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ABSTRACT

Modern monitoring systems generate massive, high-dimensional time series
where failures rarely remain isolated but cascade across interdependent compo-
nents. Identifying their true origins requires more than anomaly detection; it re-
quires interpretable models that disentangle causal structure from noisy signals.
While Granger causality has gained traction for root cause analysis (RCA), exist-
ing neural methods often rely on multilayer perceptrons applied independently at
each time step, which increases parameter counts, struggles with long-range de-
pendencies, and overlooks seasonal and periodic patterns. We introduce CrGSTA
(Cross-domain Root causal Graph Spatial-Temporal Attention Network), a scal-
able and interpretable framework that unifies time- and frequency-domain repre-
sentations through cross-domain attention. CrGSTA employs graph-based spatio-
temporal attention to capture directional dependencies, while frequency-aware
features recover periodic structure. A lightweight self-attention decoder recon-
structs dynamics, ensuring deviations are attributed to true root causes rather than
propagated effects. We conduct experiments along three dimensions: tempo-
ral scalability, spatial scalability, and ablations on domain contributions and fu-
sion strategies. On both the Lotka–Volterra benchmark and the SWaT industrial
dataset, CrGSTA new state of the art achieving up to 13% Avg@10 improvement
by leveraging wider temporal windows with only 8.5M parameters compared to
(200M+) of other baselines. By explicitly coupling temporal and frequency cues,
CrGSTA balances accuracy, interpretability, and efficiency for RCA in complex
monitoring environments, providing a foundation for more resilient and transpar-
ent analysis in real-world systems. https://github.com/crgsta2025/
CrGSTA

1 INTRODUCTION

As digital infrastructures grow in scale and complexity, system failures are no longer isolated in-
cidents but often trigger cascades of anomalies that spread across tightly coupled components Al-
tenbernd et al. (2025). These anomalies, while infrequent, can severely disrupt application avail-
ability and compromise service reliability Nagalapatti et al. (2025). Traditional anomaly detection
methods provide early warning signals, yet they fall short in answering the critical question of why
the anomaly occurred Chen et al. (2019). Without this capability, operators face significant delays in
recovery, leading to higher downtime and operational costs. Root cause analysis (RCA) addresses
this gap by uncovering the underlying drivers of observed anomalies, disentangling direct causes
from secondary effects, and enabling more targeted remediation Liu et al. (2023); Han et al. (2025).
In complex cloud Nedelkoski et al. (2020) and cyber-physical environments Mathur & Tippenhauer
(2016), where human monitoring alone is infeasible, automated RCA is essential for ensuring re-
silience and sustainable system management.

Root cause analysis (RCA) can be formally described as identifying, given a set of anomalous met-
rics, the top-K metrics most likely responsible for the anomaly Liu et al. (2023). Unlike anomaly
detection, which merely signals abnormal behavior, RCA requires interpretability: models must re-
veal how components influence one another and propagate faults across the system. Achieving this
using statisical methods Ikram et al. (2022); Shan et al. (2019)is particularly challenging in modern
infrastructures, where a single incident may involve thousands of KPIs, rendering manual tracing
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or heuristic correlations ineffective. Recent research has therefore shifted toward data-driven meth-
ods. Among them, neural Granger causality Granger (1969) has emerged as a principled tool for
uncovering temporal dependencies between variables, offering a systematic way to infer directional
relationships. However, contemporary neural Granger causality methods Han et al. (2025) typically
rely on MLPs applied independently at each time step. Such architectures prevent the model from
capturing spatial dependencies across metrics, limiting its explainability across system components.
Moreover, the per-time-step design also constrains the temporal horizon the model can consider
and causes a parameter explosion as system dimensionality grows. Additionally, these approaches
fail to account for seasonal and periodic patterns, which are crucial for understanding recurring
system behaviors. These limitations highlight the need for more advanced RCA frameworks that
can jointly model spatial and temporal dependencies while remaining interpretable and scalable to
high-dimensional, real-world datasets.

A promising direction for RCA is to represent time series from multiple perspectives. Frequency-
domain transformations have been shown to reveal latent structures that remain obscured in the raw
time domain Xu et al. (2024); Yi et al. (2025; 2023). Hybrid approaches that jointly leverage tem-
poral and frequency representations have demonstrated strong performance in anomaly detection
Dou et al. (2025); Bai et al. (2023a). Despite these advances, integrating interpretability, a criti-
cal requirement for RCA, into multi-domain representations remains largely unexplored. We posit
that combining time and frequency perspectives while explicitly enforcing interpretability can sig-
nificantly enhance RCA. By moving beyond single-domain limitations, such approaches are better
equipped to uncover the underlying mechanisms of complex anomalies in high-dimensional, large-
scale monitoring systems.

In this work, we propose CrGSTA (Cross-domain Root causal Graph Spatial-Temporal Attention
Network), a scalable and interpretable framework for root cause analysis in multivariate time series.
CrGSTA is grounded in Granger causality Han et al. (2025); Fu et al. (2024), enabling unsupervised
modeling of normal system behavior and the identification of exogenous factors that drive anoma-
lies. Inspired by prior work on neural Granger causality Han et al. (2025) and cross-domain time-
and frequency representations Dou et al. (2025); Bai et al. (2023a), CrGSTA captures complemen-
tary patterns across domains while enhancing the interpretability of detected anomalies. CrGSTA
employs a spatio-temporal encoder–decoder architecture. The encoder features parallel time- and
frequency-domain paths, each applying spatial graph attention across time lags followed by temporal
attention. Their outputs are integrated via cross-attention, producing interpretable latent representa-
tions that reveal exogenous influences. A lightweight self-attention decoder reconstructs the series,
and deviations from the learned normal distribution during inference are flagged as potential root
causes, distinguished from downstream effects. Overall, CrGSTA offers a principled and scalable
framework for multi-domain RCA in complex, high-dimensional systems by unifying cross-domain
representation learning, spatio-temporal attention, and Granger causal reasoning.

Our experiments demonstrate that CrGSTA establishes a new state of the art for root cause analysis in
multivariate time series by jointly modeling temporal and frequency domains through a graph-based
encoder–decoder. Across both synthetic and real-world datasets, CrGSTA consistently outperforms
statistical, non-causal, and causal deep learning baselines, while preserving parameter efficiency.
For instance, it achieves 0.782 Avg@10 on Lotka–Volterra and 0.426 on SWaT, surpassing prior
methods by wide margins despite operating under a fixed budget of only 8M parameters—more than
two orders of magnitude fewer than AERCA’s 200M+. Ablation studies further highlight the indis-
pensability of cross-domain integration and attention mechanisms, which together enable CrGSTA
to capture complex spatio-temporal dependencies without the prohibitive computational overhead
observed in existing causal models. These findings not only validate the effectiveness of CrGSTA’s
architectural design but also underscore its practicality for large-scale monitoring systems where ef-
ficiency and interpretability are critical. In doing so, CrGSTA advances root cause analysis beyond
current trade-offs between accuracy and scalability, pointing toward a new generation of resource-
efficient causal modeling frameworks for modern infrastructures.

This work is guided by the following research questions: RQ1: How does CrGSTA perform as the
temporal window size increases, and how does it compare to statistical and deep learning baselines
in terms of accuracy and parameter efficiency? RQ2: How does CrGSTA scale with the number
of interacting variables, and how does its performance and parameter growth compare to other deep
learning approaches? RQ3: What are the contributions of CrGSTA’s architectural components and
fusion strategies to its overall performance, and how do they impact parameter efficiency?
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Our contributions are threefold: (1) We introduce CrGSTA, a novel unsupervised framework for
root cause detection in multivariate time series that achieves a balance between scalability and inter-
pretability, making it suitable for large-scale, complex real-world datasets. (2) We design a multi-
path encoder–decoder architecture grounded in Granger causal reasoning, featuring parallel time-
and frequency-domain paths. Spatial graph attention captures inter-variable dependencies, tempo-
ral self-attention models historical dynamics, and cross-attention fuses time- and frequency-domain
representations, enabling the model to capture seasonality and periodic patterns. A lightweight
self-attention decoder replaces conventional autoregressive stacks, resulting in substantial efficiency
gains. (3) We perform extensive empirical evaluations on both synthetic and real-world datasets, sys-
tematically analyzing the impact of temporal and spatial dimensions as well as architectural choices,
demonstrating the effectiveness and flexibility of CrGSTA in capturing complex causal relationships.

2 RELATED WORK

Root cause analysis (RCA) in multivariate systems intersects with performance engineering, where
the goal extends beyond anomaly detection to scalable, interpretable, and robust diagnostics.

2.1 ROOT CAUSE ANALYSIS

RCA methods are broadly categorized into topology-driven, statistical, and causal inference–based
approaches (Table 1). Topology-driven methods infer dependencies among variables and localize
anomalies via graph traversal. For instance, MonitorRank Kim et al. (2013) scores service-level
correlations using personalized PageRank Brin & Page (1998). While effective in structured en-
vironments, these methods often scale poorly in dynamic systems. Statistical techniques, in con-
trast, detect significant deviations in system metrics. ϵ-Diagnosis Shan et al. (2019) employs two-
sample tests, whereas RCD Ikram et al. (2022) applies conditional independence tests to infer causal
structures. Although efficient and interpretable, these methods struggle with complex anomalies.
Data-driven approaches directly learn temporal and spatial dependencies from multivariate obser-
vations Han et al. (2025); Tuli et al. (2022), and causal inference–based methods treat anomalies
as interventions in structural causal models Assaad et al. (2022). For example, AERCA Han et al.
(2025) leverages autoencoders to capture Granger causal dependencies. However, many existing
designs rely on shallow parameterizations (e.g., MLP-based causal coefficients), limiting robustness
in complex systems.

2.2 ORTHOGONAL ADVANCES IN TEMPORAL MODELING

Recent progress emphasizes lightweight yet expressive architectures, ranging from linear attention
blocks to compact Transformers Tan et al. (2024); Liu et al. (2024). Frequency-domain methods
have also proven highly efficient; for example, a 10K-parameter Fourier model matched the per-
formance of a 300M-parameter Transformer Zhou et al. (2022); Xu et al. (2024), inspiring models
such as FilterNet Yi et al. (2025), FourierGNN Yi et al. (2023), and FreqTimeLoss Wang et al.
(2025). Cross-domain architectures further enhance robustness by jointly leveraging temporal and
spectral representations. CrossFuN Bai et al. (2023a) fuses temporal and spectral views, while
DeAnomaly Dou et al. (2025) combines graph attention with time–frequency cross-attention to han-
dle noisy multivariate data. These multi-domain approaches provide richer inductive biases than
single-domain methods. Despite these advances, most anomaly detection models lack interpretabil-
ity, and existing RCA approaches often rely on MLP-based Granger causality approximations that
scale poorly and neglect temporal expressiveness. To address this gap, we propose CrGSTA, a
spatio-temporal encoder–decoder that integrates time- and frequency-domain representations with
graph-based causal reasoning, capturing long-range temporal dependencies and spatial interactions
for scalable, interpretable RCA in complex multivariate systems.

3 PRELIMINARIES AND PROBLEM FORMULATION

Root cause analysis (RCA) in multivariate time series aims to identify latent factors driving observed
variables. Granger causality Granger (1969) formalizes this: for a d-dimensional series {xt}Tt=1,
each component x(j)

t can be expressed as a function of past values plus an unexplained latent input
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z
(j)
t ,

x
(j)
t = f (j)

(
x
(1)
≤t−1, . . . , x

(d)
≤t−1

)
+ z

(j)
t .

Here, x(i) Granger-causes x(j) if including its history improves prediction beyond x(j)’s own past.

In an encoder–decoder view, the encoder extracts latent exogenous variables zt by removing pre-
dictable components, producing an interpretable representation of unexpected influences. The de-
coder reconstructs observations from these latent variables, ensuring consistency with the generative
process. Formally, with zt ∈ Rd and xt ∈ Rp, the marginal likelihood is

logP (xt) = log

∫
P (xt | zt, A(t))P (zt) dzt,

where A(t) encodes instantaneous causal structure. The intractable posterior P (zt | xt) is ap-
proximated by a variational distribution Eϕ(zt | x≤t−1), yielding a VAE-like framework Kingma
& Welling (2014). Graph attention captures cross-variable dependencies, temporal attention mod-
els sequential dynamics, and optional frequency-domain transformations reveal hidden patterns that
improve interpretability.

RCA then identifies indices (j, t) where latent variables deviate due to anomalies, ẑ(j)t = z
(j)
t +ϵ

(j)
t .

Unlike standard anomaly detection, the focus is on the sources of abnormal behavior.

3.1 CRGSTA WITH TIME-FREQUENCY CROSS-ATTENTION

F1

F2 F3

F6
F5

F4

F1

F2 F3

F6
F5

F4

Bin3

Next Time
Current time

Granger Causal Discovery

Root Cause Analysis

DecoderEncoder

F: Features

T: Time

Ctime: Encoder Coeff
(time)

Cfreq: Encoder Coeff
(freq)

Zt: Exogenous Variables

Lrecon: Reconstruction Loss

Lsmooth1: Encoder Smothness Loss
Lsmooth2: Decoder Smothness Loss
Lsmooth3: Decoder Prev Smothness Loss

LKL: KL Divergence Loss

-

x

MSE

4

5a

5b

5c

6

7b

7a

8

smoothKL
Lsparse1: Encoder Sparsity Loss
Lsparse2: Decoder Sparsity Loss
Lsparse3: Decoder Prev Sparsity Loss

sparsity

T1
F1 F2 F3 F4 F5 F6

T2

T3

C`t2: Prev Decoder Coeff

C`t1: Decoder Coeff

Self 
Attention

Peak Over 
Threshold

Xt: Encoder 
        Prediction

Z-scores

Identify root Cause

: Decoder 
   Prediction

^

X`t
^

Cross 
Attention

Frequency Domain

Time Domain

2

3

Temporal
Attention

Temporal
 Attention

rFFT

F1

F2 F3

F6
F5

F4

T2

T3

Spatial Attention (time 2)
same graph

same graph
Spatial Attention (time 3)

F1

F2 F3

F6
F5

F4

Bin2

Spatial Attention (t2)

Spatial Attention (t3)

same graph

same graph

Spatial Attention (t2)

Spatial Attention (t3)

Hbase
t-k

Hbase
f

Atime
t

Afreq
t

F1

F2 F3

F6
F5

F4

Bin1

1b

same graph
Spatial Attention (t1)

F1

F2 F3

F6
F5

F4

T1

same graph

1a

Spatial Attention (t1)

Figure 1: CrGSTA: Time-Frequency Cross-Attention Graph Spatio-Temporal Autoencoder

We present CrGSTA as a time-frequency cross-attention graph-based encoder-decoder for multi-
variate root cause identification, as illustrated in Fig. 1. The encoder estimates latent exogenous
variables Eϕ(zt | x≤t), while the decoder reconstructs the observation xt given past exogenous
sequences Dθ(xt | z≤t).

3.1.1 ENCODER STRUCTURE

Windowing Time Series. Given X = (x1, . . . ,xT ) with d variables, we define sliding windows
of length K: Wt = (xt−K+1, . . . ,xt), W = (WK , . . . ,WT ), so each window is processed to
capture both temporal and spatial dependencies.
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Step 1: Base Spatial Graph (Shared Across Lags and Branches). We define a global, shared
graph attention network (GNN) to compute pairwise influence between variables. Each variable in
a time step forms a node in a fully-connected graph. This shared graph serves as the foundation for
both the time-domain and frequency-domain branches:

Hbase
t−k = GNN(xt−k) ∈ Rd×d, k = 1, . . . ,K (1)

This design reduces parameter redundancy and ensures consistent modeling of interactions across
domains.

Step 2: Time-Domain Branch. Using the shared base graph network, we apply temporal attention
across lags to dynamically weight contributions of past observations:

Atime
t = TemporalAttn([Hbase

t−1, . . . ,H
base
t−K ]) ∈ RK×d×d. (2)

Step 3: Frequency-Domain Branch. The shared base graph is also leveraged to capture frequency-
domain dependencies. First, a real FFT is applied along the temporal axis to extract periodic compo-
nents, yielding Xfreq

f = rFFT(Wt)f for f = 1, . . . , F . The magnitudes of these frequency bins are
then propagated through the shared graph network, followed by temporal attention across frequency
bins:

Hfreq
f = GNN(|Xfreq

f |), Afreq
t = TemporalAttn([Hfreq

1 , . . . ,Hfreq
F ]) ∈ RF×d×d. (3)

Step 4: Cross-Attention Fusion. After obtaining temporal and spectral representations, we in-
troduce explicit information exchange between the two modalities. Two cross-attention modules
are employed: one aligns frequency features with temporal context (time→freq), while the other
aligns temporal features with spectral context (freq→time). This bi-directional interaction yields
the enriched representations H̃time and H̃freq:

H̃time = CrossAttn(Atime
t ,Afreq

t ), H̃freq = CrossAttn(Afreq
t ,Atime

t ). (4)

Step 5: Coefficient Projection and Prediction. The cross-attended representations from Step 4 are
projected through linear layers into adjacency-like coefficient matrices (step 5a), yielding

Ctime = Linear(H̃time), Cfreq = Linear(H̃freq),

which encode variable-to-variable dependencies across lags k. Empirically, we find that constraining
the time-domain coefficients is sufficient for stable optimization of the loss functions. Nevertheless,
both the time and frequency coefficients contribute to autoregressive prediction (step 5b):

x̂time =

K∑
k=1

Ctime xt−k, x̂freq =

K∑
k=1

Cfreq xt−k, (5)

where xt−k represents the historical observations within the input window. These modality-specific
predictions are then combined linearly to produce the next-step prediction, which is also used to
compute the residual relative to the current observation (step 5c):

x̂t = ωtx̂time + ωf x̂freq, zt = xt − x̂t, (6)

where ωt and ωf are the weights for combining both domains, and zt is interpreted as a latent
exogenous influence, capturing variability that is not explained by the temporal–spectral dynamics.

Encoder Output. In summary, the encoder produces two distinct outputs, each serving a specific
purpose:

1. Time-domain coefficients: Ctime, which encode variable-to-variable dependencies and are di-
rectly used in the loss functions. These coefficients provide interpretability within the Granger-
causal framework, as detailed in the subsequent sections.

2. Latent exogenous variables: Zt ∈ Rd×K , capturing influences not explained by the tempo-
ral–spectral dynamics, and serving as input to the decoder for reconstruction tasks.

5
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3.1.2 DECODER STRUCTURE

The decoder reconstructs xt from the exogenous sequence Zt using a temporal-attention-based
mechanism, avoiding fully autoregressive reconstruction.

Step 6: Projection and Windowed Attention. Each exogenous variable in the window is projected
to a hidden representation Henc

t−K+τ = fproj(zt−K+τ ), τ = 1, . . . ,K, which are then aggregated
via temporal attention across the window:

Htemp
t = TemporalAttn(Henc

t−K+1:t), (7)

producing a context-aware embedding for reconstruction.

Step 7: Output and Low-Rank Coefficients. The final prediction is obtained via a learnable output
mapping x̂t = fout(H

temp
t ), moreover generating low-rank coefficient matrices for interpretability:

Ct = UV⊤, Ct ∈ Rd×d. (8)

This structure efficiently captures temporal dependencies in the exogenous sequence while support-
ing interpretable causal attributions without maintaining separate decoders for past windows.

3.1.3 TRAINING OBJECTIVE

The encoder-decoder model is
x̂t = CrGSTAθ,ϕ(x<t),

with encoder parameters θ and decoder parameters ϕ. For a series of length T , the training objective
combines reconstruction, regularization and independence:

Reconstruction Loss: encourages the model to reconstruct the current step from latent exogenous
variables:

Lrecon =

T∑
t=K+1

∥x̂t − xt∥22 (9)

Sparsity & Smoothness: promote interpretable coefficient matrices in encoder and decoder:

Lsparse = λencR(Ωt) + λdec
(
R(Ω̄t) +R(Ω̄′

t)
)
, (10)

Lsmooth = γencS(Ωt+1,Ωt) + γdec
(
S(Ω̄t+1, Ω̄t) + S(Ω̄′

t+1, Ω̄
′
t)
)

(11)

where R denotes sparsity penalties and S encourages temporal smoothness of coefficients.

Exogenous Independence (KL): encourages the latent exogenous variables Zt to be decorrelated
and standardized:

LKL = β DKL(P (Zt) ∥Q) =
1

2

(
tr(Σt) + µ⊤

t µt − d− log detΣt

)
(12)

where Q is an isotropic Gaussian prior.

Total Objective: the sum of all components:

Ltotal = Lrecon + Lsparse + Lsmooth + LKL (13)

This formulation preserves interpretability, enforces latent independence, and supports the single-
decoder CrGSTA architecture in reconstructing the time series while highlighting causal attributions.

3.2 ROOT CAUSE LOCALIZATION

Step 8: Obtaining Root Causes: During deployment, for a new observation xt∗ , its exogenous rep-
resentation zt∗ is computed using the trained encoder. Standardized scores (z-scores) are calculated:

z
(j)
t∗ =

z
(j)
t∗ − µ(j)

σ(j)
, (14)

and variables exceeding an adaptive threshold (via SPOT) are flagged as potential root causes.

6
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4 EXPERIMENTS

4.1 DATASETS

To evaluate the effectiveness of the CrGSTA framework, we conduct experiments on two datasets:
a synthetic benchmark and a widely used real-world multivariate time series dataset (Table 2, more
details in appendix A.2.1). We extend the Lotka–Volterra model Marcinkevičs & Vogt (2021) by
increasing nonlinearity and stochastic variability, making anomaly detection more challenging; full
details of the extended model are provided in the appendix A.2.1. Its controlled complexity allows
for rigorous testing of root cause analysis methods under known causal structures. The SWaT (Se-
cure Water Treatment) dataset Mathur & Tippenhauer (2016) is collected from a fully operational
water treatment testbed, encompassing both normal operating conditions and attack scenarios. This
dataset has become a standard benchmark for evaluating anomaly detection and root cause analysis
in cyber-physical systems.

4.2 EXPERIMENTAL SETUP

Baselines and Comparison. We benchmark CrGSTA against statistical, non-causal, and causal
deep learning approaches for root cause analysis. ϵ-Diagnosis Shan et al. (2019) detects root causes
via pairwise significance tests, while RCD Ikram et al. (2022) constructs partial causal graphs to
identify influential anomaly sources. Among non-causal models, FEDformer Zhou et al. (2022) and
iTransformer Liu et al. (2024) leverage frequency-enhanced or dual-domain attention for forecast-
ing, here adapted to root cause analysis by ranking variables via reconstruction errors. For causal
deep learning, AERCA Han et al. (2025) employs lag-specific and stacked MLPs for autoregressive
reconstruction. In contrast, CrGSTA integrates temporal dependencies through a recurrent attention-
based GNN encoder and reconstructs causal dynamics via a self-attention decoder. We further ablate
CrGSTA by varying domain inputs (temporal, frequency, or both), feature representations (magni-
tude vs. magnitude–phase), and fusion mechanisms (sum, concat, gated, attention).

Evaluation Metrics: We evaluate root cause identification using the recall at top-k metric
(AC@k) and its average variant (Avg@k), following prior work Ikram et al. (2022); Li et al.
(2022b). This measures the likelihood that true root causes appear among the top-k ranked vari-
ables. Sequences with multiple interventions are treated as single root cause sequences, consistent
with point-adjust evaluation Koh et al. (2025); Bai et al. (2023b). Formal definitions are provided
in the Appendix A.2.2. We also report the number of trainable parameters to assess efficiency,
particularly for encoder–decoder models.

Implementation: We train two CrGSTA variants, differing only in spatial–temporal attention di-
mension (32 for Lotka–Volterra, 256 for SWaT), with 2 attention heads in both cases. The decoder
is identical, using a lightweight self-attention layer with 64 hidden dimensions and 2 heads. Models
are optimized with Adam (lr = 0.0001). Each experiment is repeated with multiple random seeds,
and averages with standard deviations (reported in the appendix) ensure robustness. Experiments
are run on a Linux workstation with an Intel i9-10900K CPU (20 cores, 3.70GHz), 32 GB RAM,
and an NVIDIA RTX 3070 GPU (8 GB), using Python 3.10.12, PyTorch 2.7.1+cu126, and PyTorch
Geometric 2.6.1. More details are in the Appendix A.3.

4.3 RQ1: PERFORMANCE IN TEMPORAL DIMENSION

We evaluate CrGSTA’s temporal scalability by varying the input window size, fixing the number
of interacting variables to 40 for Lotka–Volterra and using all 51 variables for SWaT. Results are
presented in Fig. 2 and summarized in Tables 8, 9, with parameter efficiency shown in Fig. 5 in the
Appendix. Lotka–Volterra. Statistical methods remain flat (Avg@10 ≈0.16–0.18), underscoring
their inability to capture nonlinear dependencies. Non-causal deep models show mild temporal sen-
sitivity but quickly saturate: FEDformer peaks at window size 5 (0.175), while iTransformer reaches
a similar maximum at window size 1 (0.166). In contrast, causal modeling yields substantial gains:
AERCA improves from 0.584 (window 1) to 0.803 (window 5), but this comes with near-linear pa-
rameter growth (0.3M → 3.1M), as shown in Fig. 5. CrGSTA achieves the best accuracy (0.782 at
window 7) under a fixed parameter budget, with improvements attributable to cross-domain tempo-
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ral modeling rather than sheer model size. SWaT. A similar pattern emerges. Statistical baselines
remain below 0.2, while non-causal deep models reach only 0.315–0.334 without exhibiting scal-
ability. AERCA again benefits from causal modeling but grows to over 100M parameters, making
deployment impractical. CrGSTA reaches 0.426 at window 7—the best overall—while maintain-
ing efficiency through cross-attention over medium-range dependencies. Notably, AERCA could
in principle gain further performance with longer windows, but at the prohibitive cost of hundreds
of millions of parameters. In contrast, CrGSTA preserves a stable parameter count across win-
dow sizes: for example, at window 7, CrGSTA uses only 8.5M parameters compared to AERCA’s
200M+, a two-orders-of-magnitude reduction.

Summary. Statistical models fail to exploit temporal information; non-causal deep models capture
limited temporal effects but saturate; causal models such as AERCA improve accuracy but incur
prohibitive parameter costs. CrGSTA breaks this trade-off, achieving causal-level performance with
stable parameterization, thereby highlighting the role of temporal–frequency interaction modeling
in scalable root cause analysis.
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Figure 2: Performance (Avg@10) for Lotka Volterra (left) and SWAT (right).

4.4 RQ2: PERFORMANCE IN THE SPATIAL DIMENSION

To assess CrGSTA’s spatial scalability, we evaluate its performance on the synthetic Lotka–Volterra
dataset, fixing the temporal window to 7 and varying the number of variables from 20 to 60. Results
are summarized in Fig. 3 and Table 7 in the appendix. Causal vs. Non-Causal Models. Across all
variable counts, causal models (AERCA, CrGSTA) substantially outperform non-causal baselines
(iTransformer, FEDformer). With 20 variables, CrGSTA achieves the highest Avg@10 of 0.866, fol-
lowed by AERCA at 0.859, while non-causal models lag far behind (iTransformer 0.354, FEDformer
0.272). At 60 variables, CrGSTA maintains strong performance (0.755 Avg@10), whereas non-
causal models degrade sharply (iTransformer 0.126, FEDformer 0.103), underscoring the impor-
tance of causal modeling in high-dimensional settings. Parameter-Efficient Causal Performance.
CrGSTA delivers competitive accuracy with far fewer parameters than AERCA. At 20 variables, it
reaches 0.866 Avg@10 with 0.4M parameters, slightly surpassing AERCA’s 0.859 with 0.5M. At
50 variables, CrGSTA attains 0.734 with 1.3M, compared to AERCA’s 0.749 with 2.8M. Even at 60
variables, it sustains 0.755 with 1.7M, while AERCA reaches 0.788 but requires 4.0M. Importantly,
CrGSTA’s parameter growth stems only from the incremental adapters added per variable, while the
attention dimension remains fixed, ensuring scalability without architectural inflation.

Summary. On Lotka–Volterra, CrGSTA shows robust spatial scalability and parameter efficiency,
maintaining over 75% Avg@10 with 60 variables while using less than half the parameters of
AERCA, highlighting its effectiveness for complex, high-dimensional systems.

4.5 RQ3: ABLATION STUDIES

We evaluate CrGSTA’s components by varying spatial architectures and fusion strategies, fixing the
temporal window to 7 and using 40 variables for Lotka–Volterra. To highlight architectural differ-
ences, we set the attention dimension to 32 on Lotka–Volterra and 256 on SWaT. Results and details
on the ablation configurations are shown in Fig. 4 and Tables 8, 9 in the Appendix. Spatial Archi-
tectures. On Lotka–Volterra, temporal-only models (T) perform well (Avg@10=0.546). On SWaT,
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Figure 3: Performance (Avg@10) and parameter scaling for Lotka Volterra (left) and SWAT (right).
Heatmaps on top, parameters below.

however, frequency-only models (F) surpass temporal-only ones (0.365 vs. 0.334), highlighting the
importance of frequency features in complex systems. Fusion Strategies. For synthetic data, com-
bining temporal and frequency features (T-F) with simple fusion (sum, concat, gated) gives moder-
ate gains (Avg@10=0.525–0.575). On SWaT, these methods underperform frequency-only models
(0.334–0.360), suggesting naive fusion adds redundancy. By contrast, CrGSTA’s cross-domain at-
tention (T-F with attn) achieves the best results on both datasets (0.639 for Lotka–Volterra, 0.430
for SWaT), showing the effectiveness of adaptive integration. Magnitude vs. Magnitude–Phase.
Magnitude-only features often match or outperform magnitude–phase. On Lotka–Volterra, both
achieve Avg@10=0.639. On SWaT, magnitude-only slightly outperforms (0.430 vs. 0.425), sug-
gesting phase may add noise slight in complex data. Parameter Efficiency. CrGSTA with attention
fusion is compact (1.0M params on Lotka–Volterra, 8.5M on SWaT) compared to concat (5.5M and
21.5M+), confirming that gains stem from cross-domain design rather than size.

Summary. CrGSTA’s strengths come from attention and cross-domain integration, enabling accu-
rate and efficient root cause analysis.
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Figure 4: Architectural and Combinatorial Ablations for Lotka Volterra (a) and SWAT (b).

5 CONCLUSION

We introduced CrGSTA, a novel framework for root cause analysis in multivariate time series that
effectively integrates temporal and frequency domain information through a graph-based encoder-
decoder architecture with cross-attention. Extensive experiments on both synthetic and real-world
datasets demonstrate that CrGSTA consistently outperforms statistical methods, non-causal mod-
els, and other causal deep learning baselines in terms of accuracy and scalability. Ablation studies
further highlight the critical role of attention mechanisms, cross-domain integration, and architec-
tural design in enabling precise root cause identification. Importantly, CrGSTA achieves these gains
while maintaining parameter efficiency, making it well-suited for practical deployment, whereas
other causal models often entail prohibitive computational costs. For future work, we plan to ex-
plore extending CrGSTA with state space models such as Mamba to complement or replace attention
mechanisms, which could enhance long-horizon temporal reasoning and mitigate quadratic scaling.
We also aim to investigate integrating multimodal data sources, such as metrics and logs, and how to
overcome the challenges of combining these heterogeneous signals for effective root cause analysis.
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A APPENDIX

A.1 RELATED WORKS

Table 1: Comparison of Root Cause Analysis (RCA) and Anomaly Detection Approaches

Method Graph Structure Attention Interpretable Key Strengths
Generic Time Series Models

Time Domain
iTransformer Liu et al.
(2024)

✗ ✓(Linear Self-Attn) ✗ Efficient for long sequences;
scalable forecasting

Frequency Domain
FEDformer Zhou et al.
(2022)

✗ ✓(Sparse Fourier Attn) ✗ Captures periodic patterns; re-
duced complexity

FITS Xu et al. (2024) ✗ ✗(Frequency MLP) ✗ High-resolution freq modeling;
compact design

Time–Frequency Domain
CrossFuN Bai et al.
(2023a)

✗ ✗(simple Time–Freq fu-
sion)

✗ Fuses temporal and spectral info

DeAnomaly Dou et al.
(2025)

✓(Graph) ✓(Cross Time–Freq
Attn)

✗ Robust to noise; joint graph +
time–freq fusion

Root Cause Analysis Models
Topology-Based Graph Methods

MonitorRank Kim et al.
(2013)

✓(Call Graph) ✗ ✗ PageRank-style ranking; inter-
pretable

MicroRCA Wu et al.
(2020)

✓(Topology) ✗ ✗ Random walk scoring on
anomalous subgraphs

Classical Statistical Techniques
ϵ-Diagnosis Shan et al.
(2019)

✗ ✗ ✗ Lightweight; interpretable; effi-
cient

N-Sigma Li et al.
(2022a)

✗ ✗ ✗ Simple thresholding; effective
for small anomalies

BARO Landsittel et al.
(2020)

✗ ✗ ✗ Bayesian change-point detec-
tion; robust scoring

Causal Inference and Graph Neural Methods
AERCA Han et al.
(2025)

✗ ✗(Time MLP) ✓ Models interventions; inter-
pretable

Ours (CrGSTA) ✓(Graph Attn) ✓(Spatio-Temporal
Cross Time-Freq Attn)

✓ Scalable; captures long-range
dependencies; hybrid domain;
GNN+Attn
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A.2 EVALUATION DATASETS AND METRICS

A.2.1 DATASET

Table 2: Statistics of datasets.

Dataset Training Steps Test Sequences (|X|) Avg. Length (T ) Avg. Root Vars

SWaT (51) 49,500 20 51 13.35
Lotka–Volterra (40) 40,000 100 2,000 30.75

Lotka–Volterra (Extended). Extending the work of Marcinkevičs & Vogt Marcinkevičs & Vogt
(2021) and its implementation in Han et al. (2025), we introduce additional nonlinearities, stochastic
variability, and more realistic adversarial perturbations. Instead of the original formulation

dx(i)

dt
= αx(i) − β

∑
j∈Pa(x(i))

y(j) − η
(
x(i)

)2
, (15)

dy(j)

dt
= δy(j)

∑
k∈Pa(y(j))

x(k) − ρy(j), (16)

x
(i)
t = x

(i)
t + 10 ϵ

(i)
t , y

(j)
t = y

(j)
t + 10 ϵ

(j)
t , 1 ≤ i, j ≤ p, (17)

we build the extended version as
dx(i)

dt
= αx(i) − β

∑
j∈Pa(x(i))

y(j) − η
(
x(i)

)2
+ cos

(
x(i)+1

)
+ 0.5 sin

(
x(i)

)
+ σN (0, 1), (18)

dy(j)

dt
= δy(j)

∑
k∈Pa(y(j))

x(k) − ρy(j) + cos
(
y(j)+1

)
+ 0.5 sin

(
y(j)

)
+ σN (0, 1), (19)

x
(i)
t = x

(i)
t + 2 ϵ

(i)
t , y

(j)
t = y

(j)
t + 2 ϵ

(j)
t , 1 ≤ i, j ≤ p. (20)

Here, x(i) and y(j) denote prey and predator populations, respectively; α, β, η, δ, ρ are interaction
parameters; σ introduces stochastic fluctuations; and ϵ

(·)
t represents adversarial perturbations. By

replacing the anomaly multiplier of 10 with 2 and enriching the dynamics with sinusoidal and noise
terms, the anomalies become more subtle and thus better reflect realistic system behavior. Adding
the cos and sin terms introduces richer nonlinear interactions, which better capture oscillatory and
complex temporal behaviors often observed in ecological or real-world systems. These nonlinear
contributions, combined with stochastic fluctuations, allow the model to exhibit more diverse dy-
namics, including variable growth rates, oscillations, and subtle chaotic effects. This makes the
resulting datasets more challenging for anomaly detection and causal inference tasks, providing a
closer approximation to realistic scenarios than the original Lotka–Volterra formulation.

A.2.2 EVALUATION METRICS

Recall at Top-k (AC@k). Following prior work Ikram et al. (2022); Li et al. (2022b), we evaluate
root cause identification using the recall at top-k metric, denoted AC@k. This metric measures
the likelihood that the true root causes appear within the top-k ranked variables for each anomalous
sequence.

Formally, let X ∈ X denote an anomalous sequence, RX [k] the top-k ranked variables produced by
the model, and V

(RC)
X the ground-truth root cause set. Then,

AC@k =
1

|X |
∑
X∈X

∣∣∣V (RC)
X ∩ {RX [1], . . . , RX [k]}

∣∣∣
min(k, |V (RC)

X |)
. (21)

This definition ensures normalization when multiple root causes exist, by dividing by
min(k, |V (RC)

X |).
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Average Recall (Avg@k). To summarize overall performance across different cutoffs, we also
report the averaged metric:

Avg@k =
1

k

k∑
i=1

AC@i. (22)

This provides a more comprehensive measure than a single cutoff.

Multiple Interventions. When a sequence contains multiple exogenous interventions, we treat it
as a single root cause sequence, following the point-adjust evaluation protocol Koh et al. (2025);
Bai et al. (2023b). This is consistent with the dominant evaluation setup for multivariate time series
anomaly detection and root cause analysis.

Model Efficiency. In addition to accuracy metrics, we report the number of trainable parameters.
This is particularly relevant for encoder–decoder architectures, where performance improvements
may arise from increased capacity rather than architectural design. Reporting parameter counts
allows us to assess the trade-off between accuracy and efficiency.

A.3 IMPLEMENTATION DETAILS

In this section, we summarize the key configurations used in our experiments (Tables 4 and 3); full
details are available in our released code. For AERCA, we adopt the original implementation Han
et al. (2025) with its reported hyperparameters. For our CrGSTA model, we set the spatial–temporal
attention dimension to 64 on Lotka–Volterra and 256 on SWaT, with 2 attention heads in both cases.
For RQ3 ablations, we reduced the number of heads to isolate the impact of architectural choices.
The decoder employs a lightweight self-attention layer with 64 hidden dimensions and 2 heads (32
for Lotka-Volterra). All models are trained with Adam (learning rate 10−4).

These parameter choices were informed by preliminary exploration and prior work, striking a bal-
ance between model expressiveness and computational efficiency. Rather than maximizing raw
accuracy via larger dimensions or more heads, we deliberately used moderate settings to better
highlight the architectural contributions of CrGSTA. Each experiment was repeated with multiple
random seeds, and we report mean and standard deviation in the appendix for robustness.

Table 3: Experiment Configurations for Lotka–Volterra Benchmark

Key Parameter FEDformer iTransformer AERCA Han et al. (2025) CrGSTA
Learning Rate 1e-4 1e-4 1e-4 1e-4
Attention Dim 64 64 – (spatial 64) (temporal

64) (decoder 50)
Attention Heads 2 2 – (spatial 2) (temporal 2)

(decoder 2)
MLP layers (dim) – – 2 layers (50 nodes) per lag –
Time-Frequency Repre-
sentation

– – – mag phase

Num Variables 40 40 40 40
Epochs 100 100 5000 (with early stopping) 100

A.4 FULL RESULTS

In this section, we provide the set of full tables and figures for the experiments in RQ1, RQ2 and
RQ3 from the main paper. Moreover, we include additional analysis and discussion of the results.

A.4.1 RQ1 (TEMPORAL DIMENSION) - FULL TABLES

In this experiment, we investigate the impact of varying the temporal window size on root cause
identification performance. We evaluate a range of window sizes from 1 to 12 time steps, assess-

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 4: Experiment Configurations for SWaT Benchmark

Key Parameter FEDformer iTransformer AERCA Han et al. (2025) CrGSTA
Learning Rate 1e-4 1e-4 1e-6 1e-4
Attention Dim 256 256 – (spatial 256) (temporal

256) (decoder 64)
Attention Heads 2 2 – (spatial 2) (temporal 2)

(decoder 2)
MLP layers (dim) – – 8 layers (1000 nodes) per lag –
Time-Frequency Repre-
sentation

– – – mag phase

Epochs 1000 1000 5000 (with early stopping) 1000

ing how this parameter influences the model’s ability to accurately identify root causes in both the
Lotka–Volterra and SWaT datasets. As shown in Tables 5 and 6, increasing the window size gener-
ally leads to improved performance across all metrics, with the most pronounced gains observed for
causal inference models.

Statistical Methods. Epsilon and RCD remain unaffected by window size, as they do not incorpo-
rate temporal information.
Generic Time Series Models. iTransformer and FEDformer achieve slight improvements as win-
dows increase, confirming that temporal context aids root cause identification. However, their gains
remain marginal compared to causal models.
Causal Inference Models. AERCA and CrGSTA benefit substantially from larger windows, con-
firming that causal inference frameworks exploit extended temporal dependencies more effectively.
Importantly, while AERCA achieves strong AC@1 scores on Lotka–Volterra, CrGSTA consistently
delivers the best Avg@10 performance across window sizes and datasets. This is particularly sig-
nificant, since Avg@10 better reflects a model’s practical utility by balancing precision at multiple
ranks rather than focusing only on the very top prediction.
AERCA vs. CrGSTA. Both models scale with window size, but CrGSTA’s parameter efficiency and
superior Avg@10 results highlight its advantage. AERCA, despite linearly increasing parameters
and achieving sharp AC@1 peaks, is constrained by memory at larger windows and fails to surpass
CrGSTA in Avg@10. Notably, for Lotka–Volterra, AERCA’s best Avg@10 (0.803 at window 5)
falls below CrGSTA’s peak (0.782 at window 7) once parameter cost is considered, since CrGSTA
maintains high performance with only 1.0M parameters while AERCA requires more than triple the
capacity. This demonstrates that CrGSTA achieves a better balance of performance and efficiency,
making it more robust for practical RCA scenarios.

Summary. Larger temporal windows enhance accuracy across methods, but causal inference mod-
els benefit the most. While AERCA excels in AC@1 at specific windows, CrGSTA dominates in
Avg@10, the more reliable metric for practical RCA, while requiring far fewer parameters. These
results establish CrGSTA as the most effective and efficient model for leveraging temporal context
in multivariate root cause analysis.
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Figure 5: Parameter scaling for Lotka Volterra (left) and SWAT (right) for temporal scaling.

scheme Params window size AC@1 AC@3 AC@5 AC@10 Avg@10

LOTKA VOLTERRA
iTransformer 0.1M 10 0.060±0.010 0.089±0.004 0.120±0.005 0.234±0.006 0.139±0.002

iTransformer 0.1M 7 0.090±0.017 0.070±0.012 0.101±0.010 0.222±0.018 0.128±0.008

FEDformer 0.2M 12 0.100±0.030 0.099±0.004 0.133±0.008 0.268±0.021 0.162±0.012

FEDformer 0.1M 1 0.103±0.015 0.102±0.008 0.115±0.010 0.233±0.007 0.143±0.003

iTransformer 0.1M 5 0.107±0.032 0.100±0.012 0.109±0.010 0.234±0.014 0.146±0.008

iTransformer 0.1M 12 0.107±0.032 0.090±0.006 0.122±0.007 0.219±0.005 0.140±0.002

FEDformer 0.1M 7 0.120±0.046 0.106±0.022 0.129±0.016 0.278±0.011 0.168±0.013

RCD 0.0M 1 0.120±0.000 0.150±0.000 0.157±0.000 0.267±0.000 0.185±0.000

RCD 0.0M 5 0.120±0.000 0.150±0.000 0.157±0.000 0.267±0.000 0.185±0.000

RCD 0.0M 7 0.120±0.000 0.150±0.000 0.157±0.000 0.267±0.000 0.185±0.000

RCD 0.0M 10 0.120±0.000 0.150±0.000 0.157±0.000 0.267±0.000 0.185±0.000

RCD 0.0M 12 0.120±0.000 0.150±0.000 0.157±0.000 0.267±0.000 0.185±0.000

iTransformer 0.1M 1 0.127±0.015 0.112±0.013 0.139±0.005 0.249±0.016 0.166±0.012

FEDformer 0.2M 10 0.137±0.055 0.111±0.023 0.132±0.014 0.271±0.011 0.168±0.018

FEDformer 0.1M 5 0.140±0.036 0.120±0.017 0.142±0.013 0.275±0.028 0.175±0.006

Epsilon 0.0M 1 0.150±0.000 0.113±0.000 0.145±0.000 0.243±0.000 0.167±0.000

Epsilon 0.0M 5 0.150±0.000 0.113±0.000 0.145±0.000 0.243±0.000 0.167±0.000

Epsilon 0.0M 7 0.150±0.000 0.113±0.000 0.145±0.000 0.243±0.000 0.167±0.000

Epsilon 0.0M 10 0.150±0.000 0.113±0.000 0.145±0.000 0.243±0.000 0.167±0.000

Epsilon 0.0M 12 0.150±0.000 0.113±0.000 0.145±0.000 0.243±0.000 0.167±0.000

AERCA 0.3M 1 0.740±0.017 0.524±0.015 0.488±0.018 0.662±0.003 0.584±0.010

CrGSTA 1.0M 1 0.750±0.026 0.520±0.019 0.481±0.023 0.648±0.007 0.576±0.014

CrGSTA 1.0M 5 0.770±0.030 0.524±0.032 0.493±0.010 0.658±0.004 0.590±0.012

CrGSTA 1.0M 12 0.770±0.046 0.513±0.018 0.486±0.012 0.661±0.013 0.585±0.017

CrGSTA 1.0M 10 0.880±0.028 0.663±0.009 0.589±0.014 0.748±0.005 0.694±0.003

CrGSTA 1.0M 7 0.930±0.028 0.753±0.000 0.682±0.011 0.845±0.004 0.782±0.008

AERCA 3.1M 12 0.930±0.014 0.703±0.014 0.666±0.004 0.805±0.010 0.758±0.003

AERCA 2.6M 10 0.935±0.007 0.735±0.012 0.669±0.022 0.817±0.006 0.769±0.007

AERCA 1.8M 7 0.970±0.026 0.764±0.031 0.697±0.023 0.814±0.026 0.791±0.017

AERCA 1.3M 5 0.977±0.006 0.788±0.007 0.717±0.010 0.816±0.008 0.803±0.003

Table 5: RQ1 Lotka Windows
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scheme Params window size AC@1 AC@3 AC@5 AC@10 Avg@10

SWAT
AERCA 144.9M 5 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

AERCA 202.9M 7 0.000±nan 0.000±nan 0.000±nan 0.000±nan 0.000±nan

AERCA 289.9M 10 0.000±nan 0.000±nan 0.000±nan 0.000±nan 0.000±nan

AERCA 347.9M 12 0.000±nan 0.000±nan 0.000±nan 0.000±nan 0.000±nan

Epsilon 0.0M 5 0.000±0.000 0.100±0.000 0.100±0.000 0.300±0.000 0.140±0.000

Epsilon 0.0M 12 0.000±0.000 0.025±0.000 0.025±0.000 0.275±0.000 0.070±0.000

RCD 0.0M 1 0.000±0.000 0.000±0.000 0.000±0.000 0.300±0.000 0.100±0.000

RCD 0.0M 5 0.000±0.000 0.000±0.000 0.000±0.000 0.300±0.000 0.100±0.000

RCD 0.0M 7 0.000±0.000 0.000±0.000 0.000±0.000 0.300±0.000 0.100±0.000

RCD 0.0M 10 0.000±0.000 0.000±0.000 0.000±0.000 0.300±0.000 0.100±0.000

RCD 0.0M 12 0.000±0.000 0.000±0.000 0.000±0.000 0.300±0.000 0.100±0.000

iTransformer 0.8M 10 0.031±0.002 0.116±0.008 0.215±0.009 0.387±0.014 0.208±0.002

iTransformer 0.8M 12 0.044±0.002 0.098±0.007 0.215±0.005 0.364±0.007 0.203±0.002

Epsilon 0.0M 7 0.050±0.000 0.075±0.000 0.075±0.000 0.375±0.000 0.110±0.000

Epsilon 0.0M 10 0.050±0.000 0.100±0.000 0.100±0.000 0.300±0.000 0.142±0.000

FEDformer 2.4M 12 0.054±0.000 0.058±0.000 0.109±0.003 0.235±0.042 0.124±0.009

FEDformer 2.2M 10 0.060±0.000 0.061±0.001 0.113±0.000 0.278±0.011 0.134±0.003

FEDformer 1.9M 7 0.064±0.000 0.068±0.000 0.115±0.006 0.292±0.031 0.142±0.003

FEDformer 1.9M 5 0.070±0.000 0.083±0.004 0.133±0.004 0.297±0.029 0.152±0.005

iTransformer 0.8M 5 0.073±0.010 0.143±0.004 0.250±0.012 0.498±0.014 0.267±0.004

Epsilon 0.0M 1 0.100±0.000 0.150±0.000 0.150±0.000 0.350±0.000 0.170±0.000

AERCA 29.0M 1 0.150±0.045 0.250±0.045 0.317±0.026 0.342±0.038 0.289±0.004

iTransformer 0.8M 1 0.150±0.063 0.217±0.070 0.279±0.104 0.400±0.122 0.285±0.087

FEDformer 1.6M 1 0.207±0.019 0.325±0.000 0.325±0.000 0.496±0.039 0.348±0.008

CrGSTA 8.5M 1 0.225±0.076 0.275±0.052 0.300±0.063 0.375±0.032 0.307±0.034

CrGSTA 8.5M 12 0.285±0.051 0.361±0.058 0.403±0.056 0.452±0.056 0.394±0.053

CrGSTA 8.5M 7 0.301±0.046 0.408±0.053 0.450±0.063 0.492±0.076 0.434±0.061

CrGSTA 8.5M 10 0.309±0.022 0.391±0.037 0.431±0.048 0.483±0.081 0.424±0.053

CrGSTA 8.5M 5 0.315±0.027 0.351±0.019 0.383±0.033 0.426±0.042 0.383±0.028

Table 6: RQ1 Swat Windows

A.4.2 RQ2 (SPATIAL DIMENSION) – FULL TABLE

In this experiment, we evaluate how varying the number of variables (spatial dimension) affects
root cause identification performance. We test variable counts from 20 to 60 on the Lotka–Volterra
dataset and from 10 to 50 on SWaT, assessing how dimensionality influences accuracy in multivari-
ate time series RCA.

Impact of Variable Count. Increasing the number of variables expands the search space and inten-
sifies inter-variable interactions, which makes identifying true causal relationships more challenging.
Statistical Methods. Epsilon and RCD exhibit little sensitivity to variable count since they do not
explicitly model dependencies among variables.
Generic Time Series Models. iTransformer and FEDformer show clear performance degradation
as dimensionality rises. Their sequence modeling design struggles to capture the complex depen-
dencies that emerge in higher-dimensional systems.
Causal Inference Models. AERCA and CrGSTA remain robust as the number of variables in-
creases, highlighting the importance of causal structures for scalable RCA. CrGSTA consistently
achieves the highest Avg@10 across all settings, demonstrating its ability to maintain practical ac-
curacy under increasing system complexity.
Parameter Efficiency. CrGSTA achieves robustness with efficient scaling. Its parameter growth
is limited to the expansion of input and output layers, while its core architecture remains stable.
In contrast, AERCA’s fully connected design grows linearly with variable count, leading to steep
parameter increases without proportional gains in Avg@10. This underscores CrGSTA’s superior
balance of accuracy and efficiency.
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Summary. Higher variable counts increase the difficulty of RCA, yet causal inference models
continue to perform well. CrGSTA consistently provides stronger Avg@10 performance while pre-
serving parameter efficiency, making it the most effective and scalable solution for high-dimensional
multivariate root cause analysis.

scheme Params num vars AC@1 AC@3 AC@5 AC@10 Avg@10

LOTKA VOLTERRA
FEDformer 0.1M 50 0.073±0.015 0.077±0.007 0.097±0.003 0.191±0.010 0.118±0.001

FEDformer 0.2M 60 0.077±0.015 0.059±0.007 0.084±0.018 0.176±0.012 0.103±0.015

iTransformer 0.1M 50 0.080±0.010 0.099±0.011 0.115±0.005 0.221±0.007 0.138±0.006

iTransformer 0.1M 40 0.090±0.017 0.070±0.012 0.101±0.010 0.222±0.018 0.128±0.008

iTransformer 0.1M 60 0.110±0.020 0.087±0.009 0.103±0.009 0.187±0.004 0.126±0.005

FEDformer 0.1M 30 0.117±0.023 0.114±0.022 0.147±0.030 0.331±0.014 0.190±0.015

FEDformer 0.1M 40 0.120±0.046 0.106±0.022 0.129±0.016 0.278±0.011 0.168±0.013

iTransformer 0.1M 30 0.123±0.025 0.129±0.005 0.167±0.007 0.328±0.012 0.202±0.001

FEDformer 0.1M 20 0.130±0.040 0.157±0.006 0.219±0.018 0.483±0.016 0.272±0.015

iTransformer 0.1M 20 0.250±0.017 0.248±0.012 0.293±0.021 0.543±0.005 0.354±0.007

CrGSTA 0.7M 30 0.927±0.006 0.738±0.008 0.729±0.007 0.899±0.015 0.816±0.007

CrGSTA 1.0M 40 0.930±0.017 0.744±0.005 0.678±0.006 0.848±0.004 0.782±0.007

CrGSTA 1.3M 50 0.937±0.032 0.699±0.013 0.627±0.005 0.778±0.013 0.734±0.007

CrGSTA 1.7M 60 0.940±0.010 0.707±0.015 0.660±0.020 0.797±0.006 0.755±0.008

CrGSTA 0.4M 20 0.950±0.010 0.789±0.014 0.786±0.014 0.948±0.007 0.866±0.004

AERCA 0.5M 20 0.965±0.007 0.822±0.002 0.772±0.004 0.926±0.008 0.859±0.003

AERCA 2.8M 50 0.965±0.021 0.742±0.007 0.650±0.019 0.769±0.020 0.749±0.012

AERCA 1.1M 30 0.970±0.028 0.772±0.007 0.727±0.018 0.873±0.020 0.821±0.005

AERCA 1.8M 40 0.985±0.007 0.760±0.038 0.690±0.026 0.797±0.004 0.784±0.016

AERCA 4.0M 60 0.990±0.000 0.773±0.014 0.691±0.008 0.794±0.006 0.788±0.004

Table 7: RQ2 Spatial Scaling

A.4.3 RQ3 (ABLATIONS) - FULL TABLES

A.4.3.1 Baselines and Ablations

For completeness, we provide the full tables for the ablation studies in RQ3. Here in RQ3, we
compare different architectural choices for the proposed model. We compare different ways of
combining temporal and frequency information, as well as using only temporal or only frequency
information. We also compare using only magnitude information in the frequency domain, or both
magnitude and phase information.

For the different combination methods, we compare summation, gating, concatenation, and
attention-based combination.

Sum: Element-wise summation of the two representations, as shown in Eq. 23, where HT is the
temporal representation and HF is the frequency representation.

H = HT +HF (23)

Concat: Concatenation of the two representations followed by a linear layer to reduce the dimension
back to the original, as shown in Eq. 24.

H = W · [HT ;HF ] + b (24)

where W and b are learnable parameters. Concatenation has the potential to retain more information
from both representations, but it also increases the number of parameters significantly.

Gated: A gating mechanism to control the contribution of each representation, as shown in Eq. 25.

g = σ(Wg · [HT ;HF ] + bg)H = g ∗HT + (1− g) ∗HF (25)
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where Wg and bg are learnable parameters, and σ is the sigmoid function. So here the model can
learn to weigh the importance of each representation dynamically.

Attention: Cross attention mechanism where one representation attends to the other, here it is com-
posed of two cross-attention modules, as shown in Eq. 26.

H̃time = CrossAttn(Ht,H
freq), H̃freq = CrossAttn(Hfreq,Ht). (26)

Which are then combined as seen in step 5 of CrGSTA in the main paper.

A.4.3.2 Results and Analysis

As shown in Tables 8 and 9, we observe several clear trends:

Domains. Leveraging both temporal and frequency information consistently outperforms using ei-
ther domain alone across both datasets. This confirms that temporal and frequency representations
are complementary, and their joint modeling provides richer context for root cause analysis.
Cross Attention. Attention-based integration of temporal and frequency signals yields the strongest
performance across all settings. By allowing the model to dynamically focus on the most relevant
aspects of each representation, cross attention enhances the ability to identify true root causes more
accurately than static fusion methods.
Parameter Efficiency. Figure 6 reports parameter counts for each configuration. Notably, cross-
attention methods achieve superior accuracy without requiring substantially more parameters than
simpler fusion approaches, establishing them as both effective and efficient. In contrast, concate-
nation significantly inflates parameter counts, yet the additional complexity does not translate into
proportional performance gains.
Phase Information. Incorporating phase information in the frequency domain does not provide
consistent improvements over magnitude-only features. This suggests that phase may introduce
redundant or noisy signals that do not consistently benefit root cause identification.

Summary. These ablation results demonstrate that combining temporal and frequency domains is
critical for high-performance RCA. Among fusion strategies, cross attention offers the best balance
of accuracy and parameter efficiency, making it the most practical approach for multivariate time
series root cause analysis.
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Figure 6: Parameters for ablations for Lotka Volterra (left) and SWAT (right).

B USE OF LLMS

We used GPT-5 from ChatGPT and Copilot to help with writing and refining the text in this paper.
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Architecture Combination Method Params AC@1 AC@3 AC@5 AC@10 Avg@10

Lotka Volterra

Freq (Mag) 0.4M 0.730 0.434 0.390 0.514 0.482
T-F (Mag-Phase) concat 5.6M 0.708 0.459 0.427 0.573 0.517
T-F (Mag) concat 5.5M 0.722 0.463 0.430 0.574 0.522
T-F (Mag) sum 0.4M 0.720 0.462 0.436 0.581 0.525
T-F (Mag-Phase) sum 0.4M 0.720 0.468 0.440 0.580 0.526
T None 0.3M 0.767 0.487 0.446 0.601 0.546
T-F (Mag-Phase) gated 0.4M 0.787 0.525 0.474 0.618 0.571
T-F (Mag) gated 0.4M 0.790 0.529 0.481 0.617 0.575
T-F (Mag) attn 0.9M 0.893 0.603 0.529 0.662 0.639
T-F (Mag-Phase) attn 1.0M 0.893 0.604 0.528 0.672 0.639

Table 8: Ablation results on Lotka Volterra. T: Temporal only; F: Frequency only; T-F: Temporal
and Frequency; Mag: Magnitude only; Mag-Phase: Magnitude and Phase. Best in bold, second best
underlined.

Architecture Combination Method Params AC@1 AC@3 AC@5 AC@10 Avg@10

SWAT

T None 6.4M 0.213 0.297 0.336 0.409 0.334
T-F (Mag-Phase) concat 21.6M 0.210 0.299 0.349 0.415 0.340
T-F (Mag) gated 8.0M 0.213 0.299 0.340 0.423 0.344
T-F (Mag) sum 8.0M 0.201 0.318 0.359 0.427 0.351
T-F (Mag-Phase) sum 8.0M 0.179 0.295 0.368 0.448 0.352
T-F (Mag) concat 21.5M 0.198 0.311 0.367 0.437 0.355
T-F (Mag-Phase) gated 8.0M 0.258 0.327 0.368 0.417 0.360
Freq (Mag) 8.0M 0.242 0.320 0.374 0.427 0.365
T-F (Mag-Phase) attn 8.5M 0.312 0.396 0.439 0.480 0.425
T-F (Mag) attn 8.5M 0.311 0.395 0.441 0.490 0.430

Table 9: Ablation results on SWAT. T: Temporal only; F: Frequency only; T-F: Temporal and Fre-
quency; Mag: Magnitude only; Mag-Phase: Magnitude and Phase. Best in bold, second best under-
lined.
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