added memory and computational cost of which
are often insignificant in comparison to these of
the decoder.

2.3 EFFICIENT PARAMETERIZATION OF CONTEXTUAL DROPOUT MODULE

Denote the output of layer l by a multidimensional array (tensor) Ul = glθ(xl−1) ∈ RC
l
1×...×C

l

Dl ,
where Dl denotes the number of the dimensions of Ul and Cld denotes the number of elements
along dimension d ∈ {1, . . . , Dl}. For efficiency, the output shape of hlϕ is not matched to the
shape of Ul. Instead, we make it smaller and broadcast the contextual dropout masks zl across the
dimensions of Ul (Tompson et al., 2015). Specifically, we parameterize dropout logits αl of the
variational distribution to have Cld elements, where d ∈ {1, ...., Dl} is a specified dimension of Ul.
We sample zl from the encoder and broadcast them across all but dimension d of Ul. We sample
zl ∼ Ber(σ(αl)) under contextual Bernoulli dropout, and follow Srivastava et al. (2014) to use
zl ∼ N(1, σ(αl)/(1− σ(αl))) for contextual Gaussian dropout. To obtain αl ∈ RCl

d , we first take
the average pooling of Ul across all but dimension d, with the output denoted as Favepool,d(U

l), and
then apply two fully-connected layers Φl1 and Φl2 connected by FNL, a (Leaky) ReLU based nonlinear
activation function, as

αl = hlϕ(Ul) = Φl2(FNL(Φl1(Favepool,d(U
l)))), (3)
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Figure 2: Left: Contextual dropout in convolution layers. Right: Contextual dropout in attention layers.

where Φl1 is a linear transformation mapping from RCl
d to RCl

d/γ , while Φl2 is from RCl
d/γ back to

RCl
d , with γ being a reduction ratio controlling the complexity of hlϕ. Below we describe how to

apply contextual dropout to three representative types of NN layers.

Contextual dropout module for fully-connected layers2: If layer l is a fully-connected layer and Ul ∈
RC

l
1×···×C

l

Dl , we set αl ∈ RC
l

Dl , where Dl is the dimension that the linear transformation is applied
to. Note, if Ul ∈ RCl

1 , then αl ∈ RCl
1 , and Favepool,1 is an identity map, so αl = Φl2(FNL(Φl1(Ul))).

Contextual dropout module for convolutional layers: Assume layer l is a convolutional layer with
Cl3 as convolutional channels and Ul ∈ RCl

1×C
l
2×C

l
3 . Similar to Spatial Dropout (Tompson et al.,

2015), we set αl ∈ RCl
3 and broadcast its corresponding zl spatially as illustrated in Figure 2. Such

parameterization is similar to the squeeze-and-excitation unit for convolutional layers, which has
been shown to be effective in image classification tasks (Hu et al., 2018). However, in squeeze-and-
excitation, σ(αl) is used as channel-wise soft attention weights instead of dropout probabilities,
therefore it serves as a deterministic mapping in the model instead of a stochastic unit used in the
inference network.

Contextual dropout module for attention layers: Dropout has been widely used in attention layers
(Xu et al., 2015b; Vaswani et al., 2017; Yu et al., 2019). For example, it can be applied to multi-head
attention weights after the softmax operation (see illustrations in Figure 2). The weights are of
dimension [H,NK , NQ], where H is the number of heads, NK the number of keys, and NQ the
number of queries. In this case, we find that setting αl ∈ RH gives good performance. Intuitively,
this coincides with the choice of channel dimension for convolutional layers, as heads in attention
could be analogized as channels in convolution.

2.4 VARIATIONAL INFERENCE FOR CONTEXTUAL DROPOUT

In contextual dropout, we choose L(D) =
∑

(x,y)∈D L(x, y) shown in (2) as the optimization
objective. Note in our design, the encoder qφ reuses the decoder parameters θ to define its own
parameters. Therefore, we copy the values of θ into φ and stop the gradient of θ when optimizing qφ.
This is theoretically sound (Ba & Frey, 2013). Intuitively, the gradients to θ from pθ are less noisy
than that from qφ as the training of pθ(y |x, z) is supervised while that of qφ(z) is unsupervised. As
what we have expected, allowing gradients from qφ to backpropagate to θ is found to adversely affect
the training of pθ in our experiments. We use a simple prior pη, making the prior distributions for
dropout masks the same within each layer. The gradients with respect to η and θ can be expressed as

∇ηL(x, y) = Ez∼qφ(· |x)[∇η log pη(z)], ∇θL(x, y) = Ez∼qφ(· |x)[∇θ log pθ(y |x, z)], (4)

which are both estimated via Monte Carlo integration, using a single z ∼ qφ(z |x) for each x.

Now, we consider the gradient of L with respect toϕ, the components of φ = {θ,ϕ} not copied from
the decoder. For Gaussian contextual dropout, we estimate the gradients via the reparameterization

2Note that full-connected layers can be applied to multi-dimensional tensor as long as we specify the
dimension along which the summation operation is conducted (Abadi et al., 2015).
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trick (Kingma & Welling, 2013). For zl ∼ N(1, σ(αl)/(1 − σ(αl))), we rewrite it as zl =

1 +
√
σ(αl)/(1− σ(αl))εl, where εl ∼ N (0, I). Similarly, sampling a sequence of z = {zl}Ll=1

from qφ(z |x) can be rewritten as fφ(ε,x), where fφ is a deterministic differentiable mapping and
ε are iid standard Gaussian. The gradient ∇ϕL(x, y) can now be expressed as (see pseudo code of
Algorithm 3 in Appendix)

∇ϕL(x, y) = Eε∼N (0,1)[∇ϕ(log pθ(y |x, fφ(ε,x))− log qφ(fφ(ε,x) |x)
log pη(fφ(ε,x)) )]. (5)

For Bernoulli contextual dropout, backpropagating the gradient efficiently is not straightforward, as
the Bernoulli distribution is not reparameterizable, restricting the use of the reparameterization trick.
In this case, a commonly used gradient estimator is the REINFORCE estimator (Williams, 1992)
(see details in Appendix A). This estimator, however, is known to have high Monte Carlo estimation
variance. To this end, we estimate ∇ϕL with the augment-REINFORCE-merge (ARM) estimator
(Yin & Zhou, 2018), which provides unbiased and low-variance gradients for the parameters of
Bernoulli distributions. We defer the details of this estimator to Appendix A. We note there exists an
improved ARM estimator (Yin et al., 2020; Dong et al., 2020), applying which could further improve
the performance.

2.5 TESTING AND COMPLEXITY ANALYSIS

Testing stage: To obtain a point estimate, we follow the common practice in dropout (Srivastava
et al., 2014) to multiply the neurons by the expected values of random dropout masks, which
means that we predict y with pθ(y |x, z̄), where z̄ = Eqφ(z |x)[z] under the proposed contextual
dropout. When uncertainty estimation is needed, we draw K random dropout masks to approximate
the posterior predictive distribution of y given x using p̂(y |x) = 1

K

∑K
k=1 pθ(y |x, z(k)), where

z(1), . . . ,z(K) iid∼ qφ(z |x).

Complexity analysis: The added computation and memory of contextual dropout are insignificant
due to the parameter sharing between the encoder and decoder. Extra memory and computational
cost mainly comes from the part of hlϕ, where both the parameter size and number of operations are
of order O((Cld)

2/γ), where γ is from 8 to 16. This is insignificant, compared to the memory and
computational cost of the main network, which are of order larger than O((Cld)

2). We verify the
point by providing memory and runtime comparisons between contextual dropout and other dropouts
on ResNet in Table 3 (see more model size comparisons in Table 5 in Appendix).

2.6 RELATED WORK

Data-dependent variational distribution: Deng et al. (2018) model attentions as latent-alignment
variables and optimize a tighter lower bound (compared to hard attention) using a learned inference
network. To balance exploration and exploitation for contextual bandits problems, Wang & Zhou
(2019) introduce local variable uncertainty under the Thompson sampling framework. However, their
inference networks of are both independent of the decoder, which may considerably increase memory
and computational cost for the considered applications. Fan et al. (2020) propose Bayesian attention
modules with efficient parameter sharing between the encoder and decoder networks. Its scope is
limited to attention units as Deng et al. (2018), while we demonstrate the general applicability of
contextual dropout to fully connected, convolutional, and attention layers in supervised learning
models. Conditional computation (Bengio et al., 2015; 2013; Shazeer et al., 2017; Teja Mullapudi
et al., 2018) tries to increase model capacity without a proportional increase in computation, where
an independent gating network decides turning which part of a network active and which inactive for
each example. In contextual dropout, the encoder works much like a gating network choosing the
distribution of sub-networks for each sample. But the potential gain in model capacity is even larger,
e.g., there are potentially ∼ O((2d)L) combinations of nodes for L fully-connected layers, where d
is the order of the number of nodes for one layer. Generalization of dropout: DropConnect (Wan
et al., 2013) randomly drops the weights rather than the activations so as to generalize dropout. The
dropout distributions for the weights, however, are still the same across different samples. Contextual
dropout utilizes sample-dependent dropout probabilities, allowing different samples to have different
dropout probabilities.
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3 EXPERIMENTS

Our method can be straightforwardly deployed wherever regular dropout can be utilized. To test its
general applicability and scalability, we apply the proposed method to three representative types of
NN layers: fully connected, convolutional, and attention layers with applications on MNIST (LeCun
et al., 2010), CIFAR (Krizhevsky et al., 2009), ImageNet (Deng et al., 2009), and VQA-v2 (Goyal
et al., 2017). To investigate the model’s robustness to noise, we also construct noisy versions of
datasets by adding Gaussian noises to image inputs (Larochelle et al., 2007).

For evaluation, we consider both the accuracy and uncertainty on predicting y given x. Many metrics
have been proposed to evaluate the quality of uncertainty estimation. On one hand, researchers are
generating calibrated probability estimates to measure model confidence (Guo et al., 2017; Naeini
et al., 2015; Kuleshov et al., 2018). While expected calibration error and maximum calibration error
have been proposed to quantitatively measure calibration, such metrics do not reflect how robust the
probabilities are with noise injected into the network input, and cannot capture epistemic or model
uncertainty (Gal & Ghahramani, 2016). On the other hand, the entropy of the predictive distribution
as well as the mutual information, between the predictive distribution and posterior over network
weights, are used as metrics to capture both epistemic and aleatoric uncertainty (Mukhoti & Gal,
2018). However, it is often unclear how large the entropy or mutual information is large enough to be
classified as uncertain, so such metric only provides a relative uncertainty measure.

Hypothesis testing based uncertainty estimation: Unlike previous information theoretic metrics,
we use a statistical test based method to estimate uncertainty, which works for both single-label
and multi-label classification models. One advantage of using hypothesis testing over information
theoretic metrics is that the p-value of the test can be more interpretable, making it easier to be
deployed in practice to obtain a binary uncertainty decision. To quantify how confident our model
is about this prediction, we evaluate whether the difference between the empirical distributions of
the two most possible classes from multiple posterior samples is statistically significant. Please see
Appendix D for a detailed explanation of the test procedure.

Uncertainty evaluation via PAvPU: With the p-value of the testing result and a given p-value thresh-
old, we can determine whether the model is certain or uncertain about one prediction. To evaluate the
uncertainty estimates, we uses Patch Accuracy vs Patch Uncertainty (PAvPU) (Mukhoti & Gal, 2018),
which is defined as PAvPU = (nac + niu)/(nac + nau + nic + niu), where nac, nau, nic, niu are
the numbers of accurate and certain, accurate and uncertain, inaccurate and certain, inaccurate and
uncertain samples, respectively. This PAvPU evaluation metric would be higher if the model tends to
generate the accurate prediction with high certainty and inaccurate prediction with high uncertainty.

3.1 CONTEXTUAL DROPOUT ON FULLY CONNECTED LAYERS

We consider an MLP with two hidden layers of size 300 and 100, respectively, with ReLU activations.
Dropout is applied to the input layer and the outputs of first two full-connected layers. We use
MNIST as the benchmark. We compare contextual dropout with MC dropout (Gal & Ghahramani,
2016), concrete dropout (Gal et al., 2017), Gaussian dropout (Srivastava et al., 2014), and Bayes by
Backprop (Blundell et al., 2015). Please see the detailed experimental setting in Appendix C.1.

Table 1: Results on noisy MNIST with MLP.

METHODS ACCURACY PAVPU(0.05) LOG LIKELIHOOD

MC - BERNOULLI 86.36 85.63 -1.72
MC - GAUSSIAN 86.31 85.64 -1.72
CONCRETE 86.52 86.77 -1.68
BAYES BY BACKPROP 86.55 87.13 -2.30
CONTEXTUAL GATING 86.20 - -1.81
CONTEXTUAL GATING+DROPOUT 86.70 87.01 -1.71

BERNOULLI CONTEXTUAL 87.43±0.39 87.81±0.23 -1.41 ±0.01
GAUSSIAN CONTEXTUAL 87.35±0.33 87.72±0.29 -1.43±0.01

Results and analysis: In Table 1, we show accuracy, PAvPU (p-value threshold equal to 0.05) and,
test predictive loglikelihood with error bars (5 random runs) for models with different dropouts under
the challenging noisy data3 (added Gaussian noise with mean 0, variance 1). Note that the uncertainty

3Results on original data is deferred to Table 6 in Appendix .
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Figure 3: Visualization of dropout probabilities of Bernoulli contextual dropout on the MNIST dataset: the
learned dropout probabilities seem to increase as we go to higher-level layers, as also observed in Gal et al.
(2017). With contextual dropout, different samples own different dropout probabilities. Inaccurate ones often
have higher dropout probabilities corresponding to higher uncertainties. On the further right figure, we compare
the dropout distributions across 3 representative digits. The dropout probabilities are overall higher for digit 8
compared to digit 1, meaning 1 is easier to classify. The distribution for 5 has longer tails than others showing
there are more variations in the uncertainty for digit 5.

Figure 4: The performance of combining different dropouts with deep ensemble on noisy MNIST data.

results for p-value threshold 0.05 is in general consistent with the results for other p-value thresholds
(see more in Table 6 in Appendix). We observe that contextual dropout outperforms other methods in
all metrics. Moreover, compared to Bayes by Backprop, contextual dropout is more memory and
computationally efficient. As shown in Table 5 in Appendix, contextual dropout only introduces
16% additional parameters. However, Bayes by Backprop doubles the memory and increases the
computations significantly as we need multiple draws of NN weights for uncertainty. Due to this
reason, we do not include it for the following large model evaluations. We note that using the output
of the gating network to directly scale activations (contextual gating) underperforms contextual
dropout, which shows that the sampling process is important for preventing overfitting and improving
robustness to noise. Adding a regular dropout layer on the gating activations (contextual gating +
dropout) improves a little, but still underperforms contextual dropout, demonstrating that how we
use the gating activations matters. In Figure 3, we observe that Bernoulli contextual dropout learns
different dropout probabilities for different samples adapting the sample-level uncertainty which
further verifies our motivation and supports the empirical improvements. For sample-dependent
dropout, the dropout probabilities would not vanish to zero even though the prior for regularization
is also learned, because the optimal dropout probabilities for each sample is not necessarily zero.
Enabling different samples to have different network connections could greatly enhance the model’s
capacity. The prior distribution also plays a different role here. Instead of preventing the dropout
probabilities from going to zero, the prior tries to impose some similarities between the dropout
probabilities of different samples.

Combine contextual dropout with Deep Ensemble: Deep ensemble proposed by Lakshmi-
narayanan et al. (2017) is a simple way to obtain uncertainty by ensembling models trained indepen-
dently from different random initializations. In Figure 4, we show the performance of combining
different dropouts with deep ensemble on noisy MNIST data. As the number of NNs increases, both
accuracy and PAvPU increase for all dropouts. However, Bernoulli contextual dropout outperforms
other dropouts by a large margin in both metrics, showing contextual dropout is compatible with deep
ensemble and their combination can lead to significant improvements. Out of distribution (OOD)
evaluation: we evaluate different dropouts in an OOD setting, where we train our model with clean
data but test it on noisy data. Contextual dropout achieves accuracy of 78.08, consistently higher than
MC dropout (75.22) or concrete dropout (74.93). Meanwhile, the proposed method is also better at
uncertainty estimation with PAvPU of 78.49, higher than MC (74.61) or Concrete (75.49).
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3.2 CONTEXTUAL DROPOUT ON CONVOLUTIONAL LAYERS

We apply dropout to the convolutional layers in WRN (Zagoruyko & Komodakis, 2016). In Figure 6
in Appendix, we show the architecture of WRN, where dropout is applied to the first convolutional
layer in each network block; in total, dropout is applied to 12 convolutional layers. We evaluate on
CIFAR-10 and CIFAR-100 . The detailed setting is provided in Appendix C.1.

Table 2: Results on CIFAR-100 with WRN.

Dropout Original Data Noisy Data
Accuracy PAvPU (0.05) log likelihood Accuracy PAvPU (0.05) log likelihood

Bernoulli 79.03 61.54 -4.49 52.01 54.25 -4.55
Gaussian 76.63 78.05 -3.93 51.38 57.02 -4.23
Concrete 79.19 64.14 -4.50 51.58 56.61 -4.56
Bernoulli Contextual 80.85±0.05 81.56±0.31 -3.56±0.02 53.64±0.45 58.63±0.50 -3.73±0.04
Gaussian Contextual 80.93±0.18 81.69±0.16 -3.43±0.07 53.72±0.34 58.49±0.43 -3.81 ±0.03

Results and analysis: We show the results for CIFAR-100 in Table 2 (see CIFAR-10 results in
Tables 8-9 in Appendix). Accuracies, PAvPUs, and test predictive loglikelihoods are incorporated for
both the original and noisy data. We consistently observe that contextual dropout outperforms other
models in accuracy, uncertainty estimation, and loglikelihood.

Uncertainty visualization: We conducted extensive qualitative analyses for uncertainty evaluation.
In Figures 9-11 in Appendix F.2, we visualize 15 CIFAR images (with true label) and compare
the corresponding probability outputs of different dropouts in boxplots. We observe (1) contextual
dropout predicts the correct answer if it is certain, (2) contextual dropout is certain and predicts the
correct answers on many images for which MC or concrete dropout is uncertain, (3) MC or concrete
dropout is uncertain about some easy examples or certain on some wrong predictions (see details
in Appendix F.2), (4) on an image that all three methods have high uncertainty, contextual dropout
places a higher probability on the correct answer than the other two. These observations verify that
contextual dropout provides better calibrated uncertainty.

Table 3: Results on ImageNet with ResNet-18.

DROPOUT TOP-1 ACC PAVPU PARAMS SEC/STEP

WITHOUT 69.75 NA 11.70M 1.44
+GAUSSIAN 69.46 72.86 11.70M 1.50
+CONTEXTUAL 70.03±0.07 74.68±0.08 11.88M 1.64
+CONTEXTUAL (SCRATCH) 70.29±0.09 76.47±0.12 11.88M 1.64

Large-scale experiments with ImageNet: Contextual dropout is also applied to the convolutional
layers in ResNet-18, where we plug contextual dropout into a pretrained model, and fine-tune the
pretrained model on ImageNet. In Table 3, we show it is even possible to finetune a pretrained model
with contextual dropout module, and without much additional memory or run time cost, it achieves
better performance than both the original model and the one with regular Gaussian dropout. Training
model with contextual dropout from scratch can further improve the performance. See detailed
experimental setting in Appendix C.1.

3.3 CONTEXTUAL DROPOUT ON ATTENTION LAYERS

We further apply contextual dropout to the attention layers of VQA models, whose goal is to provide
an answer to a question relevant to the content of a given image. We conduct experiments on the
commonly used benchmark, VQA-v2 (Goyal et al., 2017), containing human-annotated question-
answer (QA) pairs. There are three types of questions: Yes/No, Number, and Other. In Figure 5, we
show one example for each question type. There are 10 answers provided by 10 different human
annotators for each question (see explanation of evaluation metrics in Appendix C.2). As shown in the
examples, VQA is generally so challenging that there are often several different human annotations
for a given image. Therefore, good uncertainty estimation becomes even more necessary.

Model and training specifications: We use MCAN (Yu et al., 2019), a state-of-the-art Transformer-
like model for VQA. Self-attention layers for question features and visual features, as well as the
question-guided attention layers of visual features, are stacked one over another to build a deep model.
Dropout is applied in every attention layer (after the softmax and before residual layer (Vaswani et al.,
2017)) and fully-connected layer to prevent overfitting (Yu et al., 2019), resulting in 62 dropout layers
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Figure 5: VQA visualization: for each question type, we present an image-question pair along with human
annotations. We manually classify each prediction by different methods based on their answers and p-values. For
questions that have a clear answer, we define the good as certain & accurate, the average as uncertain & accurate
or uncertain & inaccurate, and the bad as certain & inaccurate. Otherwise, we define the good as uncertain &
accurate, the average as certain & accurate or uncertain & inaccurate, and the bad as certain & inaccurate.

in total. Experiments are conducted using the code of Yu et al. (2019) as basis. Detailed experiment
setting is in Appendix C.2.

Table 4: Accuracy and PAvPU on visual question answering.

DROPOUT ACCURACY PAVPU
ORIGINAL DATA NOISY DATA ORIGINAL DATA NOISY DATA

BERNOULLI (YU ET AL., 2019) 67.2 - - -
MC - BERNOULLI 66.95 61.45 70.04 66.11
MC - GAUSSIAN 66.96 62.75 70.77 67.42
CONCRETE 66.82 61.47 71.02 65.94

BERNOULLI CONTEXTUAL 67.42±0.06 63.73±0.08 71.65±0.06 68.57±0.11
GAUSSIAN CONTEXTUAL 67.35±0.03 63.82±0.05 71.62±0.02 68.64±0.04

Results and analysis: We compare different dropouts on both the original VQA dataset and a noisy
version, where Gaussian noise with standard deviation 5 is added to the visual features. In Tables 4,
we show the overall accuracy and uncertainty estimation. The results show that on the original data,
contextual dropout achieves better accuracy and uncertainty estimation than the others. Moreover, on
noisy data, where the prediction becomes more challenging and requires more model flexibility and
robustness, contextual dropouts outperform their regular dropout counterparts by a large margin in
terms of accuracy with consistent improvement across all three question types.

Visualization: In Figures 12-15 in Appendix F.3, we visualize some image-question pairs, along
with the human annotations and compare the predictions and uncertainty estimations of different
dropouts. We show three of them in Figure 5. As shown in the plots, overall contextual dropout is
more conservative on its wrong predictions and more certain on its correct predictions than other
methods (see more detailed explanations in Appendix F.3).

4 CONCLUSION

We introduce contextual dropout as a simple and scalable data-dependent dropout module that
achieves strong performance in both accuracy and uncertainty estimation on a variety of tasks
including large scale applications. With an efficient parameterization of the coviariate-dependent
variational distribution, contextual dropout boosts the flexibility of Bayesian neural networks with
only slightly increased memory and computational cost. We demonstrate the general applicability
of contextual dropout on fully connected, convolutional, and attention layers, and also show that
contextual dropout masks are compatible with both Bernoulli and Gaussian distribution. On both
image classification and visual question answering tasks, contextual dropout consistently outperforms
corresponding baselines. Notably, on ImageNet, we find it is possible to improve the performance
of a pretrained model by adding the contextual dropout module during a finetuning stage. Based on
these results, we believe contextual dropout can serve as an efficient alternative to data-independent
dropouts in the versatile tool box of dropout modules.
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Appendix

A DETAILS OF ARM GRADIENT ESTIMATOR FOR BERNOULLI CONTEXTUAL
DROPOUT

In this section, we will explain the implementation details of ARM for Bernoulli contextual dropout.
To compute the gradients with respect to the parameters of the variational distribution, a commonly
used gradient estimator is the REINFORCE estimator (Williams, 1992) as

∇ϕL(x, y) = Ez∼qφ(· |x)[r(x, z, y)∇ϕ log qφ(z |x)], r(x, z, y) := log
pθ(y |x,z)pη(z)

qφ(z |x) .

This gradient estimator is, however, known to have high variance (Yin & Zhou, 2018). To mitigate
this issue, we use ARM to compute the gradient with Bernoulli random variable.

ARM gradient estimator: In general, denoting σ(α) = 1/(1 + e−α) as the sigmoid function,
ARM expresses the gradient of E(α) = Ez∼∏K

k=1 Ber(zk;σ(αk))
[r(z)] as

∇αE(α) = Eπ∼∏K
k=1 Uniform(πk;0,1)

[gARM(π)], gARM(π) := [r(ztrue)− r(zsudo)](1/2− π), (6)

where ztrue := 1[π<σ(α)] and zsudo := 1[π>σ(−α)] are referred to as the true and pseudo actions,
respectively, and 1[·] ∈ {0, 1}K is an indicator function.

Sequential ARM: Note that the above equation is not directly applicable to our model due to the
cross-layer dependence. However, the dropout masks within each layer are independent of each
other conditioned on these of the previous layers, so we can break our expectation into a sequence
and apply ARM sequentially. We rewrite L = Ez∼qφ(· |x)[r(x, z, y)]. When computing∇ϕL, we
can ignore the ϕ in r as the expectation of∇ϕ log qφ(z |x) is zero. Using the chain rule, we have
∇ϕL =

∑L
l=1∇αlL∇ϕαl. With decomposition L = Ez1:l−1∼qφ(· |x)Ezl∼Ber(σ(αl))[r(x, z

1:l, y)],
where r(x, z1:l, y) := Ezl+1:L∼qφ(· |x,z1:l)[r(x, z, y)], we know

∇αlL = Ez1:l−1∼qφ(· |x)Eπl∼
∏

k Uniform(πl
k
;0,1)[gARM(π

l)],

gARM(πl) = [r(x,z1:l−1,zltrue, y)− r(x,z1:l−1,zlsudo, y)](1/2− πl),

where zltrue := 1[πl<σ(αl)] and zlsudo := 1[πl>σ(−αl)]. We estimate the gradients via Monte Carlo
integration. We provide the pseudo code in Algorithm 1.

Implementation details: The computational complexity of sequential ARM is O(L) times of that
of the decoder computation. Although it is embarrassingly parallelizable, in practice, with limited
computational resource available, it maybe be challenging to use sequential ARM when L is fairly
large. In such cases, the original non-sequential ARM can be viewed as an approximation to strike a
good balance between efficiency and accuracy (see the pseudo code in Algorithm 2 in Appendix). In
our cases, for image classification models, L is small enough (3 for MLP, 12 for WRN) for us to use
sequential ARM. For VQA, L is as large as 62 and hence we choose the non-sequential ARM.

To control the learning rate of the encoder, we use a scaled sigmoid function: σt(αl) = 1
1+exp(−tαl)

,
where a larger t corresponding to a larger learning rate for the encoder. This function is also used in
Li & Ji (2019) to facilitate the transition of probability between 0 and 1 for the purpose of pruning
NN weights.
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B ALGORITHMS

Below, we present training algorithms for both Bernoulli and Gaussian contextual dropout.

Algorithm 1: Bernoulli contextual dropout with sequential ARM

Input: data D, r, {glθ}Ll=1, {hlϕ}Ll=1, step size s
Output: updated θ, ϕ, η
repeat
Gϕ = 0;
Sample x, y from data D;
x0 = x
for l = 1 to L do
U l = glθ(xl−1), αl = hlϕ(U l)

Sample πl from Uniform(0,1);
zltrue := 1[πl<σt(αl)];
zlsudo := 1[πl>σt(−αl)];
if zltrue = zlsudo then
rlsudo =None;

else
xlsudo = U l � zl,sudo
for k = l + 1 to L do
Uksudo = gkθ(xk−1sudo ), αksudo = hkϕ(Uksudo)

Sample πksudo from Uniform(0,1);
zksudo := 1[πk

sudo<σt(αk
sudo)]

;
xksudo = Uksudo � zk,sudo;

end for
rlsudo = r(xLsudo, y)

end if
xl = U l � zltrue

end for
rtrue = r(xLtrue, y)
for l = 1 to L do

if rlsudo is not None then
Gϕ = Gϕ + t(rtrue − rlsudo)(1/2− πl)∇ϕαl ;

end if
end for
ϕ = ϕ+ sGϕ, with step-size s;
θ = θ + s

∂ log pθ(y |x,z1:L,true)
∂θ ;

η = η + s
∂ log pη(z1:L,true)

∂η ;
until convergence
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Algorithm 2: Bernoulli contextual dropout with independent ARM

Input: data D, r, {glθ}Ll=1, {hlϕ}Ll=1, step size s
Output: updated θ, ϕ, η
repeat
Gϕ = 0;
Sample x, y from data D;
x0 = x
for l = 1 to L do
U l = glθ(xl−1), αl = hlϕ(U l)

Sample πl from Uniform(0,1);
zltrue := 1[πl<σt(αl)];
xl = U l � zltrue

end for
rtrue = r(xLtrue, y)
x0

sudo = x
for l = 1 to L do
U lsudo = glθ(xl−1sudo), αlsudo = hlϕ(U lsudo)

zlsudo := 1[πl
sudo>σt(−αl

sudo)]
;

xlsudo = U lsudo � zlsudo
end for
rsudo = r(xLsudo, y);
for l = 1 to L do
Gϕ = Gϕ + t(rtrue − rsudo)(1/2− πl)∇ϕαl ;

end for
ϕ = ϕ+ sGϕ, with step-size s;
θ = θ + s

∂ log pθ(y |x,z1:L,true)
∂θ ;

η = η + s
∂ log pη(z1:L,true)

∂η ;
until convergence
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Algorithm 3: Gaussian contextual dropout with reparamaterization trick

Input: data D, r, {glθ}Ll=1, {hlϕ}Ll=1, step size s
Output: updated θ, ϕ, η
repeat

Sample x, y from data D;
x0 = x
for l = 1 to L do
U l = glθ(xl−1), αl = hlϕ(U l)

Sample εl from N (0, 1);

τ l =
√

1−σt(αl)
σt(αl)

;

zl := 1 + τ l � εl;
xl = U l � zl

end for
ϕ = ϕ+ s∇ϕ(log pθ(y |x, z1:L)− log qφ(z1:L|x)

log pη(z1:L) ), with step-size s;

θ = θ + s∂ log pθ(y |x,z1:L)
∂θ ;

η = η + s
∂ log pη(z1:L)

∂η ;
until convergence

C DETAILS OF EXPERIMENTS

All experiments are conducted using a single Nvidia Tesla V100 GPU.

Table 5: Model size comparison among different methods.

METHOD MLP WRN MCAN RESNET-18

MC OR CONCRETE 267K 36.5M 58M 11.6M
CONTEXTUAL 311K 36.6M 61M 11.8M
BAYES BY BACKPROP 534K - - -

Choice of hyper-parameters in Contextual Dropout: Contextual dropout introduces two additional
hyperparameters compared to regular dropout. One is the channel factor γ for the encoder network.
In our experiments, the results are not sensitive to the choice of the value of the channel factor γ.
Any number from 8 to 16 would give similar results, which is also observed in (Hu et al., 2018). The
other is the sigmoid scaling factor t that controls the learning rate of the encoder. We find that the
performance is not that sensitive to its value and it is often beneficial to make it smaller than the
learning rate of the decoder. In all experiments considered in the paper, which cover various noise
levels and model sizes, we have simply fixed it at t = 0.01.

C.1 IMAGE CLASSIFICATION

MLP: We consider an MLP with two hidden layers of size 300 and 100, respectively, and use ReLU
activations. Dropout is applied to all three full-connected layers. We use MNIST as the benchmark.
All models are trained for 200 epochs with batch size 128 and the Adam optimizer (Kingma & Ba,
2014) (β1 = 0.9, β2 = 0.999). The learning rate is 0.001. We compare contextual dropout with MC
dropout (Gal & Ghahramani, 2016) and concrete dropout (Gal et al., 2017). For MC dropout, we
use the hand-tuned dropout rate at 0.2. For concrete dropout, we initialize the dropout rate at 0.2
for Bernoulli dropout and the standard deviation parameter at 0.5 for Gaussian dropout. and set the
Concrete temperature at 0.1 (Gal et al., 2017). We initialize the weights in contextual dropout with
He-initialization preserving the magnitude of the variance of the weights in the forward pass (He
et al., 2015). We initialize the biases in the way that the dropout rate is 0.2 when the weights for
contextual dropout are zeros. We also initialize our prior dropout rate at 0.2. For hyperparameter
tuning, we hold out 10, 000 samples randomly selected from the training set for validation. We use
the chosen hyperparameters to train on the full training set (60, 000 samples) and evaluate on the
testing set (10, 000 samples). We use Leaky ReLU (Xu et al., 2015a) with 0.1 as the non-linear

16



Published as a conference paper at ICLR 2021

operator in contextual dropout. The reduction ratio γ is set as 10, and sigmoid scaling factor t as 0.01.
For Bayes by Backprop, we use − log σ1 = 0,− log σ2 = 6, π = 0.2 (following the notation in the
original paper). For evaluation, we set M = 20.

WRN: We consider WRN (Zagoruyko & Komodakis, 2016), including 25 convolutional layers. In
Figure 6, we show the architecture of WRN, where dropout is applied to the first convolutional layer
in each network block; in total, dropout is applied to 12 convolutional layers. We use CIFAR-10 and
CIFAR-100 (Krizhevsky et al., 2009) as benchmarks. All experiments are trained for 200 epochs
with the Nesterov Momentum optimizer (Nesterov, 1983), whose base learning rate is set as 0.1, with
decay factor 1/5 at epochs 60 and 120. All other hyperparameters are the same as MLP except for
Gaussian dropout, where we use standard deviation equal to 0.8 for the CIFAR100 with no noise and
1 for all other cases.

ResNet: We used ResNet-18 as the baseline model. We use momentum SGD, with learning rate 0.1,
and momentum weight 0.9. Weight decay is utilized with weight 1e−4. For models trained from
scratch, we train the models with 90 epochs. For finetuning models, we start with pretrained baseline
ResNet models and finetune for 1 epoch.

Group Name Layers

conv1 [Original Conv (16)]

conv2 [Conv + Dropout (160); Original Conv (160)] x 4

conv3 [Conv + Dropout (320); Original Conv (320)] x 4

conv4 [Conv + Dropout (640); Original Conv (640)] x 4

Figure 6: Architecture of the Wide Residual Network.

C.2 VQA

Dataset: The dataset is split into the training (80k images and 444k QA pairs), validation (40k images
and 214k QA pairs), and testing (80k images and 448k QA pairs) sets. We perform evaluation on the
validation set as the true labels for the test set are not publicly available (Deng et al., 2018).

Evaluation metric: the evaluation for VQA is different from image classification. The accu-
racy for a single answer could be a number between 0 and 1 (Goyal et al., 2017): Acc(ans) =
min{(#human that said ans)/3, 1}. We generalize the uncertainty evaluation accordingly:

nac =
∑
i AcciCeri, niu =

∑
i(1− Acci)(1− Ceri) , nau =

∑
i Acci(1− Ceri), nic =

∑
i(1− Acci)(Ceri)

where for the ith prediction Acci is the accuracy and Ceri ∈ {0, 1} is the certainty indicator.

Experimental setting: We follow the setting by Yu et al. (2019), where bottom-up features extracted
from images by Faster R-CNN (Ren et al., 2015) are used as visual features, pretrained word-
embeddings (Pennington et al., 2014) and LSTM (Hochreiter & Schmidhuber, 1997) are used to
extract question features. We adopt the encoder-decoder structure in MCAN with six co-attention
layers. We use the same model hyperparameters and training settings in Yu et al. (2019) as follows:
the dimensionality of input image features, input question features, and fused multi-modal features
are set to be 2048, 512, and 1024, respectively. The latent dimensionality in the multi-head attention
is 512, the number of heads is set to 8, and the latent dimensionality for each head is 64. The size
of the answer vocabulary is set to N = 3129 using the strategy in Teney et al. (2018). To train the
MCAN model, we use the Adam optimizer (Kingma & Ba, 2014) with β1 = 0.9 and β2 = 0.98. The
base learning rate is set to min(2.5te−5, 1e−4), where t is the current epoch number starting from 1.
After 10 epochs, the learning rate is decayed by 1/5 every 2 epochs. All the models are trained up to
13 epochs with the same batch size of 64.

We only conduct training on the training set (no data augmentation with visual genome dataset), and
evaluation on the validation set. For MC dropout, we use the dropout rate of 0.1 for Bernoulli dropout
as in Yu et al. (2019) and the standard deviation parameter of 1/3 for Gaussian dropout. For concrete
dropout, we initialize the dropout rate at 0.1 and set the Concrete temperature at 0.1 (Gal et al., 2017).
For hyperparameter tuning, we randomly hold out 20% of the training set for validation. After tuning,
we train on the whole training set and evaluate on the validation set. We initialize the weights with
He-initialization preserving the magnitude of the variance of the weights in the forward pass (He
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et al., 2015). We initialize the biases in the way that the dropout rate is 0.1 when the weights for
contextual dropout are zeros. We also initialize our prior dropout rate at 0.1. We use ReLU as the
non-linear operator in contextual dropout. We use γ = 8 for layers with Cld > 8, otherwise γ = 1.
We set α ∈ RdV for residual layers.

D STATISTICAL TEST FOR UNCERTAINTY ESTIMATION

Consider M posterior samples of predictive probabilities {pm}Mm=1, where pm is a vector with the
same dimension as the number of classes. For single-label classification models, pm is produced
by a softmax layer and sums to one, while for multi-label classification models, pm is produced
by a sigmoid layer and each element is between 0 and 1. The former output is used in most image
classification models, while the latter is often used in VQA where multiple answers could be true for
a single input. In both cases, to quantify how confident our model is about this prediction, we evaluate
whether the difference between the probabilities of the first and second highest classes is statistically
significant with a statistical test. We conduct the normality test on the output probabilities for both
image classification and VQA models, and find most of the output probabilities are approximately
normal (we randomly pick some Q-Q plots (Ghasemi & Zahediasl, 2012) and show them in Figures
7 and 8). This motivates us to use two-sample t-test4. In the following, we briefly summarize the
two-sample t-test we use.

Two sample hypothesis testing is an inferential statistical test that determines whether there is a
statistically significant difference between the means in two groups. The null hypothesis for the
t-test is that the population means from the two groups are equal: µ1 = µ2, and the alternative
hypothesis is µ1 6= µ2. Depending on whether each sample in one group can be paired with another
sample in the other group, we have either paired t-test or independent t-test. In our experiments,
we utilize both types of two sample t-test. For a single-label model, the probabilities are dependent
between two classes due to the softmax layer, therefore, we use the paired two-sample t-test; for a
multi-label model, the probabilities are independent given the logits of the output layer, so we use the
independent two-sample t-test.

For paired two-sample t-test, we calculate the difference between the paired observations calculate
the t-statistic as below:

T =
Ȳ

s/
√
N
,

where Ȳ is the mean difference between the paired observations, s is the standard deviation of the
differences, and N is the number of observations. Under the null hypothesis, this statistic follows a
t-distribution with N − 1 degrees of freedom if the difference is normally distributed. Then, we use
this t-statistic and t-distribution to calculate the corresponding p-value.

For independent two-sample t-test, we calculate the t-statistic as below:

T =
Ȳ1 − Ȳ2√

s2/N1 + s2/N2

s2 =

∑
(y1 − Ȳ1) +

∑
(y2 − Ȳ2)

N1 +N2 − 2

where N1 and N2 are the sample sizes, and Ȳ1 and Ȳ2 are the sample means. Under the null
hypothesis, this statistic follows a t-distribution with N1 +N2 − 2 degrees of freedom if both y1 and
y2 are normally distributed. We calculate the p-value accordingly.

To justify the assumption of the two-sample t-test, we run the normality test on the output probabil-
ities for both image classification and VQA models. We find most of the output probabilities are
approximately normal. We randomly pick some Q-Q plots (Ghasemi & Zahediasl, 2012) and show
them in Figures 7 and 8.

18



Published as a conference paper at ICLR 2021

Table 6: Complete results on MNIST with MLP

ORIGINAL DATA NOISY DATA

ACCURACY PAVPU(0.01 / 0.05 / 0.1) ACCURACY PAVPU(0.01 / 0.05 / 0.1)

MC DROPOUT - BERNOULLI 98.62 98.25 / 98.39 / 98.44 86.36 84.29/ 85.63 / 86.10
MC DROPOUT - GAUSSIAN 98.67 98.23 / 98.41/ 98.46 86.31 83.99 / 85.64 / 86.03
CONCRETE DROPOUT 98.61 98.43/ 98.50 / 98.57 86.52 85.98 / 86.77/ 86.92
BAYES BY BACKPROP 98.44 98.26 / 98.42 / 98.56 86.55 86.89/ 87.13/ 87.26

BERNOULLI CONTEXTUAL DROPOUT 99.08(0.04) 98.74(0.17) / 98.92(0.08) / 99.09(0.08) 87.43(0.39) 87.75(0.24) / 87.81(0.23) / 87.89(0.25)
GAUSSIAN CONTEXTUAL DROPOUT 98.92(0.09) 98.71(0.02) / 98.90(0.08) / 99.03(0.07) 87.35(0.33) 87.64(0.19) / 87.72(0.29) / 87.78(0.32)

Table 7: Loglikelihood on original MNIST with MLP.

LOG LIKELIHOOD

MC - BERNOULLI -1.4840 ±0.0004
MC - GAUSSIAN -1.4820±0.0003
CONCRETE -1.4822 ±0.0012
BAYES BY BACKPROP -1.4806 ±0.0007
BERNOULLI CONTEXTUAL -1.4537 ±0.0005
GAUSSIAN CONTEXTUAL -1.4589±0.0005

Table 8: Complete results on CIFAR-10 with WRN

ORIGINAL DATA NOISY DATA

ACCURACY PAVPU(0.01 / 0.05 / 0.1) ACCURACY PAVPU(0.01 / 0.05 / 0.1)

MC DROPOUT - BERNOULLI 94.58 78.73 / 82.34 / 84.21 79.51 72.89 / 74.43 / 75.04
MC DROPOUT - GAUSSIAN 93.81 92.59 / 93.24 / 93.85 79.33 80.43 / 81.24 / 82.31
CONCRETE DROPOUT 94.60 73.51 / 78.41 / 81.01 79.34 72.72 / 73.89 / 74.72

BERNOULLI CONTEXTUAL DROPOUT 95.92(0.10) 95.25(0.23) / 95.74(0.12) / 96.02(0.16) 81.49(0.19) 82.56(0.50) / 83.28(0.31) / 83.91(0.28)
GAUSSIAN CONTEXTUAL DROPOUT 96.04(0.1) 95.42(0.07) / 95.85(0.07) / 96.10(0.06) 81.64(0.31) 82.38 (0.41) / 82.80(0.36) / 83.43(0.36)

Table 9: Complete log likelihood results on CIFAR-10 with WRN

CIFAR-10
ORIGINAL DATA NOISY DATA

MC DROPOUT - BERNOULLI -1.91 -1.93
MC DROPOUT - GAUSSIAN -1.54 -1.72
CONCRETE DROPOUT -1.98 -2.0

BERNOULLI CONTEXTUAL DROPOUT -1.24 -1.47
GAUSSIAN CONTEXTUAL DROPOUT -1.19 -1.51

Table 10: Complete results on CIFAR-100 with WRN

ORIGINAL DATA NOISY DATA

ACCURACY PAVPU(0.01 / 0.05 / 0.1) ACCURACY PAVPU(0.01 / 0.05 / 0.1)

MC DROPOUT - BERNOULLI 79.03 56.90 / 61.54 / 64.14 52.01 53.86 / 54.25 / 54.63
MC DROPOUT - GAUSSIAN 76.63 77.35 / 78.05 / 78.26 51.38 56.83 / 57.02 / 57.31
CONCRETE DROPOUT 79.19 59.45 / 64.14/ 66.63 51.58 57.62 / 56.61/ 55.89

BERNOULLI CONTEXTUAL DROPOUT 80.85(0.05) 81.04(0.28) / 81.56(0.31) / 81.86(0.21) 53.64(0.45) 58.29(0.30) / 58.63(0.50) / 59.36(0.49)
GAUSSIAN CONTEXTUAL DROPOUT 80.93 (0.18) 81.43(0.1) / 81.69(0.16) / 82.02(0.14) 53.72(0.34) 58.01(0.6) / 58.49(0.43) / 58.95(0.37)
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E TABLES AND FIGURES FOR p-VALUE 0.01, 0.05 AND 0.1

F QUALITATIVE ANALYSIS

In this section, we include the Q-Q plots of the output probabilities as the normality test for the
assumptions of two-sample t-test. In Figure 7, we test the normality of differences between highest
probabilities and second highest probabilities on WRN model with contextual dropout trained on
the orignal CIFAR-10 dataset. In Figure 8, we test the normality of highest probabilities and second
highest probabilities (separately) on VQA model with contextual dropout trained on the original
VQA-v2 dataset. We use 20 data points for the plots.

F.1 NORMALITY TEST OF OUTPUT PROBABILITIES

Figure 7: QQ Plot for differences between highest probabilities and second highest probabilities on
WRN model with contextual dropout trained on the orignal CIFAR-10 dataset.

Figure 8: QQ Plot for output probabilities of VQA models: top row corresponds to the probability dis-
tributions of the class with the highest probability, and the bottom row corresponds to the probability
distributions of the class with the second highest probability.

4Note that we also tried a nonparametric test, Wilcoxon rank-sum test, and obtain similar results.
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F.2 BOXPLOT FOR CIFAR-10

In this section, we visualize 5 most uncertain images for each dropout (only include Bernoulli,
Concrete, and Contextual Bernoulli dropout for simplicity) leading to 15 images in total. The true
images with the labels are on the left side and boxplots of probability distributions of different
dropouts are on the right side. All models are trained on the original CIFAR-10 dataset. Among
these 15 images, we observe that contextual dropout predicts the right answer if it is certain, and
it is certain and predicts the right answer on many images that MC dropout or concrete dropout is
uncertain about (e.g, many images in Figure 9-10). However, MC dropout or concrete dropout is
uncertain about some easy examples (images in Figures 9-10) or certain on some wrong predictions
(images in Figure 11). Moreover, on an image that all three methods have high uncertainty, concrete
dropout often places a higher probability on the correct answer than the other two methods (images
in Figure 11).
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(a) Image (b) Concrete Dropout (c) MC Dropout (d) Contextual Dropout

Figure 9: Visualization of probability outputs of different dropouts on CIFAR-10. 5 plots that
Concrete Dropout is the most uncertain are presented. Number to class map: {0: airplane, 1:
automobile, 2: bird, 3: cat, 4: deer, 5: dog, 6: frog, 7: horse, 8: ship, 9: truck.}
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(a) Image (b) Concrete Dropout (c) MC Dropout (d) Contextual Dropout

Figure 10: Visualization of probability outputs of different dropouts on CIFAR-10. 5 plots that MC
Dropout is the most uncertain are presented. Number to class map: {0: airplane, 1: automobile, 2:
bird, 3: cat, 4: deer, 5: dog, 6: frog, 7: horse, 8: ship, 9: truck.}
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(a) Image (b) Concrete Dropout (c) MC Dropout (d) Contextual Dropout

Figure 11: Visualization of probability outputs of different dropouts on CIFAR-10. 5 plots that
Contextual Dropout is the most uncertain are presented. Number to class map: {0: airplane, 1:
automobile, 2: bird, 3: cat, 4: deer, 5: dog, 6: frog, 7: horse, 8: ship, 9: truck.}
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F.3 VISUALIZATION FOR VISUAL QUESTION ANSWERING

In Figures 12-15, we visualize some image-question pairs, along with the human annotations (for
simplicity, we only show the different answers in the annotation set) and compare the predictions and
uncertainty estimations of different dropouts (only include Bernoulli dropout, Concrete dropout, and
contextual Bernoulli dropout) on the noisy data. We include 12 randomly selected image-question
pairs, and 6 most uncertain image-question pairs for each dropout as challenging samples (30 in
total). For each sample, we manually rank different methods by the general rule that accurate and
certain is the most preferred, followed by accurate and uncertain, inaccurate and uncertain, and then
inaccurate and certain. For each image-question pair, we rank three different dropouts based on their
answers and p-values, and highlight the best performing one, the second best, and the worst with
green, yellow, and red, respectively (tied ranks are allowed). As shown in the plots, overall contextual
dropout is more conservative on its wrong predictions and more certain on its correct predictions than
other methods for both randomly selected images and challenging images.

Figure 12: VQA visualization: 6 plots that Contextual Dropout is the most uncertain are presented.
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Figure 13: VQA visualization: 6 plots that Concrete Dropout is the most uncertain are presented.

Figure 14: VQA visualization: 6 plots that MC Dropout is the most uncertain are presented.
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Figure 15: VQA visualization: 12 randomly selected plots are presented.
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