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Abstract

In search settings, calibrating the scores dur-001
ing the ranking process to quantities such as002
click-through rates or relevance levels enhances003
a system’s usefulness and trustworthiness for004
downstream users. While previous research005
has improved this notion of calibration for low006
complexity learning-to-rank models, the larger007
data demands and parameter count specific to008
modern neural text rankers produce unique ob-009
stacles that hamper the efficacy of methods in-010
tended for the learning-to-rank setting.011

This paper proposes exploiting large language012
models (LLMs) to provide relevance and un-013
certainty signals for these neural text rankers to014
produce scale-calibrated scores through Monte015
Carlo sampling of natural language explana-016
tions (NLEs). Our approach transforms the017
neural ranking task from ranking textual query-018
document pairs to ranking corresponding syn-019
thesized NLEs. Comprehensive experiments on020
two popular document ranking datasets show021
that the NLE-based calibration approach con-022
sistently outperforms past calibration methods023
and LLM-based methods for ranking, calibra-024
tion, and query performance prediction tasks.025

1 Introduction026

Neural ranking models act as the core component027

of many search systems, often producing the final028

document scores. However, these scores are usu-029

ally treated as transient information and only the030

relative orderings are preserved to produce a rank-031

ing. While this approach results in well-performing032

systems with respect to common retrieval metrics,033

such as nDCG and MAP, it ignores vital informa-034

tion that could be used by end users and down-035

stream applications with real-world impacts, such036

as fair ranking (Zerveas et al., 2022), ranked list037

truncation (Bahri et al., 2020), and query perfor-038

mance prediction (Zhou and Croft, 2007; Shtok039

et al., 2012; Faggioli et al., 2023b).040

The common decision to discard the model 041

scores comes from the fact that almost all neu- 042

ral ranking models, even probabilistic approaches, 043

are trained to optimize relative orderings of doc- 044

uments as opposed to their absolute level of rel- 045

evance. Aligning these ranking scores to a fixed 046

scale is particularly difficult due to the nature of 047

each query requiring different amounts of infor- 048

mation to satisfy relevance, and it is much easier 049

to determine if a document is more relevant than 050

another rather than determining whether the infor- 051

mation is sufficient for complex queries (Khattab 052

and Zaharia, 2020; Santhanam et al., 2021; Zhuang 053

et al., 2023b; Laitz et al., 2024). 054

This concept, that output scores should have 055

meaningful real-world interpretations, is known 056

as calibration. Having this property ensures that a 057

model’s predictions reliably reflects the “true score.” 058

The most commonly recognized form of this is, 059

where, for example, a classification model with 060

a confidence of p = 0.47 should be correct 47% 061

of the time. Building upon this idea of grounded 062

scores, scale calibration extends this setting to val- 063

ues that do not have a direct probabilistic interpre- 064

tation, such as document dwell time (Smucker and 065

Clarke, 2012) and multiple levels of relevance (Yan 066

et al., 2022; Bai et al., 2023) which can exist be- 067

yond the [0,1] range. 068

Recent studies by Yan et al. (2022) and Bai et al. 069

(2023), have highlighted a conflict between the ob- 070

jectives of the scale calibration and the ranking 071

task, where optimizing for one may compromise 072

the other. They propose new training objectives 073

to improve scale calibration in learning-to-ranking 074

(LTR) models, which are low in parameter count 075

due to relying on these LTR datasets containing 076

solely preprocessed features like length and query- 077

term overlap as inputs. Applying these methods 078

to larger neural rankers over raw text remains a 079

challenge. As opposed to LTR datasets, text-based 080

collections with graded relevance judgements re- 081
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Query: “how to put together a 
scuba regulator”
—————————————
Document:  “The 1st stage's 
filter should be positioned 
against the valve's o-ring, and 
the 2nd stage hoses should be 
on the same side as the valve 
knob. …. Don't worry if the 1st 
stage rotates on the valve.”

Task: to assign a meaningful ranking score to the query-document pair.
0 means irrelevant and 3 means perfectly relevant. 

Ranker

What?

Ranker

0.23 

❌

2.13 

✅

LLM

Natural language 
Explanation (NLE)

“… it's worth noting that 
the document might not 
cover the entire assembly 
process, so while it is 
relevant, it might not be 
comprehensive.”

Figure 1: The key idea of this study: Neural ranking models struggle to produce meaningful ranking scores when
encountering complex query-document pairs. We investigate the integration of natural language explanations as
inputs to neural rankers, aiming to simplify the scale-calibrated ranking task for these rankers.

main limited and orders of magnitude smaller. Fur-082

ther, the drastically higher parameter count of neu-083

ral text rankers (Craswell et al., 2021; Nogueira084

et al., 2019b, 2020; Zhuang et al., 2023b; Ma et al.,085

2023a) make them even more data-intensive and086

reduces the efficacy of listwise loss functions due087

to hardware constraints and data sparsity.088

In light of these challenges, we propose an alter-089

native approach to improve scale calibration and090

score usability in these large text ranking models091

that does not rely on the loss functions of past092

works specific to the LTR settings. We instead093

ground the candidate query-document pairs via ex-094

ternal knowledge, i.e., specifically leveraging the095

recent advances in generative and autoregressive096

large language models (LLMs) and their emerging097

capabilities for general language tasks with mini-098

mal supervision (Wei et al., 2022a). By producing099

natural language explanations (NLEs) of relevance100

with this additional knowledge, the ranking model101

will be able to leverage this information and pro-102

duce better calibrated scores. As current LLMs103

have stability issues when generating text and can104

produce varying responses given the same input (Ye105

and Durrett, 2022; Turpin et al., 2023; Chen et al.,106

2023), we hypothesize that the confidence and sta-107

bility of a NLE generated from a zero-shot LLM108

explaining the relevance of a query-document pair109

correlates well with a calibrated ranking score. We110

validate this hypothesis by developing a method111

that aggregates the Monte Carlo (MC) generated112

NLEs of query-document relevance that serves as113

input into a traditional neural ranking model.114

This work makes the following three contribu- 115

tions: 116

1. Introduce MC-aggregate NLEs to improve cal- 117

ibration error and downstream usability of 118

document rankings. 119

2. Significantly enhance the scale calibration of 120

neural text rankers up to 25% and downstream 121

usability while maintaining or improving rank- 122

ing effectiveness. 123

3. Conduct a wide set of experiments on two 124

benchmark text ranking datasets to validate 125

performance and properties. 126

2 Related Work 127

Scale Calibration of LTR Models. Previous ap- 128

proaches to calibrating ranking models primar- 129

ily involved post-processing methods (Tagami 130

et al., 2013; Chaudhuri et al., 2017), where a 131

function maps the outputs for the frozen ranking 132

model (Platt, 2000; Zadrozny and Elkan, 2002). 133

Recent studies, such as those by Yan et al. (2022) 134

and Bai et al. (2023), have identified the issue that 135

commonly used pairwise and listwise ranking ob- 136

jectives theoretically lead to uncalibrated scores 137

and advocate for calibrated ranking objectives as 138

a solution. While effective for the LTR setting 139

that uses extracted features and small models, the 140

limitations imposed by large text ranking models 141

makes their effective application non-trivial. 142

Uncertainty Calibration of Neural Ranking 143

Models. To achieve a notion of calibration, Co- 144
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hen et al. (2021) and Penha and Hauff (2021) sug-145

gest leveraging a Bayesian interpretation of neural146

rankers to capture a distribution of possible scores147

for each document based on the internal uncertainty148

of the model. However, these approaches fail to149

ground the scores on any scale as such uncertainty150

information only makes sense when comparing151

documents, and is distinct from the type of cali-152

bration discussed in this paper.153

Natural Language Explanations. NLEs are an154

emerging point of research in NLP and IR. These155

explanations can be presented directly to users to156

elucidate the rationale behind system decisions,157

such as in recommendation systems (Li et al., 2020)158

and search results (Yu et al., 2022). More perti-159

nently to this study, NLEs have been employed as160

intermediaries to enhance task efficacy (Camburu161

et al., 2018; Wei et al., 2022b; Ferraretto et al.,162

2023). Ye and Durrett (2022) use the term overlap163

ratio between NLEs and their corresponding inputs164

as a feature to calibrate LLM predictions. Wadhwa165

et al. (2023) investigated explanation-based rescal-166

ing, converting coarse numeric scales into finer167

gradations. This technique leverages annotator-168

written NLEs and scoring rubrics to prompt LLMs169

in generating rescaled outputs. Our research di-170

verges by concentrating on NLEs autonomously171

generated by LLMs, which we leverage as inputs172

for neural rankers to facilitate scale calibration.173

Calibration of Large Language Models. Vari-174

ous recent studies have focused on eliciting well-175

calibrated confidence scores from LLM responses.176

Some works treat LLMs as black boxes and use177

various prompting-based techniques to generate178

confidence scores (Lin et al., 2022; Kadavath179

et al., 2022). Other works rely on training exter-180

nal models to associate confidence with LLM re-181

sponses (Kuhn et al., 2022; Kadavath et al., 2022;182

Mielke et al., 2022). Tian et al. (2023) conducted183

systematic evaluations over a wide range of meth-184

ods to obtain confidence scores from LLMs and dis-185

covered that LLM-verbalized probabilities are bet-186

ter calibrated than conditional probabilities across187

several black-box RLHF-tuned LLMs. This frame-188

work was later extended to include hybrid methods189

(i.e., a mix of self-consistency and verbalized con-190

fidence) and evaluated the calibration performance191

on five different types of datasets (Xiong et al.,192

2023). In Section 4.3, we introduce two methods193

that take advantage of the calibration capabilities194

of LLMs to elicit scale calibrated ranking scores.195

3 Methodology 196

In this section, we formalize the definition of scale 197

calibration of neural ranking models, following 198

which we introduce the proposed method of lever- 199

aging natural language explanations (NLEs) for 200

obtaining scale calibrated ranking scores. 201

3.1 Problem Statement and Motivation 202

In ad-hoc ranking, we define a scoring function 203

ϕ for a given query q and its n associated can- 204

didate documents {dq}n1 . This function, denoted 205

as ϕΦ(q, {dq}) produces a score for each query- 206

document pair under the given retrieval model pa- 207

rameterized by Φ. The ideal parameters of Φ are ob- 208

tained by optimizing an empirical loss on a query- 209

grouped training dataset D = {({dq}, {yq}) | q ∈ 210

Q}. Here, Q represents the set of training queries, 211

and {yq} is the corresponding set of labels of doc- 212

uments {dq}. The empirical loss is defined as: 213

L(Φ) = 1

|Q|
∑
q∈Q

lrank({yq}, ϕΦ(q, {dq})) (1) 214

where lrank is a ranking loss function for an indi- 215

vidual query. In the case of neural ranking, the 216

scoring function ϕ is defined by a backbone neural 217

language model. For instance, using a pretrained 218

BERT checkpoint as Φ, concatenating query and 219

each candidate document with a [SEP] token in be- 220

tween as the inputs, and leveraging cross entropy 221

loss or pairwise cross entropy loss as lrank leads to 222

the development of the widely known monoBERT 223

or duoBERT models (Nogueira et al., 2019a), re- 224

spectively. However, it has been observed that pop- 225

ular pairwise and listwise ranking losses are not 226

scale calibrated due to their translation-invariant 227

property (Yan et al., 2022)1; adding a constant to 228

all outputs of ϕ does not alter the loss value. 229

Although calibrated ranking losses works well 230

for LTR models (Yan et al., 2022; Bai et al., 2023), 231

the application of these approaches to neural text 232

rankers is non-trivial. In LTR datasets with graded 233

relevance judgements (Chapelle and Chang, 2011; 234

Qin and Liu, 2013; Dato et al., 2017), |Q| is orders 235

of magnitude larger than that of text based collec- 236

tions, which often only have less than 100 queries. 237

Further, |Φ| is much larger in neural text ranking 238

models, limiting the use of listwise loss functions 239

1Although the cross entropy loss used in monoBERT is
scale-calibrated, but it assumes only binary labels; which is
something not observed in real-world datasets (e.g., multiple
levels of relevance (Craswell et al., 2020; Mao et al., 2019)).
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due to GPU VRAM constraints. Addressing the240

scale calibration problem in neural rankers there-241

fore requires a multifaceted approach that extends242

beyond the mere application of calibrated ranking243

loss.244

3.2 Scale Calibration via Natural Language245

Explanations246

We propose a novel two-step approach to obtain247

a scale-calibrated numerical score from the tex-248

tual query and document: map the query-document249

to a NLE and then score this NLE using a stan-250

dard neural ranking model. This overall strategy251

is grounded in the recent success of LLMs to es-252

tablish the relevance of query-document pairs (Fer-253

raretto et al., 2023) and the demonstrated efficacy254

of LLM-generated explanations in various reason-255

ing tasks (Wei et al., 2022b). We use an LLM,256

denoted as g(·), to generate NLEs {eq} for query-257

document pairs {dq}, and then leverage a neural258

ranker over only the NLEs to predict relevance259

scores. This process can be formally represented260

as a decomposition of ϕ into:261

ϕΦ(q, {dq}) = fΘ(gΨ(q, {dq})) (2)262

= fΘ({eq}) (3)263

where Ψ represents the parameters of the LLM, and264

Θ encapsulates the parameters of the neural ranker.265

The neural ranker f(·) in this setup is adapted to266

take the NLEs of the original inputs as its new267

inputs. Note that when using Eq. 1 to optimize268

parameters Φ = {Θ,Ψ}, we can optimize the pa-269

rameters of the LLM and the neural ranker. While270

it is possible to perform full or partial fine-tuning271

on the LLM parameters Ψ, for simplicity and con-272

sidering the limited amount of training data, we273

choose to freeze Ψ and only optimize parameters274

of the neural ranker Θ.275

3.3 Acquiring NLEs via LLM Prompting276

Given the impact of prompting, we investigate two277

distinct methods for acquiring NLEs with varying278

characteristics.279

3.3.1 Literal Explanation280

We present the query-document pair to the LLM281

and ask for both a relevance prediction (either “rel-282

evant” or “non-relevant”) and an accompanying283

explanation. The exact prompt we use to generate284

such literal explanations is listed in Appendix A.285

A notable limitation of this approach is its 286

susceptibility to inaccuracies stemming from the 287

LLM’s prediction errors. To mitigate this, we em- 288

ploy a strategy involving Monte Carlo (MC) sam- 289

pling of multiple NLEs for the same input and then 290

forming a single meta NLE via an aggregation func- 291

tion AGGR (detailed in Section 3.4): 292

eq = AGGR({yi ∼ gΨ(y|q, dq)}) (4) 293

which aims to diminish the influence of erroneous 294

predictions in the preference of the most likely 295

generation. 296

3.3.2 Conditional Explanation 297

To address instances where the LLM persistently 298

errs in judging the relevance of an input, we also 299

explore a different explanation generation strat- 300

egy termed conditional explanation. Motivated 301

by the work of sampling multiple reasoning paths 302

to enhance the self-consistency capabilities of 303

LLMs (Wang et al., 2023) , this method involves 304

prompting the LLM to generate rationales support- 305

ing both the relevance and non-relevance of a given 306

query-document pair. The exact prompt we use 307

to generate conditional explanations is also listed 308

in Appendix A. Both conditional explanations are 309

then used by the neural ranker f(·) to produce a 310

scale calibrated ranking score (Eq. 3). 311

3.4 Aggregating Multiple NLEs 312

As previously discussed, relying solely on the most 313

probable output generated by the LLM, particularly 314

in the literal explanation approach, could result 315

in incorrect and overconfident explanations (Ye 316

and Durrett, 2022). To mitigate this issue, we 317

propose sampling multiple generations from the 318

LLMs. This technique has the advantage to in- 319

troduce additional information, which may either 320

support the initial judgment with varied reasoning 321

or present contrasting viewpoints. We consider 322

both outcomes to be advantageous: in the former 323

scenario, it leads to a more robust and multi-faceted 324

argument supporting a specific prediction; in the 325

latter scenario, the generation of conflicting infor- 326

mation by the LLM partially reveals its uncertainty 327

in comprehending and assessing the relevance of 328

the input query-document pair. We hypothesize 329

that this uncertainty is indicative of predicting a 330

more calibrated ranking score. 331

Combining the information contained in the col- 332

lection of Monte Carlo sampled NLEs produces a 333
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Algorithm 1: Novelty-based Aggregation

1 Inputs: x: input prompt; E : sentence
splitter; S & λ: text similarity function &
threshold; kl & ks: sampling budgets;
gΨ(y|x): conditional output distribution
defined by LLM.

2 Output: Meta NLE e.
3 Function AGGR(x, E ,S, λ, kl, ks, gΨ):
4 e← ∅
5 for i ∈ 1, 2, · · · , kl do
6 yi ← y ∼ gΨ(y|x)
7 for s ∈ E(yi) do
8 if e ̸= ∅ and

max({S(s, ej); ej ∈ e}) > λ
then

9 continue
10 else
11 e← e ∪ s
12 if |e| ≥ ks then
13 return e

14 return e

meta NLE. This meta NLE then serves as a more334

comprehensive and nuanced representation of the335

query-document relationship.336

To create the meta NLE, we adopt an iterative337

approach (Algorithm 1) to continually adds novel338

information. This process begins with an initially339

empty set of sentences (Line 4). If a sentence from340

the newly generated explanation (Line 6-7) intro-341

duces novel information – as determined by its342

maximum text similarity to the existing sentences343

in the set being at or below a predefined threshold344

– then this sentence is added to the set (Line 11).345

This sampling of new explanations continues until346

we either reach the predefined maximum number347

of sampling iterations (Line 5) or fulfill the limit348

for the number of sentences in the meta NLE set349

(Line 12). This approach is able to latently encode350

the uncertainty of the LLM, as a high variance set351

of sampled NLEs will inevitably produce a longer352

meta NLE.353

4 Experiments354

In this section, we assess our proposed methods355

using two real-world, extensively used document356

ranking datasets to evaluate the following research357

questions (RQ):358

RQ1: How do LLM-generated natural language ex-359

planations impact the calibration and ranking360

Metric TREC NTCIR
# Q (train/val/test) 97/53/67 48/16/16
Avg. # docs per query 282.7 345.3
Levels of relevance 4 5
Label dist. (low to high) 58/22/14/6 48/23/17/8/3
Avg. query length 8.0 22.0
Avg. doc. length 70.9 493.2

Table 1: Statistics of the TREC and NTCIR datasets.

performance of neural rankers? 361

RQ2: Is there a consistent improvement across dif- 362

ferent training objectives when using these 363

explanations? 364

RQ3: Does the MC sampled aggregate-NLEs from 365

the LLM yield empirical improvements? 366

RQ4: Does the proposed methodology produce 367

meaningful scores in a real-world setting? 368

4.1 Data 369

We employ two widely acknowledged datasets in 370

information retrieval research: the TREC Deep 371

Learning Track (TREC) (Craswell et al., 2021), 372

covering the period from 2019 to 2022, and the 373

NTCIR-14 WWW-2 (NTCIR) (Mao et al., 2019). 374

The choice of these datasets is motivated by their 375

comprehensive multi-level relevance judgments 376

provided by human annotators and the ample vol- 377

ume of labeled documents for each query. Specifi- 378

cally, TREC uses passages from the MS MARCO 379

collection (Bajaj et al., 2018), while NTCIR em- 380

ploys web pages from ClueWeb12 Category-B.2 381

For TREC, we partition the queries from the years 382

2019 and 2020 for training, use the 2021 queries 383

for validation, and the 2022 queries for testing. For 384

NTCIR, the queries are divided into training, val- 385

idation, and testing sets in a 6:2:2 ratio. Table 1 386

shows provides the statistics for these collections. 387

4.2 Metrics 388

Our goal is to devise methods that not only enhance 389

the calibration of neural rankers but also maintain 390

their ranking effectiveness. Accordingly, we evalu- 391

ate both calibration and ranking aspects. 392

Ranking Metrics: We employ the normalized dis- 393

counted cumulative gain (nDCG), which accounts 394

for multiple levels of relevance judgment. We re- 395

port nDCG and nDCG@10. 396

2https://lemurproject.org/clueweb12/
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Calibration Metrics: For calibration effectiveness,397

mean square error (MSE), as well as the expected398

calibration error (ECE) (Guo et al., 2017), a metric399

initially developed for classification calibration, are400

commonly used in ranking literature (Yan et al.,401

2022; Bai et al., 2023; Penha and Hauff, 2021).402

ECE measures the discrepancy between a model’s403

predictions and gold labels in a binning approach404

via405

ECE =
M∑

m=1

|Bm|
n
|acc(Bm)− conf(Bm)| ,

(5)406

where M is the number of bins B. However, given407

the highly skewed and unbalanced label distribu-408

tion in our test set, as indicated in Table 1, MSE and409

ECE are biased. Opting for scores that are near the410

most frequent label results in lower errors while411

having no real world usability. This bias under-412

mines these metrics’ effectiveness in the ranking413

context, and is further discussed in Appendix C. To414

achieve a metric that more closely aligns with real415

world usability for the search task, we propose the416

adoption of a class-balanced version of ECE, called417

CB-ECE, which allocates equal significance to all418

candidate scale values. The CB-ECE is computed419

by initially calculating the ECE for each individual420

class, and subsequently taking the mean,421

CB-ECE =
1

C

C∑
c=1

ECEc, (6)422

with ECEc as the error for each class, c.423

Query Performance Prediction (QPP): As the424

motivation of this work comes from the desire of425

usable scores, we also evaluate the methods using426

the QPP task. We evaluate the effectiveness of each427

approach by using Pearson’s ρ and Kendall’s τ be-428

tween the predicted and actual query performance.429

4.3 Baselines430

Due to the scarcity of relevant work in scale cali-431

brated search, we have developed several methods432

to establish meaningful baselines in addition to the433

past relevant work of Yan et al. (2022). For consis-434

tency, we use the same neural ranking architecture,435

when applicable, for all approaches. Additional436

details are in Appendix B.437

No calibration (NC). We use monoBERT438

(Nogueira and Cho, 2019), a BERT-based ranker439

that has been previously finetuned with the MS440

MARCO passage ranking training set.441

Post-hoc calibration (PC). We apply Platt scal- 442

ing (Platt, 2000) adapted for regression calibration 443

to the uncalibrated monoBERT. It is important to 444

note that the parameters of the ranker remain fixed 445

under this approach. 446

Full calibration (FC). We use the training data 447

to finetune a BERT-based ranker using calibrated 448

softmax loss (Yan et al., 2022), which represents 449

a straight adoption of the approach from LTR to 450

neural ranking. As discussed, due to substantially 451

larger size of the neural ranker and reduced training 452

data, we are forced to only use a small fraction of 453

negatives for each query compared to under the 454

LTR setting. 455

LLM prompting with rubrics (PR). Inspired by 456

studies on using LLMs for rendering relevance 457

judgments (Zhuang et al., 2023a; Thomas et al., 458

2023; Faggioli et al., 2023a) and rescaling (Wad- 459

hwa et al., 2023), we explore leveraging the scoring 460

rubrics as a contextual guide for LLM prompting. 461

We present each query-document pair, along with 462

the rubrics from each dataset that were initially 463

used to instruct human annotators, to the LLM and 464

take the scalar predictions. 465

Post-hoc calibrating LLM predictions (PL). 466

Based on prior studies that LLM confidence scores 467

are well-calibrated (Kadavath et al., 2022; Tian 468

et al., 2023), we use the LLM as a zero-shot binary 469

classifier and take the average predictions over 20 470

samples as the confidence score. We then use Platt 471

scaling (Platt, 2000) to map these scores to the 472

target scale. 473

Full calibration with NLEs (NLE). We first ac- 474

quire meta NLEs for candidate query-document 475

pairs and then fine-tune a BERT model3 using the 476

NLEs as inputs with the calibrated softmax loss 477

with the same restrictions as FC. This forms a di- 478

rect comparison with FC, as they use the same ini- 479

tialization weights, labels and training objectives, 480

but different inputs. 481

4.4 Downstream Performance: QPP 482

The ultimate goal of a calibrated model is in- 483

terpretable scores by end users and algorithms. 484

Therefore we evaluate the scores produced from 485

each approach using the query performance pre- 486

diction (QPP) task. The goal of QPP, as discussed 487

3We experimented with using monoBERT to initialize this
ranker but found it to perform worse than general-purpose
BERT weights.
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Collection TREC NTCIR

Metric
Ranking Calibration Ranking Calibration

nDCG(↑) nDCG@10(↑) CB-ECE(↓) ECE(↓) MSE(↓) nDCG(↑) nDCG@10(↑) CB-ECE(↓) ECE(↓) MSE(↓)

NC 0.799 0.494 1.205 0.320 0.773 0.735 0.337 1.757 0.799 1.824

PC 0.799 0.494 1.141 0.125 0.684 0.735 0.337 1.624 0.457 1.462

FC (monoBERT) 0.776 0.422 1.093 0.221 0.721 0.696 0.268 1.843 0.709 1.874
FC (BERT) 0.738 0.327 1.253 0.266 0.785 0.727 0.285 1.756 0.546 1.416

PR 0.786 0.457 1.000 1.246 2.137 0.728 0.328 1.294 1.194 2.773

PL 0.790 0.473 1.165 0.145 0.673 0.736 0.364 1.677 0.472 1.540

NLE (literal) 0.815† 0.529† 0.996 0.067† 0.602† 0.742 0.340 1.534 0.355† 1.330†
NLE (conditional) 0.822† 0.534† 0.862† 0.428 0.832 0.720 0.322 1.405 0.257† 1.290†

Table 2: Ranking and scale calibration performance on TREC and NTCIR. Note that lower is better with calibration
metrics (CB-ECE, ECE and MSE). Statistically significant improvements (t-tests with Bonferroni correction at the
95% confidence level) over all baselines are marked with †.
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Figure 2: Ranking and scale calibration performance on TREC of full calibration of BERT, taking query + document
inputs (FC BERT) and our proposed explanations, using four different optimization objectives. NLE-based
approaches consistently yield better ranking (left) and calibration (right) performance.

by Arabzadeh et al. (2024), is to estimate the per-488

formance of individual queries such that hard-to-489

satisfy queries can be better addressed by search490

systems. We use two popular post-hoc QPP meth-491

ods—Weighted Information Gain (WIG) (Zhou492

and Croft, 2007) and Normalized Query Com-493

mitment (NQC) (Shtok et al., 2012)—to explore494

whether the proposed NLE based approaches yield495

more usable scores. Evaluations are conducted on496

the test set of TREC, using the top-10 documents497

to calculate WIG and NQC.498

4.5 Reproducibility499

We leverage the open-source LlaMA2-13B-Chat500

model (Touvron et al., 2023) as the LLM and the501

BERT model (Devlin et al., 2019) as the neural502

ranker. Implementation details are described in Ap-503

pendix D. The anonymized code repository can be 504

found at https://anonymous.4open.science/ 505

r/LLM-NLE-Ranking. 506

4.6 Results and Analysis 507

RQ1: How do LLM-generated natural language 508

explanations impact the calibration and rank- 509

ing performance of neural rankers? We find 510

in Table 2 that NLE-based methods yield statis- 511

tically significant improvements for both aspects. 512

For scale calibration, NLEs exhibit lower CB-ECE 513

compared to both post-hoc calibration (PC) and 514

full calibration (FC) across both datasets, with 515

literal NLEs performing better on TREC while 516

conditional NLEs perform slightly better on NT- 517

CIR. Regarding ranking, the proposed approach 518

significantly surpasses NC and FC baselines, which 519
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shares the same fine-tuning data and initial weights,520

with improvements of up to 11.4% in nDCG and521

63.3% in nDCG@10 in the TREC dataset. This522

indicates that LLM-generated NLEs provide valu-523

able insights for document differentiation beyond524

the scope of calibration.525

RQ2: Is there a consistent improvement across526

different training objectives when using these ex-527

planations? Yan et al. (2022) and Bai et al. (2023)528

advocate for addressing the scale calibration of529

LTR models through calibrated loss functions. As530

a significant motivator for this work are the chal-531

lenges of applying LTR approaches to larger text532

models, we investigate the efficacy of naively ap-533

plying these objectives to the neural ranking task.534

To this end, we experiment with four fine-tuning535

objectives commonly used in this setting: MSE536

as a pointwise regression loss, uncalibrated list-537

wise softmax (Softmax), a multi-objective com-538

bination of MSE and Softmax (MultiObj) from539

Bai et al. (2023), and the calibrated listwise soft-540

max (Calibrated Softmax) from Yan et al. (2022).541

The FC baseline is also trained with each of these542

objectives. As seen in Fig. 2, the NLE-based ap-543

proaches consistently surpass the performance of544

neural models that process raw text queries and545

documents across all four optimization methods.546

Further, while these objectives do produce differ-547

ent results, the majority of the improved calibration548

performance comes from the NLEs themselves and549

is relatively agnostic of the loss function.550

RQ3: Does the MC sampled aggregate-NLEs551

from the LLM yield empirical improvements?552

To further the understanding of the dynamics be-553

tween LLM-generated NLEs and their impact on554

scale calibration and ranking, we perform addi-555

tional experiments on the TREC dataset. We evalu-556

ate the decision to use an aggregate NLE rather than557

the most probable NLE (discussed in Section 3.4)558

in Table 3. We include an oracle baseline, where559

we repeatedly sample a NLE until we achieve one560

that aligns with the true relevance label. If this is561

not achieved within 20 samples, we default to the562

most confident NLE even if it’s incorrect. It can be563

observed from the results that, across both literal564

and conditional NLE settings, using the proposed565

aggregate MC method achieves better performance566

both w.r.t. ranking as well as calibration.567

RQ4: Does the proposed methodology produce568

meaningful scores in a real-world setting? The569

results from using ranking scores from different570

Explanation Selection nDCG(↑) CB-ECE(↓)

Literal
Most Probable 0.789 1.093
Aggregate MC 0.815† 0.996†
Oracle 0.883 0.801

Conditional
Most Probable 0.797 0.895
Aggregate MC 0.822† 0.862†

Table 3: The effect of different types of natural language
explanations and selection strategies on the ranking and
scale calibration performance of neural rankers.

WIG NQC

Metric P-ρ K-τ P-ρ K-τ

NC 0.176 0.091 0.003 -0.083
PC 0.198 0.113 -0.173 -0.123
FC -0.001 -0.012 -0.385 -0.242
PR 0.052 0.003 -0.002 -0.025
PL 0.019 0.057 -0.262 -0.101

NLE (lit.) 0.063 0.104 0.075 0.048
NLE (con.) 0.268 0.165 0.183 0.146

Table 4: The effect of scale calibration on post-hoc QPP.

calibration approaches for QPP are reported in Ta- 571

ble 4, and we are able to definitively show that 572

the scores produced via NLEs result in substan- 573

tially more usable scores. Interestingly, directly 574

adapting the calibrated ranking loss of Yan et al. 575

(2022) from LTR to neural ranking (FC) leads to 576

much worse QPP performance compared to no cal- 577

ibration (NC). PC, PR, and PL, though improving 578

calibration metrics, do not consistently improve 579

QPP either. Comparing between the literal and 580

conditional NLE methods, there is a large gap in 581

performance suggesting that including the two ex- 582

treme perspectives of the conditional NLEs play a 583

critical role. We highlight that while MSE, ECE 584

and CB-ECE are often used in past works for rank- 585

ing calibration, it leaves out critical information 586

for the ranking task. We hope to investigate more 587

effective metrics in future work. 588

5 Conclusions 589

This study tackled the challenge of scale calibra- 590

tion for neural rankers. Our method leverages 591

zero-shot LLMs’ inherent understanding of textual 592

data through NLEs to enhance scale calibration 593

while maintaining or improving ranking perfor- 594

mance. We showed that our approach surpasses 595

established baselines in ranking and calibration 596

metrics, demonstrates consistency across various 597

training objectives, and is effective for downstream 598

post-hoc QPP applications. 599
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6 Limitations600

This work prototypes the idea of leveraging LLM-601

generated NLEs of query-document pairs to im-602

prove the scale calibration of neural ranking mod-603

els. Like many recent works that incorporate LLMs604

as an integral part of the document ranking pro-605

cess (Ma et al., 2023b; Qin et al., 2023; Zhuang606

et al., 2024), our approach is not yet efficient607

enough to be directly applied to an online rank-608

ing system with high latency requirements. Having609

validated the feasibility of NLEs for calibration,610

future work could incorporate techniques such as611

distillation to improve run-time efficiency.612

Another limitation stems from the unreliability613

and inconsistency of NLEs from LLMs (Ye and614

Durrett, 2022). Although we paradoxically lever-615

age the inconsistency of NLEs to further improve616

the scale calibration of neural ranking models, the617

potential effects of addressing unreliability or in-618

consistency on the calibration task remain unclear.619

Moreover, while we aim for the scale-calibrated620

ranking scores to be useful for explainability pur-621

poses as they correspond to certain criteria, the622

NLEs themselves are not meant to be, nor should623

they be directly displayed to users for interpretabil-624

ity purposes in the current form.625

A notable performance disparity is observed be-626

tween our current aggregate MC approach and the627

oracle explanation setting in Table 3. This gap628

highlights a significant potential for improvement629

in NLE-based neural rankers contingent upon bet-630

ter alignment of LLM judgments with human an-631

notators on a binary scale. Although we experi-632

mented with various prompts for generating NLEs633

in some pilot studies, this research is designed to634

explore the feasibility of LLM-generated NLEs635

for a specific important task. Consequently, vari-636

ous directions that could potentially improve the637

LLMs in terms of accuracy of predictions and qual-638

ity of explanations—including but not limited to639

few-shot prompting, prompt tuning and optimiza-640

tion, LLM fine-tuning, and leveraging better (even641

closed-source) LLMs—are beyond the interest and642

scope of this study.643

7 Potential Risks644

Although calibrated ranking scores can be lever-645

aged in certain ways to mitigate bias for fairer646

document ranking (Heuss et al., 2023), the use of647

NLEs acts as an information transformation, filter-648

ing parts of the candidate document while adding649

the LLM’s own biases. Certain topics, demograph- 650

ics, and perspectives could be impacted and conse- 651

quently change the proposed document rankings. 652

While traditional ad-hoc web search is transitioning 653

to retrieval augmented generation, the consequence 654

remains the same. These systems act as informa- 655

tion brokers for the general public, and can easily 656

introduce or reinforce biases into the population 657

based on the retrieved information. With this in 658

mind, we elected to use an off-the-shelf text rank- 659

ing paradigm as the final scorer. This facilitates the 660

drop in use of the many techniques already devel- 661

oped to improve fairness in ranking (Zehlike et al., 662

2023a,b). 663
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A Prompts Used in Experiments1031

The format of the prompt4 we employ for literal1032

explanation is as follows:1033

“For the following query and document, judge1034

whether they are relevant or non-relevant, and pro-1035

vide an explanation. Output ‘Relevant’ or ‘Nonrel-1036

evant’. Do not repeat the content of the query or1037

the document. Query: {query} Document: {docu-1038

ment} Output:”1039

This method parallels the prompt used by Fer-1040

raretto et al. (2023) to generate explanations for1041

query-document relevance for training generative1042

rankers. However, our approach differs due to1043

its simplicity and broader generalizability across1044

datasets, utilizing zero-shot prompting in contrast1045

4We experimented with different prompts, but stick to this
one for clear performance gains and ease of formatting.

to their use of a fixed set of 7 examples as demon- 1046

strations for few-shot prompting. 1047

The prompt we use for the conditional explana- 1048

tion approach is as follows: 1049

“For the following query and document, explain 1050

why they are {relevant/nonrelevant}. Query: 1051

{query} Document: {document} Output:” 1052

B Details of Competing Methods 1053

Here we provide more details and explanations for 1054

competing methods evaluated in the experiments. 1055

No calibration (NC). Our approach here employs 1056

a BERT-based ranker that has been previously fine- 1057

tuned using the MS MARCO dataset (Bajaj et al., 1058

2018). Despite its strong performance in ranking 1059

tasks on TREC (in-domain) and NTCIR (out-of- 1060

domain), this ranker lacks scale calibration. This 1061

is attributed to the binary relevance labels in MS 1062

MARCO, which differ from the multi-level rele- 1063

vance judgments used in TREC and NTCIR. 1064

Post-hoc calibration (PC). In this method, we 1065

adjust the output scores of the finetuned rankers 1066

using a learnable function. Following the approach 1067

of Yan et al. (2022), we apply Platt scaling (Platt, 1068

2000), adapted for regression calibration. Given the 1069

output ranking scores of the model s, the calibrated 1070

scores are computed as s′ = exp (ws+ b)/2, 1071

where w and b are learnable parameters. It is impor- 1072

tant to note that under this method, the parameters 1073

of the finetuned rankers remain fixed; only the pa- 1074

rameters w and b are optimized using the scale 1075

calibration data. This approach maintains the orig- 1076

inal ranking performance of the ranker, provided 1077

the final value of w is positive. 1078

Full calibration (FC). This strategy involves 1079

directly fine-tuning a BERT-based ranker with 1080

“query-[SEP]-document” style inputs on scale cali- 1081

bration data. Utilizing the monoBERT checkpoint 1082

allows for a direct comparison with PC methods - 1083

they use the same initial checkpoint and training 1084

data, but optimize different parameters. Starting 1085

with a general-purpose BERT checkpoint sets up a 1086

direct comparison with our NLE-based calibration 1087

approaches - they share the same initial weights 1088

and training data, but the format of their input data 1089

differs significantly. 1090

LLM prompting with rubrics (PR). The underly- 1091

ing concept is that the LLM should be able to com- 1092

prehend the given rubrics and automatically pro- 1093

duced calibrated scores that align with the rubrics, 1094
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thereby removing the need for any post-hoc cali-1095

bration steps. It is important to note that in this1096

method, the LLM itself essentially functions as the1097

ranker, without the integration of an additional neu-1098

ral ranking model. For the TREC dataset, we adopt1099

the prompt method used by Thomas et al. (2023).1100

Conversely, for NTCIR, we adapt the approach1101

to incorporate the specific rubric outlined in the1102

task description of NTCIR-14 WWW-2 (Mao et al.,1103

2019). It is noteworthy that the NTCIR rubric is1104

defined based on scores provided by two annotators1105

(e.g., “relevance=3: One annotator rated as highly1106

relevant, one as relevant”), focusing on the quantita-1107

tive synthesis of annotations. In contrast, the TREC1108

rubric is more qualitatively oriented, emphasizing1109

the explanation of query-document relationships.1110

Post-hoc calibrating LLM predictions (PL). In1111

this method, we use the LLM as a zero-shot classi-1112

fier to determine whether a given query and docu-1113

ment pair is relevant (denoted as 1) or not (denoted1114

as 0). To mitigate the bias inherent in the most prob-1115

able generation and to minimize instances of tied1116

scores, which complicate the derivation of rank-1117

ings, we sample the LLM’s responses 20 times1118

for each input and calculate the average of these1119

scores. Subsequently, we employ Platt scaling to1120

these averaged scores and refine the parameters us-1121

ing the training set. The prompt we use is similar to1122

that of Zhuang et al. (2023a), with one significant1123

modification: we instruct the LLM to output either1124

“relevant” or “nonrelevant” in lieu of “yes” or “no”.1125

This alteration stems from our observation that the1126

LLM exhibits a strong prior towards generating1127

affirmative responses such as “Yes, I can help you1128

with this request...”, which could potentially skew1129

the predictions. By specifying the terms “relevant”1130

and “nonrelevant”, we aim to reduce this bias and1131

achieve more accurate relevance predictions.1132

Full calibration with NLEs (NLE). Building upon1133

our methods for generating and aggregating natural1134

language explanations (NLEs) for query-document1135

pairs, as discussed in Section 3, we proceed to fine-1136

tune a BERT model (not finetuned for retrieval)1137

to process meta NLEs and yield scale-calibrated1138

ranking scores. In the scenario of the conditional1139

explanation approach (Section 3.3.2), where each1140

input is represented with two meta NLEs, one for1141

relevance and one for non-relevance, our method1142

involves an additional processing step. Specifi-1143

cally, we concatenate the [CLS] hidden states ob-1144

tained from encoding both NLEs. This concate-1145

nated representation then feeds into an additional 1146

linear layer, which is responsible for transforming 1147

these combined hidden states into a final ranking 1148

score. This approach allows the model to integrate 1149

insights from both relevance perspectives. 1150

C Class-balanced ECE and the 1151

limitations of ECE 1152

We discuss in Section 4.2 the limitations inherent 1153

in using the expected calibration error (ECE) (Guo 1154

et al., 2017) for scale calibration data, especially 1155

when faced with imbalanced label distributions. To 1156

counter this challenge, we propose a straightfor- 1157

ward modification: the adoption of class-balanced 1158

ECE (CB-ECE). This section uses model outputs 1159

on TREC as illustrative examples to provide de- 1160

tailed insights and empirical support for our ap- 1161

proach. 1162
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Figure 3: Reliability diagrams for two models on TREC:
The left diagram shows a model with ranking scores
densely concentrated on the lower part of the scale,
which exhibits better ECE performance due to ECE’s
failure to account for prediction coverage across the
target scale. On the right, the CB-ECE penalizes this
undesirable behavior, indicating that the model provid-
ing better coverage across the scale is more effectively
calibrated.

We employ reliability diagrams (Murphy and 1163

Winkler, 1977), a widely-used technique in calibra- 1164

tion, to visualize calibration performance. In ECE 1165

calculations, samples are sorted by their predicted 1166

values and divided into several buckets. The cali- 1167

bration error for each bucket is determined by the 1168

absolute difference between the mean labels and 1169

mean predictions of samples within that bucket, 1170

further weighted by the number of samples falling 1171

in the bucket. Reliability diagrams concretely vi- 1172

sualize this concept, with each bucket represented 1173

by a bar. The mean predictions are indicated on 1174

the x-axis, while the mean labels (i.e., scale) are 1175

14



represented by the height of the bars. In an ideal1176

scenario, a perfectly calibrated model would yield1177

a reliability diagram aligning with the diagonal1178

line, indicating that mean predictions correspond1179

accurately to the labels for every bucket. However,1180

ECE overlooks a critical aspect of scale calibra-1181

tion: coverage. This refers to the model’s ability1182

to adequately span the target scale range. Figure 31183

illustrates this point with two diagrams. The left di-1184

agram shows a model whose outputs are narrowly1185

concentrated around lower values on TREC’s 0-31186

scale. The right diagram, conversely, exhibits out-1187

puts covering a broader range on the target scale,1188

also closely aligned with the diagonal line. Rely-1189

ing solely on ECE values would misleadingly sug-1190

gest that the first model is better calibrated (ECE:1191

0.123 < 0.134; lower is better). However, we argue1192

that a model with predictions confined to a limited1193

portion of the desired scale, particularly skewed1194

towards certain values popular in the evaluation1195

set, cannot be considered well-calibrated. CB-ECE1196

offers a solution by re-adjusting the significance of1197

each target scale. In the example shown in Fig. 3,1198

CB-ECE more accurately indicates that the second1199

model exhibits better scale calibration (CB-ECE:1200

1.137 > 1.084; lower is better), which is more in1201

line with our intuitive understanding of model cali-1202

bration.1203

D Implementation Details1204

For all experiments that involve LLM, we em-1205

ploy the LlaMA2-13B-Chat model (Touvron et al.,1206

2023), hosted locally through vLLM5 and using1207

quantized weights6, operated on an A100 GPU.1208

In this study, our neural rankers are based on1209

BERT (Devlin et al., 2019). We initialize these1210

rankers with weights fine-tuned on MS MARCO,1211

referred to as monoBERT7 in Table 2, or with1212

weights without retrieval-oriented fine-tuning, sim-1213

ply denoted as BERT8. For fine-tuning on scale1214

calibration data, we use the AdamW optimizer1215

(Loshchilov and Hutter, 2019) with a learning1216

rate of 3e−6 and effective batch size of 64 query-1217

document pairs or meta NLEs.9 The training is1218

5https://github.com/vllm-project/vllm
6https://huggingface.co/TheBloke/

Llama-2-13B-chat-AWQ
7https://huggingface.co/veneres/

monobert-msmarco
8https://huggingface.co/bert-base-uncased
9Note that due to larger model size and more complex

input representations, the batch size for fine-tuning neural
ranking models is much smaller that training LTR models.

conducted over a maximum of 10 epochs, selecting 1219

the best model based on validation set loss. To 1220

mitigate the impact of randomness due to the lim- 1221

ited dataset size in terms of query numbers, each 1222

experiment is run with 5 different random seeds. 1223

The metrics reported are averaged across these five 1224

runs and the statistical significance is determined 1225

using t-tests with Bonferroni correction (Weisstein) 1226

at the 95% confidence level. 1227

In relation to the components and hyper- 1228

parameters used in Algorithm 1, following Quach 1229

et al. (2023), we employ ROUGE-L (Lin, 2004) 1230

as the text similarity function S, set the similarity 1231

threshold λ to 0.35, the sampling budget kl (maxi- 1232

mum number of responses) to 20 and ks (maximum 1233

number of sentences in the meta NLE) to 30. 1234

We use PyGaggle10 for acquiring the ranking 1235

scores from pre-trained neural ranking models, 1236

which are then used for the post-hoc calibration 1237

baseline. We use WIG and NQC’s implementations 1238

in QPP4CS (Meng et al., 2023)11 for the down- 1239

stream evaluation of QPP. 1240

E Case Study 1241

We randomly show a pair of query and document 1242

from TREC, as well as LLM-generated explana- 1243

tions for them in order to predict calibrated ranking 1244

scores. The example is shown in Table 5. The supe- 1245

rior effectiveness of our methods in assessing the 1246

relevance of the query “example of what a family 1247

advocate does” to a specific document can be at- 1248

tributed to several aspects. Firstly, the use of NLEs 1249

generated by an LLM provides a deeper contextual 1250

understanding. For instance, the first approach’s 1251

explanation elucidates the direct relevance by high- 1252

lighting how the document exemplifies the role of 1253

a family advocate, particularly in advocating for a 1254

child’s best interests. This detailed breakdown goes 1255

beyond mere textual similarity, offering a richer 1256

interpretation of the document’s relevance to the 1257

query. Furthermore, our second approach’s dual 1258

perspective in explaining both relevance and non- 1259

relevance brings a comprehensive understanding. 1260

It captures the essence of the document’s role de- 1261

scription and contrasts it with the lack of specific 1262

examples, thereby offering a deeper analysis of 1263

the document-query relationship. By feeding these 1264

elaborate explanations into BERT, our methods ef- 1265

fectively leverage more informative data, allowing 1266

10https://github.com/castorini/pygaggle
11https://github.com/ChuanMeng/QPP4CS
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Query: “Example of what a family advocate does”
Document: “This person advocates for the best interest of the child, and is tasked with
investigating the family situation and advising the court what custody situation would be in
the best interests of the child.”
Label: 2 (Highly relevant: The passage has some answer for the query, but the answer may
be a bit unclear, or hidden amongst extraneous information).

Approach Explanation Score
Uncalibrated
monoBERT

N/A 0.872

Calibrated
monoBERT

N/A 0.397

Literal
Explanation

here’s my answer: relevant the query asks for an example of what a family
advocate does, and the document provides an example of a family advocate’s
role, specifically advocating for the best interests of the child and investigating the
family situation to advise the court on the appropriate custody arrangement. this
is directly related to the query and the document provides relevant information.
the document provides a clear example of what a family advocate does, making
it relevant to the query. the document directly addresses the query’s question,
making it a relevant match. sure, i can help you with that!

1.980

Conditional
Explanation

Relevance: the query “example of what a family advocate does” is relevant
to the provided document because the document describes the role of a family
advocate, which is to advocate for the best interests of the child in family law
cases. ...... the document highlights the key aspects of a family advocate this is
an example of what a family advocate might do in practice. this connection
between the query and document makes them relevant to each other. 3. focus
on the child’s best interests: the document emphasizes the importance of
prioritizing the child’s best interests when making decisions about child custody.

Non-Relevance: the query “example of what a family advocate does”
is not relevant to the document provided because the document does not
provide an example of what a family advocate does, but rather describes the
responsibilities of a family advocate. the document states that a family advocate
advocates for the best interests of the child and investigates the family situation
to advise the court on the custody situation that would be in the best interests
of the child. this is a description of the role and responsibilities of a family
advocate, but it does not provide an example of what a family advocate does in a
specific situation.

2.053

Table 5: An example showing natural language explanations generated by the LLM lead to better calibrated scores.

for a more refined and accurate relevance assess-1267

ment. Consequently, our methods demonstrate a1268

notable improvement in capturing the subtleties1269

and depths of relevance, as evidenced by the scores1270

closer to the label compared to the baseline ap-1271

proaches.1272
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