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ABSTRACT

Modern monitoring systems generate massive, high-dimensional time series
where failures rarely remain isolated but cascade across interdependent compo-
nents. Identifying their true origins requires more than anomaly detection; it re-
quires interpretable models that disentangle causal structure from noisy signals.
While Granger causality has gained traction for root cause analysis (RCA), exist-
ing neural methods often rely on multilayer perceptrons applied independently at
each time step, which increases parameter counts, struggles with long-range de-
pendencies, and overlooks seasonal and periodic patterns. We introduce CrGSTA
(Cross-domain Root causal Graph Spatial-Temporal Attention Network), a scal-
able and interpretable framework that unifies time- and frequency-domain repre-
sentations through cross-domain attention. CrGSTA employs graph-based spatio-
temporal attention to capture directional dependencies, while frequency-aware
features recover periodic structure. A lightweight self-attention decoder recon-
structs dynamics, ensuring deviations are attributed to true root causes rather than
propagated effects. We conduct experiments along three dimensions: temporal
scalability, spatial scalability, and ablations on domain contributions and fusion
strategies. On multiple synthetic and real-world datasets, CrGSTA new state of
the art achieving up to 13% Avg@10 improvement by leveraging wider tempo-
ral windows with only 8.5M parameters compared to (200M+) of other baselines.
By explicitly coupling temporal and frequency cues, CrGSTA balances accuracy,
interpretability, and efficiency for RCA in complex monitoring environments, pro-
viding a foundation for more resilient and transparent analysis in real-world sys-
tems. https://github.com/crgsta2025/CrGSTA

1 INTRODUCTION

As digital infrastructures grow in scale and complexity, system failures are no longer isolated in-
cidents but often trigger cascades of anomalies that spread across tightly coupled components Al-
tenbernd et al. (2025). These anomalies, while infrequent, can severely disrupt application avail-
ability and compromise service reliability Nagalapatti et al. (2025). Traditional anomaly detection
methods provide early warning signals, yet they fall short in answering the critical question of why
the anomaly occurred Chen et al. (2019). Without this capability, operators face significant delays in
recovery, leading to higher downtime and operational costs. Root cause analysis (RCA) addresses
this gap by uncovering the underlying drivers of observed anomalies, disentangling direct causes
from secondary effects, and enabling more targeted remediation Liu et al. (2023); Han et al. (2025).
In complex cloud Nedelkoski et al. (2020) and cyber-physical environments Mathur & Tippenhauer
(2016), where human monitoring alone is infeasible, automated RCA is essential for ensuring re-
silience and sustainable system management.

Root cause analysis (RCA) can be formally described as identifying, given a set of anomalous met-
rics, the top-K metrics most likely responsible for the anomaly Liu et al. (2023). Unlike anomaly
detection, which merely signals abnormal behavior, RCA requires interpretability: models must re-
veal how components influence one another and propagate faults across the system. Achieving this
using statisical methods Ikram et al. (2022); Shan et al. (2019)is particularly challenging in modern
infrastructures, where a single incident may involve thousands of KPIs, rendering manual tracing or
heuristic correlations ineffective. Recent research has therefore shifted toward data-driven methods.
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Among them, neural Granger causality Granger (1969) has emerged as a principled tool for uncov-
ering temporal dependencies between variables, offering a systematic way to infer directional rela-
tionships. However, contemporary neural Granger causality methods Marcinkevičs & Vogt (2021b);
? typically rely on MLPs applied independently at each time step. Such architectures prevent the
model from capturing spatial dependencies across metrics, limiting its explainability across system
components. Moreover, the per-time-step design also constrains the temporal horizon the model
can consider and causes a parameter explosion as system dimensionality grows. Additionally, these
approaches fail to account for seasonal and periodic patterns, which are crucial for understanding
recurring system behaviors. These limitations highlight the need for more advanced RCA frame-
works that can jointly model spatial and temporal dependencies while remaining interpretable and
scalable to high-dimensional, real-world datasets.

A promising direction for RCA is to represent time series from multiple perspectives. Frequency-
domain transformations have been shown to reveal latent structures that remain obscured in the raw
time domain Xu et al. (2024); Yi et al. (2025; 2023). Hybrid approaches that jointly leverage tem-
poral and frequency representations have demonstrated strong performance in anomaly detection
Dou et al. (2025); Bai et al. (2023a). Despite these advances, integrating interpretability, a criti-
cal requirement for RCA, into multi-domain representations remains largely unexplored. We posit
that combining time and frequency perspectives while explicitly enforcing interpretability can sig-
nificantly enhance RCA. By moving beyond single-domain limitations, such approaches are better
equipped to uncover the underlying mechanisms of complex anomalies in high-dimensional, large-
scale monitoring systems.

In this work, we propose CrGSTA (Cross-domain Root causal Graph Spatial-Temporal Attention
Network), a scalable and interpretable framework for root cause analysis in multivariate time series.
CrGSTA is grounded in Granger causality Marcinkevičs & Vogt (2021b); Han et al. (2025); Fu
et al. (2024), enabling unsupervised modeling of normal system behavior and the identification of
exogenous factors that drive anomalies. Inspired by prior work on neural Granger causality Han et al.
(2025) and cross-domain time- and frequency representations Dou et al. (2025); Bai et al. (2023a),
CrGSTA captures complementary patterns across domains while enhancing the interpretability of
detected anomalies. CrGSTA employs a spatio-temporal encoder–decoder architecture. The encoder
features parallel time- and frequency-domain paths, each applying spatial graph attention across
time lags followed by temporal attention. Their outputs are integrated via cross-attention, producing
interpretable latent representations that reveal exogenous influences. A lightweight self-attention
decoder reconstructs the series, and deviations from the learned normal distribution during inference
are flagged as potential root causes, distinguished from downstream effects. Overall, CrGSTA offers
a principled and scalable framework for multi-domain RCA in complex, high-dimensional systems
by unifying cross-domain representation learning, spatio-temporal attention, and Granger causal
reasoning.

Our experiments demonstrate that CrGSTA establishes a new state of the art for root cause analysis in
multivariate time series by jointly modeling temporal and frequency domains through a graph-based
encoder–decoder. Across both synthetic and real-world datasets, CrGSTA consistently outperforms
statistical, non-causal, and causal deep learning baselines, while preserving parameter efficiency.
For instance, it achieves 0.782 Avg@10 on Lotka–Volterra and 0.426 on SWaT, surpassing prior
methods by wide margins despite operating under a fixed budget of only 8M parameters—more than
two orders of magnitude fewer than AERCA’s 200M+. Ablation studies further highlight the indis-
pensability of cross-domain integration and attention mechanisms, which together enable CrGSTA
to capture complex spatio-temporal dependencies without the prohibitive computational overhead
observed in existing causal models. These findings not only validate the effectiveness of CrGSTA’s
architectural design but also underscore its practicality for large-scale monitoring systems where ef-
ficiency and interpretability are critical. In doing so, CrGSTA advances root cause analysis beyond
current trade-offs between accuracy and scalability, pointing toward a new generation of resource-
efficient causal modeling frameworks for modern infrastructures.

This work is guided by the following research questions: RQ1: How does CrGSTA perform as the
temporal window size increases, and how does it compare to statistical and deep learning baselines
in terms of accuracy and parameter efficiency? RQ2: How does CrGSTA scale with the number
of interacting variables, and how does its performance and parameter growth compare to other deep
learning approaches? RQ3: What are the contributions of CrGSTA’s architectural components and
fusion strategies to its overall performance, and how do they impact parameter efficiency? RQ4:
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How effectively does CrGSTA capture complex causal relationships in real-world datasets, and what
insights can be drawn from its interpretability features regarding root cause identification?

Our contributions are threefold: (1) We introduce CrGSTA, a novel unsupervised framework for
root cause detection in multivariate time series that achieves a balance between scalability and inter-
pretability, making it suitable for large-scale, complex real-world datasets. (2) We design a multi-
path encoder–decoder architecture grounded in Granger causal reasoning, featuring parallel time-
and frequency-domain paths. Spatial graph attention captures inter-variable dependencies, tempo-
ral self-attention models historical dynamics, and cross-attention fuses time- and frequency-domain
representations, enabling the model to capture seasonality and periodic patterns. A lightweight
self-attention decoder replaces conventional autoregressive stacks, resulting in substantial efficiency
gains. (3) We perform extensive empirical evaluations on both synthetic and real-world datasets, sys-
tematically analyzing the impact of temporal and spatial dimensions as well as architectural choices,
demonstrating the effectiveness and flexibility of CrGSTA in capturing complex causal relationships.

2 RELATED WORK

Root cause analysis (RCA) in multivariate systems intersects with performance engineering, where
the goal extends beyond anomaly detection to scalable, interpretable, and robust diagnostics.

2.1 ROOT CAUSE ANALYSIS

RCA methods are broadly categorized into topology-driven, statistical, and causal inference–based
approaches (Table 1). Topology-driven methods infer dependencies among variables and local-
ize anomalies via graph traversal. For instance, MonitorRank Kim et al. (2013) scores service-
level correlations using personalized PageRank Brin & Page (1998). While effective in structured
environments, these methods often scale poorly in dynamic systems. Statistical techniques de-
tect significant deviations in system metrics. ϵ-Diagnosis Shan et al. (2019) employs two-sample
tests, whereas RCD Ikram et al. (2022) applies conditional independence tests to infer causal struc-
tures. Although efficient and interpretable, these methods struggle with complex anomalies. Data-
driven approaches learn temporal and spatial dependencies from multivariate observations Han et al.
(2025); Tuli et al. (2022), and causal inference–based methods treat anomalies as interventions in
structural causal models Assaad et al. (2022). CORAL Wang et al. (2023) incrementally updates a
disentangled causal graph to capture both state-invariant and state-dependent dependencies, identi-
fying root causes via network propagation in near-real time. GVAR Marcinkevičs & Vogt (2021b)
uses self-explaining neural networks to infer Granger-causal relationships in multivariate time se-
ries, capturing nonlinear interactions and their temporal variability with interpretable causal effects.
Building on GVAR, AERCA Han et al. (2025) leverages autoencoders to capture Granger causal
dependencies. However, many existing designs rely on shallow parameterizations (e.g., MLP-based
causal coefficients), limiting robustness in complex systems.

2.2 ORTHOGONAL ADVANCES IN TEMPORAL MODELING

Recent progress emphasizes lightweight yet expressive architectures, ranging from linear attention
blocks to compact Transformers Tan et al. (2024); Liu et al. (2024). Frequency-domain methods
have also proven highly efficient; for example, a 10K-parameter Fourier model matched the per-
formance of a 300M-parameter Transformer Zhou et al. (2022); Xu et al. (2024), inspiring models
such as FilterNet Yi et al. (2025), FourierGNN Yi et al. (2023), and FreqTimeLoss Wang et al.
(2025a). Cross-domain architectures further enhance robustness by jointly leveraging temporal and
spectral representations. CrossFuN Bai et al. (2023a) fuses temporal and spectral views, while
DeAnomaly Dou et al. (2025) combines graph attention with time–frequency cross-attention to han-
dle noisy multivariate data. These multi-domain approaches provide richer inductive biases than
single-domain methods. Despite these advances, most anomaly detection models lack interpretabil-
ity, and existing RCA approaches often rely on MLP-based Granger causality approximations that
scale poorly and neglect temporal expressiveness. To address this gap, we propose CrGSTA, a
spatio-temporal encoder–decoder that integrates time- and frequency-domain representations with
graph-based causal reasoning, capturing long-range temporal dependencies and spatial interactions
for scalable, interpretable RCA in complex multivariate systems.
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3 PRELIMINARIES AND PROBLEM FORMULATION

Root cause analysis (RCA) in multivariate time series aims to identify latent factors driving observed
variables. Granger causality Granger (1969) formalizes this: for a d-dimensional series {xt}Tt=1,
each component x(j)

t can be expressed as a function of past values plus an unexplained latent input
z
(j)
t ,

x
(j)
t = f

(j)(
x
(1)
≤t−1

, . . . , x
(d)
≤t−1

)
+ z

(j)
t . (1)

Here, x(i) Granger-causes x(j) if including its history improves prediction beyond x(j)’s own past.

In an encoder–decoder view, the encoder extracts latent exogenous variables zt by removing pre-
dictable components, producing an interpretable representation of unexpected influences. The de-
coder reconstructs observations from these latent variables, ensuring consistency with the generative
process. Formally, with zt ∈ Rd and xt ∈ Rp, the marginal likelihood is

logP (xt) = log

∫
P (xt | zt, A(t))P (zt) dzt, (2)

where A(t) encodes instantaneous causal structure. The intractable posterior P (zt | xt) is ap-
proximated by a variational distribution Eϕ(zt | x≤t−1), yielding a VAE-like framework Kingma
& Welling (2014). Graph attention captures cross-variable dependencies, temporal attention mod-
els sequential dynamics, and optional frequency-domain transformations reveal hidden patterns that
improve interpretability.

RCA then identifies indices (j, t) where latent variables deviate due to anomalies, ẑ(j)t = z
(j)
t +ϵ

(j)
t .

Unlike standard anomaly detection, the focus is on the sources of abnormal behavior.

3.1 CRGSTA WITH TIME-FREQUENCY CROSS-ATTENTION
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Figure 1: CrGSTA: Time-Frequency Cross-Attention Graph Spatio-Temporal Autoencoder

We present CrGSTA as a time-frequency cross-attention graph-based encoder-decoder for multi-
variate root cause identification, as illustrated in Fig. 1. Additionally, an intutitive summary of the
architecture can be found in the Appendix A.3. The encoder estimates latent exogenous variables
Eϕ(zt | x≤t), while the decoder reconstructs the observation xt given past exogenous sequences
Dθ(xt | z≤t).

3.1.1 ENCODER STRUCTURE

Windowing Time Series. Given X = (x1, . . . ,xT ) with d variables, we define sliding windows of
length K:

Wt = (xt−K+1, . . . ,xt), W = (WK , . . . ,WT ), (3)

so each window is processed to capture both temporal and spatial dependencies.
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Step 1: Base Spatial Graph (Shared Across Lags and Branches). We define a global, shared
graph attention network (GNN) to compute pairwise influence between variables. Each variable in
a time step forms a node in a fully-connected graph. This shared graph serves as the foundation for
both the time-domain and frequency-domain branches:

H
base
t−k = GNN(xt−k) ∈ Rd×d

, k = 1, . . . , K (4)

This design reduces parameter redundancy and ensures consistent modeling of interactions across
domains.

Step 2: Time-Domain Branch. Using the shared base graph network, we apply temporal attention
across lags to dynamically weight contributions of past observations:

A
time
t = TemporalAttn([Hbase

t−1 , . . . ,H
base
t−K ]) ∈ RK×d×d

. (5)

Step 3: Frequency-Domain Branch. The shared base graph is also leveraged to capture frequency-
domain dependencies. First, a real FFT is applied along the temporal axis to extract periodic compo-
nents, yielding Xfreq

f = rFFT(Wt)f for f = 1, . . . , F . The magnitudes of these frequency bins are
then propagated through the shared graph network, followed by temporal attention across frequency
bins:

H
freq
f = GNN(|Xfreq

f |), A
freq
t = TemporalAttn([Hfreq

1 , . . . ,H
freq
F ]) ∈ RF×d×d

. (6)

Step 4: Cross-Attention Fusion. After obtaining temporal and spectral representations, we in-
troduce explicit information exchange between the two modalities. Two cross-attention modules
are employed: one aligns frequency features with temporal context (time→freq), while the other
aligns temporal features with spectral context (freq→time). This bi-directional interaction yields
the enriched representations H̃time and H̃freq:

H̃
time

= CrossAttn(Atime
t ,A

freq
t ), H̃

freq
= CrossAttn(Afreq

t ,A
time
t ). (7)

Step 5: Coefficient Projection and Prediction. The cross-attended representations from Step 4 are
projected through linear layers into adjacency-like coefficient matrices (step 5a), yielding

Ctime = Linear(H̃time
), Cfreq = Linear(H̃freq

), (8)

which encode variable-to-variable dependencies across lags k. Empirically, we find that constraining
the time-domain coefficients is sufficient for stable optimization of the loss functions. Nevertheless,
both the time and frequency coefficients contribute to autoregressive prediction (step 5b):

x̂time =

K∑
k=1

Ctime xt−k, x̂freq =

K∑
k=1

Cfreq xt−k, (9)

where xt−k represents the historical observations within the input window. These modality-specific
predictions are then combined linearly to produce the next-step prediction, which is also used to
compute the residual relative to the current observation (step 5c):

x̂t = ωtx̂time + ωf x̂freq, zt = xt − x̂t, (10)

where ωt and ωf are the weights for combining both domains, and zt is interpreted as a latent
exogenous influence, capturing variability that is not explained by the temporal–spectral dynamics.

Encoder Output. In summary, the encoder produces two distinct outputs, each serving a specific
purpose:

1. Time-domain coefficients: Ctime, which encode variable-to-variable dependencies and are di-
rectly used in the loss functions. These coefficients provide interpretability within the Granger-
causal framework, as detailed in the subsequent sections.

2. Latent exogenous variables: Zt ∈ Rd×K , capturing influences not explained by the tempo-
ral–spectral dynamics, and serving as input to the decoder for reconstruction tasks.

3.1.2 DECODER STRUCTURE

The decoder reconstructs xt from the exogenous sequence Zt using a temporal-attention-based
mechanism, avoiding fully autoregressive reconstruction.

5
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Step 6: Projection and Windowed Attention. Each exogenous variable in the window is projected
to a hidden representation Henc

t−K+τ = fproj(zt−K+τ ), τ = 1, . . . ,K, which are then aggregated
via temporal attention across the window:

H
temp
t = TemporalAttn(Henc

t−K+1:t), (11)

producing a context-aware embedding for reconstruction.

Step 7: Output and Low-Rank Coefficients. The final prediction is obtained via a learnable output
mapping x̂t = fout(H

temp
t ), moreover generating low-rank coefficient matrices for interpretability:

Ct = UV
⊤
, Ct ∈ Rd×d

. (12)

This structure efficiently captures temporal dependencies in the exogenous sequence while support-
ing interpretable causal attributions without maintaining separate decoders for past windows.

3.1.3 TRAINING OBJECTIVE

The encoder-decoder model is x̂t = CrGSTAθ,ϕ(x<t), with encoder parameters θ and decoder
parameters ϕ. For a series of length T , the training objective combines reconstruction, regularization
and independence:

Reconstruction Loss: encourages the model to reconstruct the current step from latent exogenous
variables:

Lrecon =

T∑
t=K+1

∥x̂t − xt∥2
2 (13)

Sparsity & Smoothness: promote interpretable coefficient matrices in encoder and decoder:
Lsparse = λencR(Ωt) + λdec

(
R(Ω̄t) + R(Ω̄

′
t)
)
, (14)

Lsmooth = γencS(Ωt+1,Ωt) + γdec
(
S(Ω̄t+1, Ω̄t) + S(Ω̄

′
t+1, Ω̄

′
t)
)

(15)

where R imposes sparsity and S enforces temporal smoothness. Ωt∈RP×P is the encoder’s time-
varying coefficient (adjacency) matrix, with Ω̄t and Ω̄′

t as decoder counterparts; we use R(A) =
∥A∥1 and S(A,B) = ∥A−B∥2F .

Exogenous Independence (KL): encourages the latent exogenous variables Zt to be decorrelated
and standardized:

LKL = β DKL(P (Zt) ∥Q) =
1

2

(
tr(Σt) + µ

⊤
t µt − d − log detΣt

)
(16)

where Q is an isotropic Gaussian prior.

Total Objective: the sum of all components:
Ltotal = Lrecon + Lsparse + Lsmooth + LKL (17)

This formulation preserves interpretability, enforces latent independence, and supports the single-
decoder CrGSTA architecture in reconstructing the time series while highlighting causal attributions.

3.2 ROOT CAUSE LOCALIZATION

Step 8: Obtaining Root Causes: During deployment, for a new observation xt∗ , its exogenous rep-
resentation zt∗ is computed using the trained encoder. Standardized scores (z-scores) are calculated:

z
(j)

t∗ =
z
(j)

t∗ − µ(j)

σ(j)
, (18)

and variables exceeding an adaptive threshold (via SPOT) are flagged as potential root causes.

4 EXPERIMENTS

4.1 DATASETS

To evaluate the effectiveness of the CrGSTA framework, we conduct experiments on four datasets:
two synthetic benchmarks (Non-Linear and Lotka–Volterra) and two widely used real-world multi-
variate time series datasets (MSDS and SWaT) (Table 3, more details in appendix A.7.1). We ex-
tend the both of the synthetic datasets by increasing nonlinearity and stochastic variability, making

6
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anomaly detection more challenging; full details of the extended model are provided in the appendix
A.7.1. This controlled complexity allows for rigorous testing of root cause analysis methods under
known causal structures.

4.2 EXPERIMENTAL SETUP

Baselines and Comparison. We benchmark CrGSTA against statistical, non-causal, and causal
deep learning approaches for root cause analysis. Among statistical baselines, ϵ-Diagnosis Shan
et al. (2019) uses pairwise significance tests, and RCD Ikram et al. (2022) identifies influential
sources via partial causal graphs. For non-causal deep models, FEDformer Zhou et al. (2022) and
iTransformer Liu et al. (2024) use frequency-enhanced or dual-domain attention and are adapted
here by ranking variables through reconstruction errors. For causal deep learning, GVAR ? models
variable interactions using a graph-based encoder, causalrca Xin et al. (2023) incorporates Granger-
inspired constraints into MLPs, and AERCA Han et al. (2025) employs lag-specific stacked MLPs
for autoregressive reconstruction.

Evaluation Metrics: We evaluate root cause identification using the recall at top-k metric
(AC@k) and its average variant (Avg@k), following prior work Ikram et al. (2022); Li et al.
(2022b). This measures the likelihood that true root causes appear among the top-k ranked vari-
ables. Sequences with multiple interventions are treated as single root cause sequences, consistent
with point-adjust evaluation Koh et al. (2025); Bai et al. (2023b). Formal definitions are provided
in the Appendix A.7.2. We also report the number of trainable parameters to assess efficiency,
particularly for encoder–decoder models.

Implementation: We train multiple CrGSTA variants for each dataset variation, differing only in
spatial–temporal attention dimension and attention heads. The decoder is identical for all datasets,
using a lightweight self-attention layer with 64 hidden dimensions and 2 heads. Models are op-
timized with Adam (lr = 0.0001). Each experiment is repeated with multiple random seeds, and
averages with standard deviations (reported in the appendix) ensure robustness. Experiments are
run on a Linux workstation with an Intel i9-10900K CPU (20 cores, 3.70GHz), 32 GB RAM, and
an NVIDIA RTX 3070 GPU (8 GB), using Python 3.10.12, PyTorch 2.7.1+cu126, and PyTorch
Geometric 2.6.1. More details are in the Appendix A.8.

4.3 RQ1: PERFORMANCE IN TEMPORAL DIMENSION

We evaluate CrGSTA’s temporal scalability by varying the input window size, fixing the number
of interacting variables to 40 for Lotka–Volterra, 20 for Non-Linear, and using all 51 variables for
SWaT and 10 for MSDS. Results are shown in Fig. 2, with detailed analysis in Appendix A.9.1.
Lotka–Volterra. Statistical methods remain largely flat (Avg@10 ≈ 0.16–0.18), highlighting their
inability to capture nonlinear dependencies. Non-causal deep models show mild temporal sensitiv-
ity but saturate quickly: FEDformer peaks at window 5 (0.175), iTransformer at window 1 (0.166).
Simple causal models such as causalrca with 256-unit MLPs plateau at 0.745 Avg@10. GVAR, due
to its encoder-only architecture, cannot leverage longer windows effectively. AERCA benefits sig-
nificantly from longer windows, improving from 0.584 (window 1) to 0.803 (window 5), albeit with
substantial parameter growth (0.3M→ 3.1M). In contrast, CrGSTA achieves the best accuracy un-
der a fixed parameter budget (0.782 at window 7), with gains attributable to cross-domain temporal
modeling rather than model size. SWaT. Statistical baselines remain below 0.2, while non-causal
deep models reach only 0.315–0.334 without temporal scalability. Causalrca shows modest gains,
peaking at 0.178 Avg@10 (window 5). GVAR improves with longer windows but incurs signifi-
cant parameter growth. AERCA again benefits from causal modeling but exceeds 100M parame-
ters—rendering it impractical, effectively a grey-box model that is over 10× larger than CrGSTA
and prone to OOM or prohibitive training time at extreme windows. By contrast, CrGSTA achieves
0.426 Avg@10 at window 7—the best overall—while maintaining efficiency via cross-attention over
medium-range dependencies. CrGSTA keeps a stable parameter count across window sizes (8.5M
at window 7) compared to AERCA’s 200M+, a two-orders-of-magnitude reduction. Additional
analysis on Non-Linear and MSDS datasets (Appendix A.9.1) confirms these trends, with CrGSTA
consistently achieving top performance with stable parameterization.

7
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Summary. Statistical models fail to exploit temporal information; non-causal deep models capture
limited temporal effects but saturate; causal models such as AERCA improve accuracy but incur
prohibitive parameter costs. CrGSTA breaks this trade-off, achieving causal-level performance with
stable parameterization, thereby highlighting the role of temporal–frequency interaction modeling
in scalable root cause analysis.
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Figure 2: Performance (Avg@10) for different datasets.

4.4 RQ2: PERFORMANCE IN THE SPATIAL DIMENSION

To evaluate CrGSTA’s spatial scalability, we fix the temporal window (7 for Lotka–Volterra, 5 for
NonLinear) and vary the number of variables (Fig. 3; full tables in Appendix A.9.2). Causal vs.
Non-Causal Models. Causal models clearly outperform non-causal baselines across all dimension-
alities. At 20 variables, CrGSTA achieves the highest Avg@10 (0.866), far exceeding iTransformer
(0.354) and FEDformer (0.272). At 60 variables, CrGSTA still maintains 0.755, while non-causal
models collapse (iTransformer 0.126, FEDformer 0.103), underscoring the necessity of causal mod-
eling in high-dimensional systems. Although causalrca performs competitively at small scales, it is
consistently outperformed by AERCA and CrGSTA and degrades more rapidly as dimensionality
increases. Parameter Efficiency. CrGSTA matches or exceeds the performance of larger causal
models while using substantially fewer parameters. For example, at 20 variables it achieves 0.866
Avg@10 with 0.4M parameters (AERCA: 0.859 with 0.5M), and at 50 variables it reaches 0.734
with 1.3M (AERCA: 0.749 with 2.8M). Even at 60 variables, CrGSTA sustains 0.755 using only
1.7M parameters. Its parameter growth is limited to lightweight per-variable adapters, keeping the
attention dimension fixed and ensuring linear, scalable complexity. Consistency Across Datasets.
The same patterns appear on the NonLinear dataset (more details in Appendix A.9.2).

Summary. CrGSTA achieves robust high-dimensional causal performance with notable parameter
efficiency. On Lotka–Volterra, it maintains over 75% Avg@10 at 60 variables while using less than
half the parameters of AERCA, demonstrating strong scalability for complex dynamical systems.

4.5 RQ3: ABLATION STUDIES

We evaluate CrGSTA’s components by varying spatial architectures and fusion strategies, fixing the
temporal window to 7 and using 40 variables for Lotka–Volterra. To highlight architectural differ-
ences, we set the attention dimension to 32 on Lotka–Volterra and 256 on SWaT. Results and details
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Figure 3: Performance (Avg@10) for Lotka Volterra (left) and Non-Linear (right).

on the ablation configurations are shown in Fig. 4 and Tables 14, 15 in the Appendix. Spatial Archi-
tectures. On Lotka–Volterra, temporal-only models (T) perform well (Avg@10=0.546). On SWaT,
however, frequency-only models (F) surpass temporal-only ones (0.365 vs. 0.334), highlighting the
importance of frequency features in complex systems. Frequency Representations. Interstingly,
For SWaT, the frequency-only (F (Mag)) model outperforms temporal-only (T) (0.365 vs. 0.334),
indicating that frequency features may better capture anomalies in complex data. This suggests that
even before fusion, frequency-domain analysis can be more informative than time-domain for certain
real-world systems. Fusion Strategies. For synthetic data, combining temporal and frequency fea-
tures (T-F) with simple fusion (sum, concat, gated) gives moderate gains (Avg@10=0.525–0.575).
On SWaT, these methods underperform frequency-only models (0.334–0.360), suggesting naive fu-
sion adds redundancy. By contrast, CrGSTA’s cross-domain attention (T-F with attn) achieves the
best results on both datasets (0.639 for Lotka–Volterra, 0.430 for SWaT), showing the effectiveness
of adaptive integration. Magnitude vs. Magnitude–Phase. Magnitude-only features often match
or outperform magnitude–phase. On Lotka–Volterra, both achieve Avg@10=0.639. On SWaT,
magnitude-only slightly outperforms (0.430 vs. 0.425), suggesting phase may add noise slight in
complex data. Parameter Efficiency. CrGSTA with attention fusion is compact (1.0M params on
Lotka–Volterra, 8.5M on SWaT) compared to concat (5.5M and 21.5M+), confirming that gains
stem from cross-domain design rather than size.

Summary. CrGSTA’s strengths come from attention and cross-domain integration, enabling accu-
rate and efficient root cause analysis.

T F (Mag) T-F (Mag) T-F (Mag-Phase)

su
m

ga
te

d
co

nc
at

at
tn

0.546 0.482

0.525 0.526

0.575 0.571

0.522 0.517

0.639 0.639 0.50

0.52

0.54

0.56

0.58

0.60

0.62

Av
g@

10

(a) Lotka Volterra Ablations Avg@10
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Figure 4: Architectural and Combinatorial Ablations for Lotka Volterra (a) and SWAT (b).

4.6 RQ4: CASE STUDIES

To illustrate CrGSTA’s interpretability, we present case studies on MSDS. Specifcally, we visualize
two root cause analysis examples comparing CrGSTA and AERCA. First, we show the root cause
scores assigned by both models for a specific anomaly instance. Second, we analyze the temporal
propagation of root cause scores across multiple time steps within an analysis window.

4.6.1 ROOT CAUSE Z-SCORE

As shown in Fig. 5, the true root cause variable is highlighted with a red box. As illustrated in Fig. 5b
CrGSTA accurately identifies the true root cause variable with a significantly higher score than
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other variables, demonstrating its effectiveness in root cause analysis. In contrast, AERCA assigns
relatively lower scores to the true root cause variable, indicating less confidence in its identification.
This comparison highlights CrGSTA’s superior interpretability and precision in pinpointing root
causes within complex multivariate time series data. More details in the appendix A.9.4.
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(b) MSDS CrGSTA Case Study

Figure 5: Case Studies for MSDS Dataset: (a) AERCA (b) CrGSTA.

4.6.2 ROOT CAUSE Z-SCORE PROPAGATION THROUGH TIME

To further demonstrate the superior robustness and parameter efficiency of CrGSTA, we conduct
a detailed temporal analysis case study. As depicted in Figure 6, we utilize an analysis window
size (W ) of 3 for both AERCA and CrGSTA on the MSDS dataset, focusing on a specific anomaly
instance. The results illustrate CrGSTA’s superior temporal consistency: it maintains a persistently
high Normalized z-score across the window steps for the true root cause variable (index 9), strongly
following the ground-truth label. In contrast, the baseline AERCA exhibits a scattered score dis-
tribution, failing to sustain a high score specifically for the root cause, leading to high ambiguity.
This performance difference is particularly notable considering the significant disparity in model
complexity: AERCA has over 28 million parameters, while CrGSTA operates with only 69,129 pa-
rameters. This underscores CrGSTA’s ability to achieve more reliable, high-confidence root cause
identification with dramatically fewer resources across varying temporal contexts.
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(a) MSDS AERCA Case Study
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Figure 6: Case Studies for MSDS Dataset: (a) AERCA (b) CrGSTA.

5 CONCLUSION

We introduced CrGSTA, a novel framework for root cause analysis in multivariate time series that
effectively integrates temporal and frequency domain information through a graph-based encoder-
decoder architecture with cross-attention. Extensive experiments on both synthetic and real-world
datasets demonstrate that CrGSTA consistently outperforms statistical methods, non-causal mod-
els, and other causal deep learning baselines in terms of accuracy and scalability. Ablation studies
further highlight the critical role of attention mechanisms, cross-domain integration, and architec-
tural design in enabling precise root cause identification. Importantly, CrGSTA achieves these gains
while maintaining parameter efficiency, making it well-suited for practical deployment, whereas
other causal models often entail prohibitive computational costs. For future work, we plan to ex-
plore extending CrGSTA with state space models such as Mamba to complement or replace attention
mechanisms, which could enhance long-horizon temporal reasoning and mitigate quadratic scaling.
We also aim to investigate integrating multimodal data sources, such as metrics and logs, and how to
overcome the challenges of combining these heterogeneous signals for effective root cause analysis.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Anton Altenbernd, Zhiyuan Wu, and Odej Kao. Amocrca: At most one change segmentation and
relative correlation ranking for root cause analysis. In Proceedings of the 33rd ACM International
Conference on the Foundations of Software Engineering, FSE Companion ’25, pp. 1386–1393,
New York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400712760. doi:
10.1145/3696630.3731612. URL https://doi.org/10.1145/3696630.3731612.

C. K. Assaad, E. Devijver, and E. Gaussier. Discovery of extended summary graphs in time series.
In J. Cussens and K. Zhang (eds.), Proceedings of the Thirty-Eighth Conference on Uncertainty in
Artificial Intelligence (UAI 2022), volume 180 of Proceedings of Machine Learning Research, pp.
96–106, Eindhoven, The Netherlands, Aug 1–5 2022. PMLR. URL https://proceedings.
mlr.press/v180/assaad22a.html.

Yunfei Bai, Jing Wang, Xueer Zhang, Xiangtai Miao, and Youfang Lin. Crossfun: Multiview joint
cross-fusion network for time-series anomaly detection. IEEE Transactions on Instrumentation
and Measurement, 72:1–9, 2023a. doi: 10.1109/TIM.2023.3315420.

Yunfei Bai, Jing Wang, Xueer Zhang, Xiangtai Miao, and Youfang Lin. Crossfun: Multiview joint
cross-fusion network for time-series anomaly detection. IEEE Transactions on Instrumentation
and Measurement, 72:1–9, 2023b. doi: 10.1109/TIM.2023.3315420.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems, 30(1-7):107–117, 1998.

Junjie Chen, Xiaoting He, Qingwei Lin, Yong Xu, Hongyu Zhang, Dan Hao, Feng Gao, Zhangwei
Xu, Yingnong Dang, and Dongmei Zhang. An empirical investigation of incident triage for on-
line service systems. In Proceedings of the 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 111–120. IEEE, 2019.

Hui Dou, Pengcheng Shi, Yiwen Zhang, Pengfei Chen, and Zibin Zheng. Deanomaly: Anomaly
detection for multivariate time series using robust decomposition and memory-augmented dif-
fusion models. IEEE Transactions on Instrumentation and Measurement, 74:1–14, 2025. doi:
10.1109/TIM.2025.3570337.

Dongqi Fu, Yada Zhu, Hanghang Tong, Kommy Weldemariam, Onkar Bhardwaj, and Jingrui He.
Generating fine-grained causality in climate time series data for forecasting and anomaly detec-
tion. In ICML 2024 AI for Science Workshop, 2024. URL https://openreview.net/
forum?id=q6E14hueUt.

C. W. J. Granger. Investigating causal relations by econometric models and cross-spectral methods.
Econometrica, 37(3):424–438, 1969.

Xiao Han, Saima Absar, Lu Zhang, and Shuhan Yuan. Root cause analysis of anomalies in mul-
tivariate time series through granger causal discovery. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
k38Th3x4d9.

Jun Huang, Yang Yang, Hang Yu, Jianguo Li, and Xiao Zheng. Twin Graph-Based Anomaly
Detection via Attentive Multi-Modal Learning for Microservice System . In 2023 38th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 66–78, Los Alamitos,
CA, USA, September 2023. IEEE Computer Society. doi: 10.1109/ASE56229.2023.00138. URL
https://doi.ieeecomputersociety.org/10.1109/ASE56229.2023.00138.

Azam Ikram, Sarthak Chakraborty, Subrata Mitra, Shiv Saini, Saurabh Bagchi, and Murat Kocaoglu.
Root cause analysis of failures in microservices through causal discovery. In Advances in Neural
Information Processing Systems (NeurIPS), volume 35, pp. 31158–31170, 2022.

Myunghwan Kim, Roshan Sumbaly, and Sam Shah. Root cause detection in a service-oriented
architecture. ACM SIGMETRICS Performance Evaluation Review, 41(1):93–104, 2013.

11

https://doi.org/10.1145/3696630.3731612
https://proceedings.mlr.press/v180/assaad22a.html
https://proceedings.mlr.press/v180/assaad22a.html
https://openreview.net/forum?id=q6E14hueUt
https://openreview.net/forum?id=q6E14hueUt
https://openreview.net/forum?id=k38Th3x4d9
https://openreview.net/forum?id=k38Th3x4d9
https://doi.ieeecomputersociety.org/10.1109/ASE56229.2023.00138


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, Conference Track Pro-
ceedings, 2014. URL http://arxiv.org/abs/1312.6114.

Van Kwan Zhi Koh, Ye Li, Ehsan Shafiee, Zhiping Lin, and Bihan Wen. Harnessing forecast un-
certainty in deep learning for time series anomaly detection with posterior distribution scoring.
In 2025 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5, 2025. doi:
10.1109/ISCAS56072.2025.11043371.

Douglas Landsittel, Avantika Srivastava, and Kristin Kropf. A narrative review of methods for
causal inference and associated educational resources. Quality Management in Health Care, 29
(4):260–269, 2020.

Mingjie Li, Zeyan Li, Kanglin Yin, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and Dan Pei. Causal
inference-based root cause analysis for online service systems with intervention recognition. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD’22), pp. 3230–3240. ACM, 2022a.

Mingjie Li, Zeyan Li, Kanglin Yin, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and Dan Pei. Causal
inference-based root cause analysis for online service systems with intervention recognition. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 3230–3240. ACM, 2022b.

Chenghao Liu, Wenzhuo Yang, Himanshu Mittal, Manpreet Singh, Doyen Sahoo, and Steven CH
Hoi. Pyrca: A library for metric-based root cause analysis. arXiv preprint arXiv:2306.11417,
2023.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In Proceedings of the
International Conference on Learning Representations (ICLR), 2024.
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A APPENDIX

A.1 RELATED WORKS

In this section we provide a comparison of various Root Cause Analysis (RCA) and Anomaly Detec-
tion approaches in Table 1. The table categorizes methods based on their graph structure, attention
mechanisms, interpretability, and key strengths. This comparison highlights the unique features and
advantages of each approach, providing a comprehensive overview of the landscape in this research
area.
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Table 1: Related Works Comparison of Generic Time Series Models and Root Cause Analysis
Methods

Method Graph Structure Attention Interpretable Key Strengths
Generic Time Series Models

Time Domain
iTransformer Liu et al.
(2024)

✗ ✓(Linear Self-Attn) ✗ Efficient for long sequences;
scalable forecasting

Frequency Domain
FEDformer Zhou et al.
(2022)

✗ ✓(Sparse Fourier Attn) ✗ Captures periodic patterns; re-
duced complexity

FITS Xu et al. (2024) ✗ ✗(Frequency MLP) ✗ High-resolution freq modeling;
compact design

Time–Frequency Domain
CrossFuN Bai et al.
(2023a)

✗ ✗(simple Time–Freq fu-
sion)

✗ Fuses temporal and spectral info

DeAnomaly Dou et al.
(2025)

✓(Graph) ✓(Cross Time–Freq
Attn)

✗ Robust to noise; joint graph +
time–freq fusion

Root Cause Analysis Models
Topology-Based Graph Methods

MonitorRank Kim et al.
(2013)

✓(Call Graph) ✗ ✗ PageRank-style ranking; inter-
pretable

MicroRCA Wu et al.
(2020)

✓(Topology) ✗ ✗ Random walk scoring on
anomalous subgraphs

Classical Statistical Techniques
ϵ-Diagnosis Shan et al.
(2019)

✗ ✗ ✗ Lightweight; interpretable; effi-
cient

N-Sigma Li et al.
(2022a)

✗ ✗ ✗ Simple thresholding; effective
for small anomalies

BARO Landsittel et al.
(2020)

✗ ✗ ✗ Bayesian change-point detec-
tion; robust scoring

Causal Inference and Graph Neural Methods
GVAR Marcinkevičs &
Vogt (2021b)

✗ ✗(Time MLP) ✓ Infers nonlinear Granger causal-
ity; interpretable causal effects
in time series

CORAL Wang et al.
(2023)

✓(Disentangled
Causal Graph)

✗ ✓ Incremental online RCA; cap-
tures state-invariant and depen-
dent dependencies

AERCA Han et al.
(2025)

✗ ✗(Time MLP) ✓ Models interventions; inter-
pretable

Ours (CrGSTA) ✓(Graph Attn) ✓(Spatio-Temporal
Cross Time-Freq Attn)

✓ Scalable; captures long-range
dependencies; hybrid domain;
GNN+Attn

A.2 MODEL

In this section, we provide a detailed illustration of our proposed CrGSTA architecture in Figure 7.
This figure visually represents the key components and data flow within the model, highlighting the
loss functions, and the same graph structure used across time slices for clarity, and similarly the
another single graph used across frequency slices.
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Figure 7: CrGSTA: Time-Frequency Cross-Attention Graph Spatio-Temporal Autoencoder

A.3 INTUITIVE EXPLANATION OF MODEL EQUATIONS

A.3.1 ENCODER EQUATIONS

Windowing.
Wt = (xt−K+1, . . . ,xt) (19)

This extracts a sliding window of past observations. This allows the model to capture temporal
dependencies over the recent history of the multivariate time series.

Base Spatial Graph.
Hbase

t−k = GNN(xt−k) (20)

This computes pairwise interactions between variables at each lag. Using a graph neural network
(GNN) enables the model to learn complex relationships among variables, which is crucial for iden-
tifying causal influences in multivariate data.

Time-Domain Attention.
Atime

t = TemporalAttn([Hbase
t−1: t−K ]) (21)

This assigns attention weights to past time steps. This temporal attention mechanism allows the
model to focus on the most relevant historical information when inferring exogenous variables.

Frequency-Domain Attention.

Afreq
t = TemporalAttn([Hfreq

1 , . . . ,Hfreq
F ]) (22)

This assigns attention weights to frequency components. Studying the frequency domain helps
capture periodic patterns and anomalies that may not be evident in the time domain alone. Similar
to temporal attention, this mechanism helps the model identify important spectral features that may
indicate anomalies or causal factors.

Cross-Attention Fusion.
H̃time = CrossAttn(Atime

t ,Afreq
t ) (23)
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This mixes information between time and frequency. Mixing both the temporal and spectral repre-
sentations allows the model to leverage complementary information from both domains, enhancing
its ability to detect anomalies and infer causal relationships.

Coefficient Projection

Projection.
Ctime = Linear(H̃time) (24)

This converts fused features into coefficient matrices. Specifcally, the coefficients represent variable-
to-variable dependencies across lags. This helps identify causal influences between variables (i.e.,
sensors or metrics such as how cpu usage affects memory usage over time).

Lagged Prediction.

x̂time =

K∑
k=1

Ctime xt−k (25)

This predicts the next value using past windows. This approach captures autoregressive relation-
ships, allowing the model to forecast future observations based on learned dependencies.

Combination and Residual.
zt = xt − x̂t (26)

This computes the deviation from prediction. This computed z helps isolate exogenous factors
not explained by past values. Subsecuntly, these exogenous variables are used by the decoder to
reconstruct the original observations.

A.3.2 DECODER EQUATIONS

Temporal Attention on Exogenous Inputs.

Htemp
t = TemporalAttn(Henc

t−K+1:t) (27)

This aggregates information across the window. By attending to the sequence of inferred exogenous
variables, the model captures temporal dependencies that are essential for accurate reconstruction of
the original observations.

Reconstruction.
x̂t = fout(H

temp
t ) (28)

This produces the reconstructed output. The function fout maps the aggregated exogenous informa-
tion back to the observation space, enabling the model to reconstruct the original multivariate time
series.

Low-Rank Coefficients.
Ct = UV⊤ (29)

This builds a low-rank interaction matrix. Specifcally, the low-rank structure encourages simpler,
more interpretable relationships between exogenous variables and observations.

A.4 TRAINING OBJECTIVES

Reconstruction Loss.
Lrecon =

∑
t

∥x̂t − xt∥22 (30)

This penalizes reconstruction errors. For instance, minimizing this loss ensures that the model ac-
curately captures the underlying data distribution, which is crucial for effective root cause analysis.

Sparsity.
Lsparse = λencR(Ωt) + λdec(R(Ω̄t) +R(Ω̄′

t)) (31)
This encourages sparse coefficients. Specifcally, this promotes simpler causal structures by penaliz-
ing unnecessary connections between variables, making it easier to identify key root causes.

Smoothness.

Lsmooth = γencS(Ωt+1,Ωt) + γdec(S(Ω̄t+1, Ω̄t) + S(Ω̄′
t+1, Ω̄

′
t)) (32)
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This encourages coefficient stability across time. This loss ensures that the inferred relationships do
not fluctuate wildly between consecutive time steps, which is important for maintaining consistent
causal interpretations over time.

KL Term.
LKL =

1

2

(
tr(Σt) + µ⊤

t µt − d− log detΣt

)
(33)

This regularizes the latent space. By constraining the distribution of latent exogenous variables,
this loss helps prevent overfitting and encourages the model to learn meaningful representations that
generalize well to unseen data.

Total Loss.
Ltotal = Lrecon + Lsparse + Lsmooth + LKL (34)

This is the final training objective.

A.5 ROOT CAUSE LOCALIZATION

z
(j)
t∗ =

z
(j)
t∗ − µ(j)

σ(j)
(35)

This standardizes the exogenous variables for anomaly scoring. This approach highlights variables
that deviate significantly from their normal behavior, aiding in the identification of potential root
causes.

A.6 JUSTIFICATION OF ARCHITECTURAL CHOICES.

Each module in Fig. 1 is introduced to align the model’s computations with the underlying Granger-
causal design.

Motivation Rootcause analysis in multivariate time series requires capturing complex interactions
among variables over time. The architectural choices in CrGSTA are motivated by the need to ef-
fectively model these interactions while ensuring interpretability and scalability. While prior works
have explored interpetability using Granger Causality Marcinkevičs & Vogt (2021b); Han et al.
(2025), their architectural choice lack the scalability of modeling long-range dependencies and the
ability to capture both time and frequency domain information. Specifcally, both these prior works
rely on separate MLP per lag, while this allows for the interpretability of the learned coefficients, it
easily becomes intractable when the number of lags increases.

Graph Stduture. The graph structure captures variable interactions, essential for modeling causal
relationships. This was motivated by prior work demonstrating the effectiveness of graph-based
methods for multivariate time series analysis Wang et al. (2025b); Huang et al. (2023). This desgin
choice allows for a better representation of the dependencies among variables, which is crucial for
accurate root cause identification.

Frequency Domain. Incorporating frequency-domain information enables the model to capture pe-
riodic patterns and anomalies that may not be evident in the time domain alone. This dual-domain
approach enhances the model’s ability to detect anomalies and infer causal relationships, as certain
anomalies may manifest more clearly in the spectral representation. This was inspired by recent suc-
cess of prior works on frequency-based time series modeling Xu et al. (2024); Wang et al. (2025a).

Spatial and Temporal Attention. The spatial attention mechanism allows the model to focus on
the most relevant variables at each time step, while the temporal attention captures dependencies
across time. This desgin choice allows the model to effectively learn complex interactions in both
space and time, which is essential for accurate root cause analysis. Additionally, it allows for a
more parameter efficient representation compared to using separate attention mechanisms for each
variable or time step while allowing for an interpretable attention weights that can be used for root
cause identification. This has been shown to be effective in prior works Huang et al. (2023).

Encoder-Decoder Structure. The encoder-decoder architecture separates the tasks of inferring
exogenous variables and reconstructing observations. This enables the model to learn a more struc-
tured representation of the data, facilitating the identification of root causes. It builds on the success
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of prior works Han et al. (2025); Wang et al. (2025b) that have demonstrated the effectiveness of
this structure for anomaly detection and root cause analysis.

Cross-Attention Fusion. This innovative module allows the model to integrate information from
both time and frequency domains. It has been motivated by prior works Bai et al. (2023a); Dou et al.
(2025) that have shown the benefits of combining temporal and spectral information for improved
anomaly detection.

Table 2: CrGSTA Modules, Their Inspirations, and Motivations

Module Inspiring Works Why It Was Used
Graph Structure (Shared
GNN)

Wang et al. (2025b); Huang
et al. (2023)

Captures variable interactions and causal de-
pendencies; provides a scalable structural
prior replacing per-lag MLPs; improves in-
terpretability and stability across domains.

Frequency-Domain Mod-
ule

Xu et al. (2024); Wang et al.
(2025a)

Extracts periodic and oscillatory patterns not
visible in raw time series; improves anomaly
detection sensitivity and complements time-
domain reasoning.

Spatial & Temporal Atten-
tion

Huang et al. (2023) Learns variable relevance and long-range
temporal structure; more parameter-efficient
than per-variable attention; provides inter-
pretable weights for RCA.

Encoder–Decoder Struc-
ture

Han et al. (2025); Wang et al.
(2025b)

Separates exogenous-variable inference
from reconstruction; produces more struc-
tured latent representations and improves
causal interpretability during anomalies.

Cross-Attention Fusion Bai et al. (2023a); Dou et al.
(2025)

Enables bidirectional fusion between tem-
poral and spectral representations; captures
anomalies that manifest differently across
domains; enhances robustness.

A.7 EVALUATION DATASETS AND METRICS

A.7.1 DATASET

Table 3: Statistics of datasets.

Dataset Training Steps Test Sequences (|X|) Avg. Length (T ) Avg. Root Vars

Synthetic Datasets
Nonlinear (20) Marcinkevičs & Vogt (2021a) 5,000 100 500 5.25
Lotka–Volterra (40) Marcinkevičs & Vogt (2021a) 40,000 100 2,000 30.75

Real-World Datasets
SWaT (51) Mathur & Tippenhauer (2016) 49,500 20 51 13.35
MSDS (10) Nedelkoski et al. (2020) 29,268 4,255 21 3.05

Lotka–Volterra (Extended). Extending the work of Marcinkevičs & Vogt Marcinkevičs & Vogt
(2021a) and its implementation in Han et al. (2025), we introduce additional nonlinearities, stochas-
tic variability, and more realistic adversarial perturbations. Instead of the original formulation

dx(i)

dt
= αx(i) − β

∑
j∈Pa(x(i))

y(j) − η
(
x(i)

)2
, (36)

dy(j)

dt
= δy(j)

∑
k∈Pa(y(j))

x(k) − ρy(j), (37)

x
(i)
t = x

(i)
t + 10 ϵ

(i)
t , y

(j)
t = y

(j)
t + 10 ϵ

(j)
t , 1 ≤ i, j ≤ p, (38)
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we build the extended version as

dx(i)

dt
= αx(i) − β

∑
j∈Pa(x(i))

y(j) − η
(
x(i)

)2
+ cos

(
x(i)+1

)
+ 0.5 sin

(
x(i)

)
+ σN (0, 1), (39)

dy(j)

dt
= δy(j)

∑
k∈Pa(y(j))

x(k) − ρy(j) + cos
(
y(j)+1

)
+ 0.5 sin

(
y(j)

)
+ σN (0, 1), (40)

x
(i)
t = x

(i)
t + 2 ϵ

(i)
t , y

(j)
t = y

(j)
t + 2 ϵ

(j)
t , 1 ≤ i, j ≤ p. (41)

Here, x(i) and y(j) denote prey and predator populations, respectively; α, β, η, δ, ρ are interaction
parameters; σ introduces stochastic fluctuations; and ϵ

(·)
t represents adversarial perturbations. By

replacing the anomaly multiplier of 10 with 2 and enriching the dynamics with sinusoidal and noise
terms, the anomalies become more subtle and thus better reflect realistic system behavior. Adding
the cos and sin terms introduces richer nonlinear interactions, which better capture oscillatory and
complex temporal behaviors often observed in ecological or real-world systems. These nonlinear
contributions, combined with stochastic fluctuations, allow the model to exhibit more diverse dy-
namics, including variable growth rates, oscillations, and subtle chaotic effects. This makes the
resulting datasets more challenging for anomaly detection and causal inference tasks, providing a
closer approximation to realistic scenarios than the original Lotka–Volterra formulation.

Non–Linear (Extended). Extending standard synthetic autoregressive formulations and its im-
plementation in Han et al. (2025), we construct a significantly richer nonlinear generator that incor-
porates higher-order temporal dependencies, expressive nonlinear interactions, correlated stochastic
noise, and a causal anomaly mechanism. Whereas the baseline model follows a simple linear recur-
rence,

x
(i)
t =

L∑
l=1

A
(l)
i: xt−l + ϵ

(i)
t , (42)

our extended formulation introduces nonlinearity, lag-specific mixing, and structured variability:

x
(i)
t =

5∑
l=1

A
(l)
i:

(
sin

(
xt−l + 0.5

)
+ log

(
1 + |xt−l|

))
+ ϵ

(i)
t . (43)

Here each A(l) is obtained by scaling the underlying causal adjacency matrix with lag-dependent
coefficients, enabling distinct temporal effects across the previous five time steps. The combination
of sin(·) and log(1+ | · |) introduces oscillatory, amplitude-dependent, and mildly chaotic behavior,
substantially increasing the complexity of the normal data compared to classical linear autoregres-
sive processes.

We also introduce a causal anomaly mechanism that allows perturbations to persist and propagate
through the system. For non-causal anomalies, deviations are added directly and instantaneously to
the noise:

ϵ
(i)
t ← ϵ

(i)
t + a(i), t ∈ Tanom. (44)

To model anomalies that spread through the nonlinear temporal dynamics, we introduce a latent
anomaly effect zt with exponential decay:

zt = 0.95 zt−1 + a, t ∈ Tanom, (45)
zt = 0.95 zt−1, t /∈ Tanom, (46)
ϵt ← ϵt + zt. (47)

Injecting the perturbation into the noise—rather than directly modifying the state—forces the
anomaly to propagate through the nonlinear transformation and multi-lag mixing structure, pro-
ducing cascading effects that resemble fault propagation in realistic systems.
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A.7.2 EVALUATION METRICS

Recall at Top-k (AC@k). Following prior work Ikram et al. (2022); Li et al. (2022b), we evaluate
root cause identification using the recall at top-k metric, denoted AC@k. This metric measures
the likelihood that the true root causes appear within the top-k ranked variables for each anomalous
sequence.

Formally, let X ∈ X denote an anomalous sequence, RX [k] the top-k ranked variables produced by
the model, and V

(RC)
X the ground-truth root cause set. Then,

AC@k =
1

|X |
∑
X∈X

∣∣∣V (RC)
X ∩ {RX [1], . . . , RX [k]}

∣∣∣
min(k, |V (RC)

X |)
. (48)

This definition ensures normalization when multiple root causes exist, by dividing by
min(k, |V (RC)

X |).

Average Recall (Avg@k). To summarize overall performance across different cutoffs, we also
report the averaged metric:

Avg@k =
1

k

k∑
i=1

AC@i. (49)

This provides a more comprehensive measure than a single cutoff.

Multiple Interventions. When a sequence contains multiple exogenous interventions, we treat it
as a single root cause sequence, following the point-adjust evaluation protocol Koh et al. (2025);
Bai et al. (2023b). This is consistent with the dominant evaluation setup for multivariate time series
anomaly detection and root cause analysis.

Model Efficiency. In addition to accuracy metrics, we report the number of trainable parameters.
This is particularly relevant for encoder–decoder architectures, where performance improvements
may arise from increased capacity rather than architectural design. Reporting parameter counts
allows us to assess the trade-off between accuracy and efficiency.

A.8 IMPLEMENTATION DETAILS

In this section, we summarize the key configurations used in our experiments (Tables 5, 4, and 6
and 7); full details are available in our released code. For AERCA, we adopt the original imple-
mentation Han et al. (2025) with its reported hyperparameters. For our CrGSTA model, we set the
spatial–temporal attention dimension to 64 on Lotka–Volterra and 256 on SWaT, with 2 attention
heads in both cases, we then use the same dimensions for other attention based baselines for a fair
comparison. This approach is followed for Nonlinear and MSDS (albeit with different attention
dimensions due to dataset size). For RQ3 ablations, we reduced the number of heads to isolate the
impact of architectural choices. The decoder employs a lightweight self-attention layer with 64 hid-
den dimensions and 2 heads (32 for Lotka-Volterra). All models are trained with Adam (learning
rate 10−4).

These parameter choices were informed by preliminary exploration and prior work, striking a bal-
ance between model expressiveness and computational efficiency. Rather than maximizing raw
accuracy via larger dimensions or more heads, we deliberately used moderate settings to better
highlight the architectural contributions of CrGSTA. Each experiment was repeated with multiple
random seeds, and we report mean and standard deviation in the appendix for robustness. We further
mention the motivations behind certain hyperparameter choices below after the tables.
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Table 4: Experiment Configurations for Lotka–Volterra Benchmark

Key Parame-
ter

FEDformer
¶

iTransformer
¶

CuasalRCA†
AERCA*
GVAR**

CrGSTA

Learning Rate 1e-4 1e-4 1e-4 1e-4 1e-4
Attention Dim 64 64 – – (spatial 64)

(temporal 64)
(decoder 50)

Attention
Heads

2 2 – – (spatial 2)
(temporal 2)
(decoder 2)

MLP layers
(dim)

– – 256 2 layers (50
nodes) per lag

–

Num Variables 40 40 40 20 40
Epochs 100 100 100 5000 (with

early stopping)
100

Table 5: Experiment Configurations for SWaT Benchmark

Key Parame-
ter

FEDformer
¶

iTransformer
¶

CuasalRCA†
AERCA*
GVAR**

CrGSTA

Learning Rate 1e-4 1e-4 1e-4 1e-6 1e-4
Attention Dim 256 256 – – (spatial 256)

(temporal 256)
(decoder 64)

Attention
Heads

2 2 – – (spatial 2)
(temporal 2)
(decoder 2)

MLP layers
(dim)

– – 256 8 layers (1000
nodes) per lag

–

Epochs 1000 1000 1000 5000 (with
early stopping)

1000

Table 6: Experiment Configurations for NonLinear Benchmark

Key Parame-
ter

FEDformer
¶

iTransformer
¶

CuasalRCA†
AERCA*
GVAR**

CrGSTA

Learning Rate 1e-4 1e-4 1e-4 1e-4 1e-4
Attention Dim 64 64 – – (spatial 64)

(temporal 64)
(decoder 50)

Attention
Heads

2 2 – – (spatial 2)
(temporal 2)
(decoder 2)

MLP layers
(dim)

– – 256 8 layers (50
nodes) per lag

–

Num Variables 20 20 20 20 20
Epochs 100 100 100 100 100
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Table 7: Experiment Configurations for MSDS Benchmark

Key Parame-
ter

FEDformer
¶

iTransformer
¶

CuasalRCA†
AERCA*
GVAR**

CrGSTA

Learning Rate 1e-4 1e-4 1e-4 1e-6 1e-4
Attention Dim 16 16 – – (spatial 16)

(temporal 16)
(decoder 50)

Attention
Heads

2 2 – – (spatial 2)
(temporal 2)
(decoder 2)

MLP layers
(dim)

– – 256 4 layers (1000
nodes) per lag

–

Num Variables 10 10 10 10 10
Epochs 1000 1000 1000 5000 (with

early stopping)
1000

A.8.1 MOTIVATIONS FOR SPECIFIC PARAMETER CHOICES

FEDformer ¶, iTransformer ¶: For FEDformer and iTransformer, for fair comparison, we used
the same attention dimension and number of heads as CrGSTA on each dataset. This allows for a
more direct comparison of the architectural choices rather than differences in model capacity.

CausalRCA†: CausalRCA architecture is relatively simple compared to AERCA and CrGSTA. It
is composed of two linear layers with a ReLU activation in between. So for fair comparison, we
increased the hidden dimension to 256, to increase the model capacity, to be competitive in perfor-
mance with other models. This desgin choice allowed CausalRCA to be competitive in performance
especially for synthetic datasets, such as Lotka-Volterra and Non-Linear datasets.

AERCA*: AERCA parameters are adopted from the original implementation Han et al. (2025). We
note that AERCA uses a separate MLP per lag to model temporal dependencies, which limits scala-
bility to longer windows. This desgin choice, which has been inherited from GVAR Marcinkevičs &
Vogt (2021b), results in a linear increase in the number of parameters as the window size increases.
This has been the motivation for our CrGSTA model to use a shared graph structure across time lags,
which allows for a more parameter efficient representation.

GVAR**: GVAR architecture Marcinkevičs & Vogt (2021b) is an encoder that uses a separate MLP
per lag to model temporal dependencies. AERCA builds on this by adding two decoders built using
the same per-lag MLP structure. Moreover, AERCA added KL regularization, decoder smoothness,
and decoder sparsity losses to the training objective. For the reconstruction loss, GVAR reconstructs
the whole time series window, while AERCA reconstructs the shifted window due to its encoder-
decoder structure. To ensure a fair comparison, we implemented GVAR version using the encoder
architecture as AERCA, while removing the decoder modules and their associated losses from the
training objective including the KL regularization, and used for reconstruction the whole time series
window as in the original GVAR.

A.9 FULL RESULTS

In this section, we provide the set of full tables and figures for the experiments in RQ1, RQ2 and
RQ3 from the main paper. Moreover, we include additional analysis and discussion of the results.

A.9.1 RQ1 (TEMPORAL DIMENSION) - FULL TABLES

In this experiment, we investigate the impact of varying the temporal window size on root cause
identification performance. We evaluate a range of window sizes from 1 to 12 time steps, assess-
ing how this parameter influences the model’s ability to accurately identify root causes in both the
Lotka–Volterra, Non-Linear SWaT and MSDS datasets.
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A.9.1.1 Parameter Scaling.

Figure 8 illustrates how the number of trainable parameters scales with increasing temporal win-
dow sizes for all the different datasets. Notably, CrGSTA maintains a relatively stable parameter
count across window sizes, demonstrating its efficiency in handling longer temporal contexts with-
out a significant increase in model complexity. In contrast, GVAR and AERCA exhibit a linear
growth in parameters as the window size increases, which can lead to scalability challenges for
larger windows. This efficiency of CrGSTA is particularly advantageous for practical applications
where computational resources may be limited.
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Figure 8: Parameter scaling for Lotka Volterra (left) and SWAT (right) for temporal scaling.

A.9.1.2 Full Results Tables

In this section, we present the complete results for the temporal window size experiments on the
different datasets. The tables below summarize the performance of various models across a range of
window sizes, providing detailed insights into how temporal context influences root cause identifi-
cation accuracy. Specifcally, we report the AC@1, AC@3, AC@5, AC@10, and Avg@10 metrics
for each model and window size configuration. Moreover, we include the number of trainable pa-
rameters for each model to facilitate a comprehensive comparison of performance relative to model
complexity. Due to the space limitations in the main paper, we inclue the detailed analysis of both
Non-Linear and MSDS datasets here, while the Lotka Volterra results and MSDS are presented in
the main paper.
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scheme Params window size AC@1 AC@3 AC@5 AC@10 Avg@10

LOTKA VOLTERRA
iTransformer 0.052M 10 0.060±0.010 0.089±0.004 0.120±0.005 0.234±0.006 0.139±0.002

iTransformer 0.052M 7 0.090±0.017 0.070±0.012 0.101±0.010 0.222±0.018 0.128±0.008

FEDformer 0.2M 12 0.100±0.030 0.099±0.004 0.133±0.008 0.268±0.021 0.162±0.012

FEDformer 0.1M 1 0.103±0.015 0.102±0.008 0.115±0.010 0.233±0.007 0.143±0.003

iTransformer 0.051M 5 0.107±0.032 0.100±0.012 0.109±0.010 0.234±0.014 0.146±0.008

iTransformer 0.052M 12 0.107±0.032 0.090±0.006 0.122±0.007 0.219±0.005 0.140±0.002

FEDformer 0.1M 7 0.120±0.046 0.106±0.022 0.129±0.016 0.278±0.011 0.168±0.013

RCD 0.000M 1 0.120±0.000 0.150±0.000 0.157±0.000 0.267±0.000 0.185±0.000

RCD 0.000M 5 0.120±0.000 0.150±0.000 0.157±0.000 0.267±0.000 0.185±0.000

RCD 0.000M 7 0.120±0.000 0.150±0.000 0.157±0.000 0.267±0.000 0.185±0.000

RCD 0.000M 10 0.120±0.000 0.150±0.000 0.157±0.000 0.267±0.000 0.185±0.000

RCD 0.000M 12 0.120±0.000 0.150±0.000 0.157±0.000 0.267±0.000 0.185±0.000

iTransformer 0.051M 1 0.127±0.015 0.112±0.013 0.139±0.005 0.249±0.016 0.166±0.012

FEDformer 0.2M 10 0.137±0.055 0.111±0.023 0.132±0.014 0.271±0.011 0.168±0.018

FEDformer 0.1M 5 0.140±0.036 0.120±0.017 0.142±0.013 0.275±0.028 0.175±0.006

Epsilon 0.000M 1 0.150±0.000 0.113±0.000 0.145±0.000 0.243±0.000 0.167±0.000

Epsilon 0.000M 5 0.150±0.000 0.113±0.000 0.145±0.000 0.243±0.000 0.167±0.000

Epsilon 0.000M 7 0.150±0.000 0.113±0.000 0.145±0.000 0.243±0.000 0.167±0.000

Epsilon 0.000M 10 0.150±0.000 0.113±0.000 0.145±0.000 0.243±0.000 0.167±0.000

Epsilon 0.000M 12 0.150±0.000 0.113±0.000 0.145±0.000 0.243±0.000 0.167±0.000

GVAR 1.0M 12 0.421±0.037 0.334±0.016 0.362±0.018 0.558±0.022 0.426±0.021

GVAR 0.9M 10 0.483±0.045 0.366±0.038 0.390±0.026 0.586±0.016 0.459±0.024

GVAR 0.6M 7 0.560±0.011 0.418±0.006 0.436±0.019 0.634±0.012 0.510±0.011

GVAR 0.4M 5 0.641±0.016 0.495±0.004 0.514±0.009 0.704±0.008 0.590±0.007

AERCA 0.3M 1 0.740±0.017 0.524±0.015 0.488±0.018 0.662±0.003 0.584±0.010

CrGSTA 1.0M 1 0.750±0.026 0.520±0.019 0.481±0.023 0.648±0.007 0.576±0.014

GVAR 0.086M 1 0.763±0.016 0.547±0.011 0.531±0.009 0.705±0.007 0.621±0.008

CrGSTA 1.0M 5 0.770±0.030 0.524±0.032 0.493±0.010 0.658±0.004 0.590±0.012

CrGSTA 1.0M 12 0.770±0.046 0.513±0.018 0.486±0.012 0.661±0.013 0.585±0.017

CrGSTA 1.0M 10 0.880±0.028 0.663±0.009 0.589±0.014 0.748±0.005 0.694±0.003

CrGSTA 1.0M 7 0.930±0.028 0.753±0.000 0.682±0.011 0.845±0.004 0.782±0.008

AERCA 3.1M 12 0.930±0.014 0.703±0.014 0.666±0.004 0.805±0.010 0.758±0.003

AERCA 2.6M 10 0.935±0.007 0.735±0.012 0.669±0.022 0.817±0.006 0.769±0.007

causalrca 0.004M 1 0.963±0.004 0.742±0.011 0.642±0.007 0.763±0.002 0.745±0.005

causalrca 0.004M 5 0.963±0.004 0.741±0.011 0.642±0.007 0.762±0.003 0.745±0.005

causalrca 0.004M 7 0.963±0.004 0.742±0.011 0.641±0.007 0.762±0.003 0.745±0.006

causalrca 0.004M 10 0.963±0.004 0.742±0.011 0.641±0.007 0.762±0.002 0.745±0.005

causalrca 0.004M 12 0.963±0.004 0.742±0.011 0.641±0.007 0.762±0.003 0.745±0.005

AERCA 1.8M 7 0.970±0.026 0.764±0.031 0.697±0.023 0.814±0.026 0.791±0.017

AERCA 1.3M 5 0.977±0.006 0.788±0.007 0.717±0.010 0.816±0.008 0.803±0.003

Table 8: RQ1 Lotka Windows
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scheme Params window size AC@1 AC@3 AC@5 AC@10 Avg@10

SWAT
GVAR 116.0M 12 - - - - -
AERCA 144.9M 5 - - - - -
AERCA 202.9M 7 - - - - -
AERCA 289.9M 10 - - - - -
AERCA 347.9M 12 - - - - -
Epsilon 0.000M 5 0.000±0.000 0.100±0.000 0.100±0.000 0.300±0.000 0.140±0.000

Epsilon 0.000M 12 0.000±0.000 0.025±0.000 0.025±0.000 0.275±0.000 0.070±0.000

RCD 0.000M 1 0.000±0.000 0.000±0.000 0.000±0.000 0.300±0.000 0.100±0.000

RCD 0.000M 5 0.000±0.000 0.000±0.000 0.000±0.000 0.300±0.000 0.100±0.000

RCD 0.000M 7 0.000±0.000 0.000±0.000 0.000±0.000 0.300±0.000 0.100±0.000

RCD 0.000M 10 0.000±0.000 0.000±0.000 0.000±0.000 0.300±0.000 0.100±0.000

RCD 0.000M 12 0.000±0.000 0.000±0.000 0.000±0.000 0.300±0.000 0.100±0.000

iTransformer 0.8M 10 0.031±0.002 0.116±0.008 0.215±0.008 0.387±0.014 0.208±0.002

iTransformer 0.8M 7 0.043±0.000 0.108±0.009 0.170±0.013 0.417±0.015 0.206±0.004

iTransformer 0.8M 12 0.044±0.002 0.098±0.007 0.215±0.005 0.364±0.006 0.203±0.002

Epsilon 0.000M 7 0.050±0.000 0.075±0.000 0.075±0.000 0.375±0.000 0.110±0.000

Epsilon 0.000M 10 0.050±0.000 0.100±0.000 0.100±0.000 0.300±0.000 0.142±0.000

FEDformer 2.4M 12 0.054±0.000 0.058±0.000 0.109±0.003 0.235±0.040 0.124±0.008

causalrca 0.007M 7 0.058±0.029 0.084±0.035 0.122±0.031 0.261±0.007 0.148±0.022

FEDformer 2.2M 10 0.060±0.000 0.061±0.001 0.113±0.000 0.278±0.010 0.134±0.003

FEDformer 1.9M 7 0.064±0.000 0.068±0.000 0.115±0.006 0.292±0.029 0.142±0.003

causalrca 0.007M 5 0.069±0.037 0.109±0.040 0.127±0.038 0.357±0.029 0.178±0.031

FEDformer 1.9M 5 0.070±0.000 0.083±0.004 0.133±0.004 0.297±0.028 0.152±0.005

iTransformer 0.8M 5 0.073±0.010 0.143±0.004 0.250±0.012 0.498±0.013 0.267±0.004

Epsilon 0.000M 1 0.100±0.000 0.150±0.000 0.150±0.000 0.350±0.000 0.170±0.000

causalrca 0.007M 1 0.117±0.035 0.164±0.036 0.197±0.045 0.294±0.027 0.214±0.031

AERCA 29.0M 1 0.150±0.045 0.250±0.045 0.317±0.026 0.342±0.038 0.289±0.004

iTransformer 0.8M 1 0.150±0.060 0.217±0.067 0.279±0.099 0.400±0.117 0.285±0.083

GVAR 9.7M 1 0.167±0.021 0.282±0.059 0.341±0.054 0.475±0.098 0.348±0.052

causalrca 0.007M 10 0.185±0.017 0.239±0.003 0.248±0.014 0.351±0.021 0.263±0.011

FEDformer 1.6M 1 0.208±0.019 0.325±0.000 0.325±0.000 0.498±0.039 0.349±0.008

causalrca 0.007M 12 0.209±0.005 0.237±0.000 0.242±0.000 0.313±0.011 0.251±0.002

CrGSTA 8.5M 1 0.225±0.104 0.275±0.061 0.333±0.041 0.417±0.054 0.327±0.045

CrGSTA 8.5M 12 0.275±0.028 0.369±0.036 0.415±0.052 0.469±0.058 0.404±0.046

GVAR 48.3M 5 0.277±0.024 0.388±0.024 0.419±0.039 0.521±0.051 0.429±0.026

CrGSTA 8.5M 5 0.282±0.056 0.361±0.035 0.366±0.035 0.412±0.078 0.368±0.042

GVAR 67.6M 7 0.285±0.020 0.411±0.028 0.458±0.023 0.564±0.038 0.462±0.027

CrGSTA 8.5M 10 0.305±0.047 0.397±0.065 0.428±0.065 0.472±0.056 0.418±0.057

CrGSTA 8.5M 7 0.308±0.037 0.396±0.034 0.433±0.030 0.488±0.054 0.426±0.031

GVAR 96.6M 10 0.339±0.004 0.462±0.019 0.502±0.037 0.592±0.039 0.502±0.025

Table 9: RQ1 Swat Windows

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

scheme Params window size AC@1 AC@3 AC@5 AC@10 Avg@10

NONLINEAR
Epsilon 0.000M 1 0.180±0.000 0.307±0.000 0.341±0.000 0.530±0.000 0.359±0.000

Epsilon 0.000M 3 0.180±0.000 0.307±0.000 0.341±0.000 0.530±0.000 0.359±0.000

Epsilon 0.000M 5 0.180±0.000 0.307±0.000 0.341±0.000 0.530±0.000 0.359±0.000

Epsilon 0.000M 7 0.180±0.000 0.307±0.000 0.341±0.000 0.530±0.000 0.359±0.000

Epsilon 0.000M 10 0.180±0.000 0.307±0.000 0.341±0.000 0.530±0.000 0.359±0.000

FEDformer 0.1M 5 0.217±0.018 0.262±0.013 0.281±0.010 0.429±0.012 0.306±0.009

iTransformer 0.051M 5 0.225±0.012 0.262±0.006 0.304±0.005 0.453±0.006 0.322±0.002

FEDformer 0.1M 10 0.230±0.031 0.255±0.018 0.294±0.016 0.480±0.013 0.328±0.011

RCD 0.000M 1 0.230±0.000 0.250±0.000 0.286±0.000 0.519±0.000 0.337±0.000

RCD 0.000M 3 0.230±0.000 0.250±0.000 0.286±0.000 0.519±0.000 0.337±0.000

RCD 0.000M 5 0.230±0.000 0.250±0.000 0.286±0.000 0.519±0.000 0.337±0.000

RCD 0.000M 7 0.230±0.000 0.250±0.000 0.286±0.000 0.519±0.000 0.337±0.000

RCD 0.000M 10 0.230±0.000 0.250±0.000 0.286±0.000 0.519±0.000 0.337±0.000

FEDformer 0.1M 3 0.235±0.013 0.312±0.006 0.365±0.005 0.536±0.011 0.387±0.005

FEDformer 0.1M 7 0.250±0.024 0.257±0.016 0.292±0.011 0.469±0.015 0.324±0.005

iTransformer 0.052M 7 0.251±0.026 0.245±0.019 0.282±0.019 0.463±0.017 0.319±0.014

iTransformer 0.051M 1 0.253±0.057 0.280±0.039 0.326±0.020 0.507±0.028 0.357±0.028

iTransformer 0.052M 10 0.284±0.028 0.277±0.013 0.302±0.013 0.462±0.014 0.337±0.008

iTransformer 0.051M 3 0.307±0.012 0.311±0.006 0.357±0.006 0.514±0.004 0.383±0.002

FEDformer 0.1M 1 0.317±0.009 0.285±0.004 0.305±0.005 0.497±0.005 0.352±0.001

AERCA 1.2M 10 0.322±0.057 0.348±0.039 0.388±0.027 0.565±0.022 0.416±0.027

AERCA 0.4M 3 0.337±0.064 0.364±0.035 0.391±0.035 0.565±0.044 0.424±0.039

AERCA 0.6M 5 0.337±0.072 0.349±0.040 0.393±0.043 0.568±0.036 0.423±0.043

AERCA 0.8M 7 0.341±0.043 0.342±0.040 0.382±0.040 0.557±0.038 0.416±0.036

GVAR 0.4M 10 0.360±0.040 0.376±0.036 0.406±0.027 0.569±0.024 0.434±0.026

GVAR 0.2M 5 0.368±0.038 0.366±0.041 0.383±0.033 0.537±0.032 0.417±0.033

GVAR 0.1M 3 0.387±0.071 0.387±0.047 0.412±0.042 0.570±0.044 0.444±0.047

AERCA 0.1M 1 0.394±0.034 0.381±0.036 0.429±0.039 0.606±0.030 0.464±0.030

GVAR 0.3M 7 0.395±0.058 0.377±0.035 0.406±0.025 0.557±0.030 0.434±0.026

CrGSTA 0.4M 1 0.444±0.031 0.433±0.026 0.463±0.016 0.609±0.016 0.488±0.016

CrGSTA 0.4M 10 0.467±0.059 0.459±0.029 0.470±0.018 0.623±0.016 0.504±0.015

CrGSTA 0.4M 7 0.473±0.024 0.468±0.024 0.476±0.015 0.614±0.022 0.508±0.013

GVAR 0.039M 1 0.484±0.047 0.448±0.049 0.464±0.044 0.605±0.045 0.498±0.043

CrGSTA 0.4M 5 0.490±0.031 0.477±0.019 0.487±0.022 0.626±0.014 0.517±0.013

CrGSTA 0.4M 3 0.492±0.046 0.489±0.015 0.499±0.022 0.641±0.025 0.528±0.016

causalrca 0.002M 5 0.500±0.031 0.477±0.028 0.474±0.027 0.608±0.021 0.515±0.025

causalrca 0.002M 7 0.500±0.029 0.475±0.027 0.473±0.028 0.610±0.021 0.515±0.025

causalrca 0.002M 10 0.501±0.030 0.475±0.027 0.473±0.028 0.609±0.021 0.515±0.025

causalrca 0.002M 1 0.503±0.030 0.477±0.026 0.475±0.027 0.608±0.020 0.516±0.025

causalrca 0.002M 3 0.503±0.033 0.475±0.026 0.474±0.027 0.608±0.020 0.515±0.025

Table 10: RQ1 Non-Linear Windows

Non-Linear Dataset Results. Similar trends are observed in the Non-Linear dataset (Table 10) as in
the synthetic Lotka–Volterra dataset. Statistical methods remain largely flat (Avg@10≈ 0.36–0.37),
reflecting their inability to capture nonlinear dependencies. Non-causal deep models exhibit mild
temporal sensitivity but saturate quickly: FEDformer peaks at window 1 (0.352), while iTransformer
reaches 0.383 at window 3. Simple causal models, such as causalrca with 256-unit MLPs, are ca-
pable of modeling relatively complex dependencies but plateau at 0.516 Avg@10. This limitation
may be attributed to the characteristics of the synthetic Non-Linear dataset, which restricts the ex-
ploration of longer-term temporal dependencies compared to real-world datasets like SWaT. GVAR,
constrained by its encoder-only architecture, fails to fully exploit longer temporal windows, and its
performance even shows a slight decline as the window size increases. AERCA similarly exhibits
reduced performance with longer windows, likely due to overfitting given its substantially larger
parameter count. In contrast, CrGSTA achieves the best accuracy under a fixed parameter budget
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(0.528 at window 3), with improvements driven primarily by cross-domain temporal modeling rather
than model size.

scheme Params window size AC@1 AC@3 AC@5 AC@10 Avg@10

MSDS
iTransformer 0.004M 2 0.000±0.000 0.043±0.000 0.283±0.000 1.000±0.000 0.399±0.006

iTransformer 0.004M 3 0.000±0.000 0.000±0.000 0.138±0.017 1.000±0.000 0.364±0.010

iTransformer 0.004M 4 0.000±0.000 0.000±0.000 0.149±0.029 1.000±0.000 0.362±0.009

iTransformer 0.004M 5 0.000±0.000 0.000±0.000 0.031±0.024 1.000±0.000 0.331±0.016

CausalRCA 0.002M 1 0.109±0.000 0.355±0.018 0.652±0.000 1.000±0.000 0.629±0.003

CausalRCA 0.002M 2 0.109±0.000 0.362±0.026 0.652±0.000 1.000±0.000 0.628±0.006

CausalRCA 0.002M 3 0.109±0.000 0.351±0.021 0.652±0.000 1.000±0.000 0.628±0.005

CausalRCA 0.002M 4 0.109±0.000 0.362±0.018 0.652±0.000 1.000±0.000 0.627±0.006

CausalRCA 0.002M 5 0.109±0.000 0.362±0.033 0.652±0.000 1.000±0.000 0.629±0.004

GVAR 6.2M 2 0.203±0.207 0.917±0.021 1.000±0.000 1.000±0.000 0.850±0.022

GVAR 9.3M 3 0.283±0.151 0.935±0.024 1.000±0.000 1.000±0.000 0.859±0.019

Epsilon 0.000M 1 0.283±0.000 0.304±0.000 0.826±0.000 1.000±0.000 0.739±0.000

Epsilon 0.000M 2 0.283±0.000 0.304±0.000 0.826±0.000 1.000±0.000 0.739±0.000

Epsilon 0.000M 3 0.283±0.000 0.304±0.000 0.826±0.000 1.000±0.000 0.739±0.000

Epsilon 0.000M 4 0.283±0.000 0.304±0.000 0.826±0.000 1.000±0.000 0.739±0.000

Epsilon 0.000M 5 0.283±0.000 0.304±0.000 0.826±0.000 1.000±0.000 0.739±0.000

iTransformer 0.003M 1 0.301±0.279 0.426±0.400 0.486±0.401 1.000±0.000 0.627±0.222

AERCA 9.3M 1 0.330±0.093 0.946±0.051 1.000±0.000 1.000±0.000 0.868±0.020

GVAR 12.5M 4 0.351±0.098 0.913±0.014 1.000±0.000 1.000±0.000 0.865±0.012

GVAR 15.6M 5 0.370±0.024 0.880±0.045 1.000±0.000 1.000±0.000 0.861±0.007

GVAR 3.1M 1 0.377±0.022 0.971±0.061 1.000±0.000 1.000±0.000 0.893±0.026

FEDformer 0.008M 1 0.386±0.019 0.442±0.176 0.730±0.265 1.000±0.000 0.723±0.100

CrGSTA 0.069M 5 0.386±0.094 0.859±0.190 0.981±0.039 1.000±0.000 0.877±0.058

FEDformer 0.008M 2 0.391±0.000 0.399±0.025 0.828±0.243 1.000±0.000 0.757±0.058

FEDformer 0.008M 3 0.391±0.000 0.399±0.025 0.832±0.239 1.000±0.000 0.756±0.057

FEDformer 0.009M 4 0.391±0.000 0.498±0.235 0.895±0.236 1.000±0.000 0.789±0.067

FEDformer 0.009M 5 0.391±0.000 0.498±0.235 0.899±0.237 1.000±0.000 0.790±0.066

AERCA 18.7M 2 0.391±nan 0.674±nan 1.000±nan 1.000±nan 0.841±nan

AERCA 28.0M 3 0.391±0.000 0.884±0.123 1.000±0.000 1.000±0.000 0.864±0.016

AERCA 37.4M 4 0.391±0.000 0.848±0.235 0.978±0.053 1.000±0.000 0.864±0.046

AERCA 46.7M 5 0.391±0.000 0.746±0.221 0.975±0.062 1.000±0.000 0.840±0.053

CrGSTA 0.069M 1 0.435±0.100 0.949±0.081 0.998±0.007 1.000±0.000 0.921±0.025

CrGSTA 0.069M 2 0.498±0.133 0.971±0.049 1.000±0.000 1.000±0.000 0.933±0.036

CrGSTA 0.069M 4 0.498±0.098 0.879±0.195 0.969±0.094 1.000±0.000 0.902±0.066

CrGSTA 0.069M 3 0.543±0.082 0.971±0.049 1.000±0.000 1.000±0.000 0.937±0.030

RCD 0.000M 1 0.609±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.922±0.000

RCD 0.000M 2 0.609±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.922±0.000

RCD 0.000M 3 0.609±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.922±0.000

RCD 0.000M 4 0.609±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.922±0.000

RCD 0.000M 5 0.609±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.922±0.000

Table 11: RQ1 MSDS Windows

MSDS Dataset Results. Results on the MSDS dataset (Table 11) further validate our observations.
MSDS represents a real-world cloud computing environment with a relatively small number of vari-
ables (10), allowing models to fully exploit temporal dependencies. Statistical methods (Epsilon,
RCD) perform consistently but are outperformed by deep models. Notably, RCD achieves high ac-
curacy (0.922 Avg@10) despite its simplicity, likely due to the limited variable count of MSDS, but
its performance remains unchanged across window sizes. Among deep models, iTransformer shows
limited temporal sensitivity, while FEDformer, likely due to its frequency-domain design, responds
more to changes in window size. Causal models such as causalrca plateau quickly (0.629 Avg@10),
reflecting their simpler architecture. GVAR achieves stronger performance (0.893 Avg@10) by

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

effectively modeling temporal dependencies but does not improve with larger windows. AERCA
shows a similar trend, with performance declining slightly for longer windows, likely due to overfit-
ting from its larger parameter count. In contrast, CrGSTA consistently attains the best performance
across all window sizes, peaking at 0.937 Avg@10 at window 3, demonstrating its ability to capture
temporal dependencies efficiently in real-world settings.

A.9.2 RQ2 (SPATIAL DIMENSION) – FULL TABLE

In this experiment, we evaluate how varying the number of variables (spatial dimension) affects
root cause identification performance. We test variable counts from 20 to 60 on the Lotka–Volterra
dataset and from 15 to 35 on Non-Linear dataset, maintaining a fixed temporal window size for all
models.

A.9.2.1 Lotka–Volterra Dataset Results.

scheme Params num vars AC@1 AC@3 AC@5 AC@10 Avg@10

LOTKA VOLTERRA
FEDformer 0.1M 50 0.073±0.015 0.077±0.007 0.097±0.003 0.191±0.010 0.118±0.001

FEDformer 0.2M 60 0.077±0.015 0.059±0.007 0.084±0.018 0.176±0.012 0.103±0.015

iTransformer 0.052M 50 0.080±0.010 0.099±0.011 0.115±0.005 0.221±0.007 0.138±0.006

iTransformer 0.052M 40 0.090±0.017 0.070±0.012 0.101±0.010 0.222±0.018 0.128±0.008

iTransformer 0.052M 60 0.110±0.020 0.087±0.009 0.103±0.009 0.187±0.004 0.126±0.005

FEDformer 0.1M 30 0.117±0.023 0.114±0.022 0.147±0.030 0.331±0.014 0.190±0.015

FEDformer 0.1M 40 0.120±0.046 0.106±0.022 0.129±0.016 0.278±0.011 0.168±0.013

iTransformer 0.052M 30 0.123±0.025 0.129±0.005 0.167±0.007 0.328±0.012 0.202±0.001

FEDformer 0.1M 20 0.130±0.040 0.157±0.006 0.219±0.018 0.483±0.016 0.272±0.015

iTransformer 0.052M 20 0.250±0.017 0.248±0.012 0.293±0.021 0.543±0.005 0.354±0.007

GVAR 1.3M 60 0.388±0.006 0.289±0.003 0.312±0.003 0.468±0.009 0.366±0.003

GVAR 0.9M 50 0.442±0.021 0.345±0.022 0.353±0.017 0.532±0.013 0.419±0.019

GVAR 0.6M 40 0.560±0.011 0.418±0.006 0.436±0.019 0.634±0.012 0.510±0.011

GVAR 0.3M 30 0.655±0.033 0.505±0.003 0.538±0.006 0.748±0.019 0.616±0.010

GVAR 0.2M 20 0.811±0.023 0.642±0.021 0.665±0.016 0.875±0.002 0.750±0.013

CrGSTA 0.7M 30 0.927±0.006 0.738±0.008 0.729±0.007 0.899±0.015 0.816±0.007

CrGSTA 1.0M 40 0.930±0.017 0.744±0.005 0.678±0.006 0.848±0.004 0.782±0.007

CrGSTA 1.3M 50 0.937±0.032 0.699±0.013 0.627±0.005 0.778±0.013 0.734±0.007

CrGSTA 1.7M 60 0.940±0.010 0.707±0.015 0.660±0.020 0.797±0.006 0.755±0.008

CrGSTA 0.4M 20 0.950±0.010 0.789±0.014 0.786±0.014 0.948±0.007 0.866±0.004

causalrca 0.003M 30 0.963±0.006 0.732±0.007 0.662±0.007 0.835±0.000 0.769±0.005

causalrca 0.009M 60 0.963±0.006 0.734±0.007 0.628±0.006 0.695±0.003 0.720±0.005

causalrca 0.002M 20 0.964±0.003 0.767±0.007 0.728±0.005 0.956±0.000 0.844±0.003

causalrca 0.005M 40 0.965±0.003 0.748±0.008 0.645±0.005 0.766±0.002 0.749±0.004

AERCA 0.5M 20 0.965±0.007 0.822±0.002 0.772±0.004 0.926±0.008 0.859±0.003

AERCA 2.8M 50 0.965±0.021 0.742±0.007 0.650±0.019 0.769±0.020 0.749±0.012

causalrca 0.007M 50 0.970±0.003 0.735±0.007 0.619±0.002 0.702±0.000 0.717±0.004

AERCA 1.1M 30 0.970±0.028 0.772±0.007 0.727±0.018 0.873±0.020 0.821±0.005

AERCA 1.8M 40 0.985±0.007 0.760±0.038 0.690±0.026 0.797±0.004 0.784±0.016

AERCA 4.0M 60 0.990±0.000 0.773±0.014 0.691±0.008 0.794±0.006 0.788±0.004

Table 12: RQ2 -Lotka Voltera - Spatial Scaling
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A.9.2.2 NonLinear Dataset Results.

scheme Params num vars AC@1 AC@3 AC@5 AC@10 Avg@10

NONLINEAR
FEDformer 0.1M 35 0.140±0.017 0.157±0.008 0.180±0.004 0.274±0.012 0.190±0.001

FEDformer 0.1M 30 0.147±0.023 0.196±0.001 0.228±0.017 0.355±0.003 0.239±0.007

iTransformer 0.051M 35 0.147±0.006 0.176±0.002 0.192±0.001 0.278±0.002 0.203±0.001

GVAR 0.4M 35 0.177±0.055 0.189±0.055 0.199±0.029 0.308±0.036 0.224±0.038

FEDformer 0.1M 25 0.180±0.010 0.224±0.012 0.245±0.007 0.379±0.007 0.267±0.007

CrGSTA 0.8M 35 0.197±0.031 0.223±0.012 0.234±0.019 0.370±0.015 0.264±0.008

AERCA 1.2M 35 0.197±0.049 0.186±0.015 0.189±0.020 0.307±0.037 0.220±0.024

GVAR 0.3M 30 0.213±0.032 0.223±0.033 0.250±0.014 0.394±0.005 0.282±0.017

iTransformer 0.051M 30 0.223±0.006 0.207±0.007 0.253±0.001 0.381±0.001 0.271±0.001

causalrca 0.004M 35 0.227±0.021 0.226±0.013 0.259±0.009 0.370±0.002 0.277±0.006

AERCA 1.0M 30 0.237±0.042 0.239±0.020 0.274±0.026 0.385±0.006 0.293±0.019

iTransformer 0.051M 25 0.240±0.000 0.202±0.002 0.206±0.001 0.363±0.003 0.254±0.001

FEDformer 0.1M 20 0.273±0.006 0.295±0.009 0.341±0.008 0.535±0.009 0.375±0.002

iTransformer 0.051M 20 0.290±0.010 0.316±0.004 0.329±0.003 0.524±0.004 0.374±0.001

AERCA 0.8M 25 0.290±0.046 0.283±0.013 0.312±0.020 0.435±0.029 0.334±0.016

CrGSTA 0.7M 30 0.293±0.059 0.307±0.015 0.325±0.014 0.464±0.010 0.354±0.011

RCD 0.000M 15 0.310±0.000 0.377±0.000 0.436±0.000 0.677±0.000 0.477±0.000

GVAR 0.3M 25 0.313±0.032 0.287±0.007 0.323±0.014 0.455±0.034 0.348±0.022

AERCA 0.6M 20 0.363±0.023 0.339±0.053 0.377±0.055 0.555±0.058 0.412±0.049

GVAR 0.2M 20 0.368±0.038 0.366±0.041 0.383±0.033 0.537±0.032 0.417±0.033

CrGSTA 0.5M 25 0.397±0.035 0.362±0.036 0.381±0.021 0.521±0.034 0.417±0.022

iTransformer 0.051M 15 0.406±0.016 0.399±0.010 0.446±0.010 0.693±0.006 0.498±0.004

causalrca 0.003M 30 0.427±0.012 0.346±0.010 0.344±0.020 0.453±0.010 0.384±0.012

FEDformer 0.1M 15 0.430±0.013 0.420±0.009 0.456±0.011 0.693±0.009 0.502±0.004

Epsilon 0.000M 15 0.440±0.000 0.445±0.000 0.452±0.000 0.687±0.000 0.512±0.000

causalrca 0.003M 25 0.493±0.012 0.441±0.018 0.452±0.015 0.570±0.006 0.489±0.012

causalrca 0.002M 20 0.500±0.031 0.477±0.028 0.474±0.027 0.608±0.021 0.515±0.025

CrGSTA 0.4M 20 0.503±0.045 0.481±0.028 0.492±0.018 0.641±0.022 0.521±0.024

AERCA 0.5M 15 0.503±0.074 0.500±0.039 0.537±0.041 0.744±0.024 0.579±0.037

GVAR 0.2M 15 0.520±0.046 0.505±0.059 0.568±0.042 0.743±0.026 0.597±0.038

CrGSTA 0.3M 15 0.608±0.037 0.566±0.013 0.591±0.012 0.791±0.014 0.637±0.008

causalrca 0.002M 15 0.610±0.000 0.567±0.007 0.567±0.007 0.759±0.010 0.621±0.003

Table 13: RQ2 - NonLinear - Spatial Scaling

To assess spatial scalability on the NonLinear dataset, we fix the temporal window (5) and vary the
number of variables (Table 13).

Causal vs. Non-Causal Models. As in Lotka–Volterra, causal models consistently outperform
non-causal baselines. FEDformer and iTransformer show modest gains at small scales but de-
grade quickly as dimensionality increases (e.g., at 35 variables both remain below 0.28 Avg@10).
In contrast, causal methods maintain substantially higher accuracy: causalrca reaches 0.489–0.515
Avg@10 at 20–25 variables and remains competitive even at 35 variables. This highlights that struc-
tural modeling is essential for capturing the stronger nonlinear interactions in this dataset. CrGSTA
Performance. CrGSTA demonstrates consistently strong and stable performance across all dimen-
sionalities. At 35 variables it reaches 0.264 Avg@10—outperforming all non-causal baselines—and
scales robustly down to 20 variables, where it achieves 0.521. CrGSTA also performs best at lower
dimensions: at 15 variables, it achieves the highest overall Avg@10 (0.637), outperforming GVAR
(0.597), AERCA (0.579), and causalrca (0.621). These results confirm that CrGSTA handles both
moderate and small-scale nonlinear dynamics effectively. Parameter Efficiency. Across all scales,
CrGSTA remains highly parameter-efficient. For example, at 20 variables it achieves 0.521 Avg@10
with only 0.4M parameters—substantially smaller than AERCA (0.412 with 0.6M). At 30–35 vari-
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ables, CrGSTA maintains competitive performance with 0.7–0.8M parameters, outperforming larger
causal models such as AERCA (1.0–1.2M) and sharply exceeding the accuracy of non-causal base-
lines with similar or larger parameter counts.

Summary. On the NonLinear dataset, CrGSTA delivers state-of-the-art spatial scalability, outper-
forming non-causal models at all dimensionalities while remaining competitive with or superior to
larger causal baselines. Its strong accuracy at both low and high dimensions—paired with its com-
pact parameter footprint—demonstrates its suitability for nonlinear, high-dimensional dynamical
systems.
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Figure 9: Parameter scaling for Spatial dimension Lotka Volterra (left) and Non-Linear (right) for
temporal scaling.

A.9.3 RQ3 (ABLATIONS) - FULL TABLES

A.9.3.1 Baselines and Ablations

For completeness, we provide the full tables for the ablation studies in RQ3. Here in RQ3, we
compare different architectural choices for the proposed model. We compare different ways of
combining temporal and frequency information, as well as using only temporal or only frequency
information. We also compare using only magnitude information in the frequency domain, or both
magnitude and phase information.

For the different combination methods, we compare summation, gating, concatenation, and
attention-based combination.

Sum: Element-wise summation of the two representations, as shown in Eq. 50, where HT is the
temporal representation and HF is the frequency representation.

H = HT +HF (50)

Concat: Concatenation of the two representations followed by a linear layer to reduce the dimension
back to the original, as shown in Eq. 51.

H = W · [HT ;HF ] + b (51)

where W and b are learnable parameters. Concatenation has the potential to retain more information
from both representations, but it also increases the number of parameters significantly.

Gated: A gating mechanism to control the contribution of each representation, as shown in Eq. 52.

g = σ(Wg · [HT ;HF ] + bg)H = g ∗HT + (1− g) ∗HF (52)

where Wg and bg are learnable parameters, and σ is the sigmoid function. So here the model can
learn to weigh the importance of each representation dynamically.

Attention: Cross attention mechanism where one representation attends to the other, here it is com-
posed of two cross-attention modules, as shown in Eq. 53.

H̃time = CrossAttn(Ht,H
freq), H̃freq = CrossAttn(Hfreq,Ht). (53)
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Which are then combined as seen in step 5 of CrGSTA in the main paper.

As shown in Tables 14 and 15, we observe several clear trends:

Domains. Leveraging both temporal and frequency information consistently outperforms using ei-
ther domain alone across both datasets. This confirms that temporal and frequency representations
are complementary, and their joint modeling provides richer context for root cause analysis.
Cross Attention. Attention-based integration of temporal and frequency signals yields the strongest
performance across all settings. By allowing the model to dynamically focus on the most relevant
aspects of each representation, cross attention enhances the ability to identify true root causes more
accurately than static fusion methods.
Parameter Efficiency. Figure 10 reports parameter counts for each configuration. Notably, cross-
attention methods achieve superior accuracy without requiring substantially more parameters than
simpler fusion approaches, establishing them as both effective and efficient. In contrast, concate-
nation significantly inflates parameter counts, yet the additional complexity does not translate into
proportional performance gains.
Phase Information. Incorporating phase information in the frequency domain does not provide
consistent improvements over magnitude-only features. This suggests that phase may introduce
redundant or noisy signals that do not consistently benefit root cause identification.

Summary. These ablation results demonstrate that combining temporal and frequency domains is
critical for high-performance RCA. Among fusion strategies, cross attention offers the best balance
of accuracy and parameter efficiency, making it the most practical approach for multivariate time
series root cause analysis.
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Figure 10: Parameters for ablations for Lotka Volterra (left) and SWAT (right).

Model Temp Freq Mag Phase Fusion Type Params AC@1 AC@3 Avg@10

Lotka Volterra

Freq Only (Mag) ✗ ✓ ✓ ✗ – 0.4M 0.730 0.434 0.482
T–F (Mag–Phase, concat) ✓ ✓ ✓ ✓ concat 5.6M 0.708 0.459 0.517
T–F (Mag, concat) ✓ ✓ ✓ ✗ concat 5.5M 0.722 0.463 0.522
T–F (Mag, sum) ✓ ✓ ✓ ✗ sum 0.4M 0.720 0.462 0.525
T–F (Mag–Phase, sum) ✓ ✓ ✓ ✓ sum 0.4M 0.720 0.468 0.526
Temporal Only ✓ ✗ – ✗ – 0.3M 0.767 0.487 0.546
T–F (Mag–Phase, gated) ✓ ✓ ✓ ✓ gated 0.4M 0.787 0.525 0.571
T–F (Mag, gated) ✓ ✓ ✓ ✗ gated 0.4M 0.790 0.529 0.575
T–F (Mag, attn) ✓ ✓ ✓ ✗ attn 0.9M 0.893 0.603 0.639
T–F (Mag–Phase, attn) ✓ ✓ ✓ ✓ attn 1.0M 0.893 0.604 0.639

Table 14: Ablation results on Lotka-Voltera. Best in bold, second best underlined.
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Model Temp Freq Mag Phase Fusion Type Params AC@1 AC@3 Avg@10

SWaT

Temporal Only ✓ ✗ – ✗ – 6.4M 0.213 0.297 0.334
T–F (Mag–Phase, concat) ✓ ✓ ✓ ✓ concat 21.6M 0.210 0.299 0.340
T–F (Mag, gated) ✓ ✓ ✓ ✗ gated 8.0M 0.213 0.299 0.344
T–F (Mag, sum) ✓ ✓ ✓ ✗ sum 8.0M 0.201 0.318 0.351
T–F (Mag–Phase, sum) ✓ ✓ ✓ ✓ sum 8.0M 0.179 0.295 0.352
T–F (Mag, concat) ✓ ✓ ✓ ✗ concat 21.5M 0.198 0.311 0.355
T–F (Mag–Phase, gated) ✓ ✓ ✓ ✓ gated 8.0M 0.258 0.327 0.360
Freq Only (Mag) ✗ ✓ ✓ ✗ – 8.0M 0.242 0.320 0.365
T–F (Mag–Phase, attn) ✓ ✓ ✓ ✓ attn 8.5M 0.312 0.396 0.425
T–F (Mag, attn) ✓ ✓ ✓ ✗ attn 8.5M 0.311 0.395 0.430

Table 15: Ablation results on SWAT. Best in bold, second best underlined.

A.9.4 RQ 4 - CASE STUDY DETAILS

In this section, we provide the detailed data used in the case studies for both the msds using AERCA
and CrGSTA models.

Table 16: Case-study data for MSDS AERCA.

Variable Fused z-score Root Cause

0 0.318 ✗
1 -1.100 ✗
2 -4.251 ✗
3 6.595 ✗
4 -1.188 ✗
5 1.985 ✗
6 -1.352 ✗
7 6.455 ✗
8 0.406 ✗
9 2.990 ✓

Table 17: Case-study data for MSDS CrGSTA.

Variable Fused z-score Root Cause

0 -0.806 ✗
1 -4.150 ✗
2 -4.325 ✗
3 1.769 ✗
4 -0.403 ✗
5 1.181 ✗
6 -1.429 ✗
7 3.004 ✗
8 0.099 ✗
9 2.604 ✓

B USE OF LLMS

We used GPT-5 from ChatGPT and Copilot to help with writing and refining the text and code in
this paper.
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