

000 001 002 003 004 005 CRGSTA: CROSS-DOMAIN ROOT CAUSAL GRAPH 006 SPATIAL-TEMPORAL ATTENTION NETWORK 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036

ABSTRACT

037 Modern monitoring systems generate massive, high-dimensional time series
038 where failures rarely remain isolated but cascade across interdependent compo-
039 nents. Identifying their true origins requires more than anomaly detection; it re-
040 quires interpretable models that disentangle causal structure from noisy signals.
041 While Granger causality has gained traction for root cause analysis (RCA), exist-
042 ing neural methods often rely on multilayer perceptrons applied independently at
043 each time step, which increases parameter counts, struggles with long-range de-
044 pendencies, and overlooks seasonal and periodic patterns. We introduce CrGSTA
045 (Cross-domain Root causal Graph Spatial-Temporal Attention Network), a scal-
046 able and interpretable framework that unifies time- and frequency-domain repre-
047 sentations through cross-domain attention. CrGSTA employs graph-based spatio-
048 temporal attention to capture directional dependencies, while frequency-aware
049 features recover periodic structure. A lightweight self-attention decoder recon-
050 structs dynamics, ensuring deviations are attributed to true root causes rather than
051 propagated effects. We conduct experiments along three dimensions: temporal
052 scalability, spatial scalability, and ablations on domain contributions and fusion
053 strategies. On multiple synthetic and real-world datasets, CrGSTA new state of
054 the art achieving up to 13% Avg@10 improvement by leveraging wider tempo-
055 ral windows with only 8.5M parameters compared to (200M+) of other baselines.
056 By explicitly coupling temporal and frequency cues, CrGSTA balances accuracy,
057 interpretability, and efficiency for RCA in complex monitoring environments, pro-
058 viding a foundation for more resilient and transparent analysis in real-world sys-
059 tems. <https://github.com/crgsta2025/CrGSTA>

1 INTRODUCTION

060 As digital infrastructures grow in scale and complexity, system failures are no longer isolated in-
061 cidents but often trigger cascades of anomalies that spread across tightly coupled components Al-
062 tenbernd et al. (2025). These anomalies, while infrequent, can severely disrupt application avail-
063 ability and compromise service reliability Nagalapatti et al. (2025). Traditional anomaly detection
064 methods provide early warning signals, yet they fall short in answering the critical question of *why*
065 the anomaly occurred Chen et al. (2019). Without this capability, operators face significant delays in
066 recovery, leading to higher downtime and operational costs. Root cause analysis (RCA) addresses
067 this gap by uncovering the underlying drivers of observed anomalies, disentangling direct causes
068 from secondary effects, and enabling more targeted remediation Liu et al. (2023); Han et al. (2025).
069 In complex cloud Nedelkoski et al. (2020) and cyber-physical environments Mathur & Tippenhauer
070 (2016), where human monitoring alone is infeasible, automated RCA is essential for ensuring re-
071 silience and sustainable system management.

072 Root cause analysis (RCA) can be formally described as identifying, given a set of anomalous met-
073 rics, the top- K metrics most likely responsible for the anomaly Liu et al. (2023). Unlike anomaly
074 detection, which merely signals abnormal behavior, RCA requires interpretability: models must re-
075 veal how components influence one another and propagate faults across the system. Achieving this
076 using statistical methods Ikram et al. (2022); Shan et al. (2019) is particularly challenging in modern
077 infrastructures, where a single incident may involve thousands of KPIs, rendering manual tracing or
078 heuristic correlations ineffective. Recent research has therefore shifted toward data-driven methods.

054 Among them, neural Granger causality Granger (1969) has emerged as a principled tool for uncov-
 055 ering temporal dependencies between variables, offering a systematic way to infer directional rela-
 056 tionships. However, contemporary neural Granger causality methods Marcinkevič & Vogt (2021b);
 057 ? typically rely on MLPs applied independently at each time step. Such architectures prevent the
 058 model from capturing spatial dependencies across metrics, limiting its explainability across system
 059 components. Moreover, the per-time-step design also constrains the temporal horizon the model
 060 can consider and causes a parameter explosion as system dimensionality grows. Additionally, these
 061 approaches fail to account for seasonal and periodic patterns, which are crucial for understanding
 062 recurring system behaviors. These limitations highlight the need for more advanced RCA frame-
 063 works that can jointly model spatial and temporal dependencies while remaining interpretable and
 064 scalable to high-dimensional, real-world datasets.

065 A promising direction for RCA is to represent time series from multiple perspectives. Frequency-
 066 domain transformations have been shown to reveal latent structures that remain obscured in the raw
 067 time domain Xu et al. (2024); Yi et al. (2025; 2023). Hybrid approaches that jointly leverage tem-
 068 poral and frequency representations have demonstrated strong performance in anomaly detection
 069 Dou et al. (2025); Bai et al. (2023a). Despite these advances, integrating interpretability, a criti-
 070 cal requirement for RCA, into multi-domain representations remains largely unexplored. We posit
 071 that combining time and frequency perspectives while explicitly enforcing interpretability can sig-
 072 nificantly enhance RCA. By moving beyond single-domain limitations, such approaches are better
 073 equipped to uncover the underlying mechanisms of complex anomalies in high-dimensional, large-
 074 scale monitoring systems.

075 In this work, we propose CrGSTA (Cross-domain Root causal Graph Spatial-Temporal Attention
 076 Network), a scalable and interpretable framework for root cause analysis in multivariate time series.
 077 CrGSTA is grounded in Granger causality Marcinkevič & Vogt (2021b); Han et al. (2025); Fu
 078 et al. (2024), enabling unsupervised modeling of normal system behavior and the identification of
 079 exogenous factors that drive anomalies. Inspired by prior work on neural Granger causality Han et al.
 080 (2025) and cross-domain time- and frequency representations Dou et al. (2025); Bai et al. (2023a),
 081 CrGSTA captures complementary patterns across domains while enhancing the interpretability of
 082 detected anomalies. CrGSTA employs a spatio-temporal encoder-decoder architecture. The encoder
 083 features parallel time- and frequency-domain paths, each applying spatial graph attention across
 084 time lags followed by temporal attention. Their outputs are integrated via cross-attention, producing
 085 interpretable latent representations that reveal exogenous influences. A lightweight self-attention
 086 decoder reconstructs the series, and deviations from the learned normal distribution during inference
 087 are flagged as potential root causes, distinguished from downstream effects. Overall, CrGSTA offers
 088 a principled and scalable framework for multi-domain RCA in complex, high-dimensional systems
 089 by unifying cross-domain representation learning, spatio-temporal attention, and Granger causal
 reasoning.

090 Our experiments demonstrate that CrGSTA establishes a new state of the art for root cause analysis in
 091 multivariate time series by jointly modeling temporal and frequency domains through a graph-based
 092 encoder-decoder. Across both synthetic and real-world datasets, CrGSTA consistently outperforms
 093 statistical, non-causal, and causal deep learning baselines, while preserving parameter efficiency.
 094 For instance, it achieves 0.782 Avg@10 on Lotka–Volterra and 0.426 on SWaT, surpassing prior
 095 methods by wide margins despite operating under a fixed budget of only 8M parameters—more than
 096 two orders of magnitude fewer than AERCA’s 200M+. Ablation studies further highlight the indis-
 097 pensability of cross-domain integration and attention mechanisms, which together enable CrGSTA
 098 to capture complex spatio-temporal dependencies without the prohibitive computational overhead
 099 observed in existing causal models. These findings not only validate the effectiveness of CrGSTA’s
 100 architectural design but also underscore its practicality for large-scale monitoring systems where ef-
 101 ficiency and interpretability are critical. In doing so, CrGSTA advances root cause analysis beyond
 102 current trade-offs between accuracy and scalability, pointing toward a new generation of resource-
 efficient causal modeling frameworks for modern infrastructures.

103 This work is guided by the following research questions: **RQ1:** How does CrGSTA perform as the
 104 temporal window size increases, and how does it compare to statistical and deep learning baselines
 105 in terms of accuracy and parameter efficiency? **RQ2:** How does CrGSTA scale with the number
 106 of interacting variables, and how does its performance and parameter growth compare to other deep
 107 learning approaches? **RQ3:** What are the contributions of CrGSTA’s architectural components and
 fusion strategies to its overall performance, and how do they impact parameter efficiency? **RQ4:**

108 How effectively does CrGSTA capture complex causal relationships in real-world datasets, and what
 109 insights can be drawn from its interpretability features regarding root cause identification?
 110

111 Our contributions are threefold: (1) We introduce CrGSTA, a novel unsupervised framework for
 112 root cause detection in multivariate time series that achieves a balance between scalability and inter-
 113 pretability, making it suitable for large-scale, complex real-world datasets. (2) We design a multi-
 114 path encoder-decoder architecture grounded in Granger causal reasoning, featuring parallel time-
 115 and frequency-domain paths. Spatial graph attention captures inter-variable dependencies, tempo-
 116 ral self-attention models historical dynamics, and cross-attention fuses time- and frequency-domain
 117 representations, enabling the model to capture seasonality and periodic patterns. A lightweight
 118 self-attention decoder replaces conventional autoregressive stacks, resulting in substantial efficiency
 119 gains. (3) We perform extensive empirical evaluations on both synthetic and real-world datasets, sys-
 120 tematically analyzing the impact of temporal and spatial dimensions as well as architectural choices,
 121 demonstrating the effectiveness and flexibility of CrGSTA in capturing complex causal relationships.
 122

2 RELATED WORK

124 Root cause analysis (RCA) in multivariate systems intersects with performance engineering, where
 125 the goal extends beyond anomaly detection to scalable, interpretable, and robust diagnostics.
 126

2.1 ROOT CAUSE ANALYSIS

127 RCA methods are broadly categorized into topology-driven, statistical, and causal inference-based
 128 approaches (Table 1). Topology-driven methods infer dependencies among variables and local-
 129 ize anomalies via graph traversal. For instance, MonitorRank Kim et al. (2013) scores service-
 130 level correlations using personalized PageRank Brin & Page (1998). While effective in structured
 131 environments, these methods often scale poorly in dynamic systems. Statistical techniques de-
 132 tect significant deviations in system metrics. ϵ -Diagnosis Shan et al. (2019) employs two-sample
 133 tests, whereas RCD Ikram et al. (2022) applies conditional independence tests to infer causal struc-
 134 tures. Although efficient and interpretable, these methods struggle with complex anomalies. Data-
 135 driven approaches learn temporal and spatial dependencies from multivariate observations Han et al.
 136 (2025); Tuli et al. (2022), and causal inference-based methods treat anomalies as interventions in
 137 structural causal models Assaad et al. (2022). CORAL Wang et al. (2023) incrementally updates a
 138 disentangled causal graph to capture both state-invariant and state-dependent dependencies, identi-
 139 fying root causes via network propagation in near-real time. GVAR Marcinkevičs & Vogt (2021b)
 140 uses self-explaining neural networks to infer Granger-causal relationships in multivariate time se-
 141 ries, capturing nonlinear interactions and their temporal variability with interpretable causal effects.
 142 Building on GVAR, AERCA Han et al. (2025) leverages autoencoders to capture Granger causal
 143 dependencies. However, many existing designs rely on shallow parameterizations (e.g., MLP-based
 144 causal coefficients), limiting robustness in complex systems.
 145

2.2 ORTHOGONAL ADVANCES IN TEMPORAL MODELING

146 Recent progress emphasizes lightweight yet expressive architectures, ranging from linear attention
 147 blocks to compact Transformers Tan et al. (2024); Liu et al. (2024). Frequency-domain methods
 148 have also proven highly efficient; for example, a 10K-parameter Fourier model matched the per-
 149 formance of a 300M-parameter Transformer Zhou et al. (2022); Xu et al. (2024), inspiring models
 150 such as FilterNet Yi et al. (2025), FourierGNN Yi et al. (2023), and FreqTimeLoss Wang et al.
 151 (2025a). Cross-domain architectures further enhance robustness by jointly leveraging temporal and
 152 spectral representations. CrossFuN Bai et al. (2023a) fuses temporal and spectral views, while
 153 DeAnomaly Dou et al. (2025) combines graph attention with time-frequency cross-attention to han-
 154 dle noisy multivariate data. These multi-domain approaches provide richer inductive biases than
 155 single-domain methods. Despite these advances, most anomaly detection models lack interpretabil-
 156 ity, and existing RCA approaches often rely on MLP-based Granger causality approximations that
 157 scale poorly and neglect temporal expressiveness. To address this gap, we propose CrGSTA, a
 158 spatio-temporal encoder-decoder that integrates time- and frequency-domain representations with
 159 graph-based causal reasoning, capturing long-range temporal dependencies and spatial interactions
 160 for scalable, interpretable RCA in complex multivariate systems.
 161

162 3 PRELIMINARIES AND PROBLEM FORMULATION

164 Root cause analysis (RCA) in multivariate time series aims to identify latent factors driving observed
 165 variables. Granger causality Granger (1969) formalizes this: for a d -dimensional series $\{x_t\}_{t=1}^T$,
 166 each component $x_t^{(j)}$ can be expressed as a function of past values plus an unexplained latent input
 167 $z_t^{(j)}$,

$$x_t^{(j)} = f^{(j)}(x_{\leq t-1}^{(1)}, \dots, x_{\leq t-1}^{(d)}) + z_t^{(j)}. \quad (1)$$

170 Here, $x^{(i)}$ Granger-causes $x^{(j)}$ if including its history improves prediction beyond $x^{(j)}$'s own past.

171 In an encoder-decoder view, the encoder extracts latent exogenous variables z_t by removing pre-
 172 predictable components, producing an interpretable representation of unexpected influences. The de-
 173 coder reconstructs observations from these latent variables, ensuring consistency with the generative
 174 process. Formally, with $\mathbf{z}_t \in \mathbb{R}^d$ and $\mathbf{x}_t \in \mathbb{R}^p$, the marginal likelihood is

$$\log P(\mathbf{x}_t) = \log \int P(\mathbf{x}_t \mid \mathbf{z}_t, A(t)) P(\mathbf{z}_t) d\mathbf{z}_t, \quad (2)$$

177 where $A(t)$ encodes instantaneous causal structure. The intractable posterior $P(\mathbf{z}_t \mid \mathbf{x}_t)$ is ap-
 178 proximated by a variational distribution $E_\phi(\mathbf{z}_t \mid \mathbf{x}_{\leq t-1})$, yielding a VAE-like framework Kingma
 179 & Welling (2014). Graph attention captures cross-variable dependencies, temporal attention mod-
 180 els sequential dynamics, and optional frequency-domain transformations reveal hidden patterns that
 181 improve interpretability.

183 RCA then identifies indices (j, t) where latent variables deviate due to anomalies, $\hat{z}_t^{(j)} = z_t^{(j)} + \epsilon_t^{(j)}$.
 184 Unlike standard anomaly detection, the focus is on the sources of abnormal behavior.

185 3.1 CRGSTA WITH TIME-FREQUENCY CROSS-ATTENTION

203 Figure 1: CrGSTA: Time-Frequency Cross-Attention Graph Spatio-Temporal Autoencoder

205 We present **CrGSTA** as a time-frequency cross-attention graph-based encoder-decoder for multi-
 206 variate root cause identification, as illustrated in Fig. 1. Additionally, an intuitive summary of the
 207 architecture can be found in the Appendix A.3. The encoder estimates latent exogenous variables
 208 $E_\phi(\mathbf{z}_t \mid \mathbf{x}_{\leq t})$, while the decoder reconstructs the observation \mathbf{x}_t given past exogenous sequences
 209 $D_\theta(\mathbf{x}_t \mid \mathbf{z}_{\leq t})$.

211 3.1.1 ENCODER STRUCTURE

213 **Windowing Time Series.** Given $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_T)$ with d variables, we define sliding windows of
 214 length K :

$$\mathbf{W}_t = (\mathbf{x}_{t-K+1}, \dots, \mathbf{x}_t), \quad \mathbf{W} = (\mathbf{W}_K, \dots, \mathbf{W}_T), \quad (3)$$

215 so each window is processed to capture both temporal and spatial dependencies.

216 **Step 1: Base Spatial Graph (Shared Across Lags and Branches).** We define a global, shared
 217 graph attention network (GNN) to compute pairwise influence between variables. Each variable in
 218 a time step forms a node in a fully-connected graph. This shared graph serves as the foundation for
 219 both the time-domain and frequency-domain branches:

$$220 \quad \mathbf{H}_{t-k}^{\text{base}} = \text{GNN}(\mathbf{x}_{t-k}) \in \mathbb{R}^{d \times d}, \quad k = 1, \dots, K \quad (4)$$

222 This design reduces parameter redundancy and ensures consistent modeling of interactions across
 223 domains.

224 **Step 2: Time-Domain Branch.** Using the shared base graph network, we apply temporal attention
 225 across lags to dynamically weight contributions of past observations:

$$226 \quad \mathbf{A}_t^{\text{time}} = \text{TemporalAttn}([\mathbf{H}_{t-1}^{\text{base}}, \dots, \mathbf{H}_{t-K}^{\text{base}}]) \in \mathbb{R}^{K \times d \times d}. \quad (5)$$

229 **Step 3: Frequency-Domain Branch.** The shared base graph is also leveraged to capture frequency-
 230 domain dependencies. First, a real FFT is applied along the temporal axis to extract periodic compo-
 231 nents, yielding $\mathbf{X}_f^{\text{freq}} = \text{rFFT}(\mathbf{W}_t)_f$ for $f = 1, \dots, F$. The magnitudes of these frequency bins are
 232 then propagated through the shared graph network, followed by temporal attention across frequency
 233 bins:

$$234 \quad \mathbf{H}_f^{\text{freq}} = \text{GNN}(|\mathbf{X}_f^{\text{freq}}|), \quad \mathbf{A}_t^{\text{freq}} = \text{TemporalAttn}([\mathbf{H}_1^{\text{freq}}, \dots, \mathbf{H}_F^{\text{freq}}]) \in \mathbb{R}^{F \times d \times d}. \quad (6)$$

235 **Step 4: Cross-Attention Fusion.** After obtaining temporal and spectral representations, we in-
 236 troduce explicit information exchange between the two modalities. Two cross-attention modules
 237 are employed: one aligns frequency features with temporal context (time \rightarrow freq), while the other
 238 aligns temporal features with spectral context (freq \rightarrow time). This bi-directional interaction yields
 239 the enriched representations $\tilde{\mathbf{H}}^{\text{time}}$ and $\tilde{\mathbf{H}}^{\text{freq}}$:

$$240 \quad \tilde{\mathbf{H}}^{\text{time}} = \text{CrossAttn}(\mathbf{A}_t^{\text{time}}, \mathbf{A}_t^{\text{freq}}), \quad \tilde{\mathbf{H}}^{\text{freq}} = \text{CrossAttn}(\mathbf{A}_t^{\text{freq}}, \mathbf{A}_t^{\text{time}}). \quad (7)$$

242 **Step 5: Coefficient Projection and Prediction.** The cross-attended representations from Step 4 are
 243 projected through linear layers into adjacency-like coefficient matrices (step 5a), yielding

$$245 \quad \mathbf{C}_{\text{time}} = \text{Linear}(\tilde{\mathbf{H}}^{\text{time}}), \quad \mathbf{C}_{\text{freq}} = \text{Linear}(\tilde{\mathbf{H}}^{\text{freq}}), \quad (8)$$

246 which encode variable-to-variable dependencies across lags k . Empirically, we find that constraining
 247 the *time-domain* coefficients is sufficient for stable optimization of the loss functions. Nevertheless,
 248 both the time and frequency coefficients contribute to autoregressive prediction (step 5b):

$$250 \quad \hat{\mathbf{x}}_{\text{time}} = \sum_{k=1}^K \mathbf{C}_{\text{time}} \mathbf{x}_{t-k}, \quad \hat{\mathbf{x}}_{\text{freq}} = \sum_{k=1}^K \mathbf{C}_{\text{freq}} \mathbf{x}_{t-k}, \quad (9)$$

252 where \mathbf{x}_{t-k} represents the historical observations within the input window. These modality-specific
 253 predictions are then combined linearly to produce the next-step prediction, which is also used to
 254 compute the residual relative to the current observation (step 5c):

$$255 \quad \hat{\mathbf{x}}_t = \omega_t \hat{\mathbf{x}}_{\text{time}} + \omega_f \hat{\mathbf{x}}_{\text{freq}}, \quad \mathbf{z}_t = \mathbf{x}_t - \hat{\mathbf{x}}_t, \quad (10)$$

256 where ω_t and ω_f are the weights for combining both domains, and \mathbf{z}_t is interpreted as a latent
 257 exogenous influence, capturing variability that is not explained by the temporal-spectral dynamics.

259 **Encoder Output.** In summary, the encoder produces two distinct outputs, each serving a specific
 260 purpose:

261 **1. Time-domain coefficients:** \mathbf{C}_{time} , which encode variable-to-variable dependencies and are di-
 262 rectly used in the loss functions. These coefficients provide interpretability within the Granger-
 263 causal framework, as detailed in the subsequent sections.

264 **2. Latent exogenous variables:** $\mathbf{Z}_t \in \mathbb{R}^{d \times K}$, capturing influences not explained by the tempo-
 265 ral-spectral dynamics, and serving as input to the decoder for reconstruction tasks.

267 3.1.2 DECODER STRUCTURE

268 The decoder reconstructs \mathbf{x}_t from the exogenous sequence \mathbf{Z}_t using a temporal-attention-based
 269 mechanism, avoiding fully autoregressive reconstruction.

270 **Step 6: Projection and Windowed Attention.** Each exogenous variable in the window is projected
 271 to a hidden representation $\mathbf{H}_{t-K+\tau}^{\text{enc}} = f_{\text{proj}}(\mathbf{z}_{t-K+\tau})$, $\tau = 1, \dots, K$, which are then aggregated
 272 via temporal attention across the window:

$$\mathbf{H}_t^{\text{temp}} = \text{TemporalAttn}(\mathbf{H}_{t-K+1:t}^{\text{enc}}), \quad (11)$$

273 producing a context-aware embedding for reconstruction.
 274

275 **Step 7: Output and Low-Rank Coefficients.** The final prediction is obtained via a learnable output
 276 mapping $\hat{\mathbf{x}}_t = f_{\text{out}}(\mathbf{H}_t^{\text{temp}})$, moreover generating low-rank coefficient matrices for interpretability:

$$\mathbf{C}_t = \mathbf{U}\mathbf{V}^{\top}, \quad \mathbf{C}_t \in \mathbb{R}^{d \times d}. \quad (12)$$

277 This structure efficiently captures temporal dependencies in the exogenous sequence while supporting
 278 interpretable causal attributions without maintaining separate decoders for past windows.
 279

282 3.1.3 TRAINING OBJECTIVE

284 The encoder-decoder model is $\hat{\mathbf{x}}_t = \text{CrGSTA}_{\theta, \phi}(\mathbf{x}_{<t})$, with encoder parameters θ and decoder
 285 parameters ϕ . For a series of length T , the training objective combines reconstruction, regularization
 286 and independence:

287 **Reconstruction Loss:** encourages the model to reconstruct the current step from latent exogenous
 288 variables:

$$\mathcal{L}_{\text{recon}} = \sum_{t=K+1}^T \|\hat{\mathbf{x}}_t - \mathbf{x}_t\|_2^2 \quad (13)$$

291 **Sparsity & Smoothness:** promote interpretable coefficient matrices in encoder and decoder:

$$\mathcal{L}_{\text{sparse}} = \lambda_{\text{enc}} R(\Omega_t) + \lambda_{\text{dec}} (R(\bar{\Omega}_t) + R(\bar{\Omega}'_t)), \quad (14)$$

$$\mathcal{L}_{\text{smooth}} = \gamma_{\text{enc}} S(\Omega_{t+1}, \Omega_t) + \gamma_{\text{dec}} (S(\bar{\Omega}_{t+1}, \bar{\Omega}_t) + S(\bar{\Omega}'_{t+1}, \bar{\Omega}'_t)) \quad (15)$$

295 where R imposes sparsity and S enforces temporal smoothness. $\Omega_t \in \mathbb{R}^{P \times P}$ is the encoder's time-
 296 varying coefficient (adjacency) matrix, with $\bar{\Omega}_t$ and $\bar{\Omega}'_t$ as decoder counterparts; we use $R(A) =$
 297 $\|A\|_1$ and $S(A, B) = \|A - B\|_F^2$.
 298

299 **Exogenous Independence (KL):** encourages the latent exogenous variables Z_t to be decorrelated
 300 and standardized:

$$\mathcal{L}_{\text{KL}} = \beta D_{\text{KL}}(P(\mathbf{Z}_t) \parallel Q) = \frac{1}{2} (\text{tr}(\Sigma_t) + \mu_t^{\top} \mu_t - d - \log \det \Sigma_t) \quad (16)$$

302 where Q is an isotropic Gaussian prior.
 303

304 **Total Objective:** the sum of all components:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{recon}} + \mathcal{L}_{\text{sparse}} + \mathcal{L}_{\text{smooth}} + \mathcal{L}_{\text{KL}} \quad (17)$$

306 This formulation preserves interpretability, enforces latent independence, and supports the single-
 307 decoder CrGSTA architecture in reconstructing the time series while highlighting causal attributions.
 308

309 3.2 ROOT CAUSE LOCALIZATION

311 **Step 8: Obtaining Root Causes:** During deployment, for a new observation \mathbf{x}_{t^*} , its exogenous rep-
 312 resentation \mathbf{z}_{t^*} is computed using the trained encoder. Standardized scores (z-scores) are calculated:

$$z_{t^*}^{(j)} = \frac{z_{t^*}^{(j)} - \mu^{(j)}}{\sigma^{(j)}}, \quad (18)$$

313 and variables exceeding an adaptive threshold (via SPOT) are flagged as potential root causes.
 314

317 4 EXPERIMENTS

319 4.1 DATASETS

321 To evaluate the effectiveness of the CrGSTA framework, we conduct experiments on four datasets:
 322 two synthetic benchmarks (Non-Linear and Lotka–Volterra) and two widely used real-world multi-
 323 variate time series datasets (MSDS and SWaT) (Table 3, more details in appendix A.7.1). We ex-
 324 tend the both of the synthetic datasets by increasing nonlinearity and stochastic variability, making

324 anomaly detection more challenging; full details of the extended model are provided in the appendix
 325 A.7.1. This controlled complexity allows for rigorous testing of root cause analysis methods under
 326 known causal structures.

328 **4.2 EXPERIMENTAL SETUP**

330 **Baselines and Comparison.** We benchmark CrGSTA against statistical, non-causal, and causal
 331 deep learning approaches for root cause analysis. Among statistical baselines, ϵ -Diagnosis Shan
 332 et al. (2019) uses pairwise significance tests, and RCD Ikram et al. (2022) identifies influential
 333 sources via partial causal graphs. For non-causal deep models, FEDformer Zhou et al. (2022) and
 334 iTransformer Liu et al. (2024) use frequency-enhanced or dual-domain attention and are adapted
 335 here by ranking variables through reconstruction errors. For causal deep learning, GVAR ? models
 336 variable interactions using a graph-based encoder, causalrca Xin et al. (2023) incorporates Granger-
 337 inspired constraints into MLPs, and AERCA Han et al. (2025) employs lag-specific stacked MLPs
 338 for autoregressive reconstruction.

339 **Evaluation Metrics:** We evaluate root cause identification using the *recall at top- k* metric
 340 (AC@ k) and its average variant (Avg@ k), following prior work Ikram et al. (2022); Li et al.
 341 (2022b). This measures the likelihood that true root causes appear among the top- k ranked vari-
 342 ables. Sequences with multiple interventions are treated as single root cause sequences, consistent
 343 with point-adjust evaluation Koh et al. (2025); Bai et al. (2023b). Formal definitions are provided
 344 in the Appendix A.7.2. We also report the number of trainable parameters to assess efficiency,
 345 particularly for encoder-decoder models.

346 **Implementation:** We train multiple CrGSTA variants for each dataset variation, differing only in
 347 spatial-temporal attention dimension and attention heads. The decoder is identical for all datasets,
 348 using a lightweight self-attention layer with 64 hidden dimensions and 2 heads. Models are op-
 349 timized with Adam (lr = 0.0001). Each experiment is repeated with multiple random seeds, and
 350 averages with standard deviations (reported in the appendix) ensure robustness. Experiments are
 351 run on a Linux workstation with an Intel i9-10900K CPU (20 cores, 3.70GHz), 32 GB RAM, and
 352 an NVIDIA RTX 3070 GPU (8 GB), using Python 3.10.12, PyTorch 2.7.1+cu126, and PyTorch
 353 Geometric 2.6.1. More details are in the Appendix A.8.

356 **4.3 RQ1: PERFORMANCE IN TEMPORAL DIMENSION**

358 We evaluate CrGSTA’s temporal scalability by varying the input window size, fixing the number
 359 of interacting variables to 40 for Lotka–Volterra, 20 for Non-Linear, and using all 51 variables for
 360 SWaT and 10 for MSDS. Results are shown in Fig. 2, with detailed analysis in Appendix A.9.1.
 361 **Lotka–Volterra.** Statistical methods remain largely flat (Avg@10 \approx 0.16–0.18), highlighting their
 362 inability to capture nonlinear dependencies. Non-causal deep models show mild temporal sensitiv-
 363 ity but saturate quickly: FEDformer peaks at window 5 (0.175), iTransformer at window 1 (0.166).
 364 Simple causal models such as causalrca with 256-unit MLPs plateau at 0.745 Avg@10. GVAR, due
 365 to its encoder-only architecture, cannot leverage longer windows effectively. AERCA benefits sig-
 366 nificantly from longer windows, improving from 0.584 (window 1) to 0.803 (window 5), albeit with
 367 substantial parameter growth (0.3M \rightarrow 3.1M). In contrast, CrGSTA achieves the best accuracy under
 368 a fixed parameter budget (0.782 at window 7), with gains attributable to cross-domain temporal
 369 modeling rather than model size. **SWaT.** Statistical baselines remain below 0.2, while non-causal
 370 deep models reach only 0.315–0.334 without temporal scalability. Causalrca shows modest gains,
 371 peaking at 0.178 Avg@10 (window 5). GVAR improves with longer windows but incurs signifi-
 372 cant parameter growth. AERCA again benefits from causal modeling but exceeds 100M parame-
 373 ters—rendering it impractical, effectively a grey-box model that is over 10 \times larger than CrGSTA
 374 and prone to OOM or prohibitive training time at extreme windows. By contrast, CrGSTA achieves
 375 0.426 Avg@10 at window 7—the best overall—while maintaining efficiency via cross-attention over
 376 medium-range dependencies. CrGSTA keeps a stable parameter count across window sizes (8.5M
 377 at window 7) compared to AERCA’s 200M+, a two-orders-of-magnitude reduction. Additional
 378 analysis on Non-Linear and MSDS datasets (Appendix A.9.1) confirms these trends, with CrGSTA
 379 consistently achieving top performance with stable parameterization.

378
 379 **Summary.** Statistical models fail to exploit temporal information; non-causal deep models capture
 380 limited temporal effects but saturate; causal models such as AERCA improve accuracy but incur
 381 prohibitive parameter costs. CrGSTA breaks this trade-off, achieving causal-level performance with
 382 stable parameterization, thereby highlighting the role of temporal–frequency interaction modeling
 383 in scalable root cause analysis.

Figure 2: Performance (Avg@10) for different datasets.

4.4 RQ2: PERFORMANCE IN THE SPATIAL DIMENSION

410 To evaluate CrGSTA’s spatial scalability, we fix the temporal window (7 for Lotka–Volterra, 5 for
 411 NonLinear) and vary the number of variables (Fig. 3; full tables in Appendix A.9.2). **Causal vs.**
 412 **Non-Causal Models.** Causal models clearly outperform non-causal baselines across all dimen-
 413 sionalities. At 20 variables, CrGSTA achieves the highest Avg@10 (0.866), far exceeding iTransformer
 414 (0.354) and FEDformer (0.272). At 60 variables, CrGSTA still maintains 0.755, while non-causal
 415 models collapse (iTransformer 0.126, FEDformer 0.103), underscoring the necessity of causal mod-
 416 eling in high-dimensional systems. Although causalrca performs competitively at small scales, it is
 417 consistently outperformed by AERCA and CrGSTA and degrades more rapidly as dimensionality
 418 increases. **Parameter Efficiency.** CrGSTA matches or exceeds the performance of larger causal
 419 models while using substantially fewer parameters. For example, at 20 variables it achieves 0.866
 420 Avg@10 with 0.4M parameters (AERCA: 0.859 with 0.5M), and at 50 variables it reaches 0.734
 421 with 1.3M (AERCA: 0.749 with 2.8M). Even at 60 variables, CrGSTA sustains 0.755 using only
 422 1.7M parameters. Its parameter growth is limited to lightweight per-variable adapters, keeping the
 423 attention dimension fixed and ensuring linear, scalable complexity. **Consistency Across Datasets.**
 424 The same patterns appear on the NonLinear dataset (more details in Appendix A.9.2).

425 **Summary.** CrGSTA achieves robust high-dimensional causal performance with notable parameter
 426 efficiency. On Lotka–Volterra, it maintains over 75% Avg@10 at 60 variables while using less than
 427 half the parameters of AERCA, demonstrating strong scalability for complex dynamical systems.

4.5 RQ3: ABLATION STUDIES

430 We evaluate CrGSTA’s components by varying spatial architectures and fusion strategies, fixing the
 431 temporal window to 7 and using 40 variables for Lotka–Volterra. To highlight architectural differ-
 432 ences, we set the attention dimension to 32 on Lotka–Volterra and 256 on SWaT. Results and details

(a) Lotka Volterra Avg@10

(b) Non-Linear Avg@10

Figure 3: Performance (Avg@10) for Lotka Volterra (left) and Non-Linear (right).

on the ablation configurations are shown in Fig. 4 and Tables 14, 15 in the Appendix. **Spatial Architectures.** On Lotka–Volterra, temporal-only models (T) perform well (Avg@10=0.546). On SWaT, however, frequency-only models (F) surpass temporal-only ones (0.365 vs. 0.334), highlighting the importance of frequency features in complex systems. **Frequency Representations.** Interestingly, For SWaT, the frequency-only (F (Mag)) model outperforms temporal-only (T) (0.365 vs. 0.334), indicating that frequency features may better capture anomalies in complex data. This suggests that even before fusion, frequency-domain analysis can be more informative than time-domain for certain real-world systems. **Fusion Strategies.** For synthetic data, combining temporal and frequency features (T-F) with simple fusion (sum, concat, gated) gives moderate gains (Avg@10=0.525–0.575). On SWaT, these methods underperform frequency-only models (0.334–0.360), suggesting naive fusion adds redundancy. By contrast, CrGSTA’s cross-domain attention (T-F with attn) achieves the best results on both datasets (0.639 for Lotka–Volterra, 0.430 for SWaT), showing the effectiveness of adaptive integration. **Magnitude vs. Magnitude–Phase.** Magnitude-only features often match or outperform magnitude–phase. On Lotka–Volterra, both achieve Avg@10=0.639. On SWaT, magnitude-only slightly outperforms (0.430 vs. 0.425), suggesting phase may add noise slight in complex data. **Parameter Efficiency.** CrGSTA with attention fusion is compact (1.0M params on Lotka–Volterra, 8.5M on SWaT) compared to concat (5.5M and 21.5M+), confirming that gains stem from cross-domain design rather than size.

Summary. CrGSTA’s strengths come from attention and cross-domain integration, enabling accurate and efficient root cause analysis.

(a) Lotka Volterra Ablations Avg@10

(b) SWAT Ablations Avg@10

Figure 4: Architectural and Combinatorial Ablations for Lotka Volterra (a) and SWAT (b).

4.6 RQ4: CASE STUDIES

To illustrate CrGSTA’s interpretability, we present case studies on MSDS. Specifically, we visualize two root cause analysis examples comparing CrGSTA and AERCA. First, we show the root cause scores assigned by both models for a specific anomaly instance. Second, we analyze the temporal propagation of root cause scores across multiple time steps within an analysis window.

4.6.1 ROOT CAUSE Z-SCORE

As shown in Fig. 5, the true root cause variable is highlighted with a red box. As illustrated in Fig. 5b CrGSTA accurately identifies the true root cause variable with a significantly higher score than

other variables, demonstrating its effectiveness in root cause analysis. In contrast, AERCA assigns relatively lower scores to the true root cause variable, indicating less confidence in its identification. This comparison highlights CrGSTA’s superior interpretability and precision in pinpointing root causes within complex multivariate time series data. More details in the appendix A.9.4.

(a) MSDS AERCA Case Study

(b) MSDS CrGSTA Case Study

Figure 5: Case Studies for MSDS Dataset: (a) AERCA (b) CrGSTA.

4.6.2 ROOT CAUSE Z-SCORE PROPAGATION THROUGH TIME

To further demonstrate the superior robustness and parameter efficiency of CrGSTA, we conduct a detailed temporal analysis case study. As depicted in Figure 6, we utilize an analysis window size (W) of 3 for both AERCA and CrGSTA on the MSDS dataset, focusing on a specific anomaly instance. The results illustrate CrGSTA’s superior temporal consistency: it maintains a persistently high Normalized z-score across the window steps for the true root cause variable (index 9), strongly following the ground-truth label. In contrast, the baseline AERCA exhibits a scattered score distribution, failing to sustain a high score specifically for the root cause, leading to high ambiguity. This performance difference is particularly notable considering the significant disparity in model complexity: AERCA has over 28 million parameters, while CrGSTA operates with only 69,129 parameters. This underscores CrGSTA’s ability to achieve more reliable, high-confidence root cause identification with dramatically fewer resources across varying temporal contexts.

(a) MSDS AERCA Case Study

(b) MSDS CrGSTA Case Study

Figure 6: Case Studies for MSDS Dataset: (a) AERCA (b) CrGSTA.

5 CONCLUSION

We introduced CrGSTA, a novel framework for root cause analysis in multivariate time series that effectively integrates temporal and frequency domain information through a graph-based encoder-decoder architecture with cross-attention. Extensive experiments on both synthetic and real-world datasets demonstrate that CrGSTA consistently outperforms statistical methods, non-causal models, and other causal deep learning baselines in terms of accuracy and scalability. Ablation studies further highlight the critical role of attention mechanisms, cross-domain integration, and architectural design in enabling precise root cause identification. Importantly, CrGSTA achieves these gains while maintaining parameter efficiency, making it well-suited for practical deployment, whereas other causal models often entail prohibitive computational costs. For future work, we plan to explore extending CrGSTA with *state space models* such as Mamba to complement or replace attention mechanisms, which could enhance long-horizon temporal reasoning and mitigate quadratic scaling. We also aim to investigate integrating multimodal data sources, such as metrics and logs, and how to overcome the challenges of combining these heterogeneous signals for effective root cause analysis.

540 REFERENCES
541

542 Anton Altenbernd, Zhiyuan Wu, and Odej Kao. Amocrca: At most one change segmentation and
543 relative correlation ranking for root cause analysis. In *Proceedings of the 33rd ACM International*
544 *Conference on the Foundations of Software Engineering*, FSE Companion '25, pp. 1386–1393,
545 New York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400712760. doi:
546 10.1145/3696630.3731612. URL <https://doi.org/10.1145/3696630.3731612>.

547 C. K. Assaad, E. Devijver, and E. Gaussier. Discovery of extended summary graphs in time series.
548 In J. Cussens and K. Zhang (eds.), *Proceedings of the Thirty-Eighth Conference on Uncertainty in*
549 *Artificial Intelligence (UAI 2022)*, volume 180 of *Proceedings of Machine Learning Research*, pp.
550 96–106, Eindhoven, The Netherlands, Aug 1–5 2022. PMLR. URL <https://proceedings.mlr.press/v180/assaad22a.html>.

553 Yunfei Bai, Jing Wang, Xueer Zhang, Xiangtai Miao, and Youfang Lin. Crossfun: Multiview joint
554 cross-fusion network for time-series anomaly detection. *IEEE Transactions on Instrumentation*
555 *and Measurement*, 72:1–9, 2023a. doi: 10.1109/TIM.2023.3315420.

556 Yunfei Bai, Jing Wang, Xueer Zhang, Xiangtai Miao, and Youfang Lin. Crossfun: Multiview joint
557 cross-fusion network for time-series anomaly detection. *IEEE Transactions on Instrumentation*
558 *and Measurement*, 72:1–9, 2023b. doi: 10.1109/TIM.2023.3315420.

560 Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine.
561 *Computer Networks and ISDN Systems*, 30(1-7):107–117, 1998.

563 Junjie Chen, Xiaoting He, Qingwei Lin, Yong Xu, Hongyu Zhang, Dan Hao, Feng Gao, Zhangwei
564 Xu, Yingnong Dang, and Dongmei Zhang. An empirical investigation of incident triage for on-
565 line service systems. In *Proceedings of the 2019 IEEE/ACM 41st International Conference on*
566 *Software Engineering: Software Engineering in Practice (ICSE-SEIP)*, pp. 111–120. IEEE, 2019.

567 Hui Dou, Pengcheng Shi, Yiwen Zhang, Pengfei Chen, and Zibin Zheng. Deanomaly: Anomaly
568 detection for multivariate time series using robust decomposition and memory-augmented dif-
569 fusion models. *IEEE Transactions on Instrumentation and Measurement*, 74:1–14, 2025. doi:
570 10.1109/TIM.2025.3570337.

572 Dongqi Fu, Yada Zhu, Hanghang Tong, Kommy Weldemariam, Onkar Bhardwaj, and Jingrui He.
573 Generating fine-grained causality in climate time series data for forecasting and anomaly detec-
574 tion. In *ICML 2024 AI for Science Workshop*, 2024. URL <https://openreview.net/forum?id=q6E14hueUt>.

576 C. W. J. Granger. Investigating causal relations by econometric models and cross-spectral methods.
577 *Econometrica*, 37(3):424–438, 1969.

579 Xiao Han, Saima Absar, Lu Zhang, and Shuhan Yuan. Root cause analysis of anomalies in mul-
580 tivariate time series through granger causal discovery. In *The Thirteenth International Confer-
581 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=k38Th3x4d9>.

584 Jun Huang, Yang Yang, Hang Yu, Jianguo Li, and Xiao Zheng. Twin Graph-Based Anomaly
585 Detection via Attentive Multi-Modal Learning for Microservice System . In *2023 38th IEEE/ACM*
586 *International Conference on Automated Software Engineering (ASE)*, pp. 66–78, Los Alamitos,
587 CA, USA, September 2023. IEEE Computer Society. doi: 10.1109/ASE56229.2023.00138. URL
588 <https://doi.ieee.org/10.1109/ASE56229.2023.00138>.

589 Azam Ikram, Sarthak Chakraborty, Subrata Mitra, Shiv Saini, Saurabh Bagchi, and Murat Kocaoglu.
590 Root cause analysis of failures in microservices through causal discovery. In *Advances in Neural*
591 *Information Processing Systems (NeurIPS)*, volume 35, pp. 31158–31170, 2022.

593 Myunghwan Kim, Roshan Sumbaly, and Sam Shah. Root cause detection in a service-oriented
594 architecture. *ACM SIGMETRICS Performance Evaluation Review*, 41(1):93–104, 2013.

594 Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In *2nd International*
 595 *Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, Conference Track Pro-*
 596 *ceedings*, 2014. URL <http://arxiv.org/abs/1312.6114>.

597

598 Van Kwan Zhi Koh, Ye Li, Ehsan Shafiee, Zhiping Lin, and Bihan Wen. Harnessing forecast un-
 599 certainty in deep learning for time series anomaly detection with posterior distribution scoring.
 600 In *2025 IEEE International Symposium on Circuits and Systems (ISCAS)*, pp. 1–5, 2025. doi:
 601 10.1109/ISCAS56072.2025.11043371.

602 Douglas Landsittel, Avantika Srivastava, and Kristin Kropf. A narrative review of methods for
 603 causal inference and associated educational resources. *Quality Management in Health Care*, 29
 604 (4):260–269, 2020.

605

606 Mingjie Li, Zeyan Li, Kanglin Yin, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and Dan Pei. Causal
 607 inference-based root cause analysis for online service systems with intervention recognition. In
 608 *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*
 609 (*KDD’22*), pp. 3230–3240. ACM, 2022a.

610 Mingjie Li, Zeyan Li, Kanglin Yin, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and Dan Pei. Causal
 611 inference-based root cause analysis for online service systems with intervention recognition. In
 612 *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*,
 613 pp. 3230–3240. ACM, 2022b.

614

615 Chenghao Liu, Wenzhuo Yang, Himanshu Mittal, Manpreet Singh, Doyen Sahoo, and Steven CH
 616 Hoi. Pyrca: A library for metric-based root cause analysis. *arXiv preprint arXiv:2306.11417*,
 617 2023.

618 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 619 itrtransformer: Inverted transformers are effective for time series forecasting. In *Proceedings of the*
 620 *International Conference on Learning Representations (ICLR)*, 2024.

621

622 Ricards Marcinkevičs and Julia E Vogt. Interpretable models for granger causality using self-
 623 explaining neural networks. *arXiv preprint arXiv:2101.07600*, 2021a.

624

625 Ricards Marcinkevičs and Julia E Vogt. Interpretable models for granger causality using self-
 626 explaining neural networks. In *International Conference on Learning Representations*, 2021b.

627

628 Aditya P Mathur and Nils O Tippenhauer. Swat: A water treatment testbed for research and training
 629 on ics security. In *2016 International Workshop on Cyber-Physical Systems for Smart Water*
 630 *Networks (CySWater)*, pp. 31–36. IEEE, 2016.

631

632 Lokesh Nagalapatti, Ashutosh Srivastava, Sunita Sarawagi, and Amit Sharma. Robust root cause di-
 633 agnosis using in-distribution interventions. In *The Thirteenth International Conference on Learn-
 634 ing Representations*, 2025. URL <https://openreview.net/forum?id=111DZY5Nxu>.

635

636 Sasho Nedelkoski, Jasmin Bogatinovski, Ajay Kumar Mandapati, Soeren Becker, Jorge Cardoso,
 637 and Odej Kao. Multi-source distributed system data for ai-powered analytics. In *Service-Oriented*
 638 *and Cloud Computing: 8th IFIP WG 2.14 European Conference, ESOCC 2020, Heraklion, Crete,*
 639 *Greece, September 28–30, 2020, Proceedings 8*, pp. 161–176. Springer, 2020.

640

641 Huasong Shan, Yuan Chen, Haifeng Liu, Yunpeng Zhang, Xiao Xiao, Xiaofeng He, Min Li, and
 642 Wei Ding. ϵ -diagnosis: Unsupervised and real-time diagnosis of small-window long-tail latency
 643 in large-scale microservice platforms. In *The World Wide Web Conference (WWW)*, pp. 3215–
 644 3222, 2019.

645

646 Mingtian Tan, Mike A Merrill, Vinayak Gupta, Tim Althoff, and Thomas Hartvigsen. Are language
 647 models actually useful for time series forecasting? In *Neural Information Processing Systems*
 648 (*NeurIPS*), 2024.

649

650 Shreshth Tuli, Giuliano Casale, and Nicholas R. Jennings. Tranad: Deep transformer networks for
 651 anomaly detection in multivariate time series data. *arXiv preprint arXiv:2201.07284*, 2022.

648 Dongjie Wang, Zhengzhang Chen, Yanjie Fu, Yanchi Liu, and Haifeng Chen. Incremental causal
 649 graph learning for online root cause analysis. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD '23, pp. 2269–2278, New York, NY, USA,
 650 2023. Association for Computing Machinery. ISBN 9798400701030. doi: 10.1145/3580305.
 651 3599392. URL <https://doi.org/10.1145/3580305.3599392>.
 652

653
 654 Hao Wang, Licheng Pan, Zhichao Chen, Degui Yang, Sen Zhang, Yifei Yang, Xinggao Liu, Haoxuan
 655 Li, and Dacheng Tao. Fredf: Learning to forecast in the frequency domain. In *ICLR*, 2025a.
 656

657
 658 Peipeng Wang, Xiuguo Zhang, Yutian Chen, and Zhiying Cao. Unsupervised microservice system
 659 anomaly detection via contrastive multi-modal representation clustering. *Information Processing
 660 and Management*, 62(3):104013, 2025b. ISSN 0306-4573. doi: <https://doi.org/10.1016/j.ipm.2024.104013>. URL <https://www.sciencedirect.com/science/article/pii/S0306457324003728>.
 661

662
 663 Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao. Microrca: Root cause localization of per-
 664 formance issues in microservices. In *NOMS 2020-2020 IEEE/IFIP Network Operations and
 665 Management Symposium*, pp. 1–9. IEEE, 2020.
 666

667
 668 Ruyue Xin, Peng Chen, and Zhiming Zhao. Causalrca: Causal inference based precise fine-grained
 669 root cause localization for microservice applications. *Journal of Systems and Software*, 203:
 670 111724, September 2023. ISSN 0164-1212. doi: 10.1016/j.jss.2023.111724. URL <http://dx.doi.org/10.1016/j.jss.2023.111724>.
 671

672
 673 Z. Xu, A. Zeng, and Q. Xu. Fits: Modeling time series with 10k parameters. In *International
 674 Conference on Learning Representations (ICLR)*, 2024.
 675

676
 677 Kun Yi, Qi Zhang, Wei Fan, Hui He, Liang Hu, Pengyang Wang, Ning An, Longbing Cao, and
 678 Zhendong Niu. FourierGNN: Rethinking multivariate time series forecasting from a pure graph
 679 perspective. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
 680

681
 682 Kun Yi, Jingru Fei, Qi Zhang, Hui He, Shufeng Hao, Defu Lian, and Wei Fan. Filternet: harnessing
 683 frequency filters for time series forecasting. In *Proceedings of the 38th International Confer-
 684 ence on Neural Information Processing Systems*, NIPS '24, Red Hook, NY, USA, 2025. Curran
 685 Associates Inc. ISBN 9798331314385.
 686

687
 688 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Fre-
 689 quency enhanced decomposed transformer for long-term series forecasting. In *Proceedings of the
 690 International Conference on Machine Learning (ICML)*, 2022.
 691

692
 693 **A APPENDIX**
 694

695
 696 **A.1 RELATED WORKS**
 697

698 In this section we provide a comparison of various Root Cause Analysis (RCA) and Anomaly Detec-
 699 tion approaches in Table 1. The table categorizes methods based on their graph structure, attention
 700 mechanisms, interpretability, and key strengths. This comparison highlights the unique features and
 701 advantages of each approach, providing a comprehensive overview of the landscape in this research
 area.

702 Table 1: Related Works Comparison of Generic Time Series Models and Root Cause Analysis
703 Methods
704

705 Method	706 Graph Structure	707 Attention	708 Interpretable	709 Key Strengths
Generic Time Series Models				
Time Domain				
iTransformer Liu et al. (2024)	✗	✓(Linear Self-Attn)	✗	Efficient for long sequences; scalable forecasting
Frequency Domain				
FEDformer Zhou et al. (2022)	✗	✓(Sparse Fourier Attn)	✗	Captures periodic patterns; reduced complexity
FITS Xu et al. (2024)	✗	✗(Frequency MLP)	✗	High-resolution freq modeling; compact design
Time–Frequency Domain				
CrossFuN Bai et al. (2023a)	✗	✗(simple Time–Freq fu- sion)	✗	Fuses temporal and spectral info
DeAnomaly Dou et al. (2025)	✓(Graph)	✓(Cross Time–Freq Attn)	✗	Robust to noise; joint graph + time–freq fusion
Root Cause Analysis Models				
Topology-Based Graph Methods				
MonitorRank Kim et al. (2013)	✓(Call Graph)	✗	✗	PageRank-style ranking; interpretable
MicroRCA Wu et al. (2020)	✓(Topology)	✗	✗	Random walk scoring on anomalous subgraphs
Classical Statistical Techniques				
ε-Diagnosis Shan et al. (2019)	✗	✗	✗	Lightweight; interpretable; efficient
N-Sigma Li et al. (2022a)	✗	✗	✗	Simple thresholding; effective for small anomalies
BARO Landsittel et al. (2020)	✗	✗	✗	Bayesian change-point detection; robust scoring
Causal Inference and Graph Neural Methods				
GVAR Marcinkevič & Vogt (2021b)	✗	✗(Time MLP)	✓	Infers nonlinear Granger causality; interpretable causal effects in time series
CORAL Wang et al. (2023)	✓(Disentangled Causal Graph)	✗	✓	Incremental online RCA; captures state-invariant and dependent dependencies
AERCA Han et al. (2025)	✗	✗(Time MLP)	✓	Models interventions; interpretable
Ours (CrGSTA)	✓(Graph Attn)	✓(Spatio-Temporal Cross Time-Freq Attn)	✓	Scalable; captures long-range dependencies; hybrid domain; GNN+Attn

748
749
750
751 **A.2 MODEL**
752753 In this section, we provide a detailed illustration of our proposed CrGSTA architecture in Figure 7.
754 This figure visually represents the key components and data flow within the model, highlighting the
755 loss functions, and the same graph structure used across time slices for clarity, and similarly the
another single graph used across frequency slices.

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778

779 Figure 7: CrGSTA: Time-Frequency Cross-Attention Graph Spatio-Temporal Autoencoder
780
781

782 A.3 INTUITIVE EXPLANATION OF MODEL EQUATIONS 783

784 A.3.1 ENCODER EQUATIONS 785

786 **Windowing.**

$$787 \mathbf{W}_t = (\mathbf{x}_{t-K+1}, \dots, \mathbf{x}_t) \quad (19)$$

788 This extracts a sliding window of past observations. This allows the model to capture temporal
789 dependencies over the recent history of the multivariate time series.

790 **Base Spatial Graph.**

$$791 \mathbf{H}_{t-k}^{\text{base}} = \text{GNN}(\mathbf{x}_{t-k}) \quad (20)$$

793 This computes pairwise interactions between variables at each lag. Using a graph neural network
794 (GNN) enables the model to learn complex relationships among variables, which is crucial for iden-
795 tifying causal influences in multivariate data.

796 **Time-Domain Attention.**

$$797 \mathbf{A}_t^{\text{time}} = \text{TemporalAttn}([\mathbf{H}_{t-1:t-K}^{\text{base}}]) \quad (21)$$

799 This assigns attention weights to past time steps. This temporal attention mechanism allows the
800 model to focus on the most relevant historical information when inferring exogenous variables.

801 **Frequency-Domain Attention.**

$$802 \mathbf{A}_t^{\text{freq}} = \text{TemporalAttn}([\mathbf{H}_1^{\text{freq}}, \dots, \mathbf{H}_F^{\text{freq}}]) \quad (22)$$

804 This assigns attention weights to frequency components. Studying the frequency domain helps
805 capture periodic patterns and anomalies that may not be evident in the time domain alone. Similar
806 to temporal attention, this mechanism helps the model identify important spectral features that may
807 indicate anomalies or causal factors.

808 **Cross-Attention Fusion.**

$$809 \tilde{\mathbf{H}}^{\text{time}} = \text{CrossAttn}(\mathbf{A}_t^{\text{time}}, \mathbf{A}_t^{\text{freq}}) \quad (23)$$

810 This mixes information between time and frequency. Mixing both the temporal and spectral representations allows the model to leverage complementary information from both domains, enhancing
 811 its ability to detect anomalies and infer causal relationships.
 812

813 **Coefficient Projection**

814 **Projection.**

$$815 \mathbf{C}_{\text{time}} = \text{Linear}(\tilde{\mathbf{H}}^{\text{time}}) \quad (24)$$

816 This converts fused features into coefficient matrices. Specifically, the coefficients represent variable-
 817 to-variable dependencies across lags. This helps identify causal influences between variables (i.e.,
 818 sensors or metrics such as how cpu usage affects memory usage over time).
 819

820 **Lagged Prediction.**

$$821 \hat{\mathbf{x}}_{\text{time}} = \sum_{k=1}^K \mathbf{C}_{\text{time}} \mathbf{x}_{t-k} \quad (25)$$

822 This predicts the next value using past windows. This approach captures autoregressive relationships,
 823 allowing the model to forecast future observations based on learned dependencies.
 824

825 **Combination and Residual.**

$$826 \mathbf{z}_t = \mathbf{x}_t - \hat{\mathbf{x}}_t \quad (26)$$

827 This computes the deviation from prediction. This computed \mathbf{z} helps isolate exogenous factors
 828 not explained by past values. Subsecnently, these exogenous variables are used by the decoder to
 829 reconstruct the original observations.
 830

831 A.3.2 DECODER EQUATIONS

832 **Temporal Attention on Exogenous Inputs.**

$$833 \mathbf{H}_t^{\text{temp}} = \text{TemporalAttn}(\mathbf{H}_{t-K+1:t}^{\text{enc}}) \quad (27)$$

834 This aggregates information across the window. By attending to the sequence of inferred exogenous
 835 variables, the model captures temporal dependencies that are essential for accurate reconstruction of
 836 the original observations.
 837

838 **Reconstruction.**

$$839 \hat{\mathbf{x}}_t = f_{\text{out}}(\mathbf{H}_t^{\text{temp}}) \quad (28)$$

840 This produces the reconstructed output. The function f_{out} maps the aggregated exogenous information
 841 back to the observation space, enabling the model to reconstruct the original multivariate time
 842 series.
 843

844 **Low-Rank Coefficients.**

$$845 \mathbf{C}_t = \mathbf{U} \mathbf{V}^{\top} \quad (29)$$

846 This builds a low-rank interaction matrix. Specifically, the low-rank structure encourages simpler,
 847 more interpretable relationships between exogenous variables and observations.
 848

849 A.4 TRAINING OBJECTIVES

850 **Reconstruction Loss.**

$$851 \mathcal{L}_{\text{recon}} = \sum_t \|\hat{\mathbf{x}}_t - \mathbf{x}_t\|_2^2 \quad (30)$$

852 This penalizes reconstruction errors. For instance, minimizing this loss ensures that the model ac-
 853 curately captures the underlying data distribution, which is crucial for effective root cause analysis.
 854

855 **Sparsity.**

$$856 \mathcal{L}_{\text{sparse}} = \lambda_{\text{enc}} R(\mathbf{\Omega}_t) + \lambda_{\text{dec}} (R(\bar{\mathbf{\Omega}}_t) + R(\bar{\mathbf{\Omega}}'_t)) \quad (31)$$

857 This encourages sparse coefficients. Specifically, this promotes simpler causal structures by penaliz-
 858 ing unnecessary connections between variables, making it easier to identify key root causes.
 859

860 **Smoothness.**

$$861 \mathcal{L}_{\text{smooth}} = \gamma_{\text{enc}} S(\mathbf{\Omega}_{t+1}, \mathbf{\Omega}_t) + \gamma_{\text{dec}} (S(\bar{\mathbf{\Omega}}_{t+1}, \bar{\mathbf{\Omega}}_t) + S(\bar{\mathbf{\Omega}}'_{t+1}, \bar{\mathbf{\Omega}}'_t)) \quad (32)$$

864 This encourages coefficient stability across time. This loss ensures that the inferred relationships do
 865 not fluctuate wildly between consecutive time steps, which is important for maintaining consistent
 866 causal interpretations over time.

867 **KL Term.**

$$868 \quad \mathcal{L}_{\text{KL}} = \frac{1}{2} (\text{tr}(\Sigma_t) + \mu_t^\top \mu_t - d - \log \det \Sigma_t) \quad (33)$$

871 This regularizes the latent space. By constraining the distribution of latent exogenous variables,
 872 this loss helps prevent overfitting and encourages the model to learn meaningful representations that
 873 generalize well to unseen data.

874 **Total Loss.**

$$875 \quad \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{recon}} + \mathcal{L}_{\text{sparse}} + \mathcal{L}_{\text{smooth}} + \mathcal{L}_{\text{KL}} \quad (34)$$

876 This is the final training objective.

877 **A.5 ROOT CAUSE LOCALIZATION**

$$878 \quad 879 \quad 880 \quad z_{t^*}^{(j)} = \frac{z_{t^*}^{(j)} - \mu^{(j)}}{\sigma^{(j)}} \quad (35)$$

883 This standardizes the exogenous variables for anomaly scoring. This approach highlights variables
 884 that deviate significantly from their normal behavior, aiding in the identification of potential root
 885 causes.

886 **A.6 JUSTIFICATION OF ARCHITECTURAL CHOICES.**

887 Each module in Fig. 1 is introduced to align the model’s computations with the underlying Granger-
 888 causal design.

889 **Motivation** Rootcause analysis in multivariate time series requires capturing complex interactions
 890 among variables over time. The architectural choices in CrGSTA are motivated by the need to ef-
 891 fectively model these interactions while ensuring interpretability and scalability. While prior works
 892 have explored interpretability using Granger Causality Marcinkevičs & Vogt (2021b); Han et al.
 893 (2025), their architectural choice lack the scalability of modeling long-range dependencies and the
 894 ability to capture both time and frequency domain information. Specifically, both these prior works
 895 rely on separate MLP per lag, while this allows for the interpretability of the learned coefficients, it
 896 easily becomes intractable when the number of lags increases.

897 **Graph Stdture.** The graph structure captures variable interactions, essential for modeling causal
 898 relationships. This was motivated by prior work demonstrating the effectiveness of graph-based
 899 methods for multivariate time series analysis Wang et al. (2025b); Huang et al. (2023). This design
 900 choice allows for a better representation of the dependencies among variables, which is crucial for
 901 accurate root cause identification.

902 **Frequency Domain.** Incorporating frequency-domain information enables the model to capture pe-
 903 riodic patterns and anomalies that may not be evident in the time domain alone. This dual-domain
 904 approach enhances the model’s ability to detect anomalies and infer causal relationships, as certain
 905 anomalies may manifest more clearly in the spectral representation. This was inspired by recent suc-
 906 cess of prior works on frequency-based time series modeling Xu et al. (2024); Wang et al. (2025a).

907 **Spatial and Temporal Attention.** The spatial attention mechanism allows the model to focus on
 908 the most relevant variables at each time step, while the temporal attention captures dependencies
 909 across time. This design choice allows the model to effectively learn complex interactions in both
 910 space and time, which is essential for accurate root cause analysis. Additionally, it allows for a
 911 more parameter efficient representation compared to using separate attention mechanisms for each
 912 variable or time step while allowing for an interpretable attention weights that can be used for root
 913 cause identification. This has been shown to be effective in prior works Huang et al. (2023).

914 **Encoder-Decoder Structure.** The encoder-decoder architecture separates the tasks of inferring
 915 exogenous variables and reconstructing observations. This enables the model to learn a more struc-
 916 tured representation of the data, facilitating the identification of root causes. It builds on the success

918 of prior works Han et al. (2025); Wang et al. (2025b) that have demonstrated the effectiveness of
 919 this structure for anomaly detection and root cause analysis.
 920

921 **Cross-Attention Fusion.** This innovative module allows the model to integrate information from
 922 both time and frequency domains. It has been motivated by prior works Bai et al. (2023a); Dou et al.
 923 (2025) that have shown the benefits of combining temporal and spectral information for improved
 924 anomaly detection.
 925

Table 2: CrGSTA Modules, Their Inspirations, and Motivations

Module	Inspiring Works	Why It Was Used
Graph Structure (Shared GNN)	Wang et al. (2025b); Huang et al. (2023)	Captures variable interactions and causal dependencies; provides a scalable structural prior replacing per-lag MLPs; improves interpretability and stability across domains.
Frequency-Domain Module	Xu et al. (2024); Wang et al. (2025a)	Extracts periodic and oscillatory patterns not visible in raw time series; improves anomaly detection sensitivity and complements time-domain reasoning.
Spatial & Temporal Attention	Huang et al. (2023)	Learns variable relevance and long-range temporal structure; more parameter-efficient than per-variable attention; provides interpretable weights for RCA.
Encoder–Decoder Structure	Han et al. (2025); Wang et al. (2025b)	Separates exogenous-variable inference from reconstruction; produces more structured latent representations and improves causal interpretability during anomalies.
Cross-Attention Fusion	Bai et al. (2023a); Dou et al. (2025)	Enables bidirectional fusion between temporal and spectral representations; captures anomalies that manifest differently across domains; enhances robustness.

A.7 EVALUATION DATASETS AND METRICS

A.7.1 DATASET

Table 3: Statistics of datasets.

Dataset	Training Steps	Test Sequences ($ X $)	Avg. Length (T)	Avg. Root Vars
Synthetic Datasets				
Nonlinear (20) Marcinkevičs & Vogt (2021a)	5,000	100	500	5.25
Lotka–Volterra (40) Marcinkevičs & Vogt (2021a)	40,000	100	2,000	30.75
Real-World Datasets				
SWat (51) Mathur & Tippenhauer (2016)	49,500	20	51	13.35
MSDS (10) Nedelkoski et al. (2020)	29,268	4,255	21	3.05

922 **Lotka–Volterra (Extended).** Extending the work of Marcinkevičs & Vogt Marcinkevičs & Vogt
 923 (2021a) and its implementation in Han et al. (2025), we introduce additional nonlinearities, stochastic
 924 variability, and more realistic adversarial perturbations. Instead of the original formulation
 925

$$\frac{dx^{(i)}}{dt} = \alpha x^{(i)} - \beta \sum_{j \in Pa(x^{(i)})} y^{(j)} - \eta(x^{(i)})^2, \quad (36)$$

$$\frac{dy^{(j)}}{dt} = \delta y^{(j)} \sum_{k \in Pa(y^{(j)})} x^{(k)} - \rho y^{(j)}, \quad (37)$$

$$x_t^{(i)} = x_t^{(i)} + 10 \epsilon_t^{(i)}, \quad y_t^{(j)} = y_t^{(j)} + 10 \epsilon_t^{(j)}, \quad 1 \leq i, j \leq p, \quad (38)$$

972 we build the extended version as
 973

$$\frac{dx^{(i)}}{dt} = \alpha x^{(i)} - \beta \sum_{j \in Pa(x^{(i)})} y^{(j)} - \eta(x^{(i)})^2 + \cos(x^{(i)} + 1) + 0.5 \sin(x^{(i)}) + \sigma \mathcal{N}(0, 1), \quad (39)$$

$$\frac{dy^{(j)}}{dt} = \delta y^{(j)} \sum_{k \in Pa(y^{(j)})} x^{(k)} - \rho y^{(j)} + \cos(y^{(j)} + 1) + 0.5 \sin(y^{(j)}) + \sigma \mathcal{N}(0, 1), \quad (40)$$

$$x_t^{(i)} = x_t^{(i)} + 2 \epsilon_t^{(i)}, \quad y_t^{(j)} = y_t^{(j)} + 2 \epsilon_t^{(j)}, \quad 1 \leq i, j \leq p. \quad (41)$$

982 Here, $x^{(i)}$ and $y^{(j)}$ denote prey and predator populations, respectively; $\alpha, \beta, \eta, \delta, \rho$ are interaction
 983 parameters; σ introduces stochastic fluctuations; and $\epsilon_t^{(\cdot)}$ represents adversarial perturbations. By
 984 replacing the anomaly multiplier of 10 with 2 and enriching the dynamics with sinusoidal and noise
 985 terms, the anomalies become more subtle and thus better reflect realistic system behavior. Adding
 986 the cos and sin terms introduces richer nonlinear interactions, which better capture oscillatory and
 987 complex temporal behaviors often observed in ecological or real-world systems. These nonlinear
 988 contributions, combined with stochastic fluctuations, allow the model to exhibit more diverse dy-
 989 namics, including variable growth rates, oscillations, and subtle chaotic effects. This makes the
 990 resulting datasets more challenging for anomaly detection and causal inference tasks, providing a
 991 closer approximation to realistic scenarios than the original Lotka–Volterra formulation.

992 **Non–Linear (Extended).** Extending standard synthetic autoregressive formulations and its im-
 993 plementation in Han et al. (2025), we construct a significantly richer nonlinear generator that incor-
 994 porates higher-order temporal dependencies, expressive nonlinear interactions, correlated stochastic
 995 noise, and a causal anomaly mechanism. Whereas the baseline model follows a simple linear recur-
 996 rence,

$$x_t^{(i)} = \sum_{l=1}^L A_{i:}^{(l)} x_{t-l} + \epsilon_t^{(i)}, \quad (42)$$

1001 our extended formulation introduces nonlinearity, lag-specific mixing, and structured variability:

$$x_t^{(i)} = \sum_{l=1}^5 A_{i:}^{(l)} \left(\sin(x_{t-l} + 0.5) + \log(1 + |x_{t-l}|) \right) + \epsilon_t^{(i)}. \quad (43)$$

1006 Here each $A^{(l)}$ is obtained by scaling the underlying causal adjacency matrix with lag-dependent
 1007 coefficients, enabling distinct temporal effects across the previous five time steps. The combination
 1008 of $\sin(\cdot)$ and $\log(1 + |\cdot|)$ introduces oscillatory, amplitude-dependent, and mildly chaotic behavior,
 1009 substantially increasing the complexity of the normal data compared to classical linear autoregres-
 1010 sive processes.

1011 We also introduce a causal anomaly mechanism that allows perturbations to persist and propagate
 1012 through the system. For non-causal anomalies, deviations are added directly and instantaneously to
 1013 the noise:

$$\epsilon_t^{(i)} \leftarrow \epsilon_t^{(i)} + a^{(i)}, \quad t \in \mathcal{T}_{\text{anom}}. \quad (44)$$

1017 To model anomalies that spread through the nonlinear temporal dynamics, we introduce a latent
 1018 anomaly effect z_t with exponential decay:

$$z_t = 0.95 z_{t-1} + a, \quad t \in \mathcal{T}_{\text{anom}}, \quad (45)$$

$$z_t = 0.95 z_{t-1}, \quad t \notin \mathcal{T}_{\text{anom}}, \quad (46)$$

$$\epsilon_t \leftarrow \epsilon_t + z_t. \quad (47)$$

1024 Injecting the perturbation into the noise—rather than directly modifying the state—forces the
 1025 anomaly to propagate through the nonlinear transformation and multi-lag mixing structure, pro-
 ducing cascading effects that resemble fault propagation in realistic systems.

1026 A.7.2 EVALUATION METRICS
1027

1028 **Recall at Top- k (AC@ k).** Following prior work Ikram et al. (2022); Li et al. (2022b), we evaluate
1029 root cause identification using the *recall at top- k* metric, denoted AC@ k . This metric measures
1030 the likelihood that the true root causes appear within the top- k ranked variables for each anomalous
1031 sequence.

1032 Formally, let $X \in \mathcal{X}$ denote an anomalous sequence, $R_X[k]$ the top- k ranked variables produced by
1033 the model, and $V_X^{(\text{RC})}$ the ground-truth root cause set. Then,
1034

$$1036 \text{AC}@k = \frac{1}{|\mathcal{X}|} \sum_{X \in \mathcal{X}} \frac{|V_X^{(\text{RC})} \cap \{R_X[1], \dots, R_X[k]\}|}{\min(k, |V_X^{(\text{RC})}|)}. \quad (48)$$

1040 This definition ensures normalization when multiple root causes exist, by dividing by
1041 $\min(k, |V_X^{(\text{RC})}|)$.
1042

1044 **Average Recall (Avg@ k).** To summarize overall performance across different cutoffs, we also
1045 report the averaged metric:
1046

$$1047 \text{Avg}@k = \frac{1}{k} \sum_{i=1}^k \text{AC}@i. \quad (49)$$

1050 This provides a more comprehensive measure than a single cutoff.
1051

1053 **Multiple Interventions.** When a sequence contains multiple exogenous interventions, we treat it
1054 as a single root cause sequence, following the *point-adjust evaluation* protocol Koh et al. (2025);
1055 Bai et al. (2023b). This is consistent with the dominant evaluation setup for multivariate time series
1056 anomaly detection and root cause analysis.
1057

1058 **Model Efficiency.** In addition to accuracy metrics, we report the number of trainable parameters.
1059 This is particularly relevant for encoder-decoder architectures, where performance improvements
1060 may arise from increased capacity rather than architectural design. Reporting parameter counts
1061 allows us to assess the trade-off between accuracy and efficiency.
1062

1063 A.8 IMPLEMENTATION DETAILS
1064

1066 In this section, we summarize the key configurations used in our experiments (Tables 5, 4, and 6
1067 and 7); full details are available in our released code. For AERCA, we adopt the original imple-
1068 mentation Han et al. (2025) with its reported hyperparameters. For our CrGSTA model, we set the
1069 spatial-temporal attention dimension to 64 on Lotka–Volterra and 256 on SWaT, with 2 attention
1070 heads in both cases, we then use the same dimensions for other attention based baselines for a fair
1071 comparison. This approach is followed for Nonlinear and MSDS (albeit with different attention
1072 dimensions due to dataset size). For RQ3 ablations, we reduced the number of heads to isolate the
1073 impact of architectural choices. The decoder employs a lightweight self-attention layer with 64 hid-
1074 den dimensions and 2 heads (32 for Lotka–Volterra). All models are trained with Adam (learning
1075 rate 10^{-4}).
1076

1077 These parameter choices were informed by preliminary exploration and prior work, striking a bal-
1078 ance between model expressiveness and computational efficiency. Rather than maximizing raw
1079 accuracy via larger dimensions or more heads, we deliberately used moderate settings to better
highlight the architectural contributions of CrGSTA. Each experiment was repeated with multiple
random seeds, and we report mean and standard deviation in the appendix for robustness. We further
mention the motivations behind certain hyperparameter choices below after the tables.
1079

Table 4: Experiment Configurations for Lotka–Volterra Benchmark

Key Parameter	FEDformer ¶	iTransformer ¶	CuasalRCA [†]	AERCA* GVAR**	CrGSTA
Learning Rate	1e-4	1e-4	1e-4	1e-4	1e-4
Attention Dim	64	64	–	–	(spatial 64) (temporal 64) (decoder 50)
Attention Heads	2	2	–	–	(spatial 2) (temporal 2) (decoder 2)
MLP layers (dim)	–	–	256	2 layers (50 nodes) per lag	–
Num Variables	40	40	40	20	40
Epochs	100	100	100	5000 (with early stopping)	100

Table 5: Experiment Configurations for SWaT Benchmark

Key Parameter	FEDformer ¶	iTransformer ¶	CuasalRCA [†]	AERCA* GVAR**	CrGSTA
Learning Rate	1e-4	1e-4	1e-4	1e-6	1e-4
Attention Dim	256	256	–	–	(spatial 256) (temporal 256) (decoder 64)
Attention Heads	2	2	–	–	(spatial 2) (temporal 2) (decoder 2)
MLP layers (dim)	–	–	256	8 layers (1000 nodes) per lag	–
Epochs	1000	1000	1000	5000 (with early stopping)	1000

Table 6: Experiment Configurations for NonLinear Benchmark

Key Parameter	FEDformer ¶	iTransformer ¶	CuasalRCA [†]	AERCA* GVAR**	CrGSTA
Learning Rate	1e-4	1e-4	1e-4	1e-4	1e-4
Attention Dim	64	64	–	–	(spatial 64) (temporal 64) (decoder 50)
Attention Heads	2	2	–	–	(spatial 2) (temporal 2) (decoder 2)
MLP layers (dim)	–	–	256	8 layers (50 nodes) per lag	–
Num Variables	20	20	20	20	20
Epochs	100	100	100	100	100

Table 7: Experiment Configurations for MSDS Benchmark

Key Parameter	FEDformer ¶	iTransformer ¶	CausalRCA†	AERCA* GVAR**	CrGSTA
Learning Rate	1e-4	1e-4	1e-4	1e-6	1e-4
Attention Dim	16	16	–	–	(spatial 16) (temporal 16) (decoder 50)
Attention Heads	2	2	–	–	(spatial 2) (temporal 2) (decoder 2)
MLP layers (dim)	–	–	256	4 layers (1000 nodes) per lag	–
Num Variables	10	10	10	10	10
Epochs	1000	1000	1000	5000 (with early stopping)	1000

A.8.1 MOTIVATIONS FOR SPECIFIC PARAMETER CHOICES

FEDformer ¶, iTransformer ¶: For FEDformer and iTransformer, for fair comparison, we used the same attention dimension and number of heads as CrGSTA on each dataset. This allows for a more direct comparison of the architectural choices rather than differences in model capacity.

CausalRCA†: CausalRCA architecture is relatively simple compared to AERCA and CrGSTA. It is composed of two linear layers with a ReLU activation in between. So for fair comparison, we increased the hidden dimension to 256, to increase the model capacity, to be competitive in performance with other models. This design choice allowed CausalRCA to be competitive in performance especially for synthetic datasets, such as Lotka–Volterra and Non-Linear datasets.

AERCA*: AERCA parameters are adopted from the original implementation Han et al. (2025). We note that AERCA uses a separate MLP per lag to model temporal dependencies, which limits scalability to longer windows. This design choice, which has been inherited from GVAR Marcinkevičs & Vogt (2021b), results in a linear increase in the number of parameters as the window size increases. This has been the motivation for our CrGSTA model to use a shared graph structure across time lags, which allows for a more parameter efficient representation.

GVAR:** GVAR architecture Marcinkevičs & Vogt (2021b) is an encoder that uses a separate MLP per lag to model temporal dependencies. AERCA builds on this by adding two decoders built using the same per-lag MLP structure. Moreover, AERCA added KL regularization, decoder smoothness, and decoder sparsity losses to the training objective. For the reconstruction loss, GVAR reconstructs the whole time series window, while AERCA reconstructs the shifted window due to its encoder-decoder structure. To ensure a fair comparison, we implemented GVAR version using the encoder architecture as AERCA, while removing the decoder modules and their associated losses from the training objective including the KL regularization, and used for reconstruction the whole time series window as in the original GVAR.

A.9 FULL RESULTS

In this section, we provide the set of full tables and figures for the experiments in RQ1, RQ2 and RQ3 from the main paper. Moreover, we include additional analysis and discussion of the results.

A.9.1 RQ1 (TEMPORAL DIMENSION) - FULL TABLES

In this experiment, we investigate the impact of varying the temporal window size on root cause identification performance. We evaluate a range of window sizes from 1 to 12 time steps, assessing how this parameter influences the model’s ability to accurately identify root causes in both the Lotka–Volterra, Non-Linear SWaT and MSDS datasets.

1188 A.9.1.1 Parameter Scaling.

1189
 1190 Figure 8 illustrates how the number of trainable parameters scales with increasing temporal window sizes for all the different datasets. Notably, CrGSTA maintains a relatively stable parameter
 1191 count across window sizes, demonstrating its efficiency in handling longer temporal contexts with-
 1192 out a significant increase in model complexity. In contrast, GVAR and AERCA exhibit a linear growth in parameters as the window size increases, which can lead to scalability challenges for
 1193 larger windows. This efficiency of CrGSTA is particularly advantageous for practical applications
 1194 where computational resources may be limited.

(a) Lotka Volterra Parameters

(b) SWAT Parameters

(c) Non-Linear Parameters

(d) MSDS Parameters

Figure 8: Parameter scaling for Lotka Volterra (left) and SWAT (right) for temporal scaling.

1232 A.9.1.2 Full Results Tables

1233
 1234 In this section, we present the complete results for the temporal window size experiments on the
 1235 different datasets. The tables below summarize the performance of various models across a range of
 1236 window sizes, providing detailed insights into how temporal context influences root cause identifi-
 1237 cation accuracy. Specifically, we report the AC@1, AC@3, AC@5, AC@10, and Avg@10 metrics
 1238 for each model and window size configuration. Moreover, we include the number of trainable pa-
 1239 rameters for each model to facilitate a comprehensive comparison of performance relative to model
 1240 complexity. Due to the space limitations in the main paper, we include the detailed analysis of both
 1241 Non-Linear and MSDS datasets here, while the Lotka Volterra results and MSDS are presented in
 the main paper.

1242	scheme	Params	window size	AC@1	AC@3	AC@5	AC@10	Avg@10
LOTKA VOLTERRA								
1245	iTransformer	0.052M	10	0.060 ± 0.010	0.089 ± 0.004	0.120 ± 0.005	0.234 ± 0.006	0.139 ± 0.002
1246	iTransformer	0.052M	7	0.090 ± 0.017	0.070 ± 0.012	0.101 ± 0.010	0.222 ± 0.018	0.128 ± 0.008
1247	FEDformer	0.2M	12	0.100 ± 0.030	0.099 ± 0.004	0.133 ± 0.008	0.268 ± 0.021	0.162 ± 0.012
1248	FEDformer	0.1M	1	0.103 ± 0.015	0.102 ± 0.008	0.115 ± 0.010	0.233 ± 0.007	0.143 ± 0.003
1249	iTransformer	0.051M	5	0.107 ± 0.032	0.100 ± 0.012	0.109 ± 0.010	0.234 ± 0.014	0.146 ± 0.008
1250	iTransformer	0.052M	12	0.107 ± 0.032	0.090 ± 0.006	0.122 ± 0.007	0.219 ± 0.005	0.140 ± 0.002
1251	FEDformer	0.1M	7	0.120 ± 0.046	0.106 ± 0.022	0.129 ± 0.016	0.278 ± 0.011	0.168 ± 0.013
1252	RCD	0.000M	1	0.120 ± 0.000	0.150 ± 0.000	0.157 ± 0.000	0.267 ± 0.000	0.185 ± 0.000
1253	RCD	0.000M	5	0.120 ± 0.000	0.150 ± 0.000	0.157 ± 0.000	0.267 ± 0.000	0.185 ± 0.000
1254	RCD	0.000M	7	0.120 ± 0.000	0.150 ± 0.000	0.157 ± 0.000	0.267 ± 0.000	0.185 ± 0.000
1255	RCD	0.000M	10	0.120 ± 0.000	0.150 ± 0.000	0.157 ± 0.000	0.267 ± 0.000	0.185 ± 0.000
1256	RCD	0.000M	12	0.120 ± 0.000	0.150 ± 0.000	0.157 ± 0.000	0.267 ± 0.000	0.185 ± 0.000
1257	iTransformer	0.051M	1	0.127 ± 0.015	0.112 ± 0.013	0.139 ± 0.005	0.249 ± 0.016	0.166 ± 0.012
1258	FEDformer	0.2M	10	0.137 ± 0.055	0.111 ± 0.023	0.132 ± 0.014	0.271 ± 0.011	0.168 ± 0.018
1259	FEDformer	0.1M	5	0.140 ± 0.036	0.120 ± 0.017	0.142 ± 0.013	0.275 ± 0.028	0.175 ± 0.006
1260	Epsilon	0.000M	1	0.150 ± 0.000	0.113 ± 0.000	0.145 ± 0.000	0.243 ± 0.000	0.167 ± 0.000
1261	Epsilon	0.000M	5	0.150 ± 0.000	0.113 ± 0.000	0.145 ± 0.000	0.243 ± 0.000	0.167 ± 0.000
1262	Epsilon	0.000M	7	0.150 ± 0.000	0.113 ± 0.000	0.145 ± 0.000	0.243 ± 0.000	0.167 ± 0.000
1263	Epsilon	0.000M	10	0.150 ± 0.000	0.113 ± 0.000	0.145 ± 0.000	0.243 ± 0.000	0.167 ± 0.000
1264	Epsilon	0.000M	12	0.150 ± 0.000	0.113 ± 0.000	0.145 ± 0.000	0.243 ± 0.000	0.167 ± 0.000
1265	GVAR	1.0M	12	0.421 ± 0.037	0.334 ± 0.016	0.362 ± 0.018	0.558 ± 0.022	0.426 ± 0.021
1266	GVAR	0.9M	10	0.483 ± 0.045	0.366 ± 0.038	0.390 ± 0.026	0.586 ± 0.016	0.459 ± 0.024
1267	GVAR	0.6M	7	0.560 ± 0.011	0.418 ± 0.006	0.436 ± 0.019	0.634 ± 0.012	0.510 ± 0.011
1268	GVAR	0.4M	5	0.641 ± 0.016	0.495 ± 0.004	0.514 ± 0.009	0.704 ± 0.008	0.590 ± 0.007
1269	AERCA	0.3M	1	0.740 ± 0.017	0.524 ± 0.015	0.488 ± 0.018	0.662 ± 0.003	0.584 ± 0.010
1270	CrGSTA	1.0M	1	0.750 ± 0.026	0.520 ± 0.019	0.481 ± 0.023	0.648 ± 0.007	0.576 ± 0.014
1271	GVAR	0.086M	1	0.763 ± 0.016	0.547 ± 0.011	0.531 ± 0.009	0.705 ± 0.007	0.621 ± 0.008
1272	CrGSTA	1.0M	5	0.770 ± 0.030	0.524 ± 0.032	0.493 ± 0.010	0.658 ± 0.004	0.590 ± 0.012
1273	CrGSTA	1.0M	12	0.770 ± 0.046	0.513 ± 0.018	0.486 ± 0.012	0.661 ± 0.013	0.585 ± 0.017
1274	CrGSTA	1.0M	10	0.880 ± 0.028	0.663 ± 0.009	0.589 ± 0.014	0.748 ± 0.005	0.694 ± 0.003
1275	CrGSTA	1.0M	7	0.930 ± 0.028	0.753 ± 0.000	0.682 ± 0.011	0.845 ± 0.004	0.782 ± 0.008
1276	AERCA	3.1M	12	0.930 ± 0.014	0.703 ± 0.014	0.666 ± 0.004	0.805 ± 0.010	0.758 ± 0.003
1277	AERCA	2.6M	10	0.935 ± 0.007	0.735 ± 0.012	0.669 ± 0.022	<u>0.817 ± 0.006</u>	0.769 ± 0.007
1278	causalrca	0.004M	1	0.963 ± 0.004	0.742 ± 0.011	0.642 ± 0.007	0.763 ± 0.002	0.745 ± 0.005
1279	causalrca	0.004M	5	0.963 ± 0.004	0.741 ± 0.011	0.642 ± 0.007	0.762 ± 0.003	0.745 ± 0.005
1280	causalrca	0.004M	7	0.963 ± 0.004	0.742 ± 0.011	0.641 ± 0.007	0.762 ± 0.003	0.745 ± 0.006
1281	causalrca	0.004M	10	0.963 ± 0.004	0.742 ± 0.011	0.641 ± 0.007	0.762 ± 0.002	0.745 ± 0.005
1282	AERCA	0.004M	12	0.963 ± 0.004	0.742 ± 0.011	0.641 ± 0.007	0.762 ± 0.003	0.745 ± 0.005
1283	AERCA	1.8M	7	0.970 ± 0.026	<u>0.764 ± 0.031</u>	<u>0.697 ± 0.023</u>	0.814 ± 0.026	<u>0.791 ± 0.017</u>
1284	AERCA	1.3M	5	0.977 ± 0.006	0.788 ± 0.007	0.717 ± 0.010	0.816 ± 0.008	0.803 ± 0.003

Table 8: RQ1 Lotka Windows

scheme	Params	window size	AC@1	AC@3	AC@5	AC@10	Avg@10
SWAT							
GVAR	116.0M	12	-	-	-	-	-
AERCA	144.9M	5	-	-	-	-	-
AERCA	202.9M	7	-	-	-	-	-
AERCA	289.9M	10	-	-	-	-	-
AERCA	347.9M	12	-	-	-	-	-
Epsilon	0.000M	5	0.000 \pm 0.000	0.100 \pm 0.000	0.100 \pm 0.000	0.300 \pm 0.000	0.140 \pm 0.000
Epsilon	0.000M	12	0.000 \pm 0.000	0.025 \pm 0.000	0.025 \pm 0.000	0.275 \pm 0.000	0.070 \pm 0.000
RCD	0.000M	1	0.000 \pm 0.000	0.000 \pm 0.000	0.000 \pm 0.000	0.300 \pm 0.000	0.100 \pm 0.000
RCD	0.000M	5	0.000 \pm 0.000	0.000 \pm 0.000	0.000 \pm 0.000	0.300 \pm 0.000	0.100 \pm 0.000
RCD	0.000M	7	0.000 \pm 0.000	0.000 \pm 0.000	0.000 \pm 0.000	0.300 \pm 0.000	0.100 \pm 0.000
RCD	0.000M	10	0.000 \pm 0.000	0.000 \pm 0.000	0.000 \pm 0.000	0.300 \pm 0.000	0.100 \pm 0.000
RCD	0.000M	12	0.000 \pm 0.000	0.000 \pm 0.000	0.000 \pm 0.000	0.300 \pm 0.000	0.100 \pm 0.000
iTransformer	0.8M	10	0.031 \pm 0.002	0.116 \pm 0.008	0.215 \pm 0.008	0.387 \pm 0.014	0.208 \pm 0.002
iTransformer	0.8M	7	0.043 \pm 0.000	0.108 \pm 0.009	0.170 \pm 0.013	0.417 \pm 0.015	0.206 \pm 0.004
iTransformer	0.8M	12	0.044 \pm 0.002	0.098 \pm 0.007	0.215 \pm 0.005	0.364 \pm 0.006	0.203 \pm 0.002
Epsilon	0.000M	7	0.050 \pm 0.000	0.075 \pm 0.000	0.075 \pm 0.000	0.375 \pm 0.000	0.110 \pm 0.000
Epsilon	0.000M	10	0.050 \pm 0.000	0.100 \pm 0.000	0.100 \pm 0.000	0.300 \pm 0.000	0.142 \pm 0.000
FEDformer	2.4M	12	0.054 \pm 0.000	0.058 \pm 0.000	0.109 \pm 0.003	0.235 \pm 0.040	0.124 \pm 0.008
causalrca	0.007M	7	0.058 \pm 0.029	0.084 \pm 0.035	0.122 \pm 0.031	0.261 \pm 0.007	0.148 \pm 0.022
FEDformer	2.2M	10	0.060 \pm 0.000	0.061 \pm 0.001	0.113 \pm 0.000	0.278 \pm 0.010	0.134 \pm 0.003
FEDformer	1.9M	7	0.064 \pm 0.000	0.068 \pm 0.000	0.115 \pm 0.006	0.292 \pm 0.029	0.142 \pm 0.003
causalrca	0.007M	5	0.069 \pm 0.037	0.109 \pm 0.040	0.127 \pm 0.038	0.357 \pm 0.029	0.178 \pm 0.031
FEDformer	1.9M	5	0.070 \pm 0.000	0.083 \pm 0.004	0.133 \pm 0.004	0.297 \pm 0.028	0.152 \pm 0.005
iTransformer	0.8M	5	0.073 \pm 0.010	0.143 \pm 0.004	0.250 \pm 0.012	0.498 \pm 0.013	0.267 \pm 0.004
Epsilon	0.000M	1	0.100 \pm 0.000	0.150 \pm 0.000	0.150 \pm 0.000	0.350 \pm 0.000	0.170 \pm 0.000
causalrca	0.007M	1	0.117 \pm 0.035	0.164 \pm 0.036	0.197 \pm 0.045	0.294 \pm 0.027	0.214 \pm 0.031
AERCA	29.0M	1	0.150 \pm 0.045	0.250 \pm 0.045	0.317 \pm 0.026	0.342 \pm 0.038	0.289 \pm 0.004
iTransformer	0.8M	1	0.150 \pm 0.060	0.217 \pm 0.067	0.279 \pm 0.099	0.400 \pm 0.117	0.285 \pm 0.083
GVAR	9.7M	1	0.167 \pm 0.021	0.282 \pm 0.059	0.341 \pm 0.054	0.475 \pm 0.098	0.348 \pm 0.052
causalrca	0.007M	10	0.185 \pm 0.017	0.239 \pm 0.003	0.248 \pm 0.014	0.351 \pm 0.021	0.263 \pm 0.011
FEDformer	1.6M	1	0.208 \pm 0.019	0.325 \pm 0.000	0.325 \pm 0.000	0.498 \pm 0.039	0.349 \pm 0.008
causalrca	0.007M	12	0.209 \pm 0.005	0.237 \pm 0.000	0.242 \pm 0.000	0.313 \pm 0.011	0.251 \pm 0.002
CrGSTA	8.5M	1	0.225 \pm 0.104	0.275 \pm 0.061	0.333 \pm 0.041	0.417 \pm 0.054	0.327 \pm 0.045
CrGSTA	8.5M	12	0.275 \pm 0.028	0.369 \pm 0.036	0.415 \pm 0.052	0.469 \pm 0.058	0.404 \pm 0.046
GVAR	48.3M	5	0.277 \pm 0.024	0.388 \pm 0.024	0.419 \pm 0.039	0.521 \pm 0.051	0.429 \pm 0.026
CrGSTA	8.5M	5	0.282 \pm 0.056	0.361 \pm 0.035	0.366 \pm 0.035	0.412 \pm 0.078	0.368 \pm 0.042
GVAR	67.6M	7	0.285 \pm 0.020	0.411 \pm 0.028	0.458 \pm 0.023	0.564 \pm 0.038	0.462 \pm 0.027
CrGSTA	8.5M	10	0.305 \pm 0.047	0.397 \pm 0.065	0.428 \pm 0.065	0.472 \pm 0.056	0.418 \pm 0.057
CrGSTA	8.5M	7	0.308 \pm 0.037	0.396 \pm 0.034	0.433 \pm 0.030	0.488 \pm 0.054	0.426 \pm 0.031
GVAR	96.6M	10	0.339\pm0.004	0.462\pm0.019	0.502\pm0.037	0.592\pm0.039	0.502\pm0.025

Table 9: RQ1 Swat Windows

1350	scheme	Params	window size	AC@1	AC@3	AC@5	AC@10	Avg@10
1351	NONLINEAR							
1352	Epsilon	0.000M	1	0.180 ± 0.000	0.307 ± 0.000	0.341 ± 0.000	0.530 ± 0.000	0.359 ± 0.000
1353	Epsilon	0.000M	3	0.180 ± 0.000	0.307 ± 0.000	0.341 ± 0.000	0.530 ± 0.000	0.359 ± 0.000
1354	Epsilon	0.000M	5	0.180 ± 0.000	0.307 ± 0.000	0.341 ± 0.000	0.530 ± 0.000	0.359 ± 0.000
1355	Epsilon	0.000M	7	0.180 ± 0.000	0.307 ± 0.000	0.341 ± 0.000	0.530 ± 0.000	0.359 ± 0.000
1356	Epsilon	0.000M	10	0.180 ± 0.000	0.307 ± 0.000	0.341 ± 0.000	0.530 ± 0.000	0.359 ± 0.000
1357	FEDformer	0.1M	5	0.217 ± 0.018	0.262 ± 0.013	0.281 ± 0.010	0.429 ± 0.012	0.306 ± 0.009
1358	iTransformer	0.051M	5	0.225 ± 0.012	0.262 ± 0.006	0.304 ± 0.005	0.453 ± 0.006	0.322 ± 0.002
1359	FEDformer	0.1M	10	0.230 ± 0.031	0.255 ± 0.018	0.294 ± 0.016	0.480 ± 0.013	0.328 ± 0.011
1360	RCD	0.000M	1	0.230 ± 0.000	0.250 ± 0.000	0.286 ± 0.000	0.519 ± 0.000	0.337 ± 0.000
1361	RCD	0.000M	3	0.230 ± 0.000	0.250 ± 0.000	0.286 ± 0.000	0.519 ± 0.000	0.337 ± 0.000
1362	RCD	0.000M	5	0.230 ± 0.000	0.250 ± 0.000	0.286 ± 0.000	0.519 ± 0.000	0.337 ± 0.000
1363	RCD	0.000M	7	0.230 ± 0.000	0.250 ± 0.000	0.286 ± 0.000	0.519 ± 0.000	0.337 ± 0.000
1364	RCD	0.000M	10	0.230 ± 0.000	0.250 ± 0.000	0.286 ± 0.000	0.519 ± 0.000	0.337 ± 0.000
1365	FEDformer	0.1M	3	0.235 ± 0.013	0.312 ± 0.006	0.365 ± 0.005	0.536 ± 0.011	0.387 ± 0.005
1366	FEDformer	0.1M	7	0.250 ± 0.024	0.257 ± 0.016	0.292 ± 0.011	0.469 ± 0.015	0.324 ± 0.005
1367	iTransformer	0.052M	7	0.251 ± 0.026	0.245 ± 0.019	0.282 ± 0.019	0.463 ± 0.017	0.319 ± 0.014
1368	iTransformer	0.051M	1	0.253 ± 0.057	0.280 ± 0.039	0.326 ± 0.020	0.507 ± 0.028	0.357 ± 0.028
1369	iTransformer	0.052M	10	0.284 ± 0.028	0.277 ± 0.013	0.302 ± 0.013	0.462 ± 0.014	0.337 ± 0.008
1370	iTransformer	0.051M	3	0.307 ± 0.012	0.311 ± 0.006	0.357 ± 0.006	0.514 ± 0.004	0.383 ± 0.002
1371	FEDformer	0.1M	1	0.317 ± 0.009	0.285 ± 0.004	0.305 ± 0.005	0.497 ± 0.005	0.352 ± 0.001
1372	AERCA	1.2M	10	0.322 ± 0.057	0.348 ± 0.039	0.388 ± 0.027	0.565 ± 0.022	0.416 ± 0.027
1373	AERCA	0.4M	3	0.337 ± 0.064	0.364 ± 0.035	0.391 ± 0.035	0.565 ± 0.044	0.424 ± 0.039
1374	AERCA	0.6M	5	0.337 ± 0.072	0.349 ± 0.040	0.393 ± 0.043	0.568 ± 0.036	0.423 ± 0.043
1375	AERCA	0.8M	7	0.341 ± 0.043	0.342 ± 0.040	0.382 ± 0.040	0.557 ± 0.038	0.416 ± 0.036
1376	GVAR	0.4M	10	0.360 ± 0.040	0.376 ± 0.036	0.406 ± 0.027	0.569 ± 0.024	0.434 ± 0.026
1377	GVAR	0.2M	5	0.368 ± 0.038	0.366 ± 0.041	0.383 ± 0.033	0.537 ± 0.032	0.417 ± 0.033
1378	GVAR	0.1M	3	0.387 ± 0.071	0.387 ± 0.047	0.412 ± 0.042	0.570 ± 0.044	0.444 ± 0.047
1379	AERCA	0.1M	1	0.394 ± 0.034	0.381 ± 0.036	0.429 ± 0.039	0.606 ± 0.030	0.464 ± 0.030
1380	GVAR	0.3M	7	0.395 ± 0.058	0.377 ± 0.035	0.406 ± 0.025	0.557 ± 0.030	0.434 ± 0.026
1381	CrGSTA	0.4M	1	0.444 ± 0.031	0.433 ± 0.026	0.463 ± 0.016	0.609 ± 0.016	0.488 ± 0.016
1382	CrGSTA	0.4M	10	0.467 ± 0.059	0.459 ± 0.029	0.470 ± 0.018	0.623 ± 0.016	0.504 ± 0.015
1383	CrGSTA	0.4M	7	0.473 ± 0.024	0.468 ± 0.024	0.476 ± 0.015	0.614 ± 0.022	0.508 ± 0.013
1384	GVAR	0.039M	1	0.484 ± 0.047	0.448 ± 0.049	0.464 ± 0.044	0.605 ± 0.045	0.498 ± 0.043
1385	CrGSTA	0.4M	5	0.490 ± 0.031	0.477 ± 0.019	0.487 ± 0.022	0.626 ± 0.014	0.517 ± 0.013
1386	CrGSTA	0.4M	3	0.492 ± 0.046	0.489 ± 0.015	0.499 ± 0.022	0.641 ± 0.025	0.528 ± 0.016
1387	causalrca	0.002M	5	0.500 ± 0.031	0.477 ± 0.028	0.474 ± 0.027	0.608 ± 0.021	0.515 ± 0.025
1388	causalrca	0.002M	7	0.500 ± 0.029	0.475 ± 0.027	0.473 ± 0.028	0.610 ± 0.021	0.515 ± 0.025
1389	causalrca	0.002M	10	0.501 ± 0.030	0.475 ± 0.027	0.473 ± 0.028	0.609 ± 0.021	0.515 ± 0.025
1390	causalrca	0.002M	1	0.503 ± 0.030	0.477 ± 0.026	0.475 ± 0.027	0.608 ± 0.020	0.516 ± 0.025
1391	causalrca	0.002M	3	0.503 ± 0.033	0.475 ± 0.026	0.474 ± 0.027	0.608 ± 0.020	0.515 ± 0.025

Table 10: RQ1 Non-Linear Windows

Non-Linear Dataset Results. Similar trends are observed in the Non-Linear dataset (Table 10) as in the synthetic Lotka–Volterra dataset. Statistical methods remain largely flat (Avg@10 ≈ 0.36 –0.37), reflecting their inability to capture nonlinear dependencies. Non-causal deep models exhibit mild temporal sensitivity but saturate quickly: FEDformer peaks at window 1 (0.352), while iTransformer reaches 0.383 at window 3. Simple causal models, such as causalrca with 256-unit MLPs, are capable of modeling relatively complex dependencies but plateau at 0.516 Avg@10. This limitation may be attributed to the characteristics of the synthetic Non-Linear dataset, which restricts the exploration of longer-term temporal dependencies compared to real-world datasets like SWat. GVAR, constrained by its encoder-only architecture, fails to fully exploit longer temporal windows, and its performance even shows a slight decline as the window size increases. AERCA similarly exhibits reduced performance with longer windows, likely due to overfitting given its substantially larger parameter count. In contrast, CrGSTA achieves the best accuracy under a fixed parameter budget

(0.528 at window 3), with improvements driven primarily by cross-domain temporal modeling rather than model size.

scheme	Params	window size	AC@1	AC@3	AC@5	AC@10	Avg@10
MSDS							
iTransformer	0.004M	2	0.000 \pm 0.000	0.043 \pm 0.000	0.283 \pm 0.000	1.000 \pm 0.000	0.399 \pm 0.006
iTransformer	0.004M	3	0.000 \pm 0.000	0.000 \pm 0.000	0.138 \pm 0.017	1.000 \pm 0.000	0.364 \pm 0.010
iTransformer	0.004M	4	0.000 \pm 0.000	0.000 \pm 0.000	0.149 \pm 0.029	1.000 \pm 0.000	0.362 \pm 0.009
iTransformer	0.004M	5	0.000 \pm 0.000	0.000 \pm 0.000	0.031 \pm 0.024	1.000 \pm 0.000	0.331 \pm 0.016
CausalRCA	0.002M	1	0.109 \pm 0.000	0.355 \pm 0.018	0.652 \pm 0.000	1.000 \pm 0.000	0.629 \pm 0.003
CausalRCA	0.002M	2	0.109 \pm 0.000	0.362 \pm 0.026	0.652 \pm 0.000	1.000 \pm 0.000	0.628 \pm 0.006
CausalRCA	0.002M	3	0.109 \pm 0.000	0.351 \pm 0.021	0.652 \pm 0.000	1.000 \pm 0.000	0.628 \pm 0.005
CausalRCA	0.002M	4	0.109 \pm 0.000	0.362 \pm 0.018	0.652 \pm 0.000	1.000 \pm 0.000	0.627 \pm 0.006
CausalRCA	0.002M	5	0.109 \pm 0.000	0.362 \pm 0.033	0.652 \pm 0.000	1.000 \pm 0.000	0.629 \pm 0.004
GVAR	6.2M	2	0.203 \pm 0.207	0.917 \pm 0.021	1.000 \pm 0.000	1.000 \pm 0.000	0.850 \pm 0.022
GVAR	9.3M	3	0.283 \pm 0.151	0.935 \pm 0.024	1.000 \pm 0.000	1.000 \pm 0.000	0.859 \pm 0.019
Epsilon	0.000M	1	0.283 \pm 0.000	0.304 \pm 0.000	0.826 \pm 0.000	1.000 \pm 0.000	0.739 \pm 0.000
Epsilon	0.000M	2	0.283 \pm 0.000	0.304 \pm 0.000	0.826 \pm 0.000	1.000 \pm 0.000	0.739 \pm 0.000
Epsilon	0.000M	3	0.283 \pm 0.000	0.304 \pm 0.000	0.826 \pm 0.000	1.000 \pm 0.000	0.739 \pm 0.000
Epsilon	0.000M	4	0.283 \pm 0.000	0.304 \pm 0.000	0.826 \pm 0.000	1.000 \pm 0.000	0.739 \pm 0.000
Epsilon	0.000M	5	0.283 \pm 0.000	0.304 \pm 0.000	0.826 \pm 0.000	1.000 \pm 0.000	0.739 \pm 0.000
iTransformer	0.003M	1	0.301 \pm 0.279	0.426 \pm 0.400	0.486 \pm 0.401	1.000 \pm 0.000	0.627 \pm 0.222
AERCA	9.3M	1	0.330 \pm 0.093	0.946 \pm 0.051	1.000 \pm 0.000	1.000 \pm 0.000	0.868 \pm 0.020
GVAR	12.5M	4	0.351 \pm 0.098	0.913 \pm 0.014	1.000\pm0.000	1.000 \pm 0.000	0.865 \pm 0.012
GVAR	15.6M	5	0.370 \pm 0.024	0.880 \pm 0.045	<u>1.000\pm0.000</u>	1.000 \pm 0.000	0.861 \pm 0.007
GVAR	3.1M	1	0.377 \pm 0.022	0.971 \pm 0.061	1.000 \pm 0.000	1.000 \pm 0.000	0.893 \pm 0.026
FEDformer	0.008M	1	0.386 \pm 0.019	0.442 \pm 0.176	0.730 \pm 0.265	1.000\pm0.000	0.723 \pm 0.100
CrGSTA	0.069M	5	0.386 \pm 0.094	0.859 \pm 0.190	0.981 \pm 0.039	1.000 \pm 0.000	0.877 \pm 0.058
FEDformer	0.008M	2	0.391 \pm 0.000	0.399 \pm 0.025	0.828 \pm 0.243	<u>1.000\pm0.000</u>	0.757 \pm 0.058
FEDformer	0.008M	3	0.391 \pm 0.000	0.399 \pm 0.025	0.832 \pm 0.239	1.000 \pm 0.000	0.756 \pm 0.057
FEDformer	0.009M	4	0.391 \pm 0.000	0.498 \pm 0.235	0.895 \pm 0.236	1.000 \pm 0.000	0.789 \pm 0.067
FEDformer	0.009M	5	0.391 \pm 0.000	0.498 \pm 0.235	0.899 \pm 0.237	1.000 \pm 0.000	0.790 \pm 0.066
AERCA	18.7M	2	0.391 \pm nan	0.674 \pm nan	1.000 \pm nan	1.000 \pm nan	0.841 \pm nan
AERCA	28.0M	3	0.391 \pm 0.000	0.884 \pm 0.123	1.000 \pm 0.000	1.000 \pm 0.000	0.864 \pm 0.016
AERCA	37.4M	4	0.391 \pm 0.000	0.848 \pm 0.235	0.978 \pm 0.053	1.000 \pm 0.000	0.864 \pm 0.046
AERCA	46.7M	5	0.391 \pm 0.000	0.746 \pm 0.221	0.975 \pm 0.062	1.000 \pm 0.000	0.840 \pm 0.053
CrGSTA	0.069M	1	0.435 \pm 0.100	0.949 \pm 0.081	0.998 \pm 0.007	1.000 \pm 0.000	0.921 \pm 0.025
CrGSTA	0.069M	2	0.498 \pm 0.133	0.971 \pm 0.049	1.000 \pm 0.000	1.000 \pm 0.000	0.933 \pm 0.036
CrGSTA	0.069M	4	0.498 \pm 0.098	0.879 \pm 0.195	0.969 \pm 0.094	1.000 \pm 0.000	0.902 \pm 0.066
CrGSTA	0.069M	3	0.543 \pm 0.082	0.971 \pm 0.049	1.000 \pm 0.000	1.000 \pm 0.000	0.937\pm0.030
RCD	0.000M	1	0.609\pm0.000	1.000\pm0.000	1.000 \pm 0.000	1.000 \pm 0.000	0.922 \pm 0.000
RCD	0.000M	2	<u>0.609\pm0.000</u>	<u>1.000\pm0.000</u>	1.000 \pm 0.000	1.000 \pm 0.000	0.922 \pm 0.000
RCD	0.000M	3	0.609 \pm 0.000	1.000 \pm 0.000	1.000 \pm 0.000	1.000 \pm 0.000	0.922 \pm 0.000
RCD	0.000M	4	0.609 \pm 0.000	1.000 \pm 0.000	1.000 \pm 0.000	1.000 \pm 0.000	0.922 \pm 0.000
RCD	0.000M	5	0.609 \pm 0.000	1.000 \pm 0.000	1.000 \pm 0.000	1.000 \pm 0.000	0.922 \pm 0.000

Table 11: RQ1 MSDS Windows

MSDS Dataset Results. Results on the MSDS dataset (Table 11) further validate our observations. MSDS represents a real-world cloud computing environment with a relatively small number of variables (10), allowing models to fully exploit temporal dependencies. Statistical methods (Epsilon, RCD) perform consistently but are outperformed by deep models. Notably, RCD achieves high accuracy (0.922 Avg@10) despite its simplicity, likely due to the limited variable count of MSDS, but its performance remains unchanged across window sizes. Among deep models, iTransformer shows limited temporal sensitivity, while FEDformer, likely due to its frequency-domain design, responds more to changes in window size. Causal models such as causalrca plateau quickly (0.629 Avg@10), reflecting their simpler architecture. GVAR achieves stronger performance (0.893 Avg@10) by

effectively modeling temporal dependencies but does not improve with larger windows. AERCA shows a similar trend, with performance declining slightly for longer windows, likely due to overfitting from its larger parameter count. In contrast, CrGSTA consistently attains the best performance across all window sizes, peaking at 0.937 Avg@10 at window 3, demonstrating its ability to capture temporal dependencies efficiently in real-world settings.

A.9.2 RQ2 (SPATIAL DIMENSION) – FULL TABLE

In this experiment, we evaluate how varying the number of variables (spatial dimension) affects root cause identification performance. We test variable counts from 20 to 60 on the Lotka–Volterra dataset and from 15 to 35 on Non-Linear dataset, maintaining a fixed temporal window size for all models.

A.9.2.1 Lotka–Volterra Dataset Results.

scheme	Params	num vars	AC@1	AC@3	AC@5	AC@10	Avg@10
LOTKA VOLTERRA							
FEDformer	0.1M	50	0.073 \pm 0.015	0.077 \pm 0.007	0.097 \pm 0.003	0.191 \pm 0.010	0.118 \pm 0.001
FEDformer	0.2M	60	0.077 \pm 0.015	0.059 \pm 0.007	0.084 \pm 0.018	0.176 \pm 0.012	0.103 \pm 0.015
iTransformer	0.052M	50	0.080 \pm 0.010	0.099 \pm 0.011	0.115 \pm 0.005	0.221 \pm 0.007	0.138 \pm 0.006
iTransformer	0.052M	40	0.090 \pm 0.017	0.070 \pm 0.012	0.101 \pm 0.010	0.222 \pm 0.018	0.128 \pm 0.008
iTransformer	0.052M	60	0.110 \pm 0.020	0.087 \pm 0.009	0.103 \pm 0.009	0.187 \pm 0.004	0.126 \pm 0.005
FEDformer	0.1M	30	0.117 \pm 0.023	0.114 \pm 0.022	0.147 \pm 0.030	0.331 \pm 0.014	0.190 \pm 0.015
FEDformer	0.1M	40	0.120 \pm 0.046	0.106 \pm 0.022	0.129 \pm 0.016	0.278 \pm 0.011	0.168 \pm 0.013
iTransformer	0.052M	30	0.123 \pm 0.025	0.129 \pm 0.005	0.167 \pm 0.007	0.328 \pm 0.012	0.202 \pm 0.001
FEDformer	0.1M	20	0.130 \pm 0.040	0.157 \pm 0.006	0.219 \pm 0.018	0.483 \pm 0.016	0.272 \pm 0.015
iTransformer	0.052M	20	0.250 \pm 0.017	0.248 \pm 0.012	0.293 \pm 0.021	0.543 \pm 0.005	0.354 \pm 0.007
GVAR	1.3M	60	0.388 \pm 0.006	0.289 \pm 0.003	0.312 \pm 0.003	0.468 \pm 0.009	0.366 \pm 0.003
GVAR	0.9M	50	0.442 \pm 0.021	0.345 \pm 0.022	0.353 \pm 0.017	0.532 \pm 0.013	0.419 \pm 0.019
GVAR	0.6M	40	0.560 \pm 0.011	0.418 \pm 0.006	0.436 \pm 0.019	0.634 \pm 0.012	0.510 \pm 0.011
GVAR	0.3M	30	0.655 \pm 0.033	0.505 \pm 0.003	0.538 \pm 0.006	0.748 \pm 0.019	0.616 \pm 0.010
GVAR	0.2M	20	0.811 \pm 0.023	0.642 \pm 0.021	0.665 \pm 0.016	0.875 \pm 0.002	0.750 \pm 0.013
CrGSTA	0.7M	30	0.927 \pm 0.006	0.738 \pm 0.008	0.729 \pm 0.007	0.899 \pm 0.015	0.816 \pm 0.007
CrGSTA	1.0M	40	0.930 \pm 0.017	0.744 \pm 0.005	0.678 \pm 0.006	0.848 \pm 0.004	0.782 \pm 0.007
CrGSTA	1.3M	50	0.937 \pm 0.032	0.699 \pm 0.013	0.627 \pm 0.005	0.778 \pm 0.013	0.734 \pm 0.007
CrGSTA	1.7M	60	0.940 \pm 0.010	0.707 \pm 0.015	0.660 \pm 0.020	0.797 \pm 0.006	0.755 \pm 0.008
CrGSTA	0.4M	20	0.950 \pm 0.010	0.789 \pm 0.014	0.786\pm0.014	0.948 \pm 0.007	0.866\pm0.004
causalrca	0.003M	30	0.963 \pm 0.006	0.732 \pm 0.007	0.662 \pm 0.007	0.835 \pm 0.000	0.769 \pm 0.005
causalrca	0.009M	60	0.963 \pm 0.006	0.734 \pm 0.007	0.628 \pm 0.006	0.695 \pm 0.003	0.720 \pm 0.005
causalrca	0.002M	20	0.964 \pm 0.003	0.767 \pm 0.007	0.728 \pm 0.005	0.956\pm0.000	0.844 \pm 0.003
causalrca	0.005M	40	0.965 \pm 0.003	0.748 \pm 0.008	0.645 \pm 0.005	0.766 \pm 0.002	0.749 \pm 0.004
AERCA	0.5M	20	0.965 \pm 0.007	0.822\pm0.002	<u>0.772\pm0.004</u>	0.926 \pm 0.008	<u>0.859\pm0.003</u>
AERCA	2.8M	50	0.965 \pm 0.021	0.742 \pm 0.007	0.650 \pm 0.019	0.769 \pm 0.020	0.749 \pm 0.012
causalrca	0.007M	50	0.970 \pm 0.003	0.735 \pm 0.007	0.619 \pm 0.002	0.702 \pm 0.000	0.717 \pm 0.004
AERCA	1.1M	30	0.970 \pm 0.028	0.772 \pm 0.007	0.727 \pm 0.018	0.873 \pm 0.020	0.821 \pm 0.005
AERCA	1.8M	40	<u>0.985\pm0.007</u>	0.760 \pm 0.038	0.690 \pm 0.026	0.797 \pm 0.004	0.784 \pm 0.016
AERCA	4.0M	60	0.990\pm0.000	0.773 \pm 0.014	0.691 \pm 0.008	0.794 \pm 0.006	0.788 \pm 0.004

Table 12: RQ2 -Lotka Voltera - Spatial Scaling

A.9.2.2 NonLinear Dataset Results.

scheme	Params	num vars	AC@1	AC@3	AC@5	AC@10	Avg@10
NONLINEAR							
FEDformer	0.1M	35	0.140 \pm 0.017	0.157 \pm 0.008	0.180 \pm 0.004	0.274 \pm 0.012	0.190 \pm 0.001
FEDformer	0.1M	30	0.147 \pm 0.023	0.196 \pm 0.001	0.228 \pm 0.017	0.355 \pm 0.003	0.239 \pm 0.007
iTransformer	0.051M	35	0.147 \pm 0.006	0.176 \pm 0.002	0.192 \pm 0.001	0.278 \pm 0.002	0.203 \pm 0.001
GVAR	0.4M	35	0.177 \pm 0.055	0.189 \pm 0.055	0.199 \pm 0.029	0.308 \pm 0.036	0.224 \pm 0.038
FEDformer	0.1M	25	0.180 \pm 0.010	0.224 \pm 0.012	0.245 \pm 0.007	0.379 \pm 0.007	0.267 \pm 0.007
CrGSTA	0.8M	35	0.197 \pm 0.031	0.223 \pm 0.012	0.234 \pm 0.019	0.370 \pm 0.015	0.264 \pm 0.008
AERCA	1.2M	35	0.197 \pm 0.049	0.186 \pm 0.015	0.189 \pm 0.020	0.307 \pm 0.037	0.220 \pm 0.024
GVAR	0.3M	30	0.213 \pm 0.032	0.223 \pm 0.033	0.250 \pm 0.014	0.394 \pm 0.005	0.282 \pm 0.017
iTransformer	0.051M	30	0.223 \pm 0.006	0.207 \pm 0.007	0.253 \pm 0.001	0.381 \pm 0.001	0.271 \pm 0.001
causalrca	0.004M	35	0.227 \pm 0.021	0.226 \pm 0.013	0.259 \pm 0.009	0.370 \pm 0.002	0.277 \pm 0.006
AERCA	1.0M	30	0.237 \pm 0.042	0.239 \pm 0.020	0.274 \pm 0.026	0.385 \pm 0.006	0.293 \pm 0.019
iTransformer	0.051M	25	0.240 \pm 0.000	0.202 \pm 0.002	0.206 \pm 0.001	0.363 \pm 0.003	0.254 \pm 0.001
FEDformer	0.1M	20	0.273 \pm 0.006	0.295 \pm 0.009	0.341 \pm 0.008	0.535 \pm 0.009	0.375 \pm 0.002
iTransformer	0.051M	20	0.290 \pm 0.010	0.316 \pm 0.004	0.329 \pm 0.003	0.524 \pm 0.004	0.374 \pm 0.001
AERCA	0.8M	25	0.290 \pm 0.046	0.283 \pm 0.013	0.312 \pm 0.020	0.435 \pm 0.029	0.334 \pm 0.016
CrGSTA	0.7M	30	0.293 \pm 0.059	0.307 \pm 0.015	0.325 \pm 0.014	0.464 \pm 0.010	0.354 \pm 0.011
RCD	0.000M	15	0.310 \pm 0.000	0.377 \pm 0.000	0.436 \pm 0.000	0.677 \pm 0.000	0.477 \pm 0.000
GVAR	0.3M	25	0.313 \pm 0.032	0.287 \pm 0.007	0.323 \pm 0.014	0.455 \pm 0.034	0.348 \pm 0.022
AERCA	0.6M	20	0.363 \pm 0.023	0.339 \pm 0.053	0.377 \pm 0.055	0.555 \pm 0.058	0.412 \pm 0.049
GVAR	0.2M	20	0.368 \pm 0.038	0.366 \pm 0.041	0.383 \pm 0.033	0.537 \pm 0.032	0.417 \pm 0.033
CrGSTA	0.5M	25	0.397 \pm 0.035	0.362 \pm 0.036	0.381 \pm 0.021	0.521 \pm 0.034	0.417 \pm 0.022
iTransformer	0.051M	15	0.406 \pm 0.016	0.399 \pm 0.010	0.446 \pm 0.010	0.693 \pm 0.006	0.498 \pm 0.004
causalrca	0.003M	30	0.427 \pm 0.012	0.346 \pm 0.010	0.344 \pm 0.020	0.453 \pm 0.010	0.384 \pm 0.012
FEDformer	0.1M	15	0.430 \pm 0.013	0.420 \pm 0.009	0.456 \pm 0.011	0.693 \pm 0.009	0.502 \pm 0.004
Epsilon	0.000M	15	0.440 \pm 0.000	0.445 \pm 0.000	0.452 \pm 0.000	0.687 \pm 0.000	0.512 \pm 0.000
causalrca	0.003M	25	0.493 \pm 0.012	0.441 \pm 0.018	0.452 \pm 0.015	0.570 \pm 0.006	0.489 \pm 0.012
causalrca	0.002M	20	0.500 \pm 0.031	0.477 \pm 0.028	0.474 \pm 0.027	0.608 \pm 0.021	0.515 \pm 0.025
CrGSTA	0.4M	20	0.503 \pm 0.045	0.481 \pm 0.028	0.492 \pm 0.018	0.641 \pm 0.022	0.521 \pm 0.024
AERCA	0.5M	15	0.503 \pm 0.074	0.500 \pm 0.039	0.537 \pm 0.041	0.744 \pm 0.024	0.579 \pm 0.037
GVAR	0.2M	15	0.520 \pm 0.046	0.505 \pm 0.059	0.568 \pm 0.042	0.743 \pm 0.026	0.597 \pm 0.038
CrGSTA	0.3M	15	0.608 \pm 0.037	0.566 \pm 0.013	0.591 \pm 0.012	0.791 \pm 0.014	0.637 \pm 0.008
causalrca	0.002M	15	0.610\pm0.000	0.567\pm0.007	0.567 \pm 0.007	0.759 \pm 0.010	0.621 \pm 0.003

Table 13: RQ2 - NonLinear - Spatial Scaling

To assess spatial scalability on the NonLinear dataset, we fix the temporal window (5) and vary the number of variables (Table 13).

Causal vs. Non-Causal Models. As in Lotka–Volterra, causal models consistently outperform non-causal baselines. FEDformer and iTransformer show modest gains at small scales but degrade quickly as dimensionality increases (e.g., at 35 variables both remain below 0.28 Avg@10). In contrast, causal methods maintain substantially higher accuracy: causalrca reaches 0.489–0.515 Avg@10 at 20–25 variables and remains competitive even at 35 variables. This highlights that structural modeling is essential for capturing the stronger nonlinear interactions in this dataset. **CrGSTA Performance.** CrGSTA demonstrates consistently strong and stable performance across all dimensionalities. At 35 variables it reaches 0.264 Avg@10—outperforming all non-causal baselines—and scales robustly down to 20 variables, where it achieves 0.521. CrGSTA also performs best at lower dimensions: at 15 variables, it achieves the highest overall Avg@10 (0.637), outperforming GVAR (0.597), AERCA (0.579), and causalrca (0.621). These results confirm that CrGSTA handles both moderate and small-scale nonlinear dynamics effectively. **Parameter Efficiency.** Across all scales, CrGSTA remains highly parameter-efficient. For example, at 20 variables it achieves 0.521 Avg@10 with only 0.4M parameters—substantially smaller than AERCA (0.412 with 0.6M). At 30–35 vari-

ables, CrGSTA maintains competitive performance with 0.7–0.8M parameters, outperforming larger causal models such as AERCA (1.0–1.2M) and sharply exceeding the accuracy of non-causal baselines with similar or larger parameter counts.

Summary. On the NonLinear dataset, CrGSTA delivers state-of-the-art spatial scalability, outperforming non-causal models at all dimensionalities while remaining competitive with or superior to larger causal baselines. Its strong accuracy at both low and high dimensions—paired with its compact parameter footprint—demonstrates its suitability for nonlinear, high-dimensional dynamical systems.

(a) Lotka Volterra Parameters

(b) Non-Linear Parameters

Figure 9: Parameter scaling for Spatial dimension Lotka Volterra (left) and Non-Linear (right) for temporal scaling.

A.9.3 RQ3 (ABLATIONS) - FULL TABLES

A.9.3.1 Baselines and Ablations

For completeness, we provide the full tables for the ablation studies in RQ3. Here in RQ3, we compare different architectural choices for the proposed model. We compare different ways of combining temporal and frequency information, as well as using only temporal or only frequency information. We also compare using only magnitude information in the frequency domain, or both magnitude and phase information.

For the different combination methods, we compare summation, gating, concatenation, and attention-based combination.

Sum: Element-wise summation of the two representations, as shown in Eq. 50, where H_T is the temporal representation and H_F is the frequency representation.

$$H = H_T + H_F \quad (50)$$

Concat: Concatenation of the two representations followed by a linear layer to reduce the dimension back to the original, as shown in Eq. 51.

$$H = W \cdot [H_T; H_F] + b \quad (51)$$

where W and b are learnable parameters. Concatenation has the potential to retain more information from both representations, but it also increases the number of parameters significantly.

Gated: A gating mechanism to control the contribution of each representation, as shown in Eq. 52.

$$g = \sigma(W_g \cdot [H_T; H_F] + b_g)H = g * H_T + (1 - g) * H_F \quad (52)$$

where W_g and b_g are learnable parameters, and σ is the sigmoid function. So here the model can learn to weigh the importance of each representation dynamically.

Attention: Cross attention mechanism where one representation attends to the other, here it is composed of two cross-attention modules, as shown in Eq. 53.

$$\tilde{H}^{\text{time}} = \text{CrossAttn}(\mathbf{H}_t, \mathbf{H}^{\text{freq}}), \quad \tilde{H}^{\text{freq}} = \text{CrossAttn}(\mathbf{H}^{\text{freq}}, \mathbf{H}_t). \quad (53)$$

1620 Which are then combined as seen in step 5 of CrGSTA in the main paper.
 1621
 1622 As shown in Tables 14 and 15, we observe several clear trends:
 1623
Domains. Leveraging both temporal and frequency information consistently outperforms using ei-
 1624 ther domain alone across both datasets. This confirms that temporal and frequency representations
 1625 are complementary, and their joint modeling provides richer context for root cause analysis.
Cross Attention. Attention-based integration of temporal and frequency signals yields the strongest
 1626 performance across all settings. By allowing the model to dynamically focus on the most relevant
 1627 aspects of each representation, cross attention enhances the ability to identify true root causes more
 1628 accurately than static fusion methods.
Parameter Efficiency. Figure 10 reports parameter counts for each configuration. Notably, cross-
 1630 attention methods achieve superior accuracy without requiring substantially more parameters than
 1631 simpler fusion approaches, establishing them as both effective and efficient. In contrast, concate-
 1632 nation significantly inflates parameter counts, yet the additional complexity does not translate into
 1633 proportional performance gains.
Phase Information. Incorporating phase information in the frequency domain does not provide
 1634 consistent improvements over magnitude-only features. This suggests that phase may introduce
 1635 redundant or noisy signals that do not consistently benefit root cause identification.
 1636
Summary. These ablation results demonstrate that combining temporal and frequency domains is
 1637 critical for high-performance RCA. Among fusion strategies, cross attention offers the best balance
 1638 of accuracy and parameter efficiency, making it the most practical approach for multivariate time
 1639 series root cause analysis.
 1640

Figure 10: Parameters for ablations for Lotka Volterra (left) and SWAT (right).

Model	Temp	Freq	Mag	Phase	Fusion Type	Params	AC@1	AC@3	Avg@10
Lotka Volterra									
Freq Only (Mag)	✗	✓	✓	✗	–	0.4M	0.730	0.434	0.482
T-F (Mag-Phase, concat)	✓	✓	✓	✓	concat	5.6M	0.708	0.459	0.517
T-F (Mag, concat)	✓	✓	✓	✗	concat	5.5M	0.722	0.463	0.522
T-F (Mag, sum)	✓	✓	✓	✗	sum	0.4M	0.720	0.462	0.525
T-F (Mag-Phase, sum)	✓	✓	✓	✓	sum	0.4M	0.720	0.468	0.526
Temporal Only	✓	✗	–	✗	–	0.3M	0.767	0.487	0.546
T-F (Mag-Phase, gated)	✓	✓	✓	✓	gated	0.4M	0.787	0.525	0.571
T-F (Mag, gated)	✓	✓	✓	✗	gated	0.4M	0.790	0.529	0.575
T-F (Mag, attn)	✓	✓	✓	✗	attn	0.9M	0.893	<u>0.603</u>	<u>0.639</u>
T-F (Mag-Phase, attn)	✓	✓	✓	✓	attn	1.0M	0.893	0.604	0.639

Table 14: Ablation results on Lotka-Voltera. Best in bold, second best underlined.

1674	Model	Temp	Freq	Mag	Phase	Fusion Type	Params	AC@1	AC@3	Avg@10
1675	SWaT									
1676	Temporal Only	✓	✗	—	✗	—	6.4M	0.213	0.297	0.334
1677	T-F (Mag-Phase, concat)	✓	✓	✓	✓	concat	21.6M	0.210	0.299	0.340
1678	T-F (Mag, gated)	✓	✓	✓	✗	gated	8.0M	0.213	0.299	0.344
1679	T-F (Mag, sum)	✓	✓	✓	✗	sum	8.0M	0.201	0.318	0.351
1680	T-F (Mag-Phase, sum)	✓	✓	✓	✓	sum	8.0M	0.179	0.295	0.352
1681	T-F (Mag, concat)	✓	✓	✓	✗	concat	21.5M	0.198	0.311	0.355
1682	T-F (Mag-Phase, gated)	✓	✓	✓	✓	gated	8.0M	0.258	0.327	0.360
1683	Freq Only (Mag)	✗	✓	✓	✗	—	8.0M	0.242	0.320	0.365
1684	T-F (Mag-Phase, attn)	✓	✓	✓	✓	attn	8.5M	0.312	0.396	<u>0.425</u>
1685	T-F (Mag, attn)	✓	✓	✓	✗	attn	8.5M	<u>0.311</u>	<u>0.395</u>	0.430

Table 15: Ablation results on SWAT. Best in bold, second best underlined.

A.9.4 RQ 4 - CASE STUDY DETAILS

In this section, we provide the detailed data used in the case studies for both the msds using AERCA and CrGSTA models.

Table 16: Case-study data for MSDS AERCA.

1694	Variable	Fused z-score	Root Cause
1695	0	0.318	✗
1696	1	-1.100	✗
1697	2	-4.251	✗
1698	3	6.595	✗
1699	4	-1.188	✗
1700	5	1.985	✗
1701	6	-1.352	✗
1702	7	6.455	✗
1703	8	0.406	✗
1704	9	2.990	✓

Table 17: Case-study data for MSDS CrGSTA.

Variable	Fused z-score	Root Cause
0	-0.806	✗
1	-4.150	✗
2	-4.325	✗
3	1.769	✗
4	-0.403	✗
5	1.181	✗
6	-1.429	✗
7	3.004	✗
8	0.099	✗
9	2.604	✓

B USE OF LLMs

We used GPT-5 from ChatGPT and Copilot to help with writing and refining the text and code in this paper.

1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727